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problems
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Abstract

Probabilistic variants of Model Order Reduction (MOR) methods have recently emerged for
improving stability and computational performance of classical approaches. In this paper, we pro-
pose a probabilistic Reduced Basis Method (RBM) for the approximation of a family of parameter-
dependent functions. It relies on a probabilistic greedy algorithm with an error indicator that can
be written as an expectation of some parameter-dependent random variable. Practical algorithms
relying on Monte Carlo estimates of this error indicator are discussed. In particular, when using
Probably Approximately Correct (PAC) bandit algorithm, the resulting procedure is proven to be
a weak greedy algorithm with high probability. Intended applications concern the approximation
of a parameter-dependent family of functions for which we only have access to (noisy) pointwise
evaluations. As a particular application, we consider the approximation of solution manifolds
of linear parameter-dependent partial differential equations with a probabilistic interpretation
through the Feynman-Kac formula.

Keywords: Reduced basis method, probabilistic greedy algorithm, parameter-dependent partial differential

equation, Feynman-Kac formula

2010 AMS Subject Classifications: 65N75, 65D15

1 Introduction

This article focuses on the approximation of a family of functions M = {u(ξ) : ξ ∈ Ξ} indexed by
a parameter ξ, each function u(ξ) being an element of some high-dimensional vector space V . The
functions u(ξ) can be known a priori, or implicitly given through parameter-dependent equations.
In multi-query contexts such as optimization, control or uncertainty quantification, one is interested
in computing u(ξ) for many instances of the parameter. For complex numerical models, this can
be computationally intractable. Model order reduction (MOR) methods aim at providing an ap-
proximation un(ξ) of u(ξ) which can be evaluated efficiently for any ξ in the parameter set Ξ. For
linear approximation methods, an approximation un(ξ) is obtained by means of a projection onto
a low-dimensional subspace Vn which is chosen to approximate at best M, uniformly over Ξ for
empirical interpolation method (EIM) or reduced basis method (RBM), or in mean-square sense for
proper orthogonal decomposition (POD) or proper generalized decomposition (PGD) methods (see,
e.g., the survey [25]) .
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Probabilistic variants of MOR methods have been recently proposed for improving stability and
computational performance of classical MOR methods. In [12], the authors introduced a probabilistic
greedy algorithm for the construction of reduced spaces Vn, which uses different training sets in Ξ
with moderate cardinality, randomly chosen at each iteration, that allows a sparse exploration of
a possibly high-dimensional parameter set. In [11], the authors derive a similar probabilistic EIM
using sequential sampling in Ξ, which provides an interpolation with a prescribed precision with high
probability. Let us also mention that a control variate method using a reduced basis paradigm has
been proposed in [9] for Monte Carlo (MC) estimation of the expectation of a collection of random
variables u(ξ) in a space V of second-order random variables. A greedy algorithm is introduced to
select a subspace Vn of random variables, that relies on a statistical estimation of the projection
error. This algorithm has been analyzed in [8] and proven to be a weak greedy algorithm with high
probability. Probabilistic approaches have also been introduced for providing efficient and numer-
ically stable error estimates for reduced order models [20, 21, 27, 28]. In [1, 3, 2, 26, 30], random
sketching methods have been systematically used in different tasks of projection-based model order
reduction, including the construction of reduced spaces or libraries of reduced spaces, the projection
onto these spaces, the error estimation and preconditioning.

Here, we consider the problem of computing an approximation un of u within a reduced basis
framework. The reduced basis method performs in two steps, offline and online. During the offline
stage, a reduced space Vn is generated from snapshots u(ξi) at parameter values ξi greedily selected by
maximizing over Ξ (or some subset of Ξ) an error indicator ∆(un−1(ξ), ξ) which provides a measure
of the discrepancy between u(ξ) and un−1(ξ). Then, during the online step, un(ξ) is obtained by
some projection onto Vn.
In this paper, we propose a probabilistic greedy algorithm for which ∆(un(ξ), ξ) is the square error
norm ‖u(ξ)− un(ξ)‖2V , expressed as the expectation of some parameter-dependent random variable
Zn(ξ),

∆(un(ξ), ξ) = E(Zn(ξ)). (1)

For maximizing E(Zn(ξ)), we use a PAC (Probably Approximately Correct) bandit algorithm pro-
posed by the authors in [6], which relies on adaptive Monte-Carlo estimations of E(Zn(ξ)). The
algorithm only requires a limited number of samples by preferably sampling random variables asso-
ciated with a probable maximizer ξ. It is particularly suitable for applications where the random
variable Zn(ξ) is costly to sample. Under suitable assumptions on the distribution of Zn(ξ), it pro-
vides a PAC maximizer in relative precision, meaning that with high probability the parameter ξ is a
quasi-optimal solution of the optimization problem. We prove in this work that the resulting greedy
algorithm is a weak-greedy algorithm with high probability.

Intended applications concern the approximation of a parameter-dependent family of functions
u(ξ) defined on a bounded domain D for which we have access to (possibly noisy) pointwise evalua-
tions u(ξ)(x) := u(x, ξ) for any x ∈ D. The proposed probabilistic greedy algorithm can be used to
generate a sequence of spaces Vn and corresponding interpolations un of u onto Vn. Assuming u(ξ) ∈
L2(D) and we have a direct access to pointwise evaluations, the square error norm ‖u(ξ)−un(ξ)‖2L2(D)

used to select the parameter ξ can be estimated from samples of Zn(ξ) = |D||u(Y, ξ)−un(Y, ξ)|2 with
Y a uniform random variable over D. It results in a probabilistic EIM in the spirit of [11]. In a fully
discrete setting where Ξ and D are finite sets, u can be identified with a matrix and the proposed
algorithm is a probabilistic version of adaptive cross approximation for low-rank matrix approxima-
tion [4, 29], with a particular column-selection strategy. Another context is the solution of a linear
parameter-dependent partial differential equation (PDE) defined on a bounded domain D and whose
solution u(ξ) admits a probabilistic representation through the Feynman-Kac formula. This allows
to express a pointwise evaluation u(x, ξ) as the expectation of a functional of some stochastic process.
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The problem being linear, the error u(ξ)− un(ξ) also admits a Feynman-Kac representation, which
again allows to express the square error norm ∆(un(ξ), ξ) = ‖u(ξ)− un(ξ)‖2L2(D) as the expectation

of some random variable Zn(ξ) and to estimate it through Monte-Carlo simulations of stochastic
processes. This is a natural framework to apply the proposed probabilistic greedy algorithm, which
allows a direct estimation of the targeted error norm and avoids the use of possibly highly biased
residual based error estimates. In practice, as the exact solution of the PDE is not available, the
snapshots used for generating the reduced space Vn are numerical approximations computed from
pointwise evaluations of the exact solution u(ξ) by some interpolation or learning procedure. This
results in a fully probabilistic setting which opens the route for the solution of high-dimensional
PDEs (see, e.g. [5] where the authors rely on interpolation on sparse polynomial spaces).

This paper is structured as follows. In Section 2 we recall basic facts concerning reduced basis
method. Then in Section 3 we present and analyze our new probabilistic greedy algorithm. Based on
this algorithm, we derive in Section 4 a new reduced basis method for parameter-dependent PDEs
with probabilistic interpretation. Numerical results illustrating the performance of the proposed
approaches are presented in Section 5.

