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Abstract

The aim of this paper is to study surrogate-assisted algorithms for expensive multiobjective com-

binatorial optimization problems. Targeting pseudo-boolean domains, we provide a fine-grained

analysis of an optimization framework using the Walsh basis as a core surrogate model. The

considered framework uses decomposition in the objective space, and integrates three di↵erent

components, namely, (i) an inner optimizer for searching promising solutions with respect to the

so-constructed surrogate, (ii) a selection strategy to decide which solution is to be evaluated by the

expensive objectives, and (iii) the strategy used to setup the Walsh order hyper-parameter. Based

on extensive experiments using two benchmark problems, namely bi-objective NK-landscapes and

unconstrained binary quadratic programming problems (UBQP), we conduct a comprehensive in-

depth analysis of the combined e↵ects of the considered components on search performance, and

provide evidence on the e↵ectiveness of the proposed search strategies. As a by-product, our work

shed more light on the key challenges for designing a successful surrogate-assisted multi-objective

combinatorial search process.

Keywords: Multi-objective optimization, discrete surrogates, decomposition

1. Introduction

Surrogate-assisted algorithms have been recognized as a mainstream methodology for expensive

optimization where objective function evaluation is economically costly and/or time consuming [1–

9]. These algorithms build and use surrogate models for estimating objective function values in

order to reduce as many as possible the number of true expensive function evaluations. Although
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much e↵ort has been made to develop surrogate-assisted algorithms, a number of di�cult issues

still need to be investigated [1]. In this paper, we are specifically concerned with the design of

both multi-objective and discrete surrogate-assisted optimization algorithms. Interestingly, these

two aspects, taken separately, have been identified in [1] as among of the five major challenges that

require further in-depth investigations from the community.

Multi-objective optimization problems (MOP) [10, 11] are a natural outcome in di↵erent appli-

cation fields where a number of conflicting objectives are to be optimized in a simultaneous manner.

Our goal is to compute a representative set of solutions exposing di↵erent trade-o↵s in the objective

space, i.e., a Pareto front approximation. Among the di↵erent techniques to tackle MOPs, evolu-

tionary multi-objective algorithms (EMOA) [12, 13] have been proved to be extremely e↵ective,

especially due to their ability to evolve a whole set of solutions mapping the target approximation

set. In an expensive optimization setting, EMOAs have been leveraged with surrogates in a num-

ber of di↵erent ways, and for di↵erent problems and application domains. Generally speaking, two

major inter-dependent issues are considered: (i) the meta-model being used as a surrogate, and

(ii) the class of the multi-objective technique used at the core of the underlying surrogate-assisted

optimization process. On the one hand, standard statistical and machine-learning meta-models,

ranging from kriging [14] and Gaussian process (GP) [15], to support vector regressions (SVR) [16],

radial basis functions (RBF) [17], artificial neural networks (ANN) [18], decision trees and random

forest (RF) [19, 20], etc, can be considered to learn a blackbox objective function. On the other

hand, these models can be coupled with di↵erent evolutionary multi-objective search paradigms,

such as decomposition [21, 22], dominance [23–25], and indicators [26, 27]; hence, ending-up with

a variety of surrogate-assisted algorithms, such as Par-EGO [28], MOEA/D-EGO [29], MOEA/D-

RBF [30], KRVEA [31], Multi-objective EGO [32], SMS-EGO [33], CSA-MOEA [34], CSEA [35],

SGMOO [36], to cite a few. The existing literature is too vast to discuss in the scope of this paper.

We hence refer the reader to the existing taxonomies [7, 8, 37] and surveys [2, 3, 6, 9] for a more

thorough overview.

The multi-objective algorithms cited before were mainly intended to work with continuous de-

cision variables. However, expensive optimization problems are not specific to continuous domains;

in fact, many real-world applications are known to have discrete variables, e.g., strings, integers,

graphs, permutations, etc. More importantly, continuous evolutionary approaches cannot be trans-

ferred as such to combinatorial domains. Firstly, given the di�culty of modeling the landscape

of combinatorial problems, it is still not clear how to derive a discrete surrogate model that can

accurately learn the structure of a combinatorial (single-objective) problem. This is to contrast

with the fact that there exist well-established continuous surrogates with well-studied properties.

However, one can find a number of investigations for designing discrete surrogates, ranging from

naive approaches ignoring the discrete structure of the search space, to more domain-specific mod-

eling techniques [3, 38–42]. In particular, some of the previously mentioned meta-models, such

as GP, RBF, RF, ANN, can be adapted to support mixed (continuous and discrete) variables.

2



Secondly, assuming an accurate discrete surrogate can be used, it is not clear how to finely couple

the surrogate model with the optimization process for an optimal performance. Such an issue is

even more pressing for multi-objective combinatorial problems, given the variety of discrete spaces

that can be considered, and the specific challenges underlying a multi-objective search. Finally,

benchmarking surrogate-assisted combinatorial multi-objective algorithms is a challenging research

question. Benchmarking is highlighted in [1] as the most important challenge, which is (quoting

the authors in [1]) “an open issue throughout the whole field of surrogate-assisted optimization and

a mandatory step towards identifying strengths and weaknesses of approaches”. In this respect,

the systematic analysis of discrete surrogate-assisted approaches is even less developed compared

to continuous domains, and a lot of e↵ort has to be performed before ending up with a unified

view of what makes an approach successful as a function of the target search space.

Our work aims at contributing to the development of new e�cient combinatorial surrogate-

assisted evolutionary multi-objective algorithms (CS-EMOA), while providing a rigorous analysis

of the impact of the underlying design components through extensive benchmarking. Looking at

the specialized literature, one can find a number of approaches targeting di↵erent discrete search

spaces, and/or designed within a number of application-specific contexts, e.g., [43–49] to cite a few.

For example, in [50], a data-driven multi-objective approach is designed specifically to constrained

discrete problems. Random forests are employed as surrogates, together with logistic regression

models to rectify the non-dominated ranking for the constraint functions. The derived approach is

experimented on constrained multi-objective knapsack problems, and applied to trauma systems.

In [51], a multi-objective task-oriented pattern mining problem is tackled using an ensemble of

surrogates derived from a discrete hamming-distance based RBF network. In contrast to previous

work, we focus on designing and analyzing CS-EMOAs for pseudo-boolean MOPs, viewed from a

high-level perspective as a fundamental general-purpose class of optimization problems.

In a pseudo-boolean optimization problem, solutions are binary strings, and every solution is

mapped to a real value for each objective. We do not make any further assumptions on the given

problem, which is considered as blackbox. The blackbox problem is assumed to be expensive in

the sense that the CPU time of evaluating the quality of one solution can range from at least some

minutes, to hours. Pseudo-boolean optimization problems can arise in a number of real-world appli-

cations where decision variables typically model the presence/absence of design components. This

is for instance the case in di↵erent engineering fields, e.g., bus stop design in public transportation

systems [52, 53], bike sharing [54], drug discovery [55]. Independently of a particular real-world

application, a number of relatively recent studies have investigated the design of discrete surrogate

models, e.g., [39–42, 56–66]. Reviewing the theory behind existing models is out of the scope of this

paper. We refer the reader to [3], and the reference therein, for a more detailed overview. In this

paper, we rely on the so-called Walsh functions [67], which were shown to constitute a well-suited

theoretical tool to derive custom surrogates for arbitrary pseudo-boolean functions [56, 57, 62–64].

In fact, discrete Walsh functions form an orthogonal set of functions allowing to uniquely represent
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any blackbox pseudo-boolean function in an additive linear form. A first step towards integrat-

ing Walsh-based surrogates for expensive multi-objective optimization has been performed in our

previous work presented in [68]. At this stage of the presentation, it is important to recall that

besides a particular choice of the surrogate model, the successful design of a CS-EMOA depends

on di↵erent other design choices and algorithmic components; especially, with respect to the smart

configuration and training of the surrogate model, as well as, its combination with a multi-objective

search process.

In this paper, we leverage our previous work from di↵erent perspectives. As in [68], we consider a

decomposition-based paradigm [22] to handle the approximation set maintained by the (expensive)

search process. However, we propose a number of novel design components and strategies to deal

with three critical design aspects, namely, (i) the inner evolutionary optimizer used for searching

promising o↵spring solutions with respect to the Walsh surrogate, (ii) the selection strategy allowing

to decide which solution is to be evaluated by the expensive objectives, and (iii) the strategy used

to setup the Walsh order hyper-parameter. Compared to the performance results presented in [68],

we show that substantial improvements in terms of approximation quality can be obtained by the

new proposed multi-objective search strategies. It is worth noticing that there exist no rule-of-

thumb to configure the previously mentioned design components, which is a challenging research

question. Therefore, besides being able to significantly improve over our previous work, we report

our findings in light of a plug-and-play surrogate assisted framework which is benchmarked on

the basis of a full factorial experimental design, and using a relatively broad range of benchmark

functions. Hence, our results come with an in-depth comprehensive analysis on the combined

e↵ect of the di↵erent design choices, and sheds more light on the key ingredients for a successful

surrogate-assisted multi-objective approach.

The rest of the paper is organized as follows. In Section 2, we recall the necessary background

behind multi-objective decomposition and discrete Walsh surrogates. In Section 3, we describe the

proposed approach in a step-by-step manner. In Section 4, we give our experimental setup. In

Section 5, we report our empirical findings. In Section 6, we conclude the paper and we discuss

future research directions.

