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Background: Lyme borreliosis (LB) is the most wide-
spread hard tick-borne zoonosis in the northern 
hemisphere. Existing studies in Europe have focused 
mainly on acarological risk assessment, with few 
investigations exploring human LB occurrence. Aim: 
We explored the determinants of spatial and seasonal 
LB variations in France from 2016 to 2021 by integrat-
ing environmental, animal, meteorological and anthro-
pogenic factors, and then mapped seasonal LB risk 
predictions. Methods: We fitted 2016–19 LB national 
surveillance data to a two-part spatio-temporal sta-
tistical model. Spatial and temporal random effects 
were specified using a Besag-York-Mollie model and 
a seasonal model, respectively. Coefficients were 
estimated in a Bayesian framework using integrated 
nested Laplace approximation. Data from 2020–21 
were used for model validation. Results: A high vege-
tation index (≥ 0.6) was positively associated with sea-
sonal LB presence, while the index of deer presence 
(> 60%), mild soil temperature (15–22 °C), moderate air 
saturation deficit (1.5–5 mmHg) and higher tick bite 
frequency were associated with increased incidence. 
Prediction maps show a higher risk of LB in spring 
and summer (April–September), with higher incidence 
in parts of eastern, midwestern and south-western 
France. Conclusion: We present a national level spa-
tial assessment of seasonal LB occurrence in Europe, 
disentangling factors associated with the presence 
and increased incidence of LB. Our findings yield 
quantitative evidence for national public health agen-
cies to plan targeted prevention campaigns to reduce 
LB burden, enhance surveillance and identify further 

data needs. This approach can be tested in other LB 
endemic areas.

Introduction
Lyme borreliosis (LB) is a widespread zoonotic vector-
borne disease in the northern hemisphere, caused by 
the spirochete Borrelia burgdorferi sensu lato (B. burg-
dorferi  s.l.) species complex and transmitted by hard 
ticks Ixodes spp. [1]. LB infection is often asymptomatic 
or manifests as an erythema migrans (EM, typical Lyme 
skin rash); in rare cases, disseminated forms may 
occur, affecting other organs such as joints or the nerv-
ous system [1]. In western Europe, the overall estimated 
annual incidence of LB is ca 22 per 100,000 inhabit-
ants, with wide variation across geographic regions, 
ranging from 464 per 100,000 in southern Sweden to 
0.001 per 100,000 in Italy [2]. Understanding the deter-
minants underlying the spatial heterogeneity of LB inci-
dence in humans is necessary to better assist disease 
surveillance, prevention and control.

B. burgdorferi s.l. persistence is permitted by a complex 
transmission cycle at the interface between Ixodes spp. 
ticks and animal hosts [3].  Ixodes  spp. can feed on a 
large variety of animals (including birds, reptiles and 
mammals), but only a few species can act as reservoirs 
for  B. burgdorferi  s.l. [3]. Furthermore, suitable vege-
tation habitats and climatic conditions allowing host-
seeking, oviposition, eclosion, and tick molting are 
necessary for the completion of Ixodes’  life cycle (egg, 
larvae, nymph and adult) [3]. Therefore, the presence 
and abundance of infected ticks depend on the distri-
bution of specific animal hosts, but also on specific 
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environmental and meteorological conditions. In addi-
tion, humans can increase their likelihood of exposure 
to infected ticks during outdoor activities.

To date, numerous studies conducted in Europe have 
focused on acarological risk assessment and have 
been realised in fragmented areas [4-11]. A large num-
ber of biotic and abiotic factors related to the ecology 
of  Ixodes (I.) ricinus  (the primary vector for human LB 
in Europe) have been tested. Among these, climatic 
factors such as temperature, humidity and saturation 
deficit have been identified as good proxies for the 
host-seeking activity of nymphs [4,7,8,10]. Biotic fac-
tors such as vegetation indices and rodent popula-
tion distribution have been shown to be associated 
with tick abundance and infection rates [5,6,11,12]. 
Anthropogenic data characterising human outdoor 
activity or human exposure to infected ticks has not 
been well explored since such data are challenging 
to collect [3]. Yet, recent citizen science research has 
shown promising results on characterising human 
exposure to tick bites [13]. Exploring LB incidence 
within a single framework that accounts for environ-
mental, animal, meteorological and anthropogenic fac-
tors, would be a step forward in the estimation of its 
spatial determinants.