2 Reduced basis greedy algorithms

As discussed in the introduction, reduced basis method relies on two steps. We mainly focus on the
offline stage during which the reduced subspace Vn ⊂ V is constructed. In particular, we recall in
this section some basic facts concerning greedy algorithms usually considered in that context. For
detailed overview on that topic see, e.g., surveys [19, 24].

Throughout this paper, V is some Hilbert space equipped with a norm ‖ · ‖V . We seek an
approximation un(ξ) of u(ξ) in a low-dimensional space Vn which is designed to well approximate
the solution manifold

M = {u(ξ) : ξ ∈ Ξ}.
A benchmark for optimal linear approximation is given by the Kolmogorov n-width

dn(M)V := inf
dimVn=n

sup
u∈M

‖u− PVnu‖V ,

where the infimum is taken over all n-dimensional subspaces Vn of V and where PVn stands for the
orthogonal projection onto Vn. However, an optimal space Vn is in general out of reach. A prominent
approach is to rely on a greedy algorithm for generating a sequence of spaces from suitably selected
parameter values. Starting from V0 = {0}, the n-th step of this algorithm reads as follows. Given
{ξ1, . . . , ξn−1} ⊂ Ξ and the corresponding subspace

Vn−1 = span{u(ξ1), . . . , u(ξn−1)},

a new parameter value ξn is selected as

‖u(ξn)− un−1(ξn)‖V = sup
ξ∈Ξ
‖u(ξ)− un−1(ξ)‖V , (2)

where un−1 stands for an approximation of u(ξ) in Vn−1. However, this ideal algorithm is still
unfeasible in practice, at least for the two following reasons:

1) computing the error ‖u(ξ)−un−1(ξ)‖V for all ξ ∈ Ξ may be unfeasible in practice (e.g. when u(ξ)
is only given by some parameter-dependent equation), and
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2) maximizing this error over Ξ is a non trivial optimization problem.

Point 1) is usually tackled by selecting a parameter ξn which maximizes some surrogate error
indicator ∆(un−1(ξ), ξ) that can be easily estimated. Assuming un(ξ) is a quasi-optimal projection
of u(ξ) onto Vn and assuming ∆(un−1(ξ), ξ) is equivalent to ‖u(ξ)−un−1(ξ)‖V , there exists γ ∈ (0, 1]
such that

‖u(ξn)− PVn−1u(ξn)‖V ≥ γ sup
ξ∈Ξ
‖u(ξ)− PVn−1u(ξ)‖V , (3)

which yields a weak-greedy algorithm. Quasi-optimality means that the approximation un of u in Vn
satisfies

‖u(ξ)− un(ξ)‖V ≤ C‖u(ξ)− PVnu(ξ)‖V (4)

for some constant C independent from Vn and ξ. Although the generated sequence Vn is not optimal,
it has been proven in [7, 10, 14] that the approximation error

σn(M)V := sup
u∈M

‖u− PVnu‖V

has the same type of decay as the benchmark dn(M)V for algebraic or exponential convergence.

Remark 2.1. In the case of parameter-dependent linear equation arising e.g., from the discretiza-
tion of some parameter-dependent linear PDE of the form r(u(ξ), ξ) = 0 with u(ξ) ∈ V = RN , the
approximation un(ξ) is typically obtained through some (Petrov-)Galerkin projection onto Vn, with
a complexity depending on n � N . In such a context, a weak greedy algorithm classically involves
a certified residual based error estimate ∆(un(ξ), ξ), that is an upper bound of the true error. How-
ever, for some applications, such an error estimate can be pessimistic (when the underlying discrete
operator is badly conditionned) so that the generated sequence Vn is far from being optimal. A pos-
sible strategy to improve such an estimate is to consider a preconditioned residual [13, 30, 2]. In
Section 4, we overcome this limitation by considering for ∆(un(ξ), ξ) the targeted square error norm
‖u(ξ)− un(ξ)‖2V , which is evaluated using adaptive Monte-Carlo estimations.

Point 2) is addressed by transforming the continuous optimization problem over Ξ into a discrete
optimization over a finite subset Ξ̃ ⊂ Ξ. Choosing the training set Ξ̃ is a delicate task. As pointed
out in [12, Section 2], if Ξ̃ is an ε-net of Ξ, then a greedy algorithm for the approximation of the

discrete solution manifold M̃ = {u(ξ) : ξ ∈ Ξ̃} generates a sequence of spaces that are able to achieve
a precision in O(ε) with similar performance as the ideal greedy algorithm. However, the cardinal of
Ξ̃ may be very large for a parameter set Ξ in a high-dimensional space Rp and when a low precision
ε is required. In [12], the authors propose a greedy algorithm which uses different training sets ran-
domly chosen at each step. Under suitable assumptions on the approximability of the solution map
ξ 7→ u(ξ) by sparse polynomial expansions, training sets can be chosen of moderate size independent
of the parametric dimension p.

To conclude this section, we give a practical deterministic (weak)-greedy algorithm that can be
summarized as follows.

Algorithm 2.2 (Deterministic greedy algorithm). Let Ξ̃ ⊂ Ξ be a discrete training set and V0 = {0}.
For n ≥ 1 proceed as follows.

(Step 1.) Select
ξn ∈ arg max

ξ∈Ξ̃
∆(un−1(ξ), ξ).

(Step 2.) Compute u(ξn) and update Vn = span{u(ξ1), . . . , u(ξn)}.

Usually, Algorithm 2.2 is stopped when ∆(un(ξ), ξ) is below some target precision ε > 0 or for a
given dimension n.
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3 A probabilistic greedy algorithm

In this section, we motivate and present a probabilistic variant of Algorithm 2.2. Such an algorithm
relies on the concept of Probably Approximately Correct (PAC) maximum. It is proven to be a weak
greedy algorithm with high probability.

As a starting point for our work, we assume that the error estimator required at each step of
Algorithm 2.2 admits the following form

∆(un(ξ), ξ) := ‖u(ξ)− un(ξ)‖2V = E(Zn(ξ)), (5)

where Zn(ξ) is some parameter-dependent real valued random variable, defined on the probability
space (Ω,F ,P). Here, E(Zn(ξ)) is a probabilistic representation of the current square error ‖u(ξ)−
un(ξ)‖2V depending on the targeted applications as discussed in what follows.

Example 3.1 (Estimate of the norm of approximation error). Let suppose that u(ξ) belongs to
V = L2(D) the Lebesgue space of square integrable functions defined on a bounded set D ⊂ Rd. If
∆(un(ξ), ξ) = ‖u(ξ)−un(ξ)‖2L2, then (5) holds with Zn(ξ) = |D||u(Y, ξ)−un(Y, ξ)|2 where Y ∼ U(D)
is a random variable with uniform distribution over D.

