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Abstract: This paper deals with the stabilization of a transport equation subject to a boundary
disturbance. Our feedback design relies on the so-called strategy called active disturbance
rejection control (ADRC). The unknown disturbance is estimated by Levant’s differentiator and
one of the feature of this differentiator is that it allows to estimate in finite-time the disturbance.
We prove the existence of solutions of the closed-loop system and the global asymptotic stability
of the closed-loop system. A numerical example is given to illustrate the efficiency of our strategy.

1. INTRODUCTION

This paper deals with the stabilization of a transport
equation subject to a boundary disturbance.

Transport equations have received much attention for
many years due to the many physical phenomena they
model: e.g. aeronomy (Schunk (1975)), crystallization
(Mesbah et al. (2011); Omar and Rohani (2017)), biology
(Perthame (2007)) and more specific on the concentration
of polymers (Armiento et al. (2016)). A good overview of
the actual research lines concerning this topic is provided
in Bastin and Coron (2016) and Hayat (2021).

Stabilization of this kind of systems where the distur-
bances are rejected is not a new topic. The reader can refer
to Terrand-Jeanne et al. (2019); Coron and Hayat (2019)
which are based on PI controllers or Deutscher (2017a)
and Deutscher (2017b) which are based on backstepping
method and observer design. Note that, in these cases, the
disturbances might not be located at the same position as
the control. However, there are more constraints on the
disturbance under consideration: either the disturbance is
supposed to be constant or the dynamics of the latter
is assumed to be known. The objective of the current
paper is to propose a control strategy for a larger class of
uncertainties/disturbances as it was the case in Liard et al.
(2022); Tang and Krstic (2014); Balogoun et al. (2023)
with sliding mode control.

As the sliding mode control method, the active disturbance
rejection control (ADRC) is a powerful method to deal
with disturbances. It was initially proposed in Han (2009)
in the context of finite dimensional systems. The main
idea of the ADRC is to build an observer to estimate
a disturbance. Then, the disturbance is compensated in
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a feedback law by its estimate. Recently, this approach
has been successfully applied to systems described by one-
dimensional partial differential equations (PDEs) (Liu and
Wang (2015); Guo and Jin (2013); Zhang et al. (2019);
Zhang and Wang (2021); Cai et al. (2022); Guo and Liu
(2014)).

The contribution of this paper is to apply the ADRC
strategy to design a feedback-law which allows to reject the
disturbance in finite time and to ensure that the resulting
closed-loop system is globally asymptotically stable. Our
ADRC is based on the Levant differentiator (Levant (2003,
2005)) which allows to estimate the disturbance in finite-
time. The PDE is reduced to an ordinary differential
equation (ODE) (more specifically, an integrator chain)
through the knowledge of n−th moment of the PDE’s
state, which is often possible in practice (Omar and Rohani
(2017); Armiento et al. (2016)). Note that this is much
better than what is normally done in the literature by
reducing PDE thanks to test functions in ODE, where the
full-state of PDE often have to be measurable, which is not
possible in practice. In contrast with (Guo and Jin (2013);
Guo and Liu (2014)), we do not derive the dynamics of
the output from the weak formulation of the PDE, which,
in general, leads to a scalar ODE. We rather compute the
dynamics of all the moments up to a certain degree n,
which leads to a much more complicated system. In our
case, this system corresponds to a chain of integrators. We
are, in general, closer to practical cases, since the output
that is assumed to be known in Guo and Jin (2013); Guo
and Liu (2014) does not correspond exactly to a moment.

This paper is organized as follows. Section 2 presents a
linear hyperbolic equation. Section 3 presents the ADRC
strategy and the main results of the paper. Section 4
contains the proofs of the main results. Section 5 illustrates
via numerical simulations the efficiency of our ARDC



strategy. Finally, Section 6 collects some remarks and
introduces some future research lines to be followed.