Metropolitan France, located in the temperate zone of 
western Europe (5°W-10°E, 41°N-52°N), is affected by 
various climate types (e.g. semi-continental, oceanic 
and Mediterranean climates) and 31% of its territory 
is covered by forests [14,15]. LB is a growing public 
health concern and since 2009, the national sentinel 
network (Réseau Sentinelles) has monitored LB inci-
dence [16], with increased attention nationally since 
2016 [17]. To date, LB cases have been reported in all 
regions of the country, with a clear seasonal pattern, 
peaking between May and October [18]. Regional inci-
dence rates show spatial variations, ranging from 667 
cases (95% CI: 369–965) per 100,000 inhabitants in 

Limousin (central area) to 11 cases (95% CI: 0–33) 
per 100,000 inhabitants in Poitou-Charentes (western 
area) in 2020 [16].

In this study, we explored the determinants of spatial 
and seasonal LB variations in France, accounting for 
environmental, animal, meteorological and anthropo-
genic factors in a single framework. For this, we first 
fitted in a Bayesian framework 2016–19 LB national 
surveillance data to a two-part spatio-temporal sta-
tistical model to identify and estimate the spatial and 
seasonal determinants associated with LB presence 
and increased incidence. Then, we used that model to 
map areas and seasons at higher risk of disease, and 
finally, we validated our projections using data from 
2020 and 2021, separately.

Methods

Study setting and design
Metropolitan France has 13 regions, which are further 
divided into administrative subdivisions of depart-
ments, with a total of 96 departments in mainland 
France. For our study, we divided mainland France into 
a grid of 1,753 cells, each with a size of ca 0.2 x 0.2 dec-
imal degrees (dd) (~ 22 km2) as the unit of spatial anal-
ysis. Time was expressed in discrete units of 3 months 
(i.e. quarter (Q)), divided in winter (January to March), 
spring (April to June), summer (July to September) and 
autumn (October to December). All spatial data were 
rasterised and resampled to match the resolution 
of the grid cells and projected to the World Geodetic 
System 1984 (WGS84).

Lyme borreliosis surveillance data
We produced quarterly incidence estimates for each 
department by aggregating departmental LB weekly 
incidence (per 100,000 inhabitants) from national sur-
veillance data (https://www.sentiweb.fr) for 2016 to 
2021. These incidence estimates were calculated from 

What did you want to address in this study?
Lyme borreliosis (LB) is the most common vector-borne zoonosis transmitted to humans through the bite of 
infected ticks in temperate regions. Understanding the impact of the environment and human exposure to 
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suitable for deer, mild weather conditions, together with a higher chance to be bitten by a tick.
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enhanced surveillance, targeted prevention campaigns to further reduce the risk of tick bites and thereby 
LB for humans, and highlighting that more information on vectors and hosts is still needed.
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Table 1
Covariates selected for the two-part model, along with descriptions and hypotheses with regards to Lyme borreliosis 
occurrence, France, 2016–2021

Variable Type Description Hypotheses Source
Logistic model (LB presence vs absence)a

Normalised 
difference 
vegetation 
index (NDVI, Q)

Time-
varying

NDVI values are aggregated 
by quarter, reflecting the 

photosynthetic activity of green 
plants.

NDVI is identified as an important proxy 
for predicting tick distribution, reflecting 
the spatial and temporal dynamics of tick 

activity [6]. Higher NDVI values in Q are 
positively correlated with the number of 

questing nymphs in Q, and therefore with 
LB presence in Q.

Copernicus Global Land 
Service NDVI 1 km product 
version 3 (January 2016 to 

June 2020) and NDVI 300 m 
product version 2 (July 2020 to 

December 2021) [42].

Indices of 
rodent species 
richness

Fixed-
time

Predicted average number of 
rodent species in the field.

The number of potentially competent rodent 
species may influence the spread of the 

vector-borne pathogens [43].

Layer containing five rodent 
species, namely Apodemus 

agrarius, Apodemus flavicollis, 
Apodemus sylvaticus, Microtus 

arvalis, Clethrionomys 
glareolus [43].

Gamma model (Increase of LB incidence conditional on LB presence)b

Index of deer 
presence

Fixed-
time

Percentage (%) of suitable 
habitat for deer.

High deer density is associated with 
increased tick abundance, suggesting a 

higher risk of LB [35].

Presence layers of roe deer and 
red deer [44,45].

Soil 
temperature 
 
(ST, Q)

Time-
varying

Average daily maximum soil 
temperature (°C, level 1:0–7 cm), 

averaged by quarter.

ST mainly influence tick development. We 
assumed that ST in Q favours tick’ questing 
activity, which relates to increased human 

LB in Q. The temperature thresholds for 
questing activity (average maximum 

ST) that have been observed is 10 °C for 
larvae and 7–8 °C for nymphs, with peaks 

occurring at 15–17 °C [7,10].

