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Atom-based quantum simulators have had tremendous success in tackling challenging quantum
many-body problems, owing to the precise and dynamical control that they provide over the systems’
parameters. They are, however, often optimized to address a specific type of problems. Here, we
present the design and implementation of a 6Li-based quantum gas platform that provides wide-
ranging capabilities and is able to address a variety of quantum many-body problems. Our two-
chamber architecture relies on a robust and easy-to-implement combination of gray molasses and
optical transport from a laser-cooling chamber to a glass cell with excellent optical access. There, we
first create unitary Fermi superfluids in a three-dimensional axially symmetric harmonic trap and
characterize them using in situ thermometry, reaching temperatures below 20 nK. This allows us to
enter the deep superfluid regime with samples of extreme diluteness, where the interparticle spacing
is sufficiently large for direct single-atom imaging. Secondly, we generate optical lattice potentials
with triangular and honeycomb geometry in which we study diffraction of molecular Bose-Einstein
condensates, and show how going beyond the Kapitza-Dirac regime allows us to unambiguously
distinguish between the two geometries. With the ability to probe quantum many-body physics in
both discrete and continuous space, and its suitability for bulk and single-atom imaging, our setup
represents an important step towards achieving a wide-scope quantum simulator.

I. INTRODUCTION

The last decades have seen the emergence of ultra-
cold atom experiments as powerful platforms for quan-
tum simulation of complex many-body systems [1, 2].
The success of atom-based quantum simulators stems
from their ability to place a large number of particles
in a well-characterized, tunable and isolated environ-
ment. For example, the energy landscape where particles
evolve can be tailored to be uniform [3], harmonic [4],
periodic [5], disordered [6–8], or even tightly-confining
in one or more directions to simulate a 1D or 2D sys-
tem [9–11]. Interparticle interactions can be short range
or long-range, repulsive or attractive, vanishingly weak
or as strong as allowed by quantum mechanics [12, 13].
The atomic or molecular ensembles can be prepared in
thermal equilibrium, out-of-equilibrium or be dynami-
cally driven [14, 15]. The quantum-gas toolbox goes be-
yond these examples and offers many capabilities to cre-
ate quantum systems with increasing complexity, which
was underlined by major breakthroughs over the last
two decades in our understanding of quantum matter
[1, 5, 9], ranging from elucidating important properties
of the BEC-BCS crossover [16–19], to the study of Bose
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and Fermi Hubbard Models [20, 21], to the exploration
of topological states of matter [15, 22].

A limitation of current approaches, however, is that
most quantum gas setups are optimized to address only
a certain type of problems. One often makes a choice be-
tween lattice or continuous systems, short or long-range
interactions, single-particle detection or bulk measure-
ments, etc. In some cases, this is unavoidable as the
experiment is designed to harness the properties of a spe-
cific atomic element or molecule. In many other cases,
however, such constraints do not apply and combining ex-
perimental capabilities that had traditionally been used
on distinct types of quantum many-body systems can
have a game-changing impact on the ongoing quantum
simulation effort.

Recently, promising steps were made in that direction:
optical tweezers, for instance, have been combined with
optical lattices in order to study single-atom quantum
walks in two-dimensional lattices [23], as well as with
quantum gas microscopy to realize bottom-up quantum
simulation of the Fermi-Hubbard model [24]. Other re-
cent work demonstrated the use of versatile energy land-
scapes on a given setup, for example, utilizing tunable
tailored optical potentials to investigate dynamical sym-
metries of 2D Bose gases in continuous space under vari-
able boundary conditions [25], or performing quantum
gas microscopy of both triangular and square lattices
within the same setup [26].

Here, we present a multi-purpose quantum gas plat-
form for the study of strongly-correlated Fermi systems
in both lattice and continuous landscapes. Interacting
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FIG. 1. Overview of the experimental apparatus (left panel) and sequence (right panel). 6Li atoms slowed by a Zeeman slower
(A) are collected in a magneto-optical trap (MOT) inside a spherical vacuum chamber (B), with a pair of coils (C) providing
the magnetic gradient. Atoms are then cooled to sub-Doppler temperatures using a gray molasses, loaded into an optical dipole
trap – focused by a 1335mm lens (D) – and subsequently transported into a glass cell using a linear translation stage (E). Two
pairs of coils around the glass cell (F, G) are used to create the Feshbach bias field and apply a field curvature in the horizontal
plane, respectively. The inset shows the glass cell with the triangular lattice beam (red lines) and the vertical lattice beam
(orange lines). A microscope objective (H) with numerical aperture of 0.55 is positioned below the glass cell for high-resolution
imaging.

fermionic systems play a special role among the vari-
ous quantum many-body problems within reach of atom-
based quantum simulators, as their understanding con-
stitutes a serious challenge of modern physics. Indeed,
theoretical approaches to tackling strongly-correlated
fermionic systems are widely plagued by the infamous
sign-problem, which entails either uncontrolled numerical
methods or an exponential increase of computation times
despite tremendous algorithmic development efforts [27–
34]. On the other hand, the experimental advances in
quantum simulation not only have solved long-standing
problems [35–39] but also helped the cross-validation
of novel theoretical methods, such as the diagrammatic
Monte Carlo methods [40–45].

Our experiment is based on fermionic 6Li, which has
proven to be a suitable atom to address a broad range of
topics, from the BEC-BCS crossover [16, 17, 19, 37, 39,
46–51], to few-body and Efimov physics [52–58], to quan-
tum gas microscopy of lattice systems [59–62] including
frustrated geometries [63], to interacting Rydberg ensem-
bles [64] and to novel cavity quantum electrodynamics ef-
fects, where photons couple to strongly-interacting mat-
ter [65].