Notation: The set of non-negative real numbers is denoted
in this paper by R+. When a function f only depends
on the time variable t (resp. on the space variable x),

its derivative is denoted by ḟ (resp. f ′). We define the
function sign as the multivalued function defined on R by
sign(x) = x

|x| for x ̸= 0 and sign(0) = [−1, 1]. For every

m ≥ 0 and x ∈ R, we use ⌊x⌋m to denote |x|msign(x). A
function α : R+ → R+ is of class K, if it is continuous,
strictly increasing and satisfies α(0) = 0. A function
β : R+ × R+ → R+ is of class KL, if for each fixed t ≥ 0,
β(·, t) is of class K, and, for each fixed r ≥ 0, β(r, ·) is
decreasing and satisfies limt→∞β(r, t) = 0. For x ∈ Rn, we
use xi with i = 0, 1 . . . , n−1 to indicate the coordinates of
x. Given L > 0, the set L2(0, L) denotes the Hilbert space
of measurable square-integrable function with values in R.
The set H1(0, L) denotes the Sobolev space of absolutely
continuous R−valued functions whose derivatives are in
L2(0, L).

2. PROBLEM STATEMENT

Let L > 0 and λ > 0. We consider the following linear
hyperbolic system

yt(t, x) + λyx(t, x) = 0, (t, x) ∈ R+ × [0, L]

y(t, 0) = u(t) + d(t), t ∈ R+

y(0, x) = y0(x), x ∈ [0, L]

(1)

where y0 is real-valued, i.e. for all x ∈ [0, L], y0(x) ∈ R,
u(t) ∈ R denotes the control and d(t) ∈ R is an unknown
disturbance. We assume that there exists a known positive
constant C such that, for a.e t ∈ R+,

|d(t)| ≤ C. (2)

When the system (1) is undisturbed (d = 0), it is known
that the feedback law

u(t) := ay(t, L),

allows to stabilize the system if |a| < 1, see (Bastin and
Coron, 2016, Theorem 2.1.). Let n ∈ N fixed. We assume
that we measure y(t, L) and the n−th moment defined by∫ L

0
xny(t, x)dx and we denote by ηi the i-th moment of y,

where i = 0, . . . , n i.e.

ηi(t) :=

∫ L

0

xiy(t, x)dx. (3)

Then, performing formal integrations by parts and using
boundary conditions of (1), we prove that the moments
satisfy the following chain of integrators:

η̇n(t) = −λLny(t, L) + nληn−1(t),
η̇n−1(t) = −λLn−1y(t, L) + (n− 1)ληn−2(t),

...
η̇1(t) = −λLy(t, L) + λη0(t),
η̇0(t) = −λy(t, L) + λ(u(t) + d(t)).

(4)

In this paper, the first goal is to estimate the disturbance
d in finite-time. Second, the second objective of this paper
is to use the disturbance estimate to design feedback
controller u in order to make the origin of (1) globally
asymptotically stable.

3. MAIN RESULTS

To achieve the first goal of this paper, we design an ob-
server for (4) using Levant’s differentiator (Levant (2003)),
of the form

˙̂ηn(t) = −λLny(t, L) + nλη̂n−1(t)

− knC
1

n+1 ⌊η̂n − ηn⌋
n

n+1 ,
˙̂ηn−1(t) = −λLn−1y(t, L) + (n− 1)λη̂n−2(t)

− kn−1C
2

n+1 ⌊η̂n − ηn⌋
n−1
n+1 ,

...
˙̂η1(t) = −λLy(t, L) + λη̂0(t)

− k1C
n

n+1 ⌊η̂n − ηn⌋
1

n+1 ,
˙̂η0(t) ∈ −λy(t, L) + λu(t)− k0C⌊η̂n − ηn⌋0

(5)

where ki for all, i = 0, 1, . . . , n, are the output injection
gains to be selected to ensure the convergence of the
observer. We define the estimation error as ei := η̂i − ηi.
The error dynamics is given by

ėn(t) = nλen−1(t)− knC
1

n+1 ⌊en⌋
n

n+1 ,

ėn−1(t) = (n− 1)λen−2(t)− kn−1C
2

n+1 ⌊en⌋
n−1
n+1 ,

...