Example 3.2 (Greedy algorithm for control variate [8, 9]). Let suppose that we want to compute a
MC estimate of the expectation of a parameter-dependent family of random variables u(ξ) belonging to
a Hilbert space of centered second-order random variables. MC estimate is known to slowly converge
with respect to the number of samples of u(ξ). Variance reduction techniques based on control variates
are usually used to improve MC estimates. In [8] the authors propose a RB paradigm to compute a
control variate with a greedy algorithm of the form of Algorithm 2.2 where ∆(un(ξ), ξ) = E(Zn(ξ))
with Zn(ξ) = |u(ξ)− un(ξ)|2 in (5).

3.1 Main algorithm

Solving the following optimization problem

ξn ∈ arg max
ξ∈Ξ̃

E(Zn−1(ξ)) (6)

is in general out of reach, since E(Zn−1(ξ)) is unknown a priori or too costly to compute. Then, we
propose a greedy algorithm with an approximate solution of (6).

Algorithm 3.3 (Probabilistic greedy algorithm). Let Ξ̃ ⊂ Ξ be a discrete training set and (λn)n≥1 ⊂
(0, 1)N+

. Starting from V0 = {0}, proceed, for n ≥ 1, as follows.

(Step 1.) Select
ξn ∈ S(Zn−1(ξ), Ξ̃).

(Step 2.) Compute u(ξn) and update Vn = span{u(ξ1), . . . , u(ξn)}.

The question is now how to choose properly the set of candidate parameter values S(Zn−1(ξ), Ξ̃)?
In view of numerical applications, a first practical and naive approach is to seek ξn maximizing the
empirical mean, i.e.

S(Zn−1(ξ), Ξ̃) := arg max
ξ∈Ξ̃

Zn−1(ξ)K

where Zn−1(ξ)K = 1
K

∑K
i=1(Zn−1(ξ))i with K i.i.d. copies of Zn−1(ξ). Despite its simplicity, it is

well known that such an estimate for the expectation suffers from low convergence with respect to
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the number of samples leading to possible high computational costs especially if Zn(ξ) is expensive to
evaluate. Moreover, nothing ensures that the returned (random) parameter ξn is a (quasi-)optimum
for (6), almost surely or at least with high probability.

Instead, the so-called bandit algorithms (see, e.g., monograph [22]) are good candidates to address
(6). Here, we particularly focus on PAC bandit algorithms that for each n return a parameter value
ξn which is a probably approximately correct (PAC) maximum in relative precision for E(Zn(ξ)) over
Ξ̃ (see [6]). For a given ε ∈ (0, 1) and probability λn ∈ (0, 1), letting ξ?n ∈ arg maxξ∈Ξ̃ E[Zn−1(ξ)],
such an algorithm returns ξn satisfying

P (E(Zn−1(ξ?n))− E(Zn−1(ξn)) ≤ εE(Zn−1(ξ?n))) ≥ 1− λn. (7)

We use the notation S(Zn−1(ξ), Ξ̃) := PACλn,ε(Zn−1, Ξ̃) when ξn satisfies (7). In practice, the
adaptive bandit algorithm in relative precision introduced in [6, §3.2] is particularly interesting in
the case where Zn(ξ) is costly to evaluate since it preferentially samples the random variable Zn(ξ)
for the parameter values for which it is more likely to find a maximum. Hence, it outperforms the
mean complexity of a naive approach in terms of number of generated samples. Appendix A gives a
detailed presentation of such a PAC adaptive bandit algorithm. As stated in Proposition A.3, such
an algorithm provides a PAC maximum in relative precision, that fulfills (7), in the particular case
where {Zn(ξ), ξ ∈ Ξ̃} are random variables satisfying some concentration inequality. The interested
reader can refer to [6] and included references for more details.

3.2 Analysis of a greedy algorithm with PAC maximum

Now, we propose and analyze a probabilistic greedy algorithm where the parameter ξn is a PAC
maximum in relative precision for (5) i.e. satisfying (7), at each step n.

At a step n of the Algorithm 3.3, the reduced space Vn = span{u(ξ1), . . . , u(ξn)}, as well as the
approximation un(ξ) are no longer deterministic. Indeed, they are related to the selected parameters
ξ1, . . . , ξn depending themselves on the errors at the previous steps through i.i.d. samples of the
random variables Zi(ξ) for all ξ ∈ Ξ and i < n (required during PAC selection of ξn). Now, we prove
that Algorithm 3.3 is a weak greedy algorithm with high probability.

Theorem 3.4. Take (λn)n≥1 ⊂ (0, 1)N+
such that

∑
n≥1 λn = λ < 1, ε ∈ (0, 1) and Ξ̃ ⊂ Ξ a discrete

training set. Moreover, suppose that for n ≥ 1 the approximation un of u in Vn is quasi-optimal in
the sense that it satisfies (3) with Ξ replaced by Ξ̃. Then, Algorithm 3.3 is a weak-greedy algorithm

of parameter
√

1−ε
C , with probability at least 1− λ, i.e.

P

(
‖u(ξn)− PVn−1u(ξn)‖V ≥

√
1− ε
C

max
ξ∈Ξ̃
‖u(ξ)− PVn−1u(ξ)‖V , ∀n ≥ 1

)
≥ 1− λ. (8)

Proof. Let first introduce some useful notation. We denote by Pn−1(·) := P(·|Z<n) the conditional
probability measure with respect to Z<n that denotes the collection of random variables Zi(ξ)k for
all ξ ∈ Ξ and i < n, where Zi(ξ)k are i.i.d. copies of Zi(ξ). The related conditional expectation is
En−1 [·] = E [·|Z<n]. Now, let A = ∩n≥1An, each event An being defined as

An :=
{

En−1[Zn−1(ξ?n)]− En−1[Zn−1(ξn)] ≤ εEn−1[Zn−1(ξ?n)]
}
,

with ξ?n ∈ arg maxξ∈Ξ̃ En−1[Zn−1(ξ)]. Then, at each step n of Algorithm 3.3, the parameter ξn is a
PAC maximum knowing Z<n i.e.

Pn−1(An) ≥ 1− λn. (9)
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Finally, as un−1(ξ) is completely determined by all the steps before n (i.e. depending only on Z<n),
we have

‖u(ξ)− un−1(ξ)‖2V = En−1(Zn−1(ξ)). (10)

For all n ≥ 1, the quasi-optimality condition (4) and probabilistic representation (10) lead to

‖u(ξn)− PVn−1u(ξn)‖2V ≥
1

C2
‖u(ξn)− un−1(ξn)‖2V =

1

C2
En−1[Zn−1(ξn)] (11)

Moreover, if A holds we have for n ≥ 1

En−1[Zn−1(ξn)] ≥ (1− ε)En−1[Zn−1(ξ?n)] ≥ (1− ε) max
ξ∈Ξ̃
‖u(ξ)− PVn−1u(ξ)‖2V (12)

by definition of ξ?n. Thus, by combining (11) and (12) we have that A implies for all n ≥ 1

‖u(ξn)− PVn−1u(ξn)‖V ≥
√

1− ε
C

max
ξ∈Ξ̃
‖u(ξ)− PVn−1u(ξ)‖V .

We now estimate P(A)

P(A) = 1− P(A) ≥ 1−
∑
n≥1

P(An) = 1−
∑
n≥1

E
[
1An

]
= 1−

∑
n≥1

E[E
[
1An |Z<n

]︸ ︷︷ ︸
Pn−1(An)

] ≥ 1−
∑
n≥1

λn,

where the last inequality derives from (9), which concludes the proof.