We use our setup to study three paradigmatic systems:
the unitary Fermi gas in continuous space, the triangu-
lar lattice and the honeycomb lattice. Specifically, we
first create unitary Fermi gases in a well-characterized
trapping potential in three-dimensional continuous space
and at controlled temperatures, which we obtain using
in situ thermometry based on state-of-the-art thermo-

dynamics [19, 36]. Our coldest samples are deeply in
the superfluid regime with absolute temperatures below
20 nK and an average interparticle spacing of ≃ 1.3µm,
which brings their direct imaging via quantum gas mi-
croscopy within reach. Secondly, we present a versa-
tile set of lattice configurations, which we characterize
via matter-wave diffraction of a molecular Bose-Einstein
condensate, in and beyond the Kapitza-Dirac regime. In
particular, in the case of the triangular and honeycomb
lattice geometries, we demonstrate how Bragg diffraction
can be used to quantitatively discriminate between the
two.

II. OVERVIEW OF THE APPARATUS

Our apparatus employs an all-optical strategy for pro-
ducing deeply degenerate Fermi gases of 6Li atoms. A
schematic overview is shown in Fig. 1. Its design is di-
vided into two principal sections: (i) A preparation vac-
uum chamber in which the atoms are cooled to tens of mi-
crokelvins and loaded into an optical dipole trap (ODT),
and (ii) a science glass cell to which the atoms are op-
tically transported by moving the ODT, where they are
evaporatively cooled to quantum degeneracy. This two-
chamber structure provides good optical access to the
science cell, which is crucial for our goal of tackling a di-
verse set of quantum problems within the same appara-
tus. In the following, we describe the general architecture
of our setup and our experimental sequence. Additional
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experimental details can be found in Appendix A.

II.1. Dipole trap loading

Our experimental sequence starts with a magneto-
optical trap (MOT) of 6Li atoms loaded from a Zeeman-
slowed atomic beam of lithium. After loading the MOT
for typically 1.2 s, we apply a compression stage (CMOT)
by increasing the magnetic field gradient. We subse-
quently turn off the magnetic quadrupole field while
keeping the MOT laser beams on for 3ms to hold the
atoms until all transient magnetic fields have fully de-
cayed and only residual static magnetic fields remain.
We refer to this stage as the D2 optical molasses phase.
When all transient magnetic fields have decayed, we
switch off the MOT beams, turn on the D1 laser cooling
beams for 3ms to capture the atoms in a gray molasses,
and then reduce the intensity of the latter by half in 2
ms. A subsequent hold time of 1 ms allows the atoms to
thermalize, and we obtain a cloud with phase space den-
sities (PSD) of approximately 5×10−5 and temperatures
down to 40µK which allows direct loading into an ODT
(see Appendix A for details.).

The (single-beam) ODT is turned on during the D2

molasses stage and kept at maximal power of 156W
throughout the gray molasses phase. It is derived from an
Ytterbium fiber laser with a central wavelength of 1070
nm. At maximal power and with a beam waist of 90µm,
we obtain a radial trapping frequency of 2π×4 kHz and a
trap depth of kB × 600µK, with kB the Boltzmann con-
stant. With these parameters, we typically load 5 × 106

atoms in the F = 1/2 state (F being the hyperfine quan-
tum number) at temperatures of 90µK, which remain
nearly an order of magnitude smaller than the trap depth
of the ODT. In Fig. 2 we show integrated density distri-
butions n̄ obtained by absorption imaging at different
steps of this loading process.

In anticipation of the optical transport to the science
cell, we have studied the evolution of atom number and
temperature while holding the atoms in the static ODT.
The results are shown in Fig. 3, where temperature mea-
surements are obtained from the expansion of the atomic
distribution after a variable time-of-flight (TOF). We ob-
serve a slow heating of the atoms that results in their es-
cape from the trap at long hold times. By fitting the
evolution of the measured temperature with an expo-
nential saturation curve, we extract an initial heating
rate of 16(3)µK/s. This is larger than the estimated
off-resonant photon scattering rate of 3.4µK/s and likely
caused by low-frequency laser intensity noise. However,
on the 1.2 s timescale of transport to the glass cell, heat-
ing and atom loss are negligible.
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FIG. 2. Loading of ODT. Absorption images taken at various
stages of the loading process for the single-beam ODT used
to transport the atoms to the glass cell. Images taken after
switching on theD1 gray molasses for a duration of 5ms (top),
15ms (middle) and 30ms (bottom).

II.2. Transport and evaporative cooling

We perform optical transport by shifting the ODT
beam focus over a distance of 32 cm in 1.2 s. This is
achieved using a motorized linear translation stage, car-
rying a pair of mirrors as shown in Fig. 1. In order
to ensure a smooth motion and minimize heating and
center-of-mass movement during transport, we define the
trajectory to be a quartic function of time with a sigmoid
shape, reaching a maximum velocity of 0.53m/s. The
transport efficiency is larger than 97% and yields sam-
ples of 5 × 106 atoms at a temperature of 125µK in the
glass cell.
At the glass cell the transport beam is crossed with

a perpendicular laser beam at 1064 nm, with a waist of
w = 61(1)µm and a maximum power of 16W, forming a
crossed dipole trap (CDT). The trapping potential due
to the crossing beam initially has little influence with a
trap depth of only ∼ 100µK. Then, the magnetic field is
ramped in 200ms to 832G corresponding to the center
of the broad Feshbach resonance between the two low-
est hyperfine ground states of 6Li, which we denote |1⟩
and |2⟩. We prepare a spin-balanced sample of these two
states by performing an adiabatic radio-frequency (RF)
sweep spanning frequency values from far off-resonance
to the resonant hyperfine transition frequency. We main-
tain the magnetic field at 832G, and hence strong reso-
nant interactions, throughout the evaporation process to
enhance elastic collision rates and achieve efficient evap-
orative cooling.
We initiate evaporation using a 2.8 s exponential in-

tensity ramp-down of the transport trap to 18% of its
maximum power, at which point its trap depth becomes
comparable to the crossing dipole trap. Then we lin-
early decrease the intensity of both arms simultaneously
down to a trap depth of approximately kB × 15µK in
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FIG. 3. Number and temperature of atoms loaded in the
transport beam dipole trap as a function of hold time in the
ODT. Error bars denote one standard deviation of the mean
from 15 measurements. The red dashed line is an exponen-
tial saturation curve which yields an initial heating rate of
16(3)µK/s. The blue dashed line is an exponential decay fit
of the atom number.