2. Background

2.1. Multi-objective Combinatorial Optimization

We assume that we are given a black-box objective vector function F = (f1, f2, . . . , fm) to

maximize, and a set X of solutions in the variable space. When X is a discrete set, we face a multi-

objective combinatorial optimization problem (MCOP). In particular, we consider unconstrained

pseudo-boolean multi-objective optimization problems, such that F : {0, 1}n 7! IRm, where n is

the problem size. Let Z = f(X) ✓ IRm be the set of feasible outcome vectors in the objective

space. An objective vector z 2 Z is dominated by a vector z
0 2 Z i↵ 8i 2 J1,mK, zi 6 z

0
i, and
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9j 2 J1,mK s.t. zj < z
0
j . A solution x 2 X is dominated by a solution x

0 2 X i↵ F (x) is

dominated by F (x0). A solution is Pareto optimal, or non-dominated, if there does not exist any

other solution that dominates it. The set of all Pareto optimal solutions is the Pareto set. Its

mapping in the objective space is the Pareto front. Identifying the Pareto set is known to be an

NP-hard task for a wide range of MCOPs, and the Pareto set typically contains an exponential

number of solutions [11]. As such, we often have to rely on a Pareto set approximation, for which

a large number of multi-objective evolutionary algorithms have been proposed since the early

nineties [12, 13].

2.2. Decomposition-based Multi-objective Optimization

In the broad range of multi-objective evolutionary algorithms, approaches based on decompo-

sition are amongst the state-of-the-art [21]. In particular, Moea/d [22] decomposes the multi-

objective optimization problem into a set of single-objective sub-problems that target di↵erent

regions of the Pareto front. The population of solutions Pµ =
�
x
1
, . . . , x

µ
 
is evolved such that

each solution x
i, i 2 J1, µK, is assigned to a weight vector !i corresponding to a given sub-problem.

A sub-problem then seeks for a high-quality solution with respect to an aggregation function

g(x | !
i
, F ), parameterized by the weight vector !

i. The population Pµ is evolved following

conventional evolutionary mechanisms, such as selection and variation, in order to optimize the

di↵erent sub-problems.

Given a weight vector !i, the aggregation function transforms an objective vector into a scalar

value. One recommended function that we consider in this paper is the Chebyshev function (to be

minimized):

g(x | !, F ) = max
j2J1,mK

!j ·
��z?j � fj(x)

��

where x 2 X, ! = (!1, . . . ,!m) is a positive weight vector, and z
? is a reference point s.t. z

?
j >

fj(x), 8x 2 X.

In Moea/d, the population is evolved in a cooperative manner. A solution that is currently

assigned to a given sub-problem can become parent for an o↵spring generated by another sub-

problem. A newly-generated o↵spring is compared to solutions assigned to other sub-problems

by means of their corresponding aggregation function. At a given iteration, o↵spring can replace

multiple solutions from the population, assuming that they improve multiple sub-problems. This

cooperation may be limited by a neighborhood relation among sub-problems. Di↵erent variants [21,

69] of Moea/d consider di↵erent ways of managing the neighborhood. Following [68], we consider

a setting of Moea/d where the whole population is used in the selection and replacements steps.

This is clearly motivated by the fact that allowing an o↵spring to enter the population as soon

as it improves any sub-problem privileges convergence, which is to be encouraged under a limited

(expensive) budget setting.
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2.3. Walsh Surrogates

The development of accurate surrogate models for black-box combinatorial problems is a dif-

ficult challenge [1]. With respect to a pseudo-boolean optimization problem, a surrogate model

using the Walsh functions [67] was proved to be particularly accurate [56]. For completeness, we

recall the background behind such a model.

2.3.1. Walsh Basis

Walsh functions [67] constitute an enumerable set of functions �` : [0, 1]! {�1, 1} which com-

poses a normal and orthogonal basis of the Hilbert space L2([0, 1]). Like the trigonometric functions

of the Fourier basis, they can be used to decompose any function from the Hilbert space [67], and

have been used since the late seventies in the theory of evolutionary computation [70]. Given

a pseudo-boolean function f : {0, 1}n 7! IR, Walsh functions are defined as follows [56]. For any

integer ` 2 J0, 2n � 1K, following the binary representation ` =
P

i `i2
i with `i 2 {0, 1}, the Walsh

function �` : {0, 1}n ! {�1, 1} is defined for any binary string x = (x1, . . . , xi, . . . , xn) 2 {0, 1}n

by:

�`(x) = (�1)
Pn

i=1 `ixi (1)

The order of a Walsh function �`, denoted by o(�`), is defined by the number of binary digits equal

to 1 in the binary representation of `. For example, the Walsh function of order 0 is �0, the Walsh

functions of order 1 are �2p for all integers p > 0, the Walsh functions of order 2 are �2p+2p0 for all

pairs of integers p 6= p
0 > 0, and so on.

2.3.2. Exact Walsh Transform

The so-defined (finite) set of discrete functions is a normal orthogonal basis for the space of

pseudo-boolean functions, i.e., 8`, `0 2 J0, 2n � 1K, 1
2n
P

x2{0,1}n �`(x) · �`0(x) = �``0 . As such, any

pseudo-boolean function f can be written as:

f(x) =
2n�1X

`=0

w` · �`(x) (2)

s.t. w` =
1

2n

X

x2{0,1}n
f(x) · �`(x) (3)

2.3.3. Approximated Walsh Decomposition

On one hand, the Walsh functions �` are uniquely defined and do not depend on the problem at

hand; see Eq. (1). On the other hand, the values of the coe�cients w` do depend on the considered

function f , as given in Eq. (3). On top of that, there might exist an exponential number of

non-zero coe�cients in the exact Walsh transform as given in Eq. (2). Roughly speaking, the

coe�cients corresponding to some Walsh functions of a given order O capture the interaction

among a set of O variables in function f ; i.e., they render how the function value is a↵ected when
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the variables change. This means that, unless a large number of variables interact with each other,

many coe�cients are expected to be zero. This is the case for multiple combinatorial problems

with a quadratic or cubic number of variable interactions, and hence a reasonable assumption in

practice for a wide range of problem classes. Therefore, the idea developed initially in [56, 57] is

to approximate f using solely the Walsh functions up to a (small) constant order O ⌧ n, and to

use an estimate bw` of the (unknown) coe�cient w`. More formally, given a constant order O, a

function f can be approximated by the following model:

f̃(x | d) =
X

` : o(�`)6O

ew` · �`(x) (4)

For example, a second-order approximation can be rewritten:

f̃(x | 2) = ew0 +
nX

i=1

ewi · (�1)xi +
X

1i<jn

ewij · (�1)xi+xj

where ew0 is the zero-order estimated coe�cient, and ewi and ewij are first- and second-order esti-

mated coe�cients. Intuitively, the larger the order d, the more accurate the expansion to approx-

imate the original function.

2.3.4. Walsh Surrogate Model

Constructing a discrete Walsh surrogate up to constant order O consists of computing the ap-

proximate coe�cients ew`. This can be done by estimating the value of ew` as in standard supervised

machine-learning approaches. In fact, this turns out to be a standard linear regression problem,

since Eq. (4) can be interpreted as a linear model whose predictors are the Walsh function values.

In particular, sparse techniques can be used to minimize the number of non-zero coe�cients when

the number of predictors is large [71]. Following [56, 57, 62], we use the Lasso algorithm [72] to fit

the approximate model, which is of particular interest given that the number of Walsh functions

of up to a given constant order O might be greater than the number of solutions used for training.

3. A Surrogate-assisted Evolutionary Multi-objective Framework based on Walsh

Functions

In this section, we describe a surrogate-assisted multi-objective combinatorial optimization

framework using the Walsh functions as surrogate (Smco/w). The proposed framework integrates

three main design components; (i) the inner optimizer of the substitute Walsh surrogate, (ii) the

selection of the solution to be evaluated at each iteration, and (iii) the setting of the Walsh order

at the training phase. These design components can be set interchangeably following di↵erent

strategies which are described in a step-by-step detailed manner in the following.

7



3.1. General Description

The high-level pseudo-code of the proposed Smco/w framework is depicted in the template of

Algorithm 1. It follows the general computational flow of the (surrogate-less) Moea/d algorithm,

as described in Section 2.2, with a few exceptions. The original problem is decomposed into µ single-

objective sub-problems using the Chebychev scalarizing function. A population Pµ is initialized

with µ randomly-generated solutions. Each solution is evaluated using the expensive objectives

before being assigned to a unique sub-problem. This population is also used as the initial dataset

D for training the surrogates. A generation of the algorithm (line 6) consists of iterating once

over all the sub-problems. The algorithm stops when a given termination condition is satisfied,

which renders the computing budget one can a↵ord. In an expensive setting, where the evaluation

function is assumed to be very time consuming, the budget is expressed as a maximum number

of calls to the objective vector function. In our work, we consider a range of values to better

render the anytime behavior of the considered algorithms. Furthermore, as will be detailed later

in our experimental study, we shall discuss the implication of using the Walsh surrogate on the

computational time.

At the beginning of every iteration i dealing with a sub-problem i 2 J1, µK, a Walsh order O is

chosen following the order selection component in line 7. The order selection component takes as

input a History variable, which is an artifact indicating that some information about the search

status may be used at this step. We then consider one surrogate for each of the m objectives. These

surrogates eF = ( ef1, . . . , efm) are trained (line 8) using the (training) dataset D, which contains all

solutions evaluated so far. The estimates of the Walsh coe�cients (Eq. (4)) for each surrogate efi
are computed following a sparse linear regression methodology, as discussed in Section 2.3.

In contrast to surrogate-less evolutionary algorithms, Smco/w relies temporarily on the so-

trained surrogates to intensively search for high-quality solutions. In other words, after the training

step, a pool of o↵spring solutions S is generated by a surrogate optimizer (line 10), without calling

the true objective functions. This component takes the current population as input, together with

the current surrogates eF and a copy z
?? of the reference point. It is important to use a copy of

z
? in the surrogate optimizer because the reference point will likely be updated on the basis of the

(unreliable) estimated objective values, whereas z? is only updated according to the true objective

values evaluated so far. The di↵erent design choices for this inner discrete surrogate optimization

component are discussed in detail in Section 3.2.