ė1(t) = λe0(t)− k1C
n

n+1 ⌊en⌋
1

n+1 ,
ė0(t) ∈ −λd(t)− k0C⌊en⌋0

(6)

i.e{
ėi(t) = iλei−1(t)− kiC

n+1−i
n+1 ⌊en⌋

i
n+1 , i = 1, . . . , n

ė0(t) ∈ −λC[−1, 1]− k0C⌊en⌋0.
(7)

Using the following transformation
wi =

(i+ 1)λei
ki+1C

, i = 1, . . . , n

w0 =
e0
k1C

,

kn+1 = 1

(8)

we obtain
ẇi(t) = −k̃i

(⌊
wn

λ(n+ 1)

⌋ i
n+1

− wi−1(t)

)
, i = 1, . . . , n

ẇ0(t) ∈ −k̃0

(⌊
wn

λ(n+ 1)

⌋0
+

λ

k0
[−1, 1]

)
(9)

where

k̃0 =
k0
k1

and k̃i =
λ(j + 1)ki

ki+1
i = 1, . . . , n.

The solution of system (9) is understood in the sense of
Filippov (Filippov (2013)) and the existence of the solution
will be proved later. From (Cruz-Zavala and Moreno, 2018,
Theorem 1 and Proposition 1), all trajectories of (9)
converge to zero in finite-time. More precisely, we have
the following Proposition.

Proposition 1. There exists a valid set of differentiator
parameters ki, i = 1, . . . , n and a finite time tr > 0 such
that wi(t) = 0, i = 1, . . . , n for any t > tr.

Then, according to (8), wi(t) = 0, i = 1, . . . , n for all t ≥ tr
implies that ei(t) = 0, i = 1, . . . , n for all t ≥ tr. Thus,
according to the last line (6), the function

d̃(t) = −k0C

λ
sign(en(t)), t ≥ 0 (10)



is an estimation of d for all t > tr, where tr is the
convergence time. But, for all t > tr, en(t) = 0. Thus,
t > tr, sign(en(t)) = sign(0) = [−1, 1]. This is why a low-
pass filter of the fast switching signal sign(0) is used for
such an estimate.

Then, in order to reach the second goal of this paper, we
design the feedback controller as follows:

u(t) = ay(t, L) +
k0C

λ
sign(en(t)), |a| < 1. (11)

Note that the first term in (11) is a usual control that
makes the closed-loop system (1) exponentially stable
without the disturbance (Bastin and Coron, 2016, The-
orem 2.1). The second term is used to compensate the
effect of the disturbance.

The closed-loop system (1)−(11) is finally given by

yt(t, x) + λyx(t, x) = 0,

y(t, 0) ∈ ay(t, L) +
k0C

λ
sign(η̂n(t)− ηn(t))

+ d(t),
˙̂ηi(t) = −λLiy(t, L) + iλη̂i−1(t)

− kiC
n+1−i
n+1 ⌊η̂n − ηn⌋

i
n+1 , i = 1, . . . , n

˙̂η0(t) = λy(t, L)
(
a− 1

)
y(0, x) = y0(x),
η̂(0) = η̂0 ∈ Rn+1.

(12)

Remark 1. According to Proposition 1, e(t) = 0 for all
t > tr. Thus, ė(t) = 0 for all t > tr. Then, the mild
solution 1 y of (12) is a mild solution to{

yt(t, x) + λyx(t, x) = 0,

y(t, 0) = ay(t, L)
(13)

for all t > tr.

The main results of this paper can be formulated as
follows:

Theorem 1. (Existence of solutions). Assume that (2)
holds. Then, for all T > 0 and for all (y0, η̂

0) ∈ L2(0, L) ×
Rn+1, the closed-loop system (12) admits a mild solution
(y, η̂) ∈ C(0, T ;L2(0, L)× Rn+1).

Theorem 2. (Global asymptotic stability). There exists
a KL-function α such that, the following inequality

∥y(t, ·)∥L2(0,L) + |e(t)|Rn+1 ≤ α(∥y0∥L2(0,L) + |e0|Rn+1 , t)
(14)

is satisfied for any (y0, η̂
0) ∈ L2(0, L) × Rn+1, for any

t ≥ 0 and for all solution (y, η̂) of (12), where e = η̂ − η,
e0 = η̂0 − η0 and η0i = ηi(0).