ECMWF Reanalysis v5 - Land 
dataset (2016–21) [40].

Saturation 
deficit 
 
(SD, Q)

Time-
varying

Index calculated from average 
daily mean air temperature and 
humidity, averaged by quarter.

SD could explain important variations in 
numbers of questing ticks, with peaks 

being observed between 2 and 7 mmHg, 
and initiating a decline when SD > 5 mmHg 
[8]. Decreasing SD values in Q is assumed 
to be positively associated with disease 

incidence in that same quarter.

SD was calculated using air 
temperature (AT) and relative 

humidity (RH) from the ECMWF 
Reanalysis v5 dataset (2016–
2021) [41], using the formula: 
SD = (1-RH/100) *4.9463*exp 

(0.0621*AT) [10].

Rainless days 
(Q)

Time-
varying

Cumulative number of rainless 
days per quarter. A rainless day 
is defined as a daytime period 

(06.00–18.00) when the average 
depth of precipitation covering 
the entire surface is less than 

1 mm per hour.

Precipitation is assumed to be negatively 
correlated with human activity outdoors 

[46]. We assumed that more rainless days 
in Q is associated with humans being 

outdoors in Q and is therefore expected to 
be positively associated with an increased 

LB incidence in Q.

ECMWF Reanalysis v5 dataset 
(2016–21) [41].

Frequency of 
tick bite reports 
(Q)

Time-
varying

Proportion of quarterly tick 
bite reports per department, 

adjusted for weighted 
population at risk.

People may develop an LB infection after 
being bitten by ticks [47]. The number of 

tick bites in Q is assumed to be positively 
correlated with LB incidence in that same 

quarter.

Information collected 
by Signalement TIQUE 

smartphone application and 
website (July 2017 to December 

2021) [48].

AT: air temperature; ECMWF: the European Centre for Medium-Range Weather Forecasts; LB: Lyme borreliosis; NDVI: normalised difference 
vegetation index; Q: quarter; RH: relative humidity; SD: saturation deficit; ST: soil temperature.

a Environmental and Borrelia reservoir factors associated with infected ticks correlate with the spatiotemporal presence of LB cases in 
humans.

b Animal host, meteorological and anthropogenic factors influence tick density, questing activity and the frequency of human–tick contact, 
associated with LB incidence.
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LB cases reported in primary care and adjusted for the 
number of participating general practitioners (GPs) and 
their participation time, the total number of licensed 
GPs, and the number of inhabitants in each depart-
ment [19,20]. The LB case definition used was based 
on the guidelines of the European Study Group on 
Lyme Borreliosis (ESGBOR), with LB cases diagnosed 
by the presence of EM, or of at least one disseminated 
manifestation, confirmed by ELISA and Western blot 
tests [21].

National maps at our study resolution (0.2 x 0.2 dd) 
were generated from departmental quarterly incidence 
by spatial interpolation using ordinary kriging. The cen-
troid of each department was used as the geographic 
coordinate to define the semivariogram function, i.e. 
the semi-variance of incidence rates from two differ-
ent locations in relation to the distance between them 
[22]. A spherical model was used to fit the experimen-
tal semivariogram and kriged values were estimated 
for each grid cell [22]. We mapped the quarterly kriged 
LB incidence values and used this as outcome data in 
the model.

Space-time model specification
Yij represents the kriged LB incidence values at xi 

th grid 
cell and  tj 

th  quarter, which includes both zero values, 
indicating no reported cases, and positive continu-
ous values, indicating the estimated incidence in that 
area and time period. We used a two-part model that 
decomposed the distribution of  Yij  into a binary out-
come (absence vs presence of at least an LB case) fit-
ted to a logistic model and a continuous outcome (all 
positive values) fitted to a gamma model. Spatial ran-
dom effects and seasonal variation were separately 
estimated in both models. For each part, covariates 
were preselected as potential risk factors according 
to LB eco-epidemiology, and examined independently. 
Selection of covariates are detailed in  Table 1  and 
presented hereinafter. The complete model is defined 
as follows:

Where V and G are vectors of covariates at location xi at 
quarter  tj  associated with the outcome in binary 
part and continuous part, respectively.  ⍺  and  β  are 
vectors of coefficients for the covariates and we 
assigned a Gaussian prior with mean of zero and 
precision of 0.001. The spatial random effects, for the 
logistic ξb(xi), and gamma ξg(xi) models were specified 
using a Besag-York-Mollie (BYM) model. It consists of an 
intrinsic conditional autoregressive model for spatially 
structured effects  ui  , and an independent identically 
distributed Gaussian model for spatially unstructured 
effects 𝜈i [23].

where  i~h  indicates that two locations  i  and  h  are 
first-order neighbours,        ni  is the number of neigh-
bours of location  i, with 𝜏1  and 𝜏2  being the precision 
parameters.