The next step (line 11) selects one candidate solution from S in order to be evaluated using

the expensive objectives F . We call this component the selection strategy, and we describe it in

Section 3.3. It takes the pool of solutions S generated by the optimizer as input, together with the

surrogate model eF , the reference point z
?? as updated by the optimizer, and the current weight

vector !i. As output, it returns the solution to be evaluated at the current iteration i. The

weight vector !i given as input of the selection component is only an artifact indicating that this

component may depend on iteration i.
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Algorithm 1: Surrogate-assisted Multi-objective Combinatorial Optimization based on
Walsh basis (Smco/w)

Input: Wµ :=
�
!
1
, . . . ,!

µ
 
: weight vectors; g(· | !, ·): a scalarizing function to be

minimized; Omax: maximum order of Walsh functions;
1 Pµ  

�
x
1
, . . . , x

µ
 
: initial population of size µ;

2 D  
�
(x1, F (x1)), . . . , (xµ, F (xµ))

 
: training set;

3 EP  initialize external archive (optional) ;
4 z

?  initialize reference point;
5 while the termination condition is not satisfied do
6 for i 2 {1, . . . , µ} do

// Choose the Walsh order

7 O WalshOrder(History,Omax);
// Train Walsh models

8 eF := ( ef1, . . . , efm) TrainWalsh(D,O);
// Copy the reference point

9 z
??  z

? ;
// Optimize the Walsh surrogate

10 S  RunOptimizer(Pµ,
eF , z

??) ;
// Selection for true evaluation

11 x
0  SelectEval(S,!i,

eF , z
??) ;

12 F (x0) evaluate x
0 ;

13 EP  (optional) update external archive with x
0 ;

14 z
?  update reference point using F (x0) ;
// Replacement

15 for j 2 {1, . . . , µ} do
16 if g(x0|!j

, F ) < g(xj |!j
, F ) then

17 x
j  x

0 ;

// Update training data

18 D  D [ {(x0, F (x0))};

After the selection and the evaluation of the o↵spring solution x
0, we follow the standard

process of Moea/d, with the update of the external archive EP , the update of the reference

point z
?, and the replacement of the population. At this step, we compare the scalarized fitness

value of the candidate solution x
0 with the solutions from the current population Pµ, according

to their corresponding weight vectors. The candidate solution x
0 may enter the population if any

improvement is found as discussed previously in Section 2.2. Finally, the training dataset D is

updated with the newly evaluated o↵spring x
0 (line 18).

To summarize, Smco/w is based on three generic components that can be configured in di↵erent

manners. In the next paragraphs, we propose di↵erent possible strategies.
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Algorithm 2: Multiple Local Search (Mls)

Input: eF := ( ef1, . . . , efm): surrogates; Wµ :=
�
w

1
, . . . , w

µ
 
: weight vectors; g(· | !, ·):

Chebychev scalarizing function; N : X  2X : a neighborhood relation;
1 S  ? ;
2 for !

i 2Wµ do
3 LocalOptimum False;
4 x

⇤  random (initial) solution;
5 while ! LocalOptimum do
6 x

0⇤  x
⇤;

7 foreach x
0 2 N (x⇤) do

8 if g(x0|!i
, eF) < g(x0⇤|!i

, eF) then x
0⇤  x

0; ;

9 if g(x0⇤|!i
, eF) < g(x⇤|!i

, eF) then
10 x

⇤  x
0⇤;

11 else
12 LocalOptimum True;

13 S  S [ {x⇤} ;

14 return S

3.2. Component #1: Surrogate Optimizer

The choice of an accurate surrogate optimizer is important since it allows us to search for high-

quality solutions according to the model eF without ever calling the true evaluation functions. We

investigate three alternative optimizers using seemingly di↵erent search paradigms. The considered

optimizers are summarized in the following:

OptimMOEA/D performs the conventional Moea/d in order to identify a Pareto set approxima-

tion with respect to the surrogates eF . It is initialized with the current population from the main

Smco/w algorithm, and returns the evolved population after a number of generations. Using

Moea/d as an optimizer was recommended in [68]; however, we shall show that it can be substan-

tially out-performed by the other proposed techniques.

OptimMLS (Algorithm 2) independently runs multiple local search, one for each defined sub-

problem. Given the surrogates eF , a standard single-objective hill-climber is performed for each

sub-problem defined by the weight vector !i, i 2 J1, µK. Each hill-climber is initialized with a ran-

dom solution, and iteratively selects the best improving solution, if any, using a standard 1-bit-flip

neighborhood, until the search stops in a local optimum with respect to the aggregation function

g(· | !i
, eF). OptimMLS then returns a pool of µ (local optimal) solutions, one per sub-problem.

OptimPLS (Algorithm 3) is based on the so-called Pareto Local Search [73] algorithm. It maintains
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Algorithm 3: Pareto Local Search (Pls)

Input: eF := ( ef1, . . . , efm): surrogates; N : X  2X : a neighborhood relation;
1 x random (intial) solution;
2 S  {x} ; // Non dominated archive

3 R {x} ; // Non visited solutions

4 while R 6= ? do
5 x

0  select a solution at random in R;
6 foreach x

00 2 N (x0) do
7 if x

00 is not dominated by any solution in S then
8 for x 2 S do
9 if x is dominated by x

00 then S  S \ {x};
10 S  S [ {x00} ;
11 for x 2 R do
12 if x is dominated by x

00 then R R \ {x};
13 R R [ {x00};

14 R R \ {x0};
15 return S

an unbounded archive of mutually non-dominated solutions, initialized with a random solution. At

each step, one solution is selected at random from the archive, all its neighbors are evaluated with

respect to eF , and the archive is updated accordingly. The current solution is tagged as visited

in order to avoid a useless re-exploration of its neighborhood. The search process stops once all

solutions in the archive are visited. The content of the archive corresponds to the pool of solutions

returned by OptimPLS.

3.3. Component #2: Selection Strategy

The selection of the solution among the whole pool returned by the surrogate optimizer is a

critically important component (line 11 in Algorithm 1). Let us consider some iteration i 2 J1, µK,
which can be thought as corresponding to a particular sub-problem !

i. An intuitive strategy is to

attempt to improve sub-problems in a round-robin manner, and thus to select the solution whose

estimated scalar value (computed on the basis of the surrogate) is the best for the current sub-

problem. This was actually implemented in [68]. However, we shall show that this local selection

strategy can be sub-optimal, and is out-performed by other carefully designed global strategies.

More specifically, for an iteration i 2 Ji, µK, we study the following four selection strategies:

Selectlocal chooses the solution x
0 with the best aggregation value for the sub-problem considered

at the current iteration and correspondingly to the weight vector !i.

x
0 := argminx2S g(x | !i

, eF)
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Selectglobal chooses the solution x
0 with the best aggregation value with respect to any sub-problem

` 2 J1, µK, independently of the current iteration:

x
0 := argminx2S min

1`µ
g(x | !`

, eF)

SelectBI (best improvement) chooses the solution x
0 that improves the most the aggregation value

of any solution in the population, independently of the current iteration:

x
0 := argminx2S min

1`µ
g(x` | !`

, eF)� g(x | !`
, eF)

SelectNBI (best normalized improvement) is based on the previous strategy, but the improvement

value is normalized by the actual aggregation value of the current solution associated with each

sub-problem:

x
0 := argminx2S min

1`µ

g(x` | !`
, eF)� g(x | !`

, eF)

g(x` | !`, eF)

3.4. Component #3: Walsh Order

As discussed in Section 2.3, a Walsh surrogate requires an order up to which the coe�cients

are expanded. The choice of the Walsh order is an important and di�cult task for black-box

problems, which was not deeply addressed in the past. This choice infers the number of coe�cients

in the surrogate model (Eq.(4)). This does not only impact the model theoretical accuracy. It

also impacts the fitting process itself, because the model complexity increases with the number

of coe�cients. Let us illustrate this for a problem of size n = 50. In such a case, there are 51

coe�cients for an order O = 1, 1 276 coe�cients for an order O = 2, and 20 876 coe�cients for

an order O = 3. A low number of coe�cients may be insu�cient to accurately approximate the

objectives. A high number of coe�cients eventually improves the approximation quality, but a

larger dataset should then be used in order to accurately train the model. Hence, this may seem

contradictory with the fact that only a restricted number of evaluated solutions can be used for

training.

In this paper, we assume that the order used to train the model is bounded by a constant

value Omax. This is a reasonable assumption in practice, since otherwise the number of Walsh

coe�cients would grow exponentially. We also remark that such an assumption is in line with the

fact that many challenging combinatorial optimization problems can be decomposed in an exact

manner using Walsh functions of bounded order. However, it remains unclear which concrete order

to use within the range J1,OmaxK. Consequently, we investigate three simple strategies for setting

the Walsh order, as described below.

Orderstatic corresponds to a baseline strategy for setting the Walsh order. The order is simply a

static user-defined parameter, i.e., the Walsh surrogate is fitted considering a fixed order value
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O 2 J1,OmaxK, where O is assumed to be a parameter provided by the end-user.

Orderrandom is a basic dynamic strategy where the order is set randomly every time the model is

trained. In other words, at each iteration, the value of the Walsh order is picked uniformly at

random within the range J1,OmaxK. The advantage of this strategy is to use all admissible orders

without being completely limited by an improper static setting. This simple strategy allows us to

illustrate the benefits of changing dynamically the order value, in comparison to a static setting.

Ordergreedy dynamically adjusts the Walsh order during the search process, depending on the data

collected so far. At the end of each iteration i 2 J1, µK, we compute the number of sub-problems

that are improved (in line 16). Let us denote by pj the number of improved sub-problems, where

j corresponds to the j
th true function evaluation. We thereby track the number of improved sub-

problems over a window of size t (last) iterations, where t is a user-defined parameter. At the

beginning of each iteration, we compute the average, over the window, of the number of improved

sub-problems, denoted pt. If pt < 1, then we interpret this as a signal for changing the Walsh

order. This is perfomed according to a particular schedule, as discussed in the following. Let Ocurr

be the order used at a current iteration i 2 J1, µK. Let Oprev be the order used at the previous

iteration (i.e., iteration i � 1 or µ). At the beginning of the next iteration, let us assume that

pt < 1. Then, the new order Onew returned by the selection strategy is given by Onew = Ocurr + 1

if either Ocurr = 1 or Oprev < Ocurr < Omax; otherwise, we set Onew = Ocurr � 1.