1.3 s. The transport trap is subsequently switched off
within 500ms with an exponential ramp-down. We end
evaporation with a 0–4 s linear intensity ramp-down of
the laser beam perpendicular to the transport direction.
This single ODT provides a strong (weak) confinement
in the radial (axial) direction with a trap frequency of

2π×620Hz×
√
PODT/W (2π×2.5Hz×

√
PODT/W), with

PODT the ODT power, while the magnetic coils provides
additional axial trapping with a frequency of 2π× 10Hz,
which largely dominates at low ODT power. In situ ab-
sorption images taken during this evaporation step are
shown in Fig. 4. At the lowest trap depth, we obtain
samples of 5.1(1)×104 atoms per spin state at tempera-
tures of 18(2) nK, well within the degenerate regime. The
total cycle time for the production of a degenerate Fermi
gas is 12 to 16 s depending on the desired temperature
(see Sec. III).

Thanks to the optical access provided by the glass cell,
the degenerate sample can be loaded into a variety of
different energy landscapes. We present below specific
examples of how we can study continuous (Sec. III) and
discrete (Sec. IV) systems.

III. STRONGLY-INTERACTING FERMIONS IN
CONTINUOUS SPACE

The two-component quantum-degenerate samples of
fermions described above readily give access to the
physics of strongly-interacting Fermi gases with tunable
interparticle interactions and spin-population. Indeed,
the broad Feshbach resonance between the two lowest
hyperfine states of 6Li is ideally suited for the study of

BEC–BCS crossover physics [35] and more specifically
the unitary regime, where the scattering length a di-
verges.
The unitary Fermi gas represents one of the critical

challenges of quantum many-body physics [35] and has
been subject of major experimental and theoretical inter-
est [1, 35, 36], with relevance for the understanding of the
dilute neutron matter in the crust of neutron stars, and
the quark-gluon plasmas created in heavy ion collisions
at ∼ 1012 K [39, 66]. Furthermore, because interactions
do not introduce any energy or length scale (as a result
of the diverging scattering length), it features remark-
able universal properties [35, 36, 67]. For instance, all
its thermodynamic properties only depend on the ratio
T/TF , of the temperature T to the Fermi temperature

TF = 1
kB

ℏ2

2m (3π2n)2/3 with n the density of the cloud and
ℏ the Planck constant.
Due to the strong interactions, standard thermometry

relying on time-of-flight expansion does not apply to the
unitary Fermi gas. Indeed, its expansion dynamics devi-
ates from the ballistic behavior already at temperatures
well above the superfluid transition temperature, and for
many years, this hindered quantitative thermometry in
the low temperature regime [36, 68]. In most experi-
ments, degeneracy of strongly interacting fermionic gases
is demonstrated using indirect or non-quantitative meth-
ods [36, 68], such as the appearance of a bimodal density
distribution in time-of-flight measurements performed on
the BEC side of the Feshbach resonance.
Here, in order to reliably extract the temperature

of our produced sample in the degenerate regime, we
take advantage of the precise universal equation of state
(EoS) of a homogeneous unitary Fermi gas measured in
Ref. [19], giving the pressure

P (µ, T ) = f(βµ), (1)

where β ≡ 1/(kBT ). Our absorption images indeed give
direct access to the pressure of the gas P , via the relation
[17, 19, 36, 69, 70]:

P (µ, T ) =
mωxωy

2π
¯̄n(z), (2)

where z is the axial coordinate, x, y the radial ones, and
¯̄n(z) =

∫
dx

∫
dy n(x, y, z) the doubly integrated density

profile, with one of the integrations already provided by
the imaging. Within the local density approximation,
which holds in our samples, the chemical potential is
given by µ = µ0 − mω2

zz
2/2, with µ0 the chemical po-

tential at the center of the trap. By fitting the doubly
integrated density profile of the gas to the EoS, we are
able to extract its temperature T .
Key to this approach is the accurate knowledge of the

variation in the local chemical potential, which requires
a precise knowledge of the trapping potential. This is the
motivation for the use of a single ODT at the final stage
of evaporation, which, in combination with the magnetic
curvature providing trapping in the axial direction, al-
lows us to create a clean and well-calibrated trapping
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FIG. 4. Thermometry of a unitary Fermi gas across the normal-to-superfluid transition. (Left) In situ absorption images for
decreasing final trap power: a) 300mW; b) 200mW; c) 125mW; d) 75mW; e) 30mW; f) 20mW. (Right) The corresponding
doubly-integrated density profiles (blue data points) and fit to the EOS (light-blue curve), yielding absolute temperature T
and reduced temperature T/TF at the center of the trap (both indicated in the respective panels).

potential. We show in Fig. 4 in situ absorption images
of our sample at different steps of the evaporative cooling,
and the corresponding values of T/TF at the trap center.
At the end of evaporation we obtain a cloud at 17(1) nK
with reduced temperatures of T/TF = 0.08(2), well be-
low the critical temperature of the normal-to-superfluid
transition Tc/TF = 0.176 [19]. Our samples are deliber-
ately prepared at low densities, and we typically obtain
a peak average interparticle distance of ≃ 1.3µm, which
makes them compatible with direct imaging via quantum
gas microscopy, as this distance is twice larger than the
700 nm lattice spacing (see Sec. IV), and is well resolved
by our imaging system [71].

A further, independent proof of superfluidity can be
obtained by observing the so-called superfluid plateau,
resulting from a phase separation that occurs when
spin populations are imbalanced [16, 72, 73]. Indeed,
for a spin-population imbalance below the Clogston-
Chandrasekhar limit [35], a harmonically trapped uni-
tary Fermi gas with a majority of |1⟩, will phase-seperate

into three regions: A superfluid core of equal spin den-
sities (n1 = n2), a partially polarized (PP) phase with
(n1 > n2) at intermediate distance from the trap center,
and a fully polarized (FP) phase (n1 ̸= 0 and n2 = 0)
on the outer part of the trap [16, 72, 73]. In an axially
symmetric trap, the superfluid core can be revealed as a
plateau in the difference of the doubly-integrated density
profiles of the two components [72, 73].