4. PROOF OF THEOREM 1 AND THEOREM 2

4.1 Proof of Theorem 1

Let’s consider the operator A : ϕ ∈ D(A) ⊂ L2(0, L) 7→
Aϕ ∈ L2(0, L) defined as{Aϕ = −λϕ′,

D(A) =
{
ϕ ∈ H1(0, L) | ϕ(0) = aϕ(L)

} (15)

where λ is given in system (1). According to the proof
of (Bastin and Coron, 2016, Theorem A.1), it generates a
C0−semigroup (T(t))t≥0 of contractions in L2(0, L). Also,
consider the operator B defined as λ⟨φ,Bv⟩D(A∗),D(A∗)′ =

1 See e.g (Tucsnak and Weiss, 2009, Definition 4.1.5)

λφ(0)v for all v ∈ R and φ ∈ D(A∗) where A∗ is the
adjoint operator of A and ⟨·, ·⟩D(A∗),D(A∗)′ is the dual

product. Now, let’s prove that B is admissible 2 for
(T(t))t≥0. To do so, consider the system

d

dt
z = A∗z, ,

γ = B∗z.
(16)

where A∗ : φ ∈ D(A∗) ⊂ L2(0, L) 7→ A∗φ ∈ L2(0, L) and
B∗ : φ ∈ D(A∗) 7→ B∗ : φ ∈ R are given by

A∗φ = λφ′,

D(A∗) =
{
φ ∈ H1(0, L) | φ(L) = aφ(0)

}
,

B∗ : φ ∈ D(A∗) 7→ λφ(0).

(17)

For all z0 ∈ D(A∗), the function

z(t) = T∗(t)z0 (18)

defines the unique classical solution of (16) where T∗(t)
3 is a C0−semigroup with infinitesimal generator A∗ on
L2(0, L). Now, consider the following function

E(t) =

∫ L

0

(z(t, x))2dx.

The time derivative of E along the trajectories of (16)
reads as, for all t ≥ 0,

Ė(t) =2

∫ L

0

∂tz(t, x)z(t, x)dx

=2λ

∫ L

0

∂xz(t, x)z(t, x)dx

=λ(|z(t, L)|2 − |z(t, 0)|2) (19)

=− λ|z(t, 0)|2(1− a2)

⩽0.

Then, from (19), one deduces that, for all T > 0∫ T

0

|γ(t)|2dt =λ2

∫ T

0

|z(t, 0)|2dt

=
λ

a2 − 1

∫ T

0

Ė(t)dt

=
λ

1− a2
(E(0)− E(T )) (20)

⩽
λ

1− a2
E(0) =

λ

1− a2
∥z(0, ·)∥2L2(0,L)

where γ come from (16). Then∫ T

0

|γ(t)|2dt ⩽ λ

1− a2
∥z(0, ·)∥2L2(0,L). (21)

Then according to (Tucsnak and Weiss, 2009, Definition
4.3.1 and Theorem 4.4.3.), this proves that B is admissible
for the C0−semigroup (T(t))t≥0.

Now, let (y0, η̂
0) ∈ L2(0, L) × Rn+1 such that η̂0 ̸= η0.

Then, there exist t0 > 0 such that for all t ∈ [0, t0], we
have η̂(t) ̸= η(t). Therefore, for all t ∈ [0, t0], sign(η̂n(t)−
ηn(t)) = ±1. Thus, for all t ∈ [0, t0], the system (12) is
equivalent to the following system

2 See e.g (Tucsnak and Weiss, 2009, Definition 4.2.1)
3 See e.g (Tucsnak and Weiss, 2009, Proposition 2.8.5)





yt(t, x) + λyx(t, x) = 0,

y(t, 0) = ay(t, L) + d(t)± k0C

λ
,

˙̂ηi(t) = −λLiy(t, L) + iλη̂i−1(t)

− kiC
n+1−i
n+1 ⌊η̂n − ηn⌋

i
n+1 , i = 1, . . . , n

˙̂η0(t) = λy(t, L)
(
a− 1

)
y(0, x) = y0(x),
η̂(0) = η̂0 ∈ Rn+1.