The idea behind this greedy dynamic strategy is to start the search with the smallest order 1. If

we observe that it allows the current population to improve (pt � 1), then we keep using the same

successful order. Otherwise, we increase the order, and hence the model complexity, in the hope

of obtaining a more accurate surrogate. However, when attaining the maximum allowed model

complexity Omax, we continue scanning the possible order range by decreasing the order value, and

increasing it again if an order of 1 is reached. The current order value stops changing whenever the

model is accurate enough to improve the population, and the whole dynamic schedule is repeated

as soon as no more improvements are observed.

4. Experimental Setup

In the remainder of the paper, we report a comprehensive analysis of the combined e↵ect of

the previously described components. Obviously, extensive experiments with real-world expen-

sive black-box MCOPs would be computationally infeasible. Besides, our primary goal is not to

tackle an application-specific problem, but to conduct a general-purpose informative study provid-

ing generic guidelines for designing a discrete surrogate-assisted approach. For this purpose, we

consider two classes of well-established MCOP benchmarks. This is described below together with

the experimented algorithm variants.
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4.1. Benchmark Problems

We consider bi-objective NK-landscapes [74, 75] and bi-objective unconstrained binary quadratic

programming problems (UBQP) [76], as a set of challenging and representative pseudo-boolean

MCOPs. In fact, NK-landscapes allows one to control the degree of non-linearity of the problem.

We hence consider instances with a variable degree of di�culty. UBQP is a computationally chal-

lenging problem which is known to embrace a remarkable range of applications in combinatorial

optimization [77].

4.1.1. Multi-objective NK-Landscapes (MNK-Landscapes)

Solutions are binary strings of size n and the objective vector, to be maximized, is F =

(f1, . . . , fm) : {0, 1}n 7! [0, 1]m. Each objective function is defined by [78]:

fi(x) =
1

n

nX

j=1

c
i
j(xj , xj1 , . . . , xjk)

where the c
i
j : {0, 1}k+1 ! [0, 1) are component functions, and k is a parameter specifying the

number of epistatic interactions. The component function c
i
j assigns a real-valued contribution for

every combination of xj and its k epistatic interactions {xj1 , . . . , xjk}. The parameter k defines

the degree of non-linearity of the problem, and hence the ruggedness of the landscape.

We consider bi-objective MNK-landscapes [75] with the following setting: n 2 {25, 50} and

k 2 {0, 1, 2}. In line with previous studies [57, 68], this allows us to span instances ranging from a

small to a relatively large number of variables, and following a linear (k = 0), quadratic (k = 1)

and cubic (k = 2) variable interaction scheme.

4.1.2. Multi-objective UBQP (MUBQP)

Given a collection of n items such that each pair of items is associated with multidimensional

profit values, the multi-objective unconstrained binary quadratic programming (MUBQP) problem

seeks a subset of items that maximizes the sum of their paired values in each dimension [76]. The

value of a pair is summed up only if the two corresponding items are selected. A solution can be

represented as a binary string of size n. Each position from the binary string maps to a particular

variable that indicates whether the corresponding item is included in the subset of selected items

or not. Given a solution x = (x1, . . . , xn), each objective fk, k 2 J1,mK, is defined as follows:

fk(x) =
nX

i=1

nX

j=1

q
k
ijxixj

where Qk = q
ij
k is an n⇥ n matrix of constant values, either positive, negative or zero, k 2 J1,mK.

We consider bi-objective UBQP instances with n 2 {25, 50} variables and a density of 0.9 for

non-zero entries in the matrix Qk to infer di�cult and highly non-linear search landscapes.
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Table 1: Summary of the considered Smco/w components.

Component Proposed configuration values analyzed in Sec.

Optimizer OptimMOEA/D [68], OptimMLS, OptimPLS 5.1 & 5.2
Selection Selectlocal [68], Selectglobal, SelectBI, SelectNBI 5.1
Order Orderstatic [68] (O 2 {1, 2,Omax = 3}), Orderrandom, Ordergreedy 5.3

4.2. Experimental set-up

In order to fully analyze the impact of the proposed strategies, we systematically evaluate

the performance of all possible combinations. Furthermore, we consider to evaluate the gain in

approximation quality in comparison to an evolutionary solving process without any surrogate.

For this purpose, we consider the three multi-objective algorithms used to optimize the learned

problem model as baselines. In other words, we shall analyze the search performance obtained

with Moea/d, Mls and Pls as a main optimization procedure for the original expensive problem.

For all experimented algorithms, we use 50 weight vectors such that !
i =

⇣
i�1
µ�1 ,

1�(i�1)
µ�1

⌘
,

i 2 J1, 50K. For Walsh surrogates, a Lasso regression is used to fit the model [72]. The maximum

value allowed for the Walsh order is set to Omax = 3 which corresponds to a cubic model. When

using the Orderstatic strategy, the actual order d used for training is a user-defined parameter,

which we set in the range O 2 {1, 2, 3 = Omax}, i.e., three O-values are experimented for each

variant using Orderstatic. The greedy strategy to adapt the Walsh order Ordergreedy uses a window

of size t = 5. Besides, each surrogate optimizer comes with di↵erent parameters. OptimMOEA/D is

executed for 10 generations, as in [68]. It uses a one-point crossover followed by a uniform bit-flip

mutation with a rate of 1/n. The solution neighborhood considered in OptimMLS and OptimPLS

is based on the bit-flip operator; i.e., two solutions are neighbors if their Hamming distance is 1.

Finally, OptimMLS uses the same 50 weight vectors as defined previously.

Overall, we experiment 60 possible configurations (See Table 1 for a summary): 3 surrogate

optimizers ⇥ 4 selection strategies ⇥ (3 + 2) Walsh order settings, together with 3 additional

surrogate-less algorithms. Each algorithm is independently executed 10 times on the 8 considered

MCOP instances (2⇥3 MNK-landscapes + 2 MUBQP), for a maximum budget of 1 500 (expensive)

evaluations and not exceeding 64 CPU hours per run. The experiments were conducted in Python

3.7 on an Intel Core Xeon E5-2630 (2.20 GHZ, 256 GB RAM) under Debian 10.

For performance assessment, we use the additive epsilon indicator [79]. Notice, however, that

our results were found to be consistent when using the hypervolume indicator. This is not reported

explicitly to avoid flooding the reader with too much data. The epsilon indicator gives the minimum

factor by which an approximation set has to be translated in the objective space in order to (weakly)

dominate a reference set. The lower the indicator, the better the approximation. The reference set

is constructed by merging the solutions found over all runs and configurations for a given instance,

and removing dominated ones. For a given run, the archive of all non-dominated solutions found

during the search process is used to measure approximation quality. Finally, we shall report the
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approximation quality for di↵erent intermediate budgets, so as to render the relative anytime

performance.

5. Experimental Analysis

In this section, we report our analysis and empirical findings. Since we consider an extensive

number of configurations, a main challenge is to fairly address the impact of the combined e↵ect of

the designed components on search performance. In fact, as our analysis will reveal, we found that

there is a non-trivial interaction between the di↵erent components, which we report in a step-by-

step manner. In Section 5.1, we start by studying the interaction between the surrogate optimizer

(Component #1) and the selection strategy (Component #2). In Section 5.2, we analyze the

relative performance obtained when the surrogate optimizer is combined with the corresponding

best selection strategy. In Section 5.3, we study the impact of the Walsh order setting (Component

#3). In Section 5.4, we report the performance gain against surrogate-less approaches.

5.1. Impact of Selection on Surrogate Optimizers

In the following, we address the relative impact of the selection strategy (Component #2)

on each individual Smco/w variant obtained with a particular surrogate optimizer (Compo-

nent #1). For MNK-landscapes, this is summarized in Tables 2, 3, and 4, respectively when

using OptimMOEA/D, OptimMLS, and OptimPLS. For MUBQP, this is summarized in Table 5 for all

optimizers. The tables show the relative rank of each selection strategy and each static setting

of the Walsh order. A rank c indicates that the corresponding algorithm is significantly outper-

formed by c other strategies using a Wilcoxon test with a Bonferroni correction at a significance

level of 0.05. Ranks in bold correspond to approaches that are not significantly outperformed by

any other. Di↵erent budgets, ranging from a small to a medium and a relatively high number of

true evaluations, are considered. This is to better render the anytime behavior. We also show the

average epsilon indicator value obtained for each variant (in parentheses in the tables), which is to

provide the reader with a preliminary idea of the overall relative performance (underlined values in

the tables show the best averages). Let us comment that the ranks shown in Tables 2, 3, 4, and 5,

still do not allow to elicit in a comprehensive manner what is the best possible configuration. A

more specific analysis is to follow in the subsequent sections, after analyzing the relative impact of

the selection strategy when combined with a particular optimizer. In fact, from these tables, we

can for now draw two main general observations.

Firstly, the relative rank obtained by a given selection strategy is overall consistent over the

di↵erent considered instances, although for MNK-landscapes, the relative performance is a function

of the value of k, which is the degree of non-linearity/ruggedness of the landscape. This is also

related to the Walsh order setting. We can observe that the Walsh order O providing the best rank

depends consistently on the value of k, such that O = k + 1. For MUBQP instances, and since
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Table 2: Rank and average epsilon indicator value (⇥102, between brackets) after 200, 700, and 1 500 evaluations
for MNK-landscapes. The results are w.r.t. OptimMOEA/D and Orderstatic.