Seasonal variations for the logistic  ωb(tj), and 
gamma  ωg(tj)  parts can be represented as a set of 
random vectors 𝝎 = (ω1, ω2,…, ωj) with periodicity  s  . 
The density for 𝝎 is derived from the j-s + 1 increments 
as

Here  s = 4 denotes the number of quarters in 1 year 
and  j = 24 denotes the total number of quarters in 
2016–21. We set the priors for precision parameters 𝜏1, 
𝜏2, 𝜏3 as Gamma (1, 0.00005).

Inference framework and parameter estimation
The fixed and random effects coefficients were esti-
mated from data by Bayesian inference. We used 
the integrated nested Laplace approximation (INLA) 
method to approximate the posterior marginal distribu-
tion of the parameters of the two-part model. All analy-
ses were performed in R version 4.0.5 using the INLA 
package [24].

Model selection and validation
Pearson correlation analysis was first used to test the 
correlation between candidate covariates, and only 
these with a coefficient less than 0.7 were retained for 
the model. In addition to those listed in Table 1, candi-
date covariates excluded from the model were soil tem-
perature in the previous year, seasonal air temperature 
and humidity, forest type, daylight hours and Google 
trends data related to LB. Univariable and multivari-
able analyses were then conducted, and covariates 
were categorised by biological relevance or quartiles. 
We used the widely applicable information criterion 
(WAIC) to select the preferred multivariable model [25]. 
Cross-validation was performed using data from 2020 
and 2021, separately. For all study years, maps of the 
probability of LB case presence, the mean predicted 
incidence value and their standard deviation were pro-
duced for each season. The empirical distributions of 
the probability integral transform (PIT) were plotted to 
assess the predictive performance of our model [26]. 
Finally, the overall annual national incidence with their 
95% confidence interval were calculated and compared 
with the Réseau Sentinelles values [27].
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Environmental, animal and meteorological 
data
We calculated NDVI average values for each grid cell 
by quarter. For the animal host data, we calculated the 
percentage of deer habitat and the average number of 
rodent species in each grid cell, fixed in time.

Soil temperature (ST), air temperature (AT) and rela-
tive humidity (RH) data were summarised quarterly as 
maximum and mean averages and resampled to each 
grid cell. Precipitation (PP) was used to calculate the 
number of rainless days per quarter. All processing of 
meteorological data was performed using raster, ncdf4, 
ecmwfr and keyring packages in R version 4.0.5 [28].

Anthropogenic data on tick bites
A total of 43,915 human tick bite reports were included 
in the analysis. For each report, we extracted the infor-
mation on reporting dates and GPS position (WGS84). 
Since information before July 2017 was not available, we 
made a compromise by retaining the average seasonal 
variation for each department throughout 2016–19 in 
the model. Data for 2020 and 2021 were used sepa-
rately for the forecast of each year (see Supplementary 

Material S1 for the calculation of frequency of tick bite 
reports per department and quarter).

Results
In Kriging interpolation, the semi-variogram shows 
that the incidence distribution displayed spatial 
autocorrelation up to 110 km (see  Supplementary 
Material S2  for the spatial interpolation by ordinary 
kriging methods and Figure S1 for the results of fitted 
spherical model from 2016–19). Smoothed maps of 
quarterly kriged LB incidence for the study period were 
used as our outcome variable, exhibiting an increased 
incidence in spring and summer, mainly in the north-
eastern and eastern France. The maps can be found 
in Supplementary Figure S2.

Identified risk factors from the two-part model
The results of the preferred two-part model with 
the smallest WAIC value are reported in  Table 2, and 
detailed as follows. The results of the first part of the 
model (logistic model), show that areas with higher 
vegetation activity, i.e. NDVI values above and equal 
to 0.6, had a 37% higher odds of LB presence than 
areas with lower NDVI (OR: 1.37, 95% credible interval 
(Crl): 1.25–1.51). Whereas the rodent species richness 

Table 2
Two-part multivariate model disentangling covariates associated with the presence and increased incidence of Lyme 
borreliosis, France, 2016–2019