(22)

Since the function d̂ : t 7→ d(t) + k0C
λ sign(η̂n(t)− ηn(t)) is

bounded on [0, t0] and B is admissible for (T(t))t≥0, then,
according to (Tucsnak and Weiss, 2009, Proposition 4.2.5),
there exist a unique mild solution y ∈ C([0, t0];L

2(0, L))
of (22). As a consequence, the functions y(·, L) and ηn(·)
are continuous on [0, t0]. Then, the right hand side of the
system

˙̂ηi(t) = −λLiy(t, L) + iλη̂i−1(t)

− kiC
n+1−i
n+1 ⌊η̂n − ηn⌋

i
n+1 , i = 1, . . . , n

˙̂η0(t) = λy(t, L)
(
a− 1

)
η̂(0) = η̂0 ∈ Rn+1.

(23)

is continuous on [0, t0] × Rn+1. Thus, according to (Cod-
dington and Levinson, 1955, Theorem 1.2), the system (23)
admits a solution η̂ ∈ C1([0, t0]). As a consequence, the
system (12) admits a mild solution on [0, t0]. Moreover,
for all t ∈ [0, t0], y(t, ·) ∈ D(A) and satisfies the following
equations in D(A∗)′

y(t, ·)− y0 = −λ

∫ t

0

yx(s, ·)ds+
∫ t

0

Bd̂(s)ds,∀t ∈ [0, t0].

(24)
Thus, for all t ∈ [0, t0], y(t, ·) ∈ D(A) and for all i =
0, 1 . . . , n, for all (t, x) ∈ [0, t0]× [0, L], y satisfies

xiy(t, x)− xiy0(x) = −λ

∫ t

0

xiyx(s, x)ds+

∫ t

0

xiBd̂(s)ds.

(25)
As a consequence, we have for all i = 0, 1 . . . , n, and for
all t ∈ [0, t0]∫ L

0

xiy(t, x)dx−
∫ L

0

xiy0(x)dx

= −λ

∫ t

0

∫ L

0

xiyx(s, x)dxds+

∫ t

0

∫ L

0

xiBdxd̂(s)ds.

(26)

Since B is the product of the delta function at x = 0 with
λ, then for all i = 1 . . . , n∫ L

0

xiBdx = 0 (27)

and ∫ L

0

Bdx = λ, because 0 ∈ [0, L]. (28)

Thus, for all i = 1 . . . , n, we have∫ L

0

xiy(t, x)dx−
∫ L

0

xiy0(x)dx

= −λ

∫ t

0

∫ L

0

xiyx(s, x)dxds, ∀t ∈ [0, t0] (29)

and

∫ L

0

y(t, x)dx−
∫ L

0

y0(x)dx

= −λ

∫ t

0

∫ L

0

yx(s, x)dxds+ λ

∫ t

0

d̂(s)ds, ∀t ∈ [0, t0].

(30)

Using an integration by parts, one immediately obtains∫ L

0

y(t, x)dx−
∫ L

0

y0(x)dx

= −λ

∫ t

0

(
y(s, L)− y(s, 0)− d̂(s)

)
ds, ∀t ∈ [0, t0]

(31)

and for all i = 1 . . . , n, for all t ∈ [0, t0]∫ L

0

xiy(t, x)dx−
∫ L

0

xiy0(x)dx

= iλ

∫ t

0

∫ L

0

xi−1y(s, x)dxds− λ

∫ t

0

Liy(s, L)ds. (32)

Using (3) and the fact that, for all t ∈ [0, t0], y(t, ·) ∈ D(A),
we obtain, for all t ∈ [0, t0]

η0(t)− η0(0) = −λ

∫ t

0

(
y(s, L)(1− a)− d̂(s)

)
ds (33)

and for all i = 1 . . . , n, for all t ∈ [0, t0]

ηi(t)− ηi(0) =

∫ t

0

(
iληi−1(s)− λLiy(s, L)

)
ds. (34)

This prove that, for all i = 0, 1 . . . , n, the i−th moment ηi
of y is a Carathéodory solution to (4) on [0, t0].