Remark 3.5. Theorem 3.4 proves that Algorithm 3.3 is a weak greedy algorithm, with probability
1 − λ, for the approximation of the discrete solution manifold M̃. Thus, the approximation error
σn(M̃) has the same decay rate as dn(M̃) for algebraic or exponential convergence. In the lines of
[12], it is possible to consider also a fully probabilistic variant of Algorithm 3.3, in which a training
set Ξn randomly chosen is used at each step n of Algorithm 3.3 instead of Ξ̃. For a particular class of
functions that can be approximated by polynomials with a certain algebraic rate, it can be proven that,
for suitable chosen size of random training set Ξn, the resulting algorithm is a weak greedy algorithm
with high probability with respect to the continuous solution manifold M.

4 Reduced basis method for parameter-dependent PDEs with prob-
abilistic interpretation

We recall that this work is motivated by the approximation, in a reduced basis framework, of a costly
function u(ξ) : D → R defined on the spatial domain D ⊂ Rd depending on the parameters ξ lying in
Ξ ⊂ Rp. Here we consider the problem where u is the solution of a parameter-dependent PDE with
probabilistic interpretation.

Let D be an open bounded domain in Rd. For any parameter ξ ∈ Ξ, we seek u(ξ) : D → R the
solution of the following boundary value problem,

−A(ξ)u(ξ) = g(ξ) in D,

u(ξ) = f(ξ) on ∂D,
(13)

where f(ξ) : ∂D → R, g(ξ) : D → R are respectively the boundary condition and source term, and
A(ξ) is a linear and elliptic partial differential operator.
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Since the exact solution of (13) is not computable in general, it is classical to consider instead
uh(ξ) an approximation in some finite dimensional space Vh ⊂ V deduced from some numerical dis-
cretization of the PDE. Classical RBM applies in that context, relying on some variational principles
to provide an approximation un(ξ) of uh(ξ) in a reduced space Vn ⊂ Vh, of small dimension, obtained
through greedy algorithm (see Section 2). Here, we overcome such a priori discretization of the PDE
and directly address the approximation of the solution u(ξ) of (13). The key idea is to use the so-
called Feynman-Kac representation formula that allows to compute pointwise estimates of u(ξ) for
any x ∈ D̄. This particular framework rises the following practical questions. During the offline step,
how to choose a computable error estimator ∆(un(ξ), ξ) required in greedy algorithm and compute
the snapshots required for generating the reduced basis and related reduced space Vn? During the
online step, how to compute the approximation un?

To that goal, in this section, a probabilistic RBM using only (noisy) pointwise evaluations is
presented. We first recall the Feynman-Kac formula in Section 4.1. In Section 4.2, we detail a
probabilistic greedy algorithm for construction of the reduced space Vn in this setting. Finally, in
Section 4.3, we discuss possible approaches for computing the approximation un(ξ).

4.1 Feynman-Kac representation formula for an elliptic PDE

In what follows, W = (Wt)t≥0 denotes a standard d-dimensional Brownian motion defined on the
probability space (Ω,F ,P) endowed with its natural filtration (Ft)t≥0. For the sake of simplicity, the
dependence to parameter ξ is omitted in the presentation of the Feynman-Kac formula.

Let us consider the boundary problem (13), where the partial differential operator A is given as

A =
1

2

d∑
i,j=1

(σσT )ij
∂2

∂xi∂xj
+

d∑
i=1

bi
∂

∂xi
. (14)

It is the infinitesimal generator associated to the parameter-dependent d-dimensional diffusion process
Xx = (Xx

t )t≥0, adapted to (Ft)t≥0, solution of the following stochastic differential equation (SDE)

dXx
t = b(Xx

t )dt+ σ(Xx
t )dWt, Xx

0 = x ∈ D, (15)

where b(·) : Rd → Rd and σ(·) : Rd → Rd×d are the drift and diffusion coefficients, respectively.

Before recalling Feynman-Kac formula, we introduce additional assumptions and notation. De-
noting by ‖ · ‖ both euclidean norm on Rd and Frobenius norm on Rd×d, we first introduce the
assumption that b and σ are Lipschitz continuous.

Assumption 4.1. There exists a constant 0 < M < +∞ such that for all x, y ∈ D̄ we have

‖b(x)− b(y)‖+ ‖σ(x)− σ(y)‖ ≤M‖x− y‖. (16)

Under Assumption 4.1, there exists a unique strong solution to Equation (15) (see e.g. [15, §5,
Theorem 1.1.]).

Denoting a = σσT , we introduce the following uniform ellipticity assumption.

Assumption 4.2. There exists c > 0 such that

yTa(x)y ≥ c‖y‖2, for all y ∈ Rd, x ∈ D.
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As problem (13) is defined on a bounded domain, we define the first exit time of D for the process
Xx as

τx = inf {s > 0 : Xx
s /∈ D} . (17)

Also, we assume some regularity property on the spatial domain D and data.

Assumption 4.3. The domain D is an open connected bounded domain of Rd, regular in the sense
that it satisfies

P(τx = 0) = 1, x ∈ ∂D.
Assumption 4.4. We assume that f is continuous on ∂D, g is Hölder-continuous on D.

The following probabilistic representation theorem [15, §6, Theorem 2.4] holds.

Theorem 4.5 (Feynman-Kac formula). Under Assumptions 4.1-4.4 there exists a unique solution
of (13) in C(D) ∩ C2(D), which satisfies for all x ∈ D

u(x) = E

(
f(Xx

τx) +

∫ τx

0
g(Xx

t )dt

)
:= E(F (x,Xx)), (18)

where Xx is the stopped diffusion process solution of (15).

Theorem 4.5 allows to derive a probabilistic numerical method for the computation of pointwise
MC estimate of u, see Appendix B.

4.2 Offline step

During the offline step, the probabilistic greedy algorithm presented in Section 3 is considered to
construct the reduced space Vn. The keystone of such an algorithm is the probabilistic reinterpre-
tation of the error estimate ∆(un(ξ), ξ) as in Equation (5). Using the Feynman-Kac representation
formula, we show in Section 4.2.1 that it is possible to rewrite the square of the approximation error
as an expectation. Then, in Section 4.2.2, we discuss possible strategies for practical implementation
of such an algorithm.

4.2.1 Probabilistic error estimate

Let us assume that un(ξ) is a linear approximation of u(ξ) in a given reduced space Vn ⊂ V (e.g.,
obtained using Algorithm 3.3). We recall that u(ξ) ∈ C(D) ∩ C2(D) is the unique solution of (13)
with the following probabilistic representation

u(x, ξ) = E
(
F (x,Xx,ξ, ξ)

)
, x ∈ D̄, (19)

with Xx,ξ the parameter-dependent stopped diffusion process solution of (15). In classical RB meth-
ods, the error estimate ∆(un(ξ), ξ) used in Algorithm 2.2 is usually related to some suitable norm
of the equation residual. Here, we follow another path by considering the L2-norm of the current
approximation error en(ξ) = u(ξ)− un(ξ), i.e.

∆(un(ξ), ξ) = ‖en(ξ)‖2L2 .