Variable Unit/category Risk coefficients 95% Crla

Logistic model (LB presence vs absence)b

NDVI (Q)
< 0.6 Ref.
≥ 0.6 1.37 1.25–1.51

Rodent species richness
> 1 to ≤ 3.27 Ref.
> 3.27 to ≤ 5 0.83 0.70–0.99

Gamma model (Increase of LB incidence conditional of LB presence)c

Index of deer presence

≤ 40% Ref.
> 40 to ≤ 60% 1.04 0.97–1.12
> 60 to ≤ 80% 1.13 1.03–1.24

> 80% 1.25 1.11–1.41

ST (Q)

≤ 7 °C Ref.
> 7 to ≤ 15 °C 1.04 0.97–1.10

> 15 to ≤ 22 °C 1.18 1.11–1.25
> 22 °C 0.76 0.69–0.82

SD (Q)

≤ 1.5 mmHg Ref.
> 1.5 to ≤ 3 mmHg 1.08 1.02–1.15
> 3 to ≤ 5 mmHg 1.18 1.05–1.31

> 5 mmHg 1.06 0.94–1.20

Frequency of tick bite reports (Q)
≤ 0.05% Ref.

> 0.05 to ≤ 0.25% 1.20 1.14–1.27
> 0.25% 1.35 1.24–1.46

Crl: credible interval; LB: Lyme borreliosis; NDVI: normalised difference vegetation index; OR: odds ratios; Q: quarter; RR: relative risk; SD: 
saturation deficit; ST: soil temperature.

a The risk coefficients (odds ratio and relative risk, respectively for the logistic and gamma model) and their 95% Crl were obtained by 
exponentiating the coefficients’ mean value of the posterior marginal distribution and their 95% Crl.

b The risk coefficient refers to the odds ratio in the logistic model, representing the ratio of the odds of an LB case occurring in the current 
category compared to the odds of an LB case occurring in the reference category.

c The risk coefficient refers to the relative risk in the gamma model, representing the ratio of the probability of an LB case occurring in the 
current category compared to the reference category.
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Figure 1
Predicted probability of seasonal Lyme borreliosis presence, France, 2016–2019
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index was negatively correlated with LB presence, 
with the odds of LB occurring being 17% lower in areas 
with more species (OR: 0.83, 95% Crl: 0.70–0.99). In 
the second part of the model (gamma model), areas 
with more than 60% and 80% cover of suitable deer 
habitat had 1.13 and 1.25 times higher risk of LB com-
pared with areas with less than 40% cover (relative risk 
(RR):  1.13, 95% Crl: 1.03–1.24 and RR: 1.25, 95% Crl: 
1.11–1.41, respectively). Also, the risk of LB in quarter 
Q increased by 1.18 in areas with mild soil temperature 
(ST: > 15–22 °C, RR: 1.18, 95% Crl: 1.11–1.25) in the quar-
ter, but decreased for temperatures higher than 22 °C 
(ST: > 22 °C, RR: 0.76, 95% Crl: 0.69–0.82). In addition, 
the risk of LB increased by 1.08 and 1.18 in areas with 
saturation deficit (SD) values ranging between 1.5–3 
mmHg and 3–5 mmHg compared with areas with SD 
below 1.5 mmHg (RR: 1.08, 95% Crl: 1.02–1.15 and 
RR: 1.18, 95% Crl: 1.05–1.31, respectively). Finally, the 
frequency of tick bite reports was also an important 
predictor of LB risk, with an increased incidence of LB 
in locations and seasons where a higher proportion of 
bites were reported (Table 2).

Spatial and seasonal maps
To visualise our results, we generated projection 
maps for each part of the model (Figure 1  and  Figure 
2).  Figure 1  shows the predicted quarterly probability 
of LB presence. We observed a seasonal pattern of 
disease occurrence, with higher probabilities in spring 
and summer, in almost every region of the country. 
Conversely, the probability of occurrence was much 
lower in autumn and winter but revealed important 
geographic heterogeneity, with high-risk areas 
concentrated in Grand Est (GE), Bourgogne-Franche-
Comté (BFC), and Auvergne-Rhône-Alpes (ARA) regions 
in eastern France, and in the Nouvelle Aquitaine (NA) 
and Occitanie (OT) regions in midwestern and south-
western France. 