We prepare a unitary Fermi gas with imbalanced spin-
population by adjusting the duration of the RF sweep
that takes place before evaporative cooling (see Sec. II.1).
As above, the final stage of the evaporation takes place
in the single ODT, which is lowered to a trap depth of
∼ kB × 200 nK. In situ density profiles are then recorded
through absorption imaging of both spin states concur-
rently through double exposure of the imaging camera.
Fig. 5 shows doubly integrated density profiles for the
majority (|1⟩) and minority (|2⟩) components alongside
their difference, which displays a marked central plateau
with an axial extent of 200µm, signalling the presence of
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FIG. 5. Superfluid plateau in a spin-imbalanced unitary Fermi
gas. Doubly-integrated density profiles for the majority (blue)
and minority (red) spin components are shown, obtained for
a global spin imbalance of P ≈ 0.25 and at an estimated
temperature of T ∼ 20 nK (averaged over 40 experimental
realizations). The difference between the two profiles (light-
blue points) shows a plateau in the central region, indicating a
superfluid core. Vertical lines denote the separation between
the superfluid (SF), partially polarized (PP), and the fully
polarized (FP) regions.

a superfluid core. This is consistent with our quantitative
analysis, with recorded atoms numbers N1 = 2.0(2)×104

and N2 = 1.2(1) × 104 for the majority and minor-
ity components respectively, giving a global spin im-
balance P = N1−N2

N1+N2
≈ 0.25, which is well below the

Clogston-Chandrasekhar limit Pc ∼ 0.75 [16, 18, 36, 72–
74]. This demonstrates the ability offered by our appara-
tus to study the rich physics of strongly-interacting spin-
imblanced Fermi gases at ultralow temperatures [35, 36].

IV. OPTICAL LATTICES

Our experiment also allows the loading of ultracold
samples into optical lattices of adjustable triangular and
honeycomb geometry (see Tab. I). The laser beam con-
figuration used to generate these lattices is shown in the
inset of Fig. 1.

In the horizontal (XY) plane, a single laser beam in
butterfly configuration forms three arms with relative
angles of approximately 120◦. Interference of the three
arms can be used to generate either a triangular or a
honeycomb lattice geometry by an appropriate choice of
the arms’ polarization, which is controlled by rotating
a single half-waveplate. For the triangular lattice, the
polarization vectors of the three lattice arms are parallel

TABLE I. Different potential configurations available in the
science cell. The horizontal plane (XY) can host a triangular
(T) or honeycomb (H) lattice (latt.), whereas in the vertical
direction (Z) we can confine the particles in a one-dimensional
lattice, a light sheet or a crossed optical dipole trap.

XY
Z

Z lattice Light sheet Z CDT

Off 2D Layers 2D Gas 3D Gas
Triangular Layered T latt. 2D T latt. 1D T array
Honeycomb Layered H latt. 2D H latt. 1D H array

and lie along the vertical (Z) direction, while for a honey-
comb lattice the polarization vectors lie in the XY-plane
[75, 76]. The specific wave vector and polarization vector
configurations are schematically illustrated in the insets
of Figures 7 and 8. The same laser beams can also be
used in a non-interfering configuration to form a deep
CDT by making all respective polarization vectors mu-
tually orthogonal, merely by rotating the aforementioned
waveplate to set the polarization of the incident beam at
an angle of arctan(

√
2) ≃ 55◦ with respect to the Z-axis.

In the Z-direction, a one-dimensional lattice is created
with a pair of laser beams crossing at 90◦. The strength
of the interference between the two beams is tuned via an
electronically controlled half-waveplate which allows for
in-sequence ramping from a CDT to a one-dimensional
lattice. To complement the vertical lattice, which allows
us to produce a stack of 2D systems, our experiment also
features the ability to produce a single layer of atoms us-
ing a highly oblate laser beam, or light sheet, propagating
along the Y-direction and providing a strong vertical con-
finement of 65 kHz. Beams for the XY- and Z-lattices, as
well as the light sheet are created with three independent
laser beams at 1064 nm, with a maximum power of 40W
for the former two and 16W for the latter.
The triangular or honeycomb lattices in the XY plane

can therefore be combined with either the vertical lat-
tice, allowing us to create a stack of layers with tunable
interlayer coupling, or with the single light sheet, giving
access to purely 2D physics that can be readily probed
by single-atom imaging [71]. In the following, we validate
the multifunctionality of our apparatus by a quantitative
characterization of the two XY-lattices.
We use a molecular BEC and perform Kapitza-Dirac

scattering [77, 78]. This technique consists of pulsing
the lattice potential on a matter wave and subsequently
performing a TOF expansion, yielding a diffraction pat-
tern that reflects the momenta imparted by the lattice,
which provides a robust calibration of the lattice depth
and axes orientations. Indeed, upon exposure to a lat-
tice with trap depth U0 for a duration τ , the particles are
distributed over several momentum classes whose popu-
lations solely depend on the pulse area θ = U0τ/(2ℏ),
under the condition that the particle motion can be ne-
glected during the pulse time (Raman-Nath approxima-
tion) [78]. This result can be readily generalized to the
case where the lattice arms have different intensities. For
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FIG. 6. Absorption images showing Kapitza-Dirac diffrac-
tion of a molecular BEC taken after a 2ms time-of-flight for
different values of the geometric average of the pulse area θ̄.
Images for (a) θ̄ = 0, (b) θ̄ = 0.49, (c) θ̄ = 0.73, (d) θ̄ = 1.08,
(e) θ̄ = 1.43, (f) θ̄ = 1.74, (g) θ̄ = 2.05, (h) θ̄ = 2.43 and (i)
θ̄ = 2.77 averaged over 60 experimental realizations.

ultracold systems, Kapitza-Dirac scattering has been first
observed for BECs (of bosonic atoms) [79], and more re-
cently, strongly-interacting molecular BECs were used to
investigate the role of interactions in the scattering from
a one-dimensional lattice [80].

For this measurement, the magnetic field is set to
665G, deep in the BEC side, corresponding to an effec-
tive dimer-dimer scattering length of 600 a0, which allows
us to neglect the effects of interparticle interactions dur-
ing TOF expansion given our densities (na3 < 10−4). We
shine the triangular XY-lattice on the molecular BEC for
a pulse time τ ranging from 500 ns to 1µs with optical
power ranging between 0 and 4W. We then perform a
brief TOF of 2ms after which we take absorption im-
ages. Typical diffraction patterns for various pulse areas
are shown in Fig. 6.