In what follows, we give a possible probabilistic reinterpretation of this error. Assuming that un(ξ)
is regular enough (the regularity being inherited from the snapshots), the error en(ξ) := u(ξ)−un(ξ)
is the unique solution, for all ξ in Ξ, of

−A(ξ)en(ξ) = gn(ξ) on D,

en(ξ) = fn(ξ) on ∂D,
(20)
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where fn(ξ) := f(ξ)−un(ξ) and gn(ξ) = g(ξ)+A(ξ)un(ξ). By Feynman-Kac representation theorem,
for all ξ in Ξ, en(ξ) is the unique solution of (20) in C(D) ∩ C2(D) and satisfies for all x ∈ D

en(x, ξ) = E

(
fn(Xx,ξ

τx,ξ
, ξ) +

∫ τx,ξ

0
gn(Xx,ξ

t , ξ)dt

)
:= E

(
Fn(x,Xx,ξ, ξ)

)
, (21)

with Xx,ξ the stopped diffusion process solution of (15). Then, we have the following probabilistic
reinterpretation for ‖en(ξ)‖2L2 .

Theorem 4.6. Let Y ∼ U(D) be uniformly distributed on D. Let W and W̃ be two independent
standard d-dimensional Brownian motions defined on (Ω,F ,P) and independent of Y . For any x ∈ D,
let Xx,ξ and X̃x,ξ be solutions of (15) with W , W̃ respectively. Then we have for any ξ in Ξ

‖en(ξ)‖2L2 = |D|E (Zn(ξ)) , (22)

with Zn(ξ) = Fn(Y,XY,ξ, ξ)Fn(Y, X̃Y,ξ, ξ) and |D| the Lebesgue measure of D.

Proof. We first recall

‖en(ξ)‖2L2 =

∫
D
en(x, ξ)2dx = |D|E

(
en(Y, ξ)2

)
.

Since, for any x, Xx,ξ and X̃x,ξ are i.i.d. random processes, we have

E
(
en(Y, ξ)2

)
= E

(
E
(
Fn(Y,XY,ξ, ξ))|Y

)2
)

= E
(

E
(
Fn(Y,XY,ξ, ξ)|Y

)
E
(
Fn(Y, X̃Y,ξ, ξ)|Y

))
,

and
‖en(ξ)‖2L2 = |D|E

(
E
(
Fn(Y,XY,ξ, ξ)Fn(Y, X̃Y,ξ, ξ)|Y

))
.

Then by the law of iterated expectation we obtain (22).

Remark 4.7. Assuming the existence of probabilistic representations for the gradient of u(ξ) and
un(ξ), it would be possible to consider probabilistic interpretation of other norms of the approximation
error, such as the H1-norm. Such probabilistic representations have been derived in simple cases, see
e.g. [16, Corollary IV.5.2].

4.2.2 A probabilistic greedy algorithm using pointwise evaluations

For the purpose of numerical applications, we can apply Algorithm 3.3 together with the error
estimate (22) for the construction of the reduced space Vn.

Sample computation. The samples of Zn(ξ) (as defined in Theorem 4.6) are generated from
the functional Fn and independent trajectories of the discrete diffusion process XY,∆t , with Y ∼
U(D). The discrete diffusion process XY,∆t is computed using a suitable time integration scheme
(see Appendix B) for the stochastic ODE (15).

Snapshot computation. Within Algorithm 3.3, the reduced space corresponds to Vn = span{u(ξ1),
. . . , u(ξn)}. However, the snapshots {u(ξ1), . . . , u(ξn)} are generally not available since it requires to
compute the exact solution of (13) for parameter instances {ξ1, . . . , ξn}. From Feynman-Kac formula
(18), it is possible to compute MC estimates u∆t,M (x, ξ) of u(ξ) from independent realizations of the
diffusion process Xx,∆t starting from x ∈ D̄ (as detailed in Appendix B). Then, a global numerical
approximation can be computed in some finite dimensional linear space, e.g., by interpolation or
least-square method, from these MC pointwise estimates. To compensate possible slow convergence
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of MC estimates, one can consider a sequential approach which uses the approximation error at each
step as control variate in order to reduce the variance of MC estimates. Such a strategy has been
initially proposed in [17, 18] for interpolation, and recently extended for high dimensional problems
in [5].

Projection computation. The projection un(ξ) is obtained following the same procedure as for
online step as described in forthcoming section.

4.3 Online step

Given the reduced space Vn obtained during the offline stage, we now turn to the computation of the
approximation un(ξ) during the online step. For RBM to be of practical interest, the approximation
un(ξ) in Vn obtained at a low complexity depending only on n. Here, following the same path as
for the snapshots computation during offline stage, un(ξ) can be computed by interpolation or a
least-square method using MC estimates u∆t,M (x, ξ) given by (36).

5 Numerical applications

The aim of this section is two folds. We first illustrate the feasibility of a greedy algorithm with
probabilistic error estimate for the approximation of a parameter-dependent function from its point-
wise evaluations. Then, we present some numerical experiment concerning the probabilistic RBM,
discussed in Section 4, for the solution of parameter-dependent PDEs with probabilistic interpreta-
tion.

5.1 Approximation of parameter-dependent functions

Let us consider the problem of computing an approximation un(ξ) of u(ξ), from its pointwise eval-
uations at given points in D. Particularly, we seek un(ξ) as the interpolation of u(ξ) in the finite
dimensional space Vn ⊂ V , such that

un(xi, ξ) = u(xi, ξ), xi ∈ Γ,

with Γ = {x1, . . . , xn} an unisolvant grid of suitably chosen interpolation points in D.

5.1.1 Procedures for the construction of Vn

For constructing the space Vn = span{u(ξ1), . . . , u(ξn)}, we compare different greedy procedures for
the selection of the snapshots u(ξi), i = 1, . . . , n. First, we use the deterministic greedy Algorithm 2.2,
for which ∆(un−1(ξ), ξ) is a numerical estimate of the L2-norm of the approximation error ‖u(ξ) −
un(ξ)‖L2(D) using some integration rule. This approach is confronted to probabilistic alternatives
relying on probabilistic reinterpretation of the approximation error

‖u(ξ)− un(ξ)‖2L2(D) = E(Zn(ξ)).

where Zn(ξ) = |D||un(X, ξ)− u(X, ξ)|2, X ∼ U(D), as discussed in Example 3.1. In this setting, the
set S(Zn−1(ξ), Ξ̃) within Algorithm 3.3 is obtained using either a crude MC estimate of the expec-
tation or adaptive bandit algorithms discussed in Appendix A. When non asymptotic concentration
inequalities are used, the parameter ξn returned by Algorithm 3.3 is a PAC maximum under suitable
assumptions on the distribution of Zn(ξ). In particular, for any ξ ∈ Ξ̃, if there exist an(ξ), bn(ξ) ∈ R
such that an(ξ) ≤ Zn(ξ) ≤ bn(ξ) a.s., concentration inequalities under the form (28) hold. Having
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such a knowledge a priori of the distribution of Zn(ξ) and finding the bounds an(ξ), bn(ξ) is not an
easy task. Here, since u(ξ) is known, we set the following heuristic bounds

an(ξ) = min
x∈D̃
|u(x, ξ)− un(x, ξ)|2 and bn(ξ) = max

x∈D̃
|u(x, ξ)− un(x, ξ)|2,

to perform our computations with D̃ ⊂ D a finite subset. Moreover, by Remark A.4, we have to
define the sequence (dm)m≥1 with dm = λn

#Ξ̃

(p−1)
p m−p, p = 2 and λn = λ

n . We also consider a variant

relying on asymptotic concentration inequality as Central Limit Theorem (CLT), which overcomes
the necessity of computing any bound for Zn(ξ) and defining the sequence (dm)m≥1. These proba-
bilistic approaches are also compared to another naive approach, in which ξn is chosen at random in
Ξ̃ (without replacement) at each step n of Algorithm 3.3.