Seasonal LB incidence rates predicted for 2016 to 2019 
are presented in  Figure 2. They exhibit geographic 
heterogeneity, seasonality and interannual varia-
tions. Over the 4 years, higher incidence rates were 
observed in the spring and summer in Grand Est (GE), 
Auvergne-Rhône-Alpes (ARA) and Nouvelle-Aquitaine 
(NA) regions, consistent with the results of the logistic 
model. The spring maps for 2017 and 2018 show a simi-
lar pattern (Figure 2F and J), with slightly higher pre-
dicted values than in 2016 and 2019 (Figure 2B and N). 
The summer patterns displayed increased incidence in 
2018 and 2019 in GE, ARA and NA regions (Figure 2K 
and O), compared with 2016 and 2017 (Figure 2C and 
G). The average incidence in spring over the 4 years 
was 35 cases per 100,000 inhabitants, and the grid 
cell with the maximum incidence value reached 159 per 
100,000 inhabitants. Similarly, for 2016–19 summers, 
the average incidence was 51 per 100,000 inhabitants, 
while the maximum summer value reached 212 per 
100,000 inhabitants.

Using the model informed with 2016–19 data, we pro-
duced the forecast maps for 2020 and 2021, as well 
as corresponding standard deviation maps, which 
are shown in  Supplementary Figure S7. The results of 
the logistic model showed a similar spatial and sea-
sonal pattern, aligning with previous years, shown 
in Supplementary Figure S6. The results of the gamma 
model are shown in  Figure 3. The overall spatial and 
seasonal patterns for 2020 and 2021 are comparable 
to those of previous years. The incidence in 2020 (with 
the summer maximum value reaching 229/100,000 
inhabitants) was almost equivalent to that in 2019 
(Figure 3A to D), whereas in the following year 2021, 
LB incidence was predicted to increase in a subset of 
grids in GE, ARA and NA regions, with a maximum pre-
dicted LB incidence of 307 per100,000 inhabitants in 
summer (Figure 3G). In addition, the annual predicted 
mean incidence rates and their 95% CI, calculated at 
national level for the entire period (2016–21), sug-
gest that the incidence of LB in France is broadly sta-
ble and show a similar trend to Réseau Sentinelles’ 
values (See  Supplementary Figure S10  for the graph 
of comparison of the overall national predicted and 
observed annual LB incidence, France, 2016–21). The 
PIT histograms for 2020 and 2021 are satisfying and 
do not show an over or under-dispersed predictive 
distribution, suggesting a well-calibrated predictive 
performance (See  Supplementary Figure S8  for the 
histogram of the probability integral transform (PIT), 
2020 and Figure S9 for the histogram of the probability 
integral transform (PIT), 2021). The other tested models 
are presented in Supplementary Table S1. The number 
of rainless days was ultimately not included in the final 
model because not improving our model fit.

Discussion
We present a national-level spatial assessment of sea-
sonal LB occurrence in Europe, allowing the disentan-
glement of factors associated with LB presence and 
increased incidence in mainland France. Our results 
provide evidence that seasonal LB presence was posi-
tively associated with higher vegetation index, which 
was used as a proxy for the presence of  Ixodes, while 
increased incidence was associated with a higher 
index of deer presence, mild seasonal soil tempera-
ture, moderate air saturation deficit and higher tick 
bite frequency. This model illustrates that the use of 
surveillance data, combining environmental, animal 
host, meteorological and human tick bite reports into 
a unified analytical framework, can be used to under-
stand the seasonal and spatial patterns of LB occur-
rence. This approach can be tested in other areas where 
surveillance data and human tick bite information are 
available (such as Switzerland, the Netherlands and 
Belgium) [29,30] and, if the model results show simi-
larities across several different pilot regions, could 
also provide insights into LB burden estimation across 
continental Europe.

One strength of our study lies in the use of kriging 
interpolation to obtain a continuous process of LB 
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Figure 2
Predicted seasonal Lyme borreliosis incidence rate per 100,000 inhabitants, France, 2016–2019
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distribution in mainland France, allowing the inclu-
sion of climatic and environmental variables at a fine 
resolution [22]. In addition, our Bayesian BYM two-
part model allowed for the simultaneous consideration 
of the semi-continuous outcome variable, and for the 
spatial correlation and seasonal variations, by reduc-
ing the structural and non-structural random effects 
on parameter inference [23]. Predictions and valida-
tions using 2020 and 2021 data allowed the identifi-
cation of similar spatial and seasonal patterns, giving 
confidence in the robustness of our model. During the 
COVID-19 pandemic in 2020, two national lockdowns 
were implemented in France. The first lockdown (17 
March–11 May 2020) only allowed movements within 
1 km of the residence (for outdoor physical activities, 
walks) and occurred before the peak of reported LB 
cases [31]. Then, the second lockdown (30 October–15 
December 2020) imposed similar restrictions on out-
door recreational activities, followed by a nationwide 
curfew that no longer restricted movement during day-
time [32]. Therefore, we assumed the COVID-19 lock-
downs did not affect the overall spatial and seasonal 
patterns of human encounters with ticks throughout 
2020. In addition, in 2020, 87.6% of LB cases reported 
their tick-bite in their department of residence, consist-
ent with previous years (84.4–88.8% in 2016–19) [33]. 