From the diffraction pattern structure we deduce the
beam intersection angles with respect to the camera hori-
zontal axis ϕ1, ϕ2, ϕ3 and the imbalance between the lat-
tice arm intensities. We find ϕ1 = 190◦, ϕ2 = 311◦,
ϕ3 = 72◦; a beam imbalance ratio of 0.74 : 0.85 : 1.4
and a maximum achievable lattice depth of 888(24)µK.
We performed similar measurements to characterize the
one-dimensional vertical lattice, as shown in AppendixB,
resulting in a maximum lattice depth of 401(13)µK and
trap frequencies up to 701(11) kHz in the vertical direc-

tion, allowing for wide tunability for the confinement and
tunneling in the vertical direction.
While the Kapitza-Dirac measurement is a reliable

method to calibrate the lattice depth and identify the lat-
tice axes, we find that it does not distinguish between the
triangular and honeycomb configurations, as it yields the
same diffraction patterns in both cases, within a global
factor. To understand this observation, we have devel-
oped a general scattering model that we present in Ap-
pendix C, together with a detailed theoretical analysis.
Using the full Hamiltonian of the problem, we find that
lattice pulse times at least on the order of the lattice
trap period – hence beyond the Kapitza-Dirac regime –
are required to identify the triangular and honeycomb
geometries unambiguously. For these longer pulse times,
we enter the Bragg scattering regime where molecules
from the condensate are transferred to a set of discrete
momentum states corresponding to wave vectors of the
reciprocal lattice. The dynamics at play can then be
viewed as resulting either from coherent two-photon pro-
cesses involving the modes making up the standing waves
of the lattice [78], or from the diabatic projection of the
free-space momentum eigenstates onto those of the lat-
tice [81]. In the absence of decoherence processes, the
dynamics only depends on the lattice recoil energy EL,
and the two-photon Rabi frequencies Ω12, Ω13 and Ω23

resulting from each pair of lattice arms.
The predicted difference in the diffraction dynamics

mainly originates from the sign of the off-diagonal terms
in the full Hamiltonian, which are exactly opposite for the
triangular and honeycomb lattices. This sign difference
has significant consequences as it tunes the two-photon
process closer to or further from resonance, with marked
effects on the momentum populations at sufficiently long
time-scales.
We perform Bragg scattering with lattice pulse times

τ up to 150µs, and observe rich dynamics with strik-
ing differences between the two configurations, which
we unambiguously differentiate and identify by compari-
son with our theoretical predictions. Absorption images
taken after a 1.5ms TOF are shown in Fig. 7 (Fig. 8)
for the triangular (honeycomb) configuration, where we
used a lattice power of 200mW (400mW), such that
ℏ|Ω12| ≃ ℏ|Ω13| ≃ ℏ|Ω23| ≃ EL. Quantitatively, we
also display the time evolution of the populations of the
different diffraction orders in the two lattice geometries,
which are well reproduced by our model, using the in-
tensity of each lattice arm and a relaxation coefficient as
fitting parameters. The resulting traces are displayed in
the bottom panels of Figs. 7 and 8, and show excellent
agreement with the predictions for both geometries.

V. CONCLUSIONS

We have introduced a new platform for quantum sim-
ulation experiments based on 6Li atoms. Our apparatus
features two chambers, with a laser-cooling chamber and
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FIG. 7. Bragg scattering of a molecular BEC exposed to an optical lattice with triangular geometry. The configuration of
the wave vectors ki and polarization vectors ϵi used to generate the lattice is shown in the left inset, alongside a schematic
depiction of the lattice geometry. Experimental (top row) and simulated (bottom row) absorption images following a 1.5ms
TOF after exposing the cloud to the lattice for a pulse duration τ of (a, g) 0; (b, h) 5; (c, i) 9; (d, j) 12; (e, k) 18; (f, l) 132µs.
The bottom three panels show the population (I) as a function of τ for the six first order diffraction peaks. Corresponding
peaks for each graph are indicated by the top-right insets. Experimental data points are given with error bars representing one
standard deviation together with results from the simulation (solid lines).
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FIG. 8. Bragg scattering of a molecular BEC exposed to an optical lattice with honeycomb geometry. The configuration of
the wave vectors ki and polarization vectors ϵi used to generate the lattice is shown in the left inset, alongside a schematic
depiction of the lattice geometry. Absorption images taken following a 1.5ms TOF after exposing the cloud to the lattice for a
pulse duration τ of (a, g) 0; (b, h) 5; (c, i) 9; (d, j) 12; (e, k) 18; (f, l) 132µs. The bottom three panels show the population (I)
as a function of τ for the six first order diffraction peaks. Corresponding peaks for each graph are indicated by the top-right
insets. Experimental data points are given with error bars representing one standard deviation together with results from the
simulation (solid lines).
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a science cell with excellent optical access. We combine
the use of D1 gray molasses sub-Doppler cooling with the
loading into a mechanically movable optical dipole trap,
which proves to be robust, easy-to-implement, and allows
us to benefit from this two-chamber architecture without
major technical overhead. Thanks to an all-optical cool-
ing strategy that only relies on 671 nm and near-infrared
laser wavelengths, we reliably produce deeply degenerate
Fermi gases in approximately 15 s cycles. A key charac-
teristic of our apparatus is its versatility, which allows
placing the degenerate samples in a variety of energy
landscapes without any hardware change.

We created unitary Fermi gases (in 3D continuous
space) at controlled temperatures, which we obtain us-
ing in situ thermometry. With temperatures as low
as 0.08TF, we prepared superfluid samples in a regime
of high diluteness corresponding to a peak interparticle
spacing larger than a micron, bringing their direct imag-
ing via quantum gas microscopy within reach [71].