Selectlocal Selectglobal SelectBI SelectNBI

#eval O=1 O=2 O=3 O=1 O=2 O=3 O=1 O=2 O=3 O=1 O=2 O=3

O
p
t
im

M
O
E
A
/
D

k
=

0 n
=

2
5 200 0(1.4) 0(1.8) 3(2.4) 9(5) 9(5.4) 9(5.7) 0(1) 0(1.2) 0(1.8) 0(1.3) 0(1.4) 3(2.4)

700 0(1) 0(1.1) 2(1.3) 9(4.4) 9(4.1) 9(4.1) 0(0.7) 0(0.7) 0(0.9) 0(1.1) 0(1) 0(1.1)

1 500 0(0.8) 0(0.8) 0(0.9) 9(3.9) 9(3.6) 9(3.2) 0(0.6) 0(0.6) 0(0.7) 0(0.8) 0(0.9) 0(0.9)

n
=

5
0 200 0(2) 2(3.7) 2(5) 2(7.9) 6(8.6) 6(9.2) 0(2.3) 1(3.6) 2(4.7) 6(8.6) 6(9.1) 6(9.1)

700 0(1.4) 0(1.8) 1(2.3) 5(6.5) 6(6.3) 6(8) 0(2) 1(2.3) 4(3) 6(8.3) 6(8.4) 6(8.5)
1 500 0(1.1) 0(1.3) 0(1.4) 6(3.9) 5(4.2) 6(4.9) 0(1.7) 1(1.9) 3(2.4) 8(7.6) 8(7.6) 8(7.7)

avg. rank 0.56 7.17 0.67 3.5

k
=

1 n
=

2
5 200 3(4.2) 0(1.5) 0(2.6) 8(8.7) 6(6.8) 8(7.7) 3(4.5) 0(1.1) 0(2.5) 3(4.2) 8(7.2) 0(1.7)

700 5(3.4) 0(0.5) 0(0.5) 7(6.6) 6(5.7) 7(6.2) 5(3.8) 0(0.5) 0(0.6) 5(2.8) 7(6) 0(0.6)

1 500 5(2.9) 0(0.3) 0(0.4) 7(5.7) 5(4.4) 6(4.8) 5(3.5) 0(0.4) 0(0.4) 5(2.6) 7(5.7) 0(0.4)

n
=

5
0 200 0(5.2) 0(4.8) 1(6.3) 6(9.7) 6(10.6) 6(10.9) 0(5.8) 0(4.8) 0(5.6) 6(9.8) 6(10.7) 6(10.9)

700 1(4.1) 0(3.2) 0(3.7) 6(7.7) 5(7.7) 6(9.1) 1(4.4) 0(2.8) 0(3.4) 6(8.7) 6(9.6) 7(9.9)
1 500 1(3.8) 0(2.9) 0(3.1) 4(6.5) 0(5.6) 3(6) 0(3.9) 0(2.8) 0(2.8) 6(8.3) 6(8.6) 6(8.7)

avg. rank 0.89 5.67 0.78 5

k
=

2 n
=

2
5 200 4(8) 0(5.6) 0(5.9) 6(9) 6(8.3) 4(8.4) 2(7.5) 0(4.3) 0(4.7) 5(8.2) 0(4.7) 0(5.2)

700 6(6.5) 0(3.9) 0(3) 6(7.7) 1(5.4) 0(6.2) 6(7.2) 0(2.9) 0(2.7) 5(6.8) 0(3.6) 0(3.2)

1 500 6(6.2) 0(3.4) 0(2) 6(7.2) 0(5) 0(5.3) 5(5.9) 0(2.4) 0(2.1) 5(6.1) 0(2.8) 0(2.7)

n
=

5
0 200 0(8) 0(7.7) 0(7.7) 5(13.3) 5(11.6) 5(12.3) 0(9.4) 0(6.5) 0(7.3) 5(13.3) 5(11.6) 5(12.3)

700 0(5.7) 0(4.4) 0(4.6) 6(11.2) 5(9.6) 6(10.6) 0(6.3) 0(4.6) 0(4.4) 6(11.4) 6(10.6) 6(11.8)
1 500 1(5.4) 0(3.4) 0(3.3) 6(10.7) 4(7.8) 4(8.3) 0(5.3) 0(4.1) 0(3.7) 6(10.9) 6(9.6) 6(10.5)

avg. rank 0.94 4.17 0.72 3.67

Table 3: Rank and average epsilon indicator value (⇥102, between brackets) after 200, 700, and 1 500 evaluations
for MNK-landscapes. The results are w.r.t. OptimMLS and Orderstatic.

Selectlocal Selectglobal SelectBI SelectNBI

#eval O=1 O=2 O=3 O=1 O=2 O=3 O=1 O=2 O=3 O=1 O=2 O=3

O
p
t
im

M
L
S

k
=

0 n
=

2
5 200 5(4.7) 3(3.3) 2(2.4) 3(2.2) 4(4.7) 7(5.2) 5(3.7) 3(3.2) 3(2.8) 0(1.1) 0(0.4) 1(1)

700 4(3.1) 3(2.4) 3(1.5) 3(2.1) 8(4.1) 8(4.7) 3(2.9) 3(2.3) 2(1.8) 0(0.3) 0(0.3) 0(0.3)

1 500 3(2.3) 3(1.7) 0(1.1) 3(2.1) 10(3.9) 10(4) 3(2.2) 3(1.7) 2(1.3) 0(0.3) 0(0.3) 0(0.3)

n
=

5
0 200 3(5.6) 1(4.6) 1(4.9) 1(4.1) 5(6.8) 10(7.4) 1(3.7) 1(4.1) 2(5.4) 1(3.9) 0(1.7) 1(4.5)

700 9(4.3) 1(1.2) 3(1.2) 4(1.6) 10(6.2) 10(6.4) 5(1.9) 0(0.6) 2(1) 0(0.4) 0(0.3) 0(0.5)

1 500 9(3.3) 1(0.5) 0(0.3) 8(1.6) 10(5.9) 10(6.2) 6(0.8) 0(0.3) 0(0.2) 0(0.3) 0(0.3) 0(0.3)

avg. rank 3 6.89 2.44 0.17

k
=

1 n
=

2
5 200 2(3.9) 1(2.7) 1(2.8) 6(6.3) 4(5.4) 6(6.3) 3(4.8) 1(1.5) 1(3.2) 4(4.7) 0(0.6) 1(1.7)

700 6(2.9) 3(1.2) 1(0.6) 9(5.5) 7(4.8) 8(5.2) 6(3.9) 2(1) 1(0.9) 6(3.8) 0(0.4) 0(0.3)

1 500 6(2.6) 3(0.9) 1(0.5) 9(5.1) 7(4.4) 9(4.9) 6(3.7) 2(0.8) 1(0.8) 6(3.5) 0(0.4) 0(0.3)

n
=

5
0 200 1(4.7) 2(5.9) 1(6.2) 1(5.2) 5(6.7) 8(8.2) 0(4.3) 1(5.3) 3(6.1) 0(4.4) 0(3.2) 0(4.5)

700 5(3.3) 1(1.6) 1(2.4) 8(5.1) 9(6.5) 9(6.6) 5(3.2) 0(0.8) 2(1.4) 5(3.5) 0(0.4) 1(1.3)
1 500 6(2.9) 4(1) 0(0.6) 9(5) 9(6.4) 9(6.5) 6(3.2) 0(0.4) 0(0.4) 6(3.4) 0(0.3) 0(0.4)

avg. rank 2.5 7.33 2.22 1.61

k
=

2 n
=

2
5 200 0(7.4) 0(6.4) 0(5.9) 4(8.7) 0(5) 1(7.1) 1(8.5) 0(5.7) 0(6.1) 1(8.3) 0(5.3) 0(5.5)

700 4(5.6) 3(2.8) 0(1.1) 8(7.4) 3(3.6) 4(4.8) 7(7.1) 2(2.9) 0(0.9) 7(7.3) 2(2.5) 0(0.5)

1 500 6(5.1) 3(2) 0(0.7) 8(7.1) 6(3.5) 6(4.6) 7(6.6) 3(2.1) 0(0.5) 8(6.9) 3(2) 0(0.5)

n
=

5
0 200 0(7) 0(7.7) 0(8.4) 8(10.7) 0(8.8) 1(9.5) 0(8.3) 0(7.3) 0(7.6) 1(9.1) 0(7) 0(6.3)

700 2(4.7) 0(3.6) 0(3.7) 9(10) 5(7.2) 7(8.3) 6(6.3) 0(3.2) 0(4) 6(6.6) 0(2.8) 0(3.3)

1 500 6(4.3) 0(1.9) 0(1.9) 11(9.8) 6(6.7) 6(7.3) 7(6.1) 0(1.8) 0(2) 7(6) 0(1.4) 0(1.5)

avg. rank 1.33 5.17 1.83 1.94
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Table 4: Rank and average epsilon indicator value (⇥102, between brackets) after 200, 700, and 1 500 evaluations
for MNK-landscapes. The results are w.r.t. OptimPLS and Orderstatic.