In what follows, the deterministic approach is called D-Greedy, whereas the probabilistic ones
using MC estimate and bandit algorithms are named MC-greedy and PAC-greedy relying on
non asymptotic (Bounded) or asymptotic concentration inequalities (CLT). The last one is simply
referred as to Random.

5.1.2 Numerical setting

We perform some numerical tests with the methods discussed in the previous section for the approx-
imation of the two subsequent functions

u(x, ξ) = 10x sin(2πxξ), x ∈ [0, 1], ξ ∈ [2, 4]

and, following [8],

u(x, ξ) = (x+ 0.1)1/21[0,ξ](x) +

(
1

2
(ξ + 0.1)−1/2(x− ξ) + (ξ + 0.1)1/2

)
1[ξ,1](x), x ∈ [0, 1], ξ ∈ [0, 1].

The test case related to each function will be designated by (TC1) and (TC2), respectively.

For the numerical experiments, the training set Ξ̃ is obtained using #Ξ̃ = 300 equally spaced
points in Ξ, similarly for D̃ made from equally spaced points in D (10000 for (TC1), and 1000
for (TC2)). Then, the L2-norm of the approximation error is estimated by trapezium rule. Both
deterministic and probabilistic greedy algorithms are stopped for given n = 20 for (TC1) and n = 30
for (TC2). The interpolation grid Γ is set to be the sequence of magic points [23], with respect to the
basis of Vn. For the probabilistic procedure with naive MC estimate, we set K ∈ {1, 50}. Finally, for
bandit algorithms, the stopping criterion is ε = 0.9 and the probability of failure is set to λ = 0.1.

5.1.3 Numerical results

Let us first study the quality of the approximations provided by the different approaches. Figures
1 and 2 represent the evolution of the estimated expectation Eξ and maximum, with respect to ξ,
of the approximation error ‖un(ξ) − u(ξ)‖L2(D̃) for (TC1) and (TC2). These estimates have been

computed using 100 independent realizations of un(ξ) obtained from uniform draws of ξ in Ξ. In
that case, only one realisation of the probabilistic algorithms is performed for the comparison. For
both test cases, D-greedy, MC-greedy and PAC-greedy procedures behave similarly with the same
error decay with respect to n reaching a precision around 10−14 for (TC1) and 10−5 for (TC2). Let
us mention, that for (TC2), the function to approximate has a slow decay of its Kolmorov n-width
(see e.g. discussion in [8, Section 4.3.2]) which explains higher error for larger n. For the random
approach, the selection of interpolation points is less optimal. For first iterates it behaves similarly as
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other approaches, but we observe that the approximation un(ξ) is less accurate with n, from around
15 for (TC1) and 10 for (TC2) respectively. However, despite no guarantee on the optimality of the
returned parameter ξn, the PAC algorithm with asymptotic concentration inequality and especially
the MC greedy algorithm, either with a single random evaluation of the error estimate (K = 1), lead
to very satisfactory results with an error close to the deterministic interpolation approach for both
test cases.
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Figure 1: (TC1) Evolution with respect to n, of the estimated expectation and maximum of the ap-
proximation error in L2-norm, computed for 100 instances of ξ, for one realisation of the probabilistic
greedy algorithms compared to the deterministic one.
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Figure 2: (TC2) Evolution with respect to n, of the estimated expectation and maximum of the ap-
proximation error in L2-norm, computed for 100 instances of ξ, for one realisation of the probabilistic
greedy algorithms compared to the deterministic one.

Greedy procedure. We now turn to the study of the greedy procedures used for the selection of
the snapshots. Figures 3-4 represent the error estimate ∆(un−1(ξ), ξ) as well as the number of samples
mn(ξ) required during the greedy selection of ξn for deterministic and probabilistic greedy algorithms
based on bandit algorithms for (TC1) and (TC2). These curves corresponds to one realisation of the
probabilistic algorithms. First we observe that the parameters selected (indicated with the symbol ∗
on the curves) by bandit algorithms do not necessary coincide with the maximum of EIM. Second, as
expected the number of samples mn(ξ) is adapted for both algorithms resulting in higher sampling
in the region where it is likely to find maximum. Globally, we observe that PAC-greedy (CLT)
works quite similarly as PAC-greedy (Bounded). But the two approaches differ in terms of required
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number of samples. Indeed, CLT based approach only requires around a maximum of 10 − 102

samples whereas the one based on concentration inequalities requires between 103 − 105 samples.
Note that, for the proposed test cases the PAC-greedy (CLT) is quite competitive in comparison to
MC approach with fixed number of samples K.
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Figure 3: (TC1) Evolution of the error during greedy procedures based on PAC bandit algorithms
(top), together with required samples mn(ξ) for selecting ξn ∈ Ξ̃.
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Figure 4: (TC2) Evolution of the error during greedy procedures based on PAC bandit algorithms
(top), together with required samples mn(ξ) for selecting ξn ∈ Ξ̃ .

CPU times. Now, we briefly discuss the CPU computational costs of compared methods which
are summarized in Table 1.

Method (TC1) (TC2)

D-Greedy 54.0155 94.1438
Random 0.0422 0.2668
MC-Greedy K = 1 80.0675 99.2300
MC-Greedy K = 50 290.5882 484.6478
PAC-Greedy (Bounded) 1.1443e+04 8.7644e+04
PAC-Greedy (CLT) 97.9754 292.8513

Table 1: CPU times for compared approaches.

The more costly approach is the PAC-Greedy (Bounded) method since it requires a high num-
ber of samples for constructing suitable confidence intervals used during adaptive bandit algorithm.
At the opposite, the Random approach is the cheapest. Let mention, that the PAC-Greedy (CLT)
method, is quite competitive with MC-Greedy with K = 50 and underlines the interest of using some
adaptive procedure for snapshot selection. However, the more interesting trade-off between efficiency
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and accuracy is the MC-Greedy approach whose computational time remains close to the D-Greedy
method when K = 1.

In regard to these observations, in the next section the MC-greedy approach with few samples K
for the error estimation will be retained in practice to reduce computational costs.