We generated a versatile set of optical lattices enabling
the study of interacting fermionic matter in continuous
2D and 1D space, as well as in multiple lattice config-
urations. In the horizontal plane, we showed the tun-
ability from triangular to honeycomb lattice, which we
characterized via matter-wave diffraction of a molecular
Bose-Einstein condensate, in and beyond the Kapitza-
Dirac regime. We demonstrated how Bragg diffraction
can be used to quantitatively discriminate between the
two and overcome the limitations of standard Kapitza-
Dirac diffraction. In the vertical direction, trapping can
be provided by a one-dimensional lattice, allowing us to
create a stack of layers with tunable interlayer coupling,
or with a single light sheet, giving access to purely 2D
physics.

The same lattices, in combination with the high-
resolution objective and Raman sideband cooling, also
enable single-atom imaging in this apparatus, which is al-
ready operational and is the subject of ongoing work [71].
Single-atom imaging of dilute deeply degenerate Fermi
gases offers the prospect to directly access spin-resolved
spatial correlation functions of the unitary Fermi gas,
which were never measured to date and would provide
a unique microscopic characterization of this paradig-
matic many-body system. Such observables are particu-
larly crucial in the regime of spin-imbalance to probe the
physics of interacting Fermi polarons [82] or search for the
elusive FFLO phase [83, 84] that was predicted 60 years
ago but never observed. Our setup also offers the per-
spective to probe the microscopics of spin systems in tri-
angular and honeycomb lattices, where the interplay be-
tween magnetic correlations and frustration is expected
to give rise to a rich and highly debated phenomenology,
including possible spin liquid phases [85–96].

With its extended experimental capabilities, the quan-
tum gas platform presented here enables a new approach
for atom-based quantum simulation, directed towards
addressing different classes of quantum many-body
systems within the same setup.
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Appendix A: Details on the Optical Cooling
Sequence

Table II summarizes the typical laser beam parameters
of the laser cooling stages. The MOT laser beams, oper-
ating near the D2 transition (2S1/2 → 2P3/2), consist of
two retro-reflected beams and one counter-propagating
beam pair, all with a 1/e2 radius of 7.5mm. After the
MOT stage we perform a compression (CMOT) by in-
creasing the magnetic field gradient from 10G/cm to
25G/cm over a period of 50ms. We then suddenly switch
off the magnetic field gradients, while keeping the MOT
laser beams on until all transient magnetic gradients have
decayed (we refer to this as the D2 molasses phase, de-
spite the presence of transient magnetic fields). We sub-
sequently capture the atoms in a gray molasses, based on
the D1 transition (2S1/2 → 2P1/2), for which we use two

retro-reflected beams with a 1/e2 radius of 3mm and one
retro-reflected beam — overlapped with one of the MOT
arms — with a 1/e2 radius of 7.5mm. Atoms are then
optically pumped into the F = 1/2 manifold by switch-
ing off the weak D1 molasses beams for 10µs and moving
the strong beam frequency towards resonance. This en-
sures that the atoms populate the two Zeeman sublevels
used for evaporative cooling.

After capture in the ODT (ODT capture stage) and
transport to the glass cell, atoms are loaded in the CDT
and the magnetic field is ramped to 832G. The RF sweep
is then performed to equilibrate the population (ODT
RF), and evaporation is initiated by lowering the power
of the transport beam until it becomes comparable to the
power of the crossing beam (CDT balanced). Typical
atom numbers, temperatures and phase-space densities
obtained at the end of each of these cooling stages are
presented in Table III.
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TABLE II. Typical experimental parameters for the laser
beams involved in the laser cooling stages. We refer to the
two beams involved in the molasses stages as strong and weak,
respectively, as each contributes to cooling due to the Λ-
enhancement of the gray molasses [97]. Angular momentum of
the ground (Fg) state and addressed transitions are given for
each cooling step, alongside detunings (δ) expressed in units
of the natural linewidth Γ = 2π × 5.87MHz, laser intensities
per arm (I) in units of the saturation intensity Isat = 2.54
mW/cm2 of the D2 transition of 6Li, as well as the total op-
tical power used per cooling stage (Ptot).

Laser Beam Fg Transition δ I Ptot

( Γ) (Isat) (mW)
(C-)MOT Cooling 3/2 D2 -3.4 3.6 35
(C-)MOT Repumper 1/2 D2 -3.4 1.3 13
D2 mol. Strong 3/2 D2 -1 0.2 4
D2 mol. Weak 1/2 D2 -1 0.1 1
D1 mol. Strong 3/2 D1 4 ∼ 20 60
D1 mol. Weak 1/2 D1 4 ∼ 1 2

TABLE III. Typical atom numbers (N), temperatures (T )
and phase space densities (PSD) at the end of each stage of
the cooling sequence up to the end of the first evaporation
step.

N T PSD
CMOT 1× 109 1.2mK 5.5× 10−7

D2 molasses 1× 109 800µK 5.8× 10−7

D1 molasses 5× 108 50µK 5.2× 10−5

ODT capture 5× 106 90µK 3.4× 10−4

ODT RF 2× 106 per spin 125µK 5.0× 10−5

CDT balanced 3.4× 105 per spin 23µK 2.0× 10−2

Appendix B: One-Dimensional Kapitza Dirac
Measurement

We perform Kapitza-Dirac scattering measurements in
the one-dimensional vertical lattice by preparing a molec-
ular BEC in the CDT at a magnetic field of 665G. Simi-
lar to the measurement performed in the two-dimensional
lattice, we turn off the CDT and pulse the lattice for a
time τ = 450 ns at a varying laser power of the lattice
beams P between 0.5 and 6.5W, leading to pulse areas θ
between 0.3 and 3.86. After a brief TOF of 1.8ms we cap-
ture the resulting diffraction patterns through absorption
imaging, which we show in Fig. 9.

The simple geometry of the vertical lattice allows us to
describe these diffraction patterns with Bessel functions.
Following Refs. [78, 79] we write the light-shift potential
of the far-detuned lattice beams onto the molecules along
the vertical (z) direction as:

U(z, t) = U0f
2(t) sin2(k · z),

where f(t) is the temporal envelope of the lattice beams,
in our case a block pulse of time τ , and k is the lattice
wave vector. In the Raman-Nath regime, where we can
ignore kinetic energy contributions, we can use simple

time evolution to find the wave function |ψ(τ)⟩ from the
initial (zero-momentum) wave function |p = 0⟩:

|ψ(τ)⟩ = exp

(
− i

ℏ

∫ τ

0

dtU(z, t)

)
|p = 0⟩ .