Selectlocal Selectglobal SelectBI SelectNBI

#eval O=1 O=2 O=3 O=1 O=2 O=3 O=1 O=2 O=3 O=1 O=2 O=3

O
p
t
im

P
L
S

k
=

0 n
=

2
5 200 0(0.4) 0(0.4) 6(1.7) 10(6.4) 9(5.4) 9(4.9) 0(0.5) 3(0.8) 3(1.2) 0(0.4) 0(0.5) 2(1)

700 0(0.4) 0(0.4) 0(0.3) 9(5.4) 9(4.6) 9(4.4) 1(0.5) 4(0.8) 4(1.1) 0(0.4) 0(0.5) 0(0.5)

1 500 0(0.4) 0(0.4) 0(0.3) 10(4.7) 9(4.3) 9(3.9) 1(0.5) 4(0.8) 4(1.1) 0(0.4) 0(0.5) 0(0.5)

n
=

5
0 200 0(0.4) 3(2.3) 6(4.7) 9(8.1) 9(6.9) 7(6.6) 0(0.5) 3(2.2) 6(4.7) 0(0.4) 0(1.5) 4(4.1)

700 0(0.4) 0(0.3) 2(0.7) 10(7.2) 9(6.3) 9(6) 1(0.5) 0(0.6) 4(0.8) 0(0.4) 0(0.3) 1(0.5)
1 500 0(0.4) 0(0.3) 0(0.2) 9(6.7) 9(6.1) 9(5.9) 2(0.5) 0(0.6) 6(0.7) 0(0.4) 0(0.3) 0(0.4)

avg. rank 0.94 9.06 2.56 0.39

k
=

1 n
=

2
5 200 5(3.7) 0(0.8) 1(1.5) 8(6.8) 8(6.5) 7(6.1) 6(5) 0(0.9) 1(2.1) 5(4.4) 0(0.5) 1(1.3)

700 6(2.8) 0(0.3) 0(0.3) 8(5.6) 8(5.6) 7(5.5) 7(4.6) 0(0.6) 2(0.6) 6(4.1) 0(0.4) 0(0.4)

1 500 6(2.8) 0(0.3) 0(0.3) 8(5.2) 7(4.8) 7(5) 7(4.3) 0(0.6) 3(0.6) 6(4) 0(0.4) 0(0.4)

n
=

5
0 200 1(4.6) 0(3.5) 2(5.4) 7(7.1) 8(7.5) 7(7.7) 1(4.9) 1(4) 1(5.2) 1(4.6) 0(2.4) 1(4.3)

700 6(3.5) 0(0.6) 3(1.7) 9(6.7) 9(7.3) 9(6.7) 6(4.1) 0(0.6) 3(1.9) 6(4) 0(0.4) 1(1)
1 500 6(3.4) 0(0.4) 0(0.4) 9(6.6) 9(7.1) 9(6.4) 6(4) 0(0.6) 0(0.5) 6(4) 0(0.4) 0(0.4)

avg. rank 2 8 2.44 1.83

k
=

2 n
=

2
5 200 3(6.4) 0(4.8) 0(5) 9(8.9) 0(5.8) 0(6.4) 3(7.7) 0(3.9) 0(5.3) 1(6.8) 0(3.8) 0(4)

700 7(6) 3(2.3) 0(1) 8(8) 4(3.6) 4(4.7) 5(5.9) 3(2.5) 0(0.7) 6(5.9) 3(2.1) 0(0.7)

1 500 6(5.7) 3(1.8) 0(0.2) 8(7.1) 6(3.6) 6(4.5) 6(5.4) 3(2.3) 0(0.6) 7(5.7) 3(1.9) 0(0.5)

n
=

5
0 200 2(8) 0(5.6) 0(6.6) 7(10.7) 0(8.1) 5(9.5) 5(9) 0(6.4) 0(6.7) 4(8.5) 0(6.2) 0(5.9)

700 4(5.9) 0(3) 0(3.8) 10(9.9) 4(6.6) 6(7.8) 4(6.2) 0(2.7) 0(4) 6(6.3) 0(2.4) 0(3.3)

1 500 6(5.2) 0(2.2) 0(2.3) 11(9.3) 6(5.6) 7(7.2) 6(5.7) 0(1.9) 0(2.6) 6(6) 0(1.8) 0(1.8)

avg. rank 1.89 5.61 1.94 2

Table 5: Rank and average epsilon indicator value (⇥102, between brackets) after 200, 700, and 1 500 evaluations
for MUBQP. The results are w.r.t. Orderstatic. A dash (—) indicates that the algorithm was not able to reach the
corresponding budget within the maximum CPU time allowed in our experiments.

Selectlocal Selectglobal SelectBI SelectNBI

#eval O=1 O=2 O=3 O=1 O=2 O=3 O=1 O=2 O=3 O=1 O=2 O=3

O
p
t
im

M
O
E
A
/
D

n
=

2
5 200 1(371.5) 0(194.6) 0(252.2) 5(756.2) 4(639.8) 3(658.9) 3(515.5) 0(179.3) 0(234.9) 5(776.2) 4(666.2) 5(709.6)

700 4(280.7) 0(33.7) 1(112) 6(638.3) 4(499.9) 4(388.3) 4(389.5) 0(55.8) 1(98) 5(663.9) 4(565.1) 4(476)
1 500 4(260) 0(24.6) 0(49.7) 8(576.6) 4(344.4) 4(285.6) 4(370.6) 1(47.6) 0(46.8) 8(577.3) 4(528.6) 4(278.7)

n
=

5
0 200 0(1421.3) 0(1853.3) 0(1841.4) 6(3302.9) 6(2957.1) 6(2986.2) 0(1551.5) 0(1784.6) 0(1728.7) 6(3324.9) 6(2860.8) 6(3027.2)

700 0(935.6) 0(1063.3) 0(1031.7) 6(2713.7) 6(2359.3) 5(2079.5) 0(937.2) 0(1050) 0(978.8) 7(3003.5) 6(2549.3) 5(2277.9)
1 500 1(826.4) 0(564.6) 1(883.3) 6(2222.2) 6(1664.4) 2(1403.7) 1(829.2) 0(668.9) 1(937.1) 8(2762.7) 7(2360.7) 1(1637.8)

avg. rank 0.67 5.06 0.83 5.28

O
p
t
im

M
L
S

n
=

2
5 200 0(290.1) 0(399.1) 2(407.8) 10(707.4) 2(424) 2(469.3) 0(360.2) 0(333.2) 0(335.2) 0(431.7) 0(233.6) 0(315.6)

700 5(241.7) 1(71.8) 5(239.1) 11(648.2) 7(412.5) 6(350.6) 6(339.6) 0(48.2) 1(108.1) 5(404.7) 0(16.3) 1(59.7)
1 500 5(239.4) 1(38.3) 2(90.4) 11(584.1) 7(408.6) 6(327.2) 6(333.1) 0(36.3) 1(57.3) 6(383.3) 0(14.9) 1(31.5)

n
=

5
0 200 0(1132.8) 3(2800.1) 3(2670.3) 3(2352.1) 3(2661.8) 3(2775.1) 0(1260.6) 3(3077.3) 3(2741.5) 0(1239.1) 3(2602.7) 3(2823.9)

700 0(602.4) 3(1562) — 7(2309.4) 3(1585) — 1(857.1) 3(1373) — 1(830.1) 3(1598.5) —
1500 2(557.9) 2(793.6) — 7(2273.3) 6(1401.1) — 3(856.7) 0(149.2) — 3(830.1) 0(115.1) —

avg. rank 1.89 5.22 1.5 1.44

O
p
t
im

P
L
S

n
=

2
5 200 0(343.9) 0(223) 0(248.4) 11(765.4) 4(516.3) 1(459.7) 1(409.6) 0(201.5) 0(269.4) 2(440.3) 0(341.2) 0(363.6)

700 6(272.3) 0(19.4) 1(116.7) 10(644.9) 9(486.2) 6(391.7) 6(310.7) 1(69.8) 1(74.9) 6(320.2) 0(55.4) 1(107.1)
1 500 6(264.3) 0(15.3) 0(50.4) 11(606) 9(470) 6(369.6) 6(287.5) 1(69.8) 1(58.5) 6(307.9) 0(55.4) 1(68.4)

n
=

5
0 200 0(1187.5) 3(2139.8) 3(2106.1) 8(2939) 3(2471.9) 3(2410.4) 0(1308.5) 3(2352.7) 3(2403.8) 0(1309.1) 3(2471.9) 3(2410.4)

700 0(781.3) 0(1049.5) — 7(2726) 6(1588.1) — 1(1118.7) 0(899.5) — 0(1015.3) 0(945.9) —
1500 3(734.3) 0(142.1) — 7(2600.6) 6(1588) — 3(1054.8) 0(177.8) — 3(960.5) 0(115.3) —

avg. rank 1.22 5.94 1.5 1.39

the underlying problem is quadratic, a Walsh order of 2 is always performing better. This is with

no surprise since performance is tightly related to the ability of the Walsh surrogate to faithfully

approximate the underlying landscape, which is directly related to the choice of the Walsh order.
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Table 6: Sorted selection strategies by average rank (L = Selectlocal, G = Selectglobal, BC = SelectBI, BN = SelectNBI).

OptimMOEA/D OptimMLS OptimPLS

MNK-landscapes k = 0 L � BC � BN � G BN � BC � L � G BN � L � BC � G
MNK-landscapes k = 1 BC � L � BN � G BN � BC � L � G BN � L � BC � G
MNK-landscapes k = 2 BC � L � BN � G L � BC � BN � G L � BC � BN � G
MUBQP L � BC � G � BN BN � BC � L � G L � BN � BC � G

Overall, we can hence conclude that the rank obtained when using a surrogate optimizer with

a particular selection strategy changes consistently with the choice of the order, suggesting that

there is an optimal setting that depends on the underlying landscape. Additionally, we observe

that the ranks may vary depending on the considered budget. This indicates that the di↵erent

algorithm configurations may expose di↵erent anytime behaviors. This is to be analyzed in more

detail afterwards, in light of the other proposed dynamic strategies for setting the Walsh order.

Secondly, we can clearly see that the selection strategy providing the best rank is di↵erent

depending on which surrogate optimizer is considered. This is an important finding showing that

there is a strong dependency between these two components, i.e., for optimal performance, the

selection strategy has to be configured di↵erently depending on the adopted surrogate optimizer.