5.2 Parameter-dependent PDE

Now, we focus on the solution of parameter-dependent PDEs, as introduced in Section 4. Given
Ξ = [0.005, 1], we seek u(ξ), ξ ∈ Ξ, solution on D =]0, 1[ of the following boundary problem

−A(ξ)u(ξ) := −a(ξ)u′′(ξ)− b(ξ)u′(ξ) = g(ξ) in ]0, 1[, u(ξ) = f(ξ) at x ∈ {0, 1}, (23)

for given boundary values f(ξ) : {0, 1} → R and source term g(ξ) : [0, 1] → R. Moreover, we denote
a(ξ) ∈ R∗+ and b(ξ) ∈ R the diffusion and advection coefficients respectively. We assume that (23)
admits a unique solution in C2([0, 1]) whose probabilistic representation is given by

u(x, ξ) = E(F (x,Xx,ξ, ξ)) := E

(
f(Xx,ξ

τx,ξ
) +

∫ τx,ξ

0
g(Xx,ξ

t , ξ)dt

)
.

The associated parameter-dependent stopped diffusion process Xx,ξ is solution of

dXx,ξ
t = b(ξ)dt+

√
2a(ξ)dWt, Xx,ξ

0 = x. (24)

In the following we take a(ξ) = ξ and b(ξ) = −10. The source term as well as Dirichlet boundary
conditions are set such that the exact solution to Equation (23) is

u(x, ξ) =
exp(x/ξ)− 1

exp(1/ξ)− 1
· (25)

5.2.1 Compared procedures

In what follows, we test the probabilistic RBM discussed in Section 4. Since the exact solution is
known, we use it for the snapshots. The projection un is obtained from evaluations of the exact
solution through interpolation (Interp) using magic points or a least-squares (LS) approximation
using a set of points D̃ in D, with #D̃ ≥ n. It is also compared to the minimal residual based
(MinRes) approximation defined by

un(ξ) = arg min
v∈Vn

∑
xi∈D̃

|A(xi, ξ)v(xi, ξ) + g(xi, ξ)|2 + |u(0, ξ)− v(0, ξ)|2 + |u(1, ξ)− v(1, ξ)|2. (26)

During the offline stage, we consider different greedy algorithms for the generation of the reduced
spaces. First, we perform the proposed probabilistic greedy Algorithm 3.3 for the construction
of the reduced space Vn using MC estimates with Zn(ξ) defined as in Theorem 4.6. This ap-
proach is compared to an alternative RBM in deterministic setting. Since u(ξ) is implicitly known
through the boundary value problem (23), the greedy selection of Vn is performed using Algorithm
2.2 where ∆(un(ξ), ξ) is an estimate (using integration rules) of the residual based error estimate
‖A(ξ)un(ξ) + g(ξ)‖2L2(D) during the offline stage.

In the presented results, the residual based greedy algorithm is referred to as Residual. The MC
estimate using Feynman-Kac representation is named FK-MC. These approaches are also compared
to a naive one named Random in which the parameters ξ1, . . . , ξn that define Vn are chosen at
random.
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5.2.2 Numerical results

For the numerical experiments, the training set Ξ̃ is made of 200 samples from a log uniform distri-
bution over Ξ. This distribution is chosen as the solution strongly varies with respect to the viscosity
ξ, in particular we want to reach small viscosities. Realizations of Zn(ξ), given by (36), are computed
using M = 500 realizations of the approximate stochastic diffusion process solution of Equation (24),
obtained by Euler-Maruyama scheme (see Appendix B) with ∆t = 10−3. For computing un(ξ), magic
points are used for interpolation while for LS and MinRes approaches, we choose for D̃ a regular
grid of 100 points in D. Here, greedy algorithms are stopped when n = 30. The MC-FK greedy
algorithm is performed for K ∈ {1, 10}.

Figure 5 represents the estimated expectation and maximum, with ξ, of the approximation error
for the compared procedures, with respect to n. The obtained results underline the importance of
both projection and reduced basis construction. When MinRes method is used, the approximation
is less accurate than for other deterministic approaches (dashed yellow curve). Especially, when
it is compared to approaches using a residual based error estimate (blue curves) during the greedy
procedure but using interpolation or LS for projection, the mean approximation error is of order 10−11

for MinRes against 10−15 for the latter (for the maximum error, we have 10−10 against 10−14). Second,
let us comment the impact of the probabilistic reduced basis selection. As for function approximation,
picking at random the reduced basis for the considered problem is far from optimal since the error
expectation tends to stagnate around 10−10 for n ≥ 20 (around 10−9 for the maximum). However,
when considering residual based or FK-based error estimates (even with K = 1), with interpolation
or least-square ofr projection, the error behaves quite similarly and reaches 10−15 for n = 30. This
shows that the proposed probabilistic based error procedure performs well in practice.

0 5 10 15 20 25 30
10−16

10−13

10−10

10−7

10−4

10−1

102

n

E ξ
(‖
u
n
(ξ
)
−
u
(ξ
)‖
L

2
)

0 5 10 15 20 25 30
10−16

10−13

10−10

10−7

10−4

10−1

102

n

m
ax
ξ
(‖
u
n
(ξ
)
−
u
(ξ
)‖
L

2
)

Residual (MinRes)
Residual (Interp)
Residual (LS)
Random (Interp)
Random (LS)
FK-MC K = 1 (Interp)
FK-MC K = 1 (LS)
FK-MC K = 10 (Interp)
FK-MC K = 10 (LS)

Figure 5: Parameter-dependent equation: evolution with respect to n, of the estimated expectation
and maximum of the approximation error in L2-norm, computed for 100 instances of ξ, for one
realisation of the probabilistic greedy algorithms compared to the deterministic one.

6 Conclusion

In this work we have proposed a probabilistic greedy algorithm for the approximation of a family of
parameter-dependent functions for which we only have access to (noisy) pointwise evaluations. It re-
lies on an error indicator that can be written as an expectation of some parameter-dependent random
variable. Different variants of this algorithm have been proposed using either naive MC estimates or
PAC bandit algorithms, the latter leading to a weak greedy algorithm with high probability. Several
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test cases have demonstrated the performances of the proposed procedures.

For parameter-dependent PDEs whose solution admits a probabilistic representation, through
the Feynman-Kac formula, such an algorithm can be embedded within a probabilistic RBM using
only (noisy) pointwise evaluations. Numerical results have shown the main relevance of considering
Feynman-Kac error based estimate for greedy basis selection. We have also illustrated the influence
of the projection during online and offline step. Following the discussion of Section 4.2.2, using a
sequential procedure as proposed in [5, 17, 18] should be an interesting alternative to avoid limitations
of residual based projections. However, further work should be conducted to provide a projection
with controlled error and at low cost, which is crucial for efficient model reduction.

A Adaptive bandit algorithms

We present an adaptive bandit algorithm to find a PAC maximum in relative precision of E(Z(ξ))
over the discrete set Ξ̃. Here {Z(ξ) : ξ ∈ Ξ̃} is a finite collection of random variables satisfying
E[Z(ξ)] 6= 0, defined on the probability space (Ω,F ,P). After introducing some required notation,
we present a practical adaptive bandit algorithm which returns a PAC maximum in relative precision
for (6) when assuming suitable assumptions on the distribution of Z(ξ).