The result can be rewritten in a sum of plane waves, i.e.,
momentum eigenstates |p = 2nℏk⟩ with n ∈ Z, with nth
order Bessel functions (Jn) as pre-factors. This leads to
populations in the respective momentum states of:

Pn(θ) = J2
n(θ) with θ =

U0τ

2ℏ
.

We determine the population in each momentum state
and for each lattice beam power for the measurements
shown in Fig. 9. By fitting the results to the Bessel func-
tions for the respective momentum states, we calibrate
the trap depth of the vertical lattice as a function of the
optical power of the lattice beam Pz. Note that we sum
the population of the eigenstates with the same absolute
momentum. Resulting data points and fits for the first
three momentum states are shown in Fig. 10, leading to
an approximate atomic trap depth power dependency of
kB × 10µKW−1 ×Pz. We used a similar approach to
analyze the Kapitza-Dirac scattering results for the XY-
lattice presented in the main text (Fig. 6).

Appendix C: Model of BEC Scattering off a Periodic
Potential

In this section we detail our model of the scattering
of a molecular BEC on a periodic potential V (r) that is
similar to those presented in Refs. [98–100]. We apply
this model to the Bragg-scattering measurements in the
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FIG. 9. Kapitza-Dirac measurement in the one-dimensional
vertical lattice with τ = 450 ns. Each column shows an ab-
sorption image taken at a specific laser power, varying from
0.5 to 6.5W. Values of the pulse area θ are obtained by fit-
ting the population of the momentum states to the respective
Bessel functions, as shown in Fig. 10.



11

0 1 2 3 4
θ

0.0

0.2

0.4

0.6

0.8

1.0
I 

(a
rb

. 
u
.)

4�k

2�k

0�k

FIG. 10. Population in each momentum eigenstate (I) for the
Kapitza-Dirac measurement shown in Fig. 9 as a function of
pulse area (θ). We scale the horizontal axis to fit the experi-
mental results (data points) with the expected Bessel function
behavior (solid lines). Vertical error bars show experimental
fluctuations at one standard deviation, while horizontal error
bars represent the uncertainty of the fit at one standard de-
viation.

XY-lattice presented in Figs. 7, 8 and 11, but it is also
suitable to describe Kapitza-Dirac scattering. We addi-
tionally derive an effective two-level model for a triangu-
lar or honeycomb lattice in the case where the intensities
of all three lattice beams are balanced and low enough
to suppress occupation of large momentum states.

The optical potential of the XY-lattice is created by the
interference of three co-planar beams, which we write as:

V (r) = −A
∣∣E1e

ik1·rϵ1 + E2e
ik2·rϵ2 + E3e

ik3·rϵ3
∣∣2 ,

where A is a constant, r the position vector and the Ei,
ki and ϵi are respectively the electric field amplitude,
wavevector and polarization vector for each of the three
beams.

Expanding this potential leads to a constant term V0,
as well as 6 interference terms exp(i(ki − kj) · r) for
i ̸= j with potentially different amplitudes depending on
the local intensity and polarization of the beams. These
terms can equally be seen as a position-dependent poten-
tial, or as a coupling between different momentum states,
since in the momentum basis: exp(i(ki − kj) · r̂) |p⟩ =
|p+ ℏ(ki − kj)⟩.
In our geometry, k1, k2 and k3 lay in the XY-

plane at 120◦ angles with each other. Considering
an initial molecular BEC prepared in a single mo-
mentum state |p = 0⟩, the set of accessible momen-
tum states forms a (reciprocal) triangular Bravais lattice{
|n1b1 + n2b2⟩ , (n1, n2) ∈ Z2

}
. Specifically, we denote

the six non-zero momentum states surrounding the origin
with b1 = ℏ(k1 −k2), b2 = ℏ(k3 −k2), b3 = ℏ(k3 −k1),
b4 = −b1, b5 = −b2 and b6 = −b3.
The Hamiltonian for this system is composed of kinetic

and potential energy terms H = T + V . Writing two
momentum eigenstates as |α⟩ and |β⟩ this gives:

⟨α|T |β⟩ = δα,β
b2
α

2M
≡ δα,βℏ∆α,

⟨α|V |β⟩ =


ℏΩij

2
if
bα − bβ

ℏ
= ki − kj , i ̸= j ∈ [1...3]

0 otherwise
,

where, by construction ℏ∆1 = ℏ∆2 = ... = ℏ∆6 =
3ℏ2k2/(2M) = EL; and the Rabi frequencies ℏΩij =
−2AEiEjϵ

∗
i · ϵj depend on the relative intensity and po-

larization of the lattice beams.
By diagonalizing this Hamiltonian, we are able to ex-

plore the Bragg dynamics for different parameters, which
show that the evolution of the diffraction patterns as a
function of the lattice pulse are markedly different be-
tween the triangular and the honeycomb lattices.
Building on this analysis, we adjusted the experimen-

tal parameters of the Bragg experiments as discussed in
Sec. IV and obtained the results shown in Figs. 7 and
8, where we find excellent quantitative agreement be-
tween the experiments and our prediction over the whole
diffraction pattern dynamics. This is obtained by al-
lowing the two-photon Rabi frequencies Ω12, Ω13, Ω23

and a relaxation coefficient as fitting parameters, from
which we extract the intensity of each lattice beam. The
fit for the two-photon Rabi frequencies yields Ω12 =
2π × 44.8 (38.9) kHz, Ω13 = 2π × 65.0 (64.4) kHz, and
Ω23 = 2π× 59.8 (65.3) kHz for the triangular (resp. hon-
eycomb) lattice. The relaxation coefficient accounts for
various sources of decoherence that can arise during the
Bragg dynamics. An obvious source of decoherence stems
from the inhomogeneity of the lattice beams when the
spatial extent of the molecular BEC is not negligible com-
pared to the beam sizes [81]. If we fully attribute the de-
coherence to an effective spatial extension of the cloud,
we find that the fitted relaxation coefficient corresponds
to a cloud size that overestimates the measured size by
50% (resp. 80%) for the triangular (resp. honeycomb)
lattice. This indicates that the lattice inhomogeneity is
indeed an important source of decoherence, but also sig-
nals that other decohering processes are at play.
While the analysis above shows that we have an accu-