More specifically, the two local search optimizers (OptimMLS in Table 3 and OptimPLS in Table 4)

perform at their best when using the SelectNBI strategy for MNK-landscapes with k = 0 and k = 1,

whereas using the Selectlocal strategy is a slightly better choice when k = 2. In contrast, for MUBQP

(Table 5), these two optimizers perform at their best when using di↵erent selection strategies:

OptimPLS performs better with the Selectlocal strategy, and OptimMLS performs better with the

SelectNBI and SelectBI strategies. Looking at the third OptimMOEA/D optimizer, the situation is

seemingly di↵erent: SelectBI is the best performing strategy for MNK-landscapes (in Table 2),

whereas Selectlocal is better for MUBQP (in Table 5). We also found that these two selection

strategies are definitely a better choice when using OptimMOEA/D compared to the SelectNBI and

Selectglobal strategies. In contrast to the work in [68], where Selectlocal is recommended, these

observations show that other selection strategies can be more accurate, depending on both the

considered problem and the surrogate optimizer.

To summarize these complex dependencies, we provide in Table 6 an overview of the relative

performance of the selection strategies for the di↵erent surrogate optimizers, obtained by sorting

the selection strategies according to the average ranks from Tables 2, 3, 4 and 5 over the considered

instances and budgets (as given by the ‘avg. rank’ rows). Looking at the impact of the selection

strategy over the di↵erent surrogate optimizers, it is interesting to remark that for OptimPLS and

OptimMLS, the SelectNBI strategy is to be preferred, with an average rank of 1.40 and 1.29 re-

spectively, whereas its average rank is of 4.36 when used in combination with OptimMOEA/D. In

other words, the SelectNBI strategy can be viewed as a relatively good selection strategy, except for

OptimMOEA/D. Besides, the Selectglobal strategy shows the worst results overall and independently
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of the considered surrogate optimizer.

In the rest of the paper, and unless explicitly stated, we shall always consider the best perform-

ing selection strategy when dealing with a particular surrogate optimizer, as depicted in Table 6.

5.2. Impact of the Surrogate Optimizer

In this section, we compare the di↵erent surrogate optimizers when di↵erent static Walsh orders

are used. This is depicted in Fig. 1 and 2 showing the convergence (anytime) profile of the di↵erent

configurations respectively for MNK-landscapes and MUBQP.

As a first observation, we clearly see that the OptimMLS and OptimPLS optimizers have signifi-

cantly better convergence profiles compared to OptimMOEA/D. This is consistent over all considered

instances, with very few exceptions. At this stage of the analysis, we recall that the proposed

Walsh-based surrogate approach uses the decomposition paradigm to both structure the popula-

tion, and to select the next solution to evaluate. Hence, this observation shows that, (i) such an

approach does not necessarily need to be configured with a decomposition-based inner optimizer

to handle the underlying surrogate; and more importantly, (ii) other more accurate optimizers

should be used specifically to the underlying Walsh surrogate. This is again to be contrasted with

the work in [68], where the decomposition-based Moea/d algorithm was employed at the di↵erent

design stages.

Let us now analyze in more detail the two OptimMLS and OptimPLS optimizers, which were

found to lead to a better approximation quality. Although overall they expose a similar behavior,

their relative anytime profile depends both on the di�culty of the tackled problem, and on the

complexity of the Walsh surrogate, as implied by the choice of the Walsh order. This is discussed

in the next paragraphs by splitting our experimented instances into three classes: (i) linear, i.e.,

MNK-landscapes with k = 0, (ii) quadratic, i.e., MNK-landscapes with k = 1 and MUBQP, and

(iii) cubic, i.e., MNK-landscapes with k = 2. It is important to remark that the order of the exact

Walsh transform of any function in these three classes is bounded respectively by 1, 2, and 3.

For the two linear instances (with k = 0), OptimPLS used in combination with the (exact)

Walsh order of 1 converges very quickly to a high-quality approximation set, and OptimMLS is only

able to obtain a better quality when a higher number of evaluations is a↵ordable. When using

an over-estimated Walsh order of 2 or 3, OptimMLS performs significantly better than OptimPLS

independently of the available budget.

For quadratic instances, when setting the Walsh order to the exact transform order of 2, we

found that OptimMLS and OptimPLS have seemingly the same convergence profile for n = 25. By

contrast, for n = 50, OptimPLS is slightly better under a restricted budget, while OptimMLS is

slightly better under higher budgets, which is to recall their behavior for linear instances. When

the Walsh order is set to an underestimated value of 1, the approximation quality obtained with

all optimizers drops down in comparison to an (exact) order of 2. Interestingly, using an under-

estimated order value does not prevent to find improvements during the very first iterations, that
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Figure 1: Convergence profiles when using the surrogate optimizers with their corresponding best selection strategy
for MNK-landscapes.

is, with a very restricted budget. When the Walsh order is set to an overestimated value of 3, the

overall approximation quality of both optimizers seems to be comparable to the exact setting of

the order.

Finally, for the most complex cubic instances (k = 2) and for n = 25, an underestimated

order of 1 or 2 is not competitive with the exact transform order 3, independently of the surrogate

optimizer. For dimension n = 50, all algorithms are clearly performing very poorly when an

underestimated order of 1 is used. However, the situation improves when using an order of 2,

which indicates that for such di�cult problems, a su�ciently large but non-exact Walsh order still

allows for a reasonable approximation.

From this set of observations, we can draw two general conclusions. First, the two local search
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Figure 2: Convergence profiles when using the surrogate optimizers with their corresponding best selection strategy
for MUBQP.

optimizers OptimMLS and OptimPLS are e�cient in dealing with the discrete Walsh surrogate, which

is to contrast with the OptimMOEA/D optimizer. Second, an e↵ective surrogate optimizer alone is

not able to provide a good performance independently of the available budget and the Walsh

order setting. The impact of the order choice strategy is studied next, hence addressing the last

component of the considered framework.

5.3. Impact of the Walsh Order

To study the impact of the strategy used for the Walsh order, we focus on OptimMLS and

OptimPLS, since they were found to substantially outperform OptimMOEA/D. This is shown in Fig. 3

and 4, respectively for MNK-landscapes and MUBQP.

From these two figures, it becomes very clear that underestimating the order value (relatively

to the exact Walsh transform) has a dramatic impact on the overall performance. Besides, overes-

timating the order value does not always allow for competitive results. This might seem surprising,

since overestimating the order makes the Walsh model more complex, and should not decrease its

accuracy. While such a claim sounds true in theory, increasing the Walsh order makes the model

much more challenging to fit accurately in practice. To illustrate this issue, we show in Fig. 5 the

mean absolute error of the Walsh model as a function of the size of the training dataset. We clearly

see that overestimating the order can lead to a worst fitting quality depending on the characteristic

on the degree of non-linearity k, and the size of the training set. This is to be attributed to the

fact that the more complex the model is, the largest the training data should be in order for the

Lasso regression to be successful in finding a good fit.

Furthermore, in comparison to a static setting of the Walsh order (Orderstatic), the considered

dynamic strategies (Orderrandom and Ordergreedy) are clearly a better option. Interestingly, there is

no clear separation between the greedy and the random strategy independently of the underlying

surrogate optimizer, problem instance and budget. For example, we can see that Ordergreedy out-
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Figure 3: Convergence profile of when using di↵erent Walsh order settings with the SelectNBI strategy for MNK-
landscapes.

performs Orderrandom for MUBQP instances of size n = 50. However, this is no more true for n = 25

and the OptimPLS surrogate optimizer. Similarly, Ordergreedy obtains a better convergence profile

than Orderrandom when using OptimPLS for a MNK-landscapes with n = 50 and k = 0, whereas

this is no more true when combining Ordergreedy with OptimMLS. Overall, we conclude that both

dynamic strategies for setting the Walsh order obtain very competitive results. A dynamic order

strategy is always better than an underestimated static order, and is better than an overestimated

static order in most cases. Surprisingly, it is even better than a static strategy using the exact

Walsh transform order for some instances; e.g. MNK-landscapes with n = 50 and k = 1. These
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Figure 4: Convergence profile when using di↵erent Walsh order settings with the SelectNBI strategy for MUBQP.
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Figure 5: Mean absolute error (MAE) obtained by the Walsh surrogate according to the number of solutions in the
training dataset with the OptimMLS optimizer combined to the SelectNBI strategy for order O 2 {1, 2, 3} on MNK-
landscapes.

results suggest that more sophisticated dynamic strategies for setting the Walsh order are worth

to be investigated in the future.

5.4. Approximation quality of Smco/w vs. Surrogate-less algorithms

In this section, we show the benefits behind using a surrogate model to assist the search

process. For this purpose, we compare the approximation quality obtained when running the three

algorithms Moea/d, Pls, and Mls on the original problems (without using Walsh surrogate).

Our results are reported in Fig. 6. We only show the results obtained with the SelectNBI strategy

and the Ordergreedy strategy, since these two strategies were found to provide fairly good results over
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Figure 6: Comparison of surrogate-less approaches with Smco/w using a greedy Walsh order (Ordergreedy) and the
best normalized improvement selection strategy (SelectNBI). For MUBQP, the indicator has been scaled by a factor
10�2 for a better readability of the figures.

all the experimented instances. We can see that the so-obtained surrogate-assisted algorithms lead

to substantially better approximation sets, independently of the considered instance and budget.

This provides evidence on the accuracy of the designed approach and its e↵ectiveness in reducing

the number of function evaluations required to compute a high quality approximation set.

The results presented in Fig. 6 hold under the standard assumption that the evaluation function

is very costly, in the sense that its CPU time cost dominates all the other parts of the considered

algorithms. However, it is well-known that using a surrogate model, like in any machine learning

technique, can incur some computational time. Mitigating such a computational cost with respect

to the real cost of the expensive evaluation can be important depending on the problem considered

in practice. This aspect is only discussed to a small extent in the literature. For completeness,

and although our work is not concerned with a particular target application problem, we conclude

our analysis by conducting additional experiments allowing us to fairly discuss the computational

CPU times incurred by using a Walsh surrogate and its implications, while adopting the same

benchmark-oriented methodology.