Now, we assume without loss of generality that t0 < tr,
where tr is given in Proposition 1. Thus, according to
Proposition 1, η̂(t) ̸= η(t) for all t ∈ [t0, tr[. As a result,
the same reasoning at time interval [0, t0] is step-by-step
applied to time interval [t0, tr[, by considering y(t0, ·) as
the initial condition. As a consequence, the system (12)
admits a solution on [0, tr[.

Moreover, on one hand, according to Proposition 1, η̂(t) =

η(t) and d(t)− d̃(t) = 0 for all t ≥ tr. Thus, for all t ≥ tr,
the system (12) is equivalent to the following system

yt(t, x) + λyx(t, x) = 0,
y(t, 0) = ay(t, L),
˙̂ηi(t) = −λLiy(t, L) + iλη̂i−1(t), i = 1, . . . , n
˙̂η0(t) = λy(t, L)

(
a− 1

)
y(0, x) = y0(x),
η̂(0) = η̂0 ∈ Rn+1.

(35)
It can be proved as before that the system (35) admits a
solution on [tr,∞[. Then, in conclusion, for all (y0, η̂

0) ∈
L2(0, L) ×Rn+1 such that η̂0 ̸= η0, the system (12) admits
a solution on [0,∞[.

Let (y0, η̂
0) ∈ L2(0, L) × Rn+1 such that η̂0 = η0. Then,

there exist t0 > 0 such that, for all t ∈ [0, t0[, we have
η̂(t) = η(t). Then, there exists a measurable function
c : [0, t0[→ [−1, 1] such that, for all t ∈ [0, t0[, y(t, 0) =
ay(t, L)+d(t)+ k0C

λ c(t). Thus, for all, t ∈ [0, t0[ the system
(12) is equivalent to the following system





yt(t, x) + λyx(t, x) = 0,

y(t, 0) = ay(t, L) + d(t) +
k0C

λ
c(t),

˙̂ηi(t) = −λLiy(t, L) + iλη̂i−1(t), i = 1, . . . , n
˙̂η0(t) = λy(t, L)

(
a− 1

)
y(0, x) = y0(x),
η̂(0) = η̂0 ∈ Rn+1.

(36)
Since the function t 7→ d(t) + k0C

λ c(t) is bounded on [0, t0]
then we conclude as before that the system (36) admits
a solution on [0, t0[ and the i−th moment ηi of y is a
Carathéodory solution to (4) on [0, t0[.

However, since η̂(t) = η(t) for all t ∈ [0, t0[, then according
to Proposition 1, t0 > tr. Thus, for all t ≥ tr, the system
(12) is equivalent to system (35). As a consequence t0 = ∞.

This conclude the proof of Theorem 1.

4.2 Proof of Theorem 2

Let (y0, η̂
0) ∈ L2(0, L)× Rn+1. Using the error variable e

defined in (6), we can write the equivalent system of (12)
as follows:

yt(t, x) + λyx(t, x) = 0,

y(t, 0) = ay(t, L)− 1

λ
ė0(t),

ėi(t) = iλei−1(t)− kiC
n+1−i
n+1 ⌊en⌋

i
n+1 , i = 1, . . . , n

ė0(t) ∈ −λd(t)− k0Csign(en(t)).
(37)

Then, according to Proposition 1 and Remark 1, there
exists a finite time tr such that, for all t > tr, the solution
y of (37) is equivalent to the system (13) and hence is
globally exponentially stable in L2(0, L) from (Bastin and
Coron, 2016, Theorem 2.1). Therefore, to conclude the
proof of Theorem 2, it is just necessary to prove that the
system (37) depends continuously on initial conditions on
the time interval [0, tr]. It is stated in the following Lemma.