A.1 Notation and assumptions

We denote by Z(ξ)m the empirical mean of Z(ξ) and V (ξ)m its empirical variance, respectively
defined by

Z(ξ)m =
1

m

m∑
k=1

Z(ξ)k and V (ξ)m =
1

m

m∑
k=1

(
Z(ξ)k − Z(ξ)m

)2
, (27)

where Z(ξ)1, . . . , Z(ξ)m are m independent copies of Z(ξ). Moreover, the random variable Z(ξ) is
assumed to satisfy the following concentration inequality

P
(
|Z(ξ)m − E[Z(ξ)]| ≤ c(m,x, ξ)

)
≥ 1− x, (28)

for each ξ ∈ Ξ̃, 0 ≤ x ≤ 1 and m ≥ 1. The bound c(m,x, ξ) depends on the probability distribution
of Z(ξ).

Remark A.1. In view of numerical experiments, we can consider standard concentration inequalities
for sub-Gaussian or bounded random variables, see e.g. [6, §2]. In particular, if for any ξ ∈ Ξ̃, there
exists a(ξ), b(ξ) ∈ R such that almost surely we have a(ξ) ≤ Z(ξ) ≤ b(ξ), then (28) holds with

c(m,x, ξ) =

√
2V (ξ)m log(3/x)

m
+

3 (b(ξ)− a(ξ)) log(3/x)

m
.

An alternative to (28) is to rely on asymptotic confidence intervals for E(Z(ξ)) based on limit
theorems of the form

P
(
|Z(ξ)m − E[Z(ξ)]| ≤ c(m,x, ξ)

)
→ 1− x, as m→∞. (29)

For example, for second order random variables, the central limit theorem provides such a property
with

c(m,x, ξ) = γx

√
V (ξ)m
m

,

and γx the (x/2)-quantile of the normal distribution.
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A.2 Algorithm

Now, let us define a sequence (dm)m≥1 ⊂ (0, 1)N, independent from ξ, and such that
∑

m≥1 dm <∞.

Then we introduce cξ,m = c(m, dm, ξ), and β±ξ,m(ξ) = Z(ξ)m(ξ) ± cξ,m(ξ). Note that the concentration

inequality (28) implies that [β−m(ξ)(ξ), β
+
m(ξ)(ξ)] is a confidence interval for E(Z(ξ)) with level 1−dm(ξ).

Letting s(ξ) := sign(Z(ξ)m(ξ)) and εξ,m(ξ) =

{ cξ,m(ξ)

|Z(ξ)m(ξ)|
if Z(ξ)m(ξ) 6= 0,

+∞ otherwise.
, we define the follow-

ing estimate for E[Z(ξ)] given by

Êm(ξ)[Z(ξ)] =

{
Z(ξ)m(ξ) − εξ,m(ξ) s(ξ)cξ,m(ξ) if εξ,m(ξ) < 1,

Z(ξ)m(ξ) otherwise.
(30)

Then, the adaptive bandit algorithm proposed in [6] is as follows.

Algorithm A.2 (Adaptive bandit algorithm).

1: Let ε, λ ∈ (0, 1) and K ∈ N. Set ` = 0, Ξ0 = Ξ̃, m(ξ) = K and εξ,m(ξ) = +∞ for all ξ ∈ Ξ.
2: while #Ξ` > 1 and max

ξ∈Ξ`
εξ,m(ξ) >

ε
2+ε do

3: for all ξ ∈ Ξ` do
4: Sample Z(ξ), increment m(ξ) and update εξ,m(ξ).

5: Compute the estimate Êm(ξ)[Z(ξ)] using (30).
6: end for
7: Increment ` and put in Ξ` every ξ ∈ Ξ̃ such that

β+
ξ,m(ξ) ≥ max

ν∈Ξ̃
β−ν,m(ν). (31)

8: end while
9: Select ξ̂ such that

ξ̂ ∈ arg max
ξ∈Ξ`

Êm(ξ) [Z(ξ)] .

At each step `, the principle of Algorithm A.2 is to successively increase the number of sam-
ples m(ξ) of the random variables Z(ξ) in the subset Ξ` ⊂ Ξ̃, obtained using confidence intervals
[β−m(ξ)(ξ), β

+
m(ξ)(ξ)] of E(Z(ξ)) according to (31). The idea behind is to use those confidence intervals

to find regions of Ξ̃ where one has a high chance to find a maximum. Then, ξ̂ is returned as a max-
imizer over Ξ` of the expectation estimate defined by (30). Under suitable assumptions, and when
using certified non-asymptotic concentration inequalities, this algorithm returns a PAC maximum in
relative precision of E(Z(ξ)) over Ξ̃, as stated in [6, Proposition 3.2], recalled below.

Proposition A.3. Let ε, λ ∈ (0, 1) and (dm)m≥1 ⊂ (0, 1) be a sequence that satisfies∑
m≥1

dm ≤
λ

#Ξ̃
and log(1/dm)/m →

m→+∞
0, (32)

and assume that c satisfies (28). If for all ξ in Ξ, Z(ξ) is a random variable with E[Z(ξ)] 6= 0,
then Algorithm A.2 almost surely stops and returns a PAC maximum in relative precision, i.e. ξ̂ =
PACλ,ε(Z, Ξ̃).

Remark A.4. In practice a possible choice for the sequence (dm)m≥1 is to take

dm = δcm−p with δ =
λ

#Ξ̃
and c =

p− 1

p
, (33)

which satisfies (32) for any p > 1.
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In general, confidence intervals based on asymptotic theorems are much smaller than those ob-
tained with non-asymptotic concentration inequalities, and yield a selection of much smaller sets Ξ`
of candidate maximizers, hence a much faster convergence of the algorithm. However, when using
asymptotic theorems, we can not guarantee to obtain a PAC maximizer.

B Probabilistic approximation of the solution of a PDE

Here we discuss the numerical computation of an estimate of u(x) for any x ∈ D̄. To that goal, we
use a suitable integration scheme to get an approximation of the diffusion process Xx and a MC
method to evaluate the expectation in formula (18).

An approximation of the diffusion process is obtained using a Euler-Maruyama scheme. More
precisely, setting tn = n∆t, n ∈ N, Xx is approximated by a piecewise constant process Xx,∆t, where
Xx,∆t
t = Xx,∆t

n for t ∈ [tn, tn+1[ and

Xx,∆t
n+1 = Xx,∆t

n + ∆t b(Xx,∆t
n ) + σ(Xx,∆t

n ) ∆Wn,

Xx,∆t
0 = x,

(34)

where ∆Wn = Wn+1 −Wn is an increment of the standard Brownian motion.

Numerical computation of u(x) for all x ∈ D̄ requires the computation of a stopped process Xx,∆t

at time τx,∆t, an estimation of the first exit time of D. Here, we consider the simplest way to define
this discrete exit time

τx,∆t = min
{
tn > 0 : Xx,∆t

tn /∈ D
}
. (35)

Such a discretization choice may lead to over-estimation of the exit time with an error in O(∆t1/2).
More sophisticated approaches are possible to improve the order of convergence, as Brownian bridge,
boundary shifting or Walk On Sphere (WOS) methods, see e.g., [16, Chapter 6]. These are not
considered here.

Letting {Xx,∆t(ωm)}Mm=1 be M independent samples of Xx,∆t, we obtain a MC estimate noted
u∆t,M (x) for u(x) defined as

u∆t,M (x) =
1

M

M∑
m=1

[
f(Xx,∆t

τx,∆t
(ωm)) +

∫ τx,∆t

0
g(Xx,∆t

t (ωm))dt

]
. (36)
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