For prediction and model validation, the quarterly pro-
portions of human tick bite frequency were processed 
for 2020 and 2021 separately at the departmental level, 
displaying similar spatial patterns compared with pre-
vious years. Finally, even if we could not evaluate the 
care-seeking patterns of individuals (access to GP’s 
and care facilities) during the 2020 lockdown period 
that could have had an effect on LB notifications, our 
predictions remain in line with previous years.

Our prediction maps highlight the seasonal pattern of 
LB occurrence, i.e. spring and summer, and revealed 
the heterogeneous distribution of LB across and within 
regions in mainland France. Areas with a higher LB inci-
dence burden were located in eastern (GE, BFC, and 
ARA), midwestern (NA), and south-western (OT) France, 
in agreement with previous studies [18]. The prediction 
map for the summer 2021 showed an increased inci-
dence in some grid cells in high-risk areas. This can be 
explained by the fact that abundant rainfall in summer 
2021 resulted in lower quarterly saturation deficit (SD) 
values than in previous years (Supplementary Figure 
S4), with values in the 3–5 mmHg category being asso-
ciated with increased incidence. Moderate saturation 
deficits might favour ticks’ questing activity, hence 
contributing to an increase in our predicted incidences 

Figure 3
Predicted seasonal Lyme borreliosis incidence rate per 100,000 inhabitants, France, 2020–2021
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but in fact did not necessarily increase the tick infec-
tion rates with  Borrelia  or, conversely, could have led 
to a reduced risk of tick bites if human outdoor activity 
had lessened. Yet, when aggregated at the national 
level, the incidence of LB in France remained rather 
stable from 2016 to 2021.

The value of NDVI data has been discussed in earlier 
studies as an important predictor of tick-suitable habi-
tats and questing nymph abundance [6,11]. We incor-
porated NDVI into the model and found that areas and 
seasons with higher NDVI values were positively cor-
related with LB presence, consistent with the results 
of acarological studies [11]. In addition, we introduced 
an index of rodent species richness in the logistic 
model and found a weak negative correlation between 
LB presence and a greater number of rodent species. 
There are several possible explanations for this. First, 
the available information provides only the number 
of rodent species at each site, the exact species and 
density variation is unknown. More competent species 
at low densities may not be able to maintain the local 
intensity of pathogen transmission [34]. Second, the 
presence of more rodent species also suggests that 
the local environment is friendly to small rodents and 
their predators and that coexistence of other incompe-
tent reservoir hosts may have a diluting effect on tick 
infection rates [34]. If larvae attach to these incom-
petent hosts, nymphal infection rates are instead 
reduced. For further insight, a nationwide field sur-
vey of species associated with Borrelia  reservoirs and 
their densities would be necessary, as well as rates 
of Borrelia infection in ticks in several regions.

In addition, we found that higher LB incidence was 
associated with deer-suitable habitat coverage of more 
than 60% of each grid area. The percentage of deer 
habitat reflects the likelihood of deer presence and 
their abundance. Roe deer and red deer are known to 
be the primary productive hosts for adult female ticks 
and can maintain high tick populations locally [35]. As 
incompetent  Borrelia  reservoir hosts, some studies 
hypothesised that ticks lose  Borrelia  infection after 
feeding on deer [36]. However, others have suggested 
that an increase in overall tick density leads to an 
increase in the density of infected nymphs, resulting 
in increased LB risk [37]. A long-term study in Norway 
also showed that high spatial and temporal densities 
of deer lead to an increased incidence of LB in humans, 
supporting our results [35].

Our findings also point to a positive correlation 
between areas with higher LB incidence and mild soil 
temperature (15–22 °C) and moderate saturation deficit 
(1.5–5 mmHg) during the peak season of cases’ occur-
rence. Optimal ground and air temperatures (at 60 cm) 
for tick activity have been shown to be between 13 
and 23 °C, and most questing tick activity was found 
to occur between 2 and 7 mmHg, consistent with our 
model results [8-10]. Thus, we speculate that tick devel-
opment of any stage is favoured during mild springs, 

and humans, as accidental hosts, are exposed to tick 
bites (nymphal and adult stages) during the questing 
phase in spring and summer seasons, resulting in an 
elevated risk of LB. In addition, the higher frequency 
of human outdoor activity during the summer months, 
which overlaps with tick habitat and questing activity 
could also contribute to increased incidence.