Lemma 1. There exists a K-function β such that for all
(y0, e

0) ∈ L2(0, L) × Rn+1, for all t ∈ [0, tr],

∥y(t, ·)∥L2(0,L) + |e|Rn+1 ≤ β(∥y0∥L2(0,L) + |e0|Rn+1).
(38)

for all solution (y, e) of (37).

Proof. Let (y0, e
0) ∈ L2(0, L) × Rn+1 and we consider

(y, e) a solution of (37) associated (y0, e
0). Then, according

to (Tucsnak and Weiss, 2009, Proposition 2.1.2), there
exists K0 > 0 such that, for all t ∈ [0, tr], we have

∥y(t, ·)∥L2(0,L) ≤ K0∥y0(·)∥L2(0,L)

+

∥∥∥∥ 1λ
∫ t

0

T(t− s)Bė0(t)ds
∥∥∥∥
L2(0,L)

. (39)

As a consequence, since (T(t))t≥0 is exponentially stable
and B is admissible operator for (T(t))t≥0, then we have
according to (Tucsnak and Weiss, 2009, Proposition 4.4.5),
that there exists K1 > 0 independent of tr such that

∥y(t, ·)∥L2(0,L) ≤ K1

(
∥y0(·)∥L2(0,L) + ∥ė0(·)∥L2(0,tr)

)
.

(40)

Fig. 1. y versus x and time.

Since d and the sign function are bounded then according
to (6), ė0 is also bounded. Therefore, there exists K2 > 0
such that

∥ė0∥2L2((0,tr),R) ≤ K2tr. (41)

Now, according to (Cruz-Zavala and Moreno, 2018, The-
orem 1), there are positive constants K3, K4 (dependent
on the bound of d) such that{

tr < K3|e0|Rn+1 ,
|e|Rn+1 ≤ K4|e0|Rn+1 .

(42)

As a consequence, according to (40), (41) and (42), there
exists C1 > 0 (independent of tr) such that, for all
t ∈ [0, tr],

∥y(t, ·)∥L2(0,L) + |e|Rn+1 ≤ β(∥y0∥L2(0,L) + |e0|Rn+1).
(43)

where β is given by β : s ∈ R+ 7→ C1(s +
√
s). This

concludes the proof of Lemma 1.

Since for all t > tr, the solution y of system (37) is globally
exponentially stable in L2(0, L), then according to Lemma
1 and Proposition 1, there exists a KL-function α such
that, for any y0 ∈ L2(0, L), for any η̂0 ∈ Rn+1 and for any
t ≥ 0:

∥y(t, ·)∥L2(0,L) + |e(t)|Rn+1 ≤ α(∥y0∥L2(0,L) + |e0|Rn+1 , t)
(44)

for all solution (y, e) of (37). This concludes the proof of
Theorem 2.

5. NUMERICAL ILLUSTRATION

Let L = 3, λ = 2, n = 1, k1 = k0 = 2, a = 0.47, C = 1.
The time-space step variation (∆t,∆x) = (0.0015, 0.0150)
satisfies the CFL condition λ∆t

∆x
< 1. We consider a step

disturbance
d(t) = 1(0,1)(t)− 1(1,5)(t) + 0.51(5,6)(t)− 0.71(6,10)(t)

+ 01(10,15)(t) + 0.61(15,23)(t)− 0.21(23,30)(t)

− 1(30,35)(t) + 1(35,40)(t)− 0.81(40,+∞)(t).
(45)

In Figure 1, the robust stabilization of y is illustrated.
Figure 2 shows that, d̃ estimates well d.

6. CONCLUSION

In this paper, we apply the ADRC method based on
a differentiation to stabilization of a linear hyperbolic



t

Fig. 2. d̃ (- -) and the disturbance d (–) versus time (sec).

system (transport equation to be more precise) subject to
a boundary disturbance. The disturbance is supposed to
have a known boundary. The Levant differentiator is used
to estimate the disturbance in finite time. The existence of
solutions of the closed-loop system is shown, and the global
asymptotic stability of the closed-loop system is proven.
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