rate description of the Bragg dynamics, the strong dif-
ferences between the diffraction patterns resulting from
the triangular and honeycomb lattices may nevertheless
seem counterintuitive. Indeed, under inspection of the
full Hamiltonian above, one can see that the two cases
only differ by a minus sign in the expression of the matrix
elements ⟨α|V |β⟩. To build intuition on the importance
of this sign difference and the role it can play in the dy-
namics, we have developed a simplified model that we
describe below.
The full Hamiltonian above can be greatly simplified

under two assumptions. Firstly, we assume that all three
lattice arms have equal intensity, such that we can write
Ω1 = ... = Ω6 = Ω (chosen to be a real number for
simplicity). For the triangular lattice, all polarizations
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FIG. 11. Bragg scattering of a molecular BEC exposed to a triangular lattice with P ≃ 100mW, corresponding to a two-photon
Rabi frequency |Ω| ≃ 2π×28(2) kHz. Absorption images taken after 1.5ms TOF for τ = (a) 0 , (b) 5, (c) 8, and (d) 55µs. The
main panel shows the integrated signal for the zeroth order diffraction peak (red data points) and the first order diffraction
peaks (sum of the six degenerate first order peaks, blue data points) as a function of lattice pulse duration up to τ = 55µs.
Corresponding fits of the damped Rabi oscillation (red and blue lines, respectively) are also shown, yielding an effective Rabi
frequency of 2π×64.3(5) kHz, close to the

√
6Ω value predicted by our two-level model. The top-right inset shows the population

over an extended range with τ up to 150µs.

are parallel to each other, leading to a negative Rabi fre-
quency Ωtriangular < 0, while for the honeycomb lattice
the relative angle between polarization vectors lead to a
sign reversal Ωhoneycomb = −Ωtriangular/2 > 0. Secondly,
if we take the Rabi frequency Ω to be small compared
to the kinetic energy associated with the first non-zero
momentum states ∆, the occupation of large momen-
tum states is suppressed due to the off-resonant nature
of the Raman process. To the lowest approximation or-
der we can therefore only consider the first 6 non-zero
momentum states (b1, ...,b6), which have the same ki-
netic energy ℏ∆ > 0 and therefore couple resonantly to
each other. In the (b0,b1, ...,b6) basis, the Hamiltonian
is then:

H = ℏ
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.

Due to the coupling, however, the initial basis (b1, ...,b6)
of momentum states is not the most adapted to diago-
nalize the Hamiltonian. We therefore simplify H fur-

ther by performing the basis change (b0,b1, ...,b6) →
(b0, b̃1, ..., b̃6), with b̃k =

√
1/6

∑6
j=1 e

i
2π(k−1)j

6 bj .
This makes the Hamiltonian diagonal in the subspace
(b̃1, ..., b̃6) with associated energies Ek/ℏ = ∆ +

Ωcos
(

2π(k−1)
6

)
. Furthermore, the new coupling con-

stants Ω̃k =
√
1/6

∑6
j=1 e

i
2π(k−1)j

6 Ω are all zero except

Ω̃1 =
√
6Ω. The Hamiltonian H̃ in this new basis be-

comes:

H̃/ℏ =

0
√
6Ω

2
0 0 0 0 0√

6Ω
2

∆+Ω 0 0 0 0 0
0 0 ∆ + Ω

2
0 0 0 0

0 0 0 ∆− Ω
2

0 0 0
0 0 0 0 ∆− Ω 0 0
0 0 0 0 0 ∆− Ω

2
0

0 0 0 0 0 0 ∆ + Ω
2


.

The Hamiltonian is thus reduced to a two-level system
with an effective detuning ∆̃ = ∆ + Ω and an effective
Rabi frequency Ω̃ =

√
6Ω, meaning that, when start-

ing with all atoms in |p = 0⟩, the system will oscillate
between the initial state and the symmetric superposi-
tion of the 6 first excited momentum states. The differ-
ence between the triangular and honeycomb lattices (for
a given coupling strength |Ω|) hence comes from the sign
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of Ω. For the triangular lattice (Ω < 0), the resonant
coupling of (b1, ...,b6) brings the excited state closer to
resonance, whereas for the honeycomb lattice (Ω > 0) it
pushes the excited states further from resonance. For a
given lattice depth, we thus expect the triangular lattice
to transfer a larger fraction of atoms to excited states
than the honeycomb lattice. This qualitative difference
will persist beyond the low intensity limit, as is observed
in the diffraction patterns in Figs. 7 and 8.

As a validation of this simplified model, we perform
Bragg scattering measurements in a triangular lattice
at low laser power in order to approach the condition
Ω ≪ ∆. The results are shown in Fig. 11, where the
diffraction patterns display a predominant population of
only the central peak and the first non-zero momentum
states, as expected in the low-intensity regime. From

these diffraction patterns, we extract two populations:
the one of the zeroth order and the summed population
of all first order diffraction peaks, which we plot as a
function of τ . We observe that the time-evolution of the
populations is well fitted with damped Rabi oscillations,
confirming the two-level picture. From the fit, we ob-
tain an effective Rabi frequency |Ω̃| ≃ 2π × 64.3(5) kHz

and an effective detuning ∆̃ ≃ 2π× 10(3) kHz, which are

in agreement with the predicted values |Ω̃| =
√
6|Ω| ≃

2π × 68(5) kHz and ∆̃ = ∆ + Ω ≃ 15(2) kHz, where
|Ω| ≃ 2π×28(2) kHz is obtained from an independent cal-
ibration and ∆ = EL/ℏ = 2π×43 kHz directly stems from
the lattice geometry. We attribute the slight discrepancy
on ∆̃ to the fact that the two conditions required for the
simplified model are not perfectly fullfilled.
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