The use of citizen-based health data is growing in 
interest in epidemiological research and has recently 
been applied to tick bite tracking in several countries 
[13,29,30]. These citizen engagement-based data can 
be considered complementary to surveillance data, by 
offering the potential to get more accurate information 
on tick bite exposure. Here, CiTIQUE data allowed us to 
account for the spatial and temporal variations in the 
risk of human exposure to tick bites. CiTIQUE data was 
assumed to capture both human outdoor activity and 
tick encounters, largely outperforming the number of 
rainless days (variable initially used as a surrogate to 
human outdoor activities) in improving model fit, and 
highlighting the importance of citizen-based research 
initiatives.

There are some limitations to consider. Firstly, LB 
surveillance relies on voluntary reporting of cases by 
sentinel general practitioners (SGPs) in the Reseau 
Sentinelles. The national LB surveillance incidence 
rates used in this study were estimated from cases 
reported by SGPs in each department. To minimise the 
reporting bias, the heterogeneous distribution, number 
and participation of SGPs were adjusted to calculate 
incidence rates [20]. However, the data have been col-
lected in a consistent manner since 2009 and the spa-
tial and seasonal patterns have shown stability across 
years, and are consistent with hospital-based data for 
LB [18], corroborating the good quality of the dataset. 
Secondly, the data collection from the national CiTIQUE 
programme is primarily targeted at people who are 
interested in ticks and have a smartphone. Uneven 
public awareness of ticks and differences in the fre-
quency of Signalement TIQUE application use across 
departments may affect tick bite reporting. Considering 
that human recreational activities are closely related 
to the probability of tick bite exposure, we adjusted 
the population at risk by leisure-related green space 
for each department. Moreover, since CiTIQUE data 
was available only after July 2017, we calculated sea-
sonal averages using 2017–19 data and used these 
estimates for the whole study period 2016–19. By 
doing so, we assumed that exposure to tick bite had 
seasonal variations, but was similar from one year to 
another. However, it was shown in the health survey 
(Baromètre Santé) conducted by Santé publique France 
that public awareness of tick bites and LB increased in 
2019 compared with 2016, suggesting that using sea-
sonal averages would potentially bias the input data 
used for the model [38]. Thirdly, the zero values in the 
two-part model (estimated by kriging) are considered 
to be true zeros. We observed that most zero values 
occurred in winter and autumn, consistent with the 
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epidemiological characteristics of LB occurrence, but 
zero values were also generated in spring and sum-
mer in some high-risk areas. Therefore, zero values in 
our data could be a result of the absence of LB cases 
or under-reporting. This also emphasises the need for 
enhanced surveillance. Fourthly, both animal-related 
variables used in this study are predictive indexes that 
combine observed animal presence data, land cover 
data, and annual climate variables aggregated over 
multiple years, and vary only spatially, as distinguished 
from genuine data on host abundance. Seasonal vari-
ation in deer and rodent populations would provide 
more realistic assumptions for predicting the density 
of infected ticks during the same season or the one 
following, yet this information is difficult to obtain at 
a national scale. Finally, in our analysis, the effects 
of meteorological factors were assumed to have an 
impact on tick development and questing activity. Yet, 
we acknowledge that they also affect the reproduc-
tion rate and activity of other potential hosts (espe-
cially small mammals), as well as their food resources 
(e.g. tree seeds) [39]. Meteorological factors may also 
be associated with human propensity to be outdoors, 
particularly when weather favours outdoor recreational 
activities and overlaps with weekends, holidays, and 
summer vacations, potentially generating more reports 
of human tick bites. Given that some risk factors have 
now been identified, further exploration of the com-
plexity and dynamics of human LB incidence should be 
complemented by using mathematical models.

Conclusion
We present a national-level spatial assessment of 
seasonal LB occurrence in Europe, that disentangles 
factors associated with the presence and increased 
incidence of LB. Our model results showed that a higher 
vegetation index in spring and summer was correlated 
with the presence of LB, while increased incidence 
was associated with higher indexes of deer presence, 
moderate soil temperature and saturation deficit and 
higher tick bite frequency. Our findings yield quanti-
tative evidence for national public health agencies to 
plan targeted prevention campaigns to reduce LB bur-
den and enhance surveillance, as well as highlighting 
the need for further data collection on vectors and res-
ervoir hosts. This approach can be tested in other LB 
endemic areas, and revised when further data becomes 
available. In addition, we highlight key factors such as 
soil temperature, deficit saturation, and frequency of 
human tick bites that need to be explored when using 
mathematical models to further investigate the com-
plexity of LB transmission dynamics.
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