5.4.1. Considerations on the Walsh surrogate CPU time

To analyze the CPU time cost incurred by the Walsh surrogate, we adopt the following exper-

imental procedure. For each problem instance, we generate successively s 2 {250, 500, 1000, 1500}
random binary string solutions. The Walsh surrogate is trained as discussed previously for each

order O 2 {1, 2, 3}. The average CPU (training) time required for this phase is then reported (over

100 independent repetitions). Using each trained model, we predict the objective value for a ran-

domly generated binary string solution, and the average CPU (prediction) time is reported as well.
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Table 7: CPU time of Walsh surrogate training phase (in seconds) and prediction phase (in milliseconds) using a
sample size s 2 {250, 500, 1000, 1500}. Results are shown for every static order O and each problem instance.

O = 1 O = 2 O = 3
MNK-landscapes

MUBQP
MNK-landscapes

MUBQP
MNK-landscapes

MUBQP
s k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

T
ra
in
in
g
(i
n
s)

n
=

2
5 250 0.04 0.05 0.06 0.06 0.17 0.19 0.23 0.19 1.35 1.49 1.54 1.25

500 0.04 0.05 0.05 0.06 0.27 0.28 0.28 0.28 2.43 2.51 3.03 2.36
1000 0.05 0.05 0.06 0.06 0.53 0.52 0.55 0.51 4.50 4.60 4.85 4.48
1500 0.05 0.06 0.07 0.07 0.79 0.82 0.81 0.78 6.60 6.57 6.74 6.60

n
=

5
0 250 0.07 0.08 0.09 0.16 0.67 0.78 0.77 0.72 13.82 13.66 14.63 10.49

500 0.07 0.09 0.10 0.17 1.15 1.23 1.39 1.24 27.68 24.19 28.31 19.05
1000 0.09 0.10 0.12 0.18 2.23 2.28 2.94 2.38 43.38 35.01 48.07 32.86
1500 0.10 0.12 0.13 0.19 3.31 3.30 3.55 3.37 56.00 52.96 58.71 46.64

P
re
d
ic
ti
o
n
(i
n
m
s)

n
=

2
5 250 0.06 0.06 0.06 0.06 0.06 0.13 0.41 0.51 0.07 0.51 0.60 4.27

500 0.06 0.06 0.06 0.06 0.06 0.11 0.55 0.55 0.07 0.16 1.12 4.58
1000 0.06 0.06 0.06 0.06 0.07 0.11 0.60 0.59 0.07 0.11 0.32 4.47
1500 0.06 0.06 0.06 0.06 0.07 0.18 0.63 0.61 0.08 0.12 0.30 4.34

n
=

5
0 250 0.10 0.10 0.10 0.10 0.24 0.46 0.50 2.00 1.11 1.32 1.77 14.53

500 0.10 0.10 0.10 0.10 0.12 0.26 0.81 2.13 0.50 1.80 2.40 41.41
1000 0.10 0.10 0.10 0.10 0.12 0.21 1.70 2.02 0.25 0.58 3.57 34.21
1500 0.10 0.10 0.10 0.10 0.13 0.22 2.40 2.23 0.20 0.50 3.41 34.02

These additional experiments were conducted in Python 3.7 on a personal Intel Core i7, 6-core

processor (2.6 GHZ, 16 GB RAM) under macOS, without any further low-level code optimization.

The obtained average CPU times for training and prediction are reported in Table 7.

We can first see that all CPU times (for both training and prediction) are strongly correlated

with the considered Walsh order O and the problem size n, i.e., CPU times are higher for larger

orders and larger dimensions. This is without surprise since higher orders/dimensions imply a

more complex model, with more Walsh coe�cients to estimate.

The CPU time required for the prediction phase appears to be overall relatively low, i.e., from

few to at most some dozens of milliseconds. The CPU time for prediction can be viewed as the

cost of the inferred surrogate function, that will be optimized internally by the embedded surrogate

optimizer (e.g., Moea/d, Pls, Mls). Hence, we can conclude that the obtained Walsh surrogate

function is relatively cheap. Having such a cheap surrogate function is very desirable in order to

be later extensively tackled by the embedded evolutionary optimizer. However, on the other hand,

the CPU training time appears to be more substantial. In the worst case scenarios, using the

largest training sample of size 1500 and the largest dimension n = 50, the training cost ranges

from 0.13 seconds in average (over all instances) for a Walsh order O = 1, to 3.38 seconds for

O = 2, and 53.58 seconds for O = 3. Nonetheless, such CPU times can still be considered as

reasonable in a practical expensive context, where the objective function cost can typically be at

least on the order of minutes or hours. Notice in fact that the Walsh model needs to be trained

once, before serving as a cheap substitute that can in turn be searched more extensively, hopefully

in less time than the cost of one real expensive evaluation. For example, using the highest Walsh

order O = 3, it costs less than 2 minutes for an internal surrogate optimizer embedded in Smco/w

to evaluate the expected quality of more than 104 (respectively 103) candidate solutions for the
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hardest MNK-landscape with n = 50 and k = 2 (respectively MUBQP with n = 50).

5.4.2. Considerations on the acceleration ratio

Having these CPU times in mind, we push our analysis further by eliciting how many function

evaluations a surrogate-less optimizer needs in order to reach the same approximation quality than

the proposed Walsh-assisted Smco/w approach. This shall fairly complement the observations

from Fig. 6, where all algorithms including the surrogate-less ones have been run with exactly the

same number of real (expensive) function evaluations. More precisely, we execute the two surrogate-

less algorithms, Moea/d and Pls, using 105 real function evaluations, which is a reasonably high

budget for the considered instances. We then compute the number of function evaluations required

for each surrogate-less algorithm to reach an approximation set having a given target epsilon

indicator value. We choose di↵erent target values so as to render to relative di↵erence with the

Smco/w approach when executed with a range of di↵erent budgets of Bq = q ⇥ 100 evaluations,

with q 2 J2, 15K. As such, we choose a target value tq to be the average epsilon indicator value

attained by Smco/w after Bq evaluations, and using the greedy Walsh order (Ordergreedy) and the

best normalized improvement selection strategy (SelectNBI), as previously considered in Fig. 6. This

experiment is repeated for 10 di↵erent seeds. Let B be the number of true function evaluations

needed by a surrogate-less algorithm to hit target tq as defined previously. We then define the

acceleration ratio to be: B/Bq. Since Smco/w was found to be always better than the considered

surrogate-less approaches (Fig. 6), the acceleration ratio allows us to quantify in a more fine-

grained manner by how much Smco/w is superior. In fact, an acceleration ratio value of x > 1, for

some target tq, means that the corresponding surrogate-less algorithm needs x times more function

evaluations to reach the same average approximation quality attained by Smco/w when using Bq

evaluations. The average acceleration ratios are depicted in Fig. 7 under the di↵erent experimented

conditions, and as a function of the target a↵ordable number of real function evaluations Bq. Notice

that it might happen that one execution of the surrogate-less algorithms (Moea/d and Pls)

terminates without hitting a given target value tq. In that case, following the standard definition of

the so-called empirical running time (ERT) [80], we adopt an empirical-based assessment technique,

where the surrogate-less algorithm is assumed to be restarted with a seed sampled uniformly from

the 10 considered ones. In the case none of the 10 seeds were successful in hitting a target value tq,

Fig. 7 does not show any ratio; hence, indicating that all the 10 executions of the surrogate-less

algorithm failed in hitting the target tq after exhausting the 105 evaluations.

We can observe di↵erent trends depending on the characteristics of considered problem instance.

For the easiest MNK-landscape with n = 25 and k = 0, Pls performs better than Moea/d, and

the acceleration ratio due to use of the Walsh surrogate decreases as the a↵ordable budget Bq

increases. For example for a very restricted budget Bq = 200 evaluations, Smco/w requires 11.5

(respectively, 47.5) times less evaluations than Pls (respectively, Moea/d), whereas it requires

around 2 (respectively, 27) times less evaluations than Pls (respectively, Moea/d), for the highest
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Figure 7: Average acceleration ratio between surrogate-less algorithms and Smco/w (using Ordergreedy and SelectNBI)
for every target approximation quality tq and as a function of the number of corresponding function evaluations Bq.

budget Bq = 1500. For the hardest MNK-landscape with n = 50 and k = 2, Moea/d performs

better than Pls for a very restricted budget Bq = 200, with an acceleration ratio of about 2.1

in favor of Smco/w. With a high budget Bq = 1500, Smco/w requires around 150 times less

evaluations than both Moea/d and Pls. For MUBQP, only Pls is able to hit all the targets.

The acceleration ratio is again found to be substantial depending on the di↵erent targets and

dimensions.

Generally speaking, the acceleration ratios presented in Fig. 7 indicate that the Smco/w ap-

proach requires overall many order of magnitudes less expensive evaluations than its surrogate-less

counterparts to attain a high-quality approximation set. Combined with the CPU computational

times incurred by the Walsh surrogate from Table 7, these results provide a relatively clear picture

on the benefits of using the Walsh-assisted Smco/w approach when tackling a concrete optimiza-

tion scenario having a computationally expensive objective vector.

6. Conclusion

In this paper, we have investigated the design and analysis of a modular surrogate-assisted

framework for expensive multi-objective combinatorial optimization using Walsh basis. Based on

extensive experiments, we provided a systematic study of the combined e↵ects of di↵erent design

components. In particular, we found that there is a non-trivial interaction between the strategy

allowing to optimize the surrogate, and the strategy used for selecting the next solution to evaluate.

We showed that a selection strategy based on the predicted improvements of candidate solutions

with respect to a set of decomposed single-objective sub-problems is highly e↵ective. Besides,

we found that local search is to be preferred for the inner optimization of the discrete Walsh

surrogate. Finally, we highlighted the importance of the Walsh order, and we proposed simple
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dynamic strategies to accommodate the search to a range of black-box optimization functions

having di↵erent degrees of di�culty.

We leave open a number of research issues are worthwhile exploring. For instance, we rely on

the decomposition paradigm to structure the population of evaluated solutions, and to estimate

which new o↵spring is the most promising for a true evaluation. It would be interesting to support

di↵erent selection strategies based on other multi-objective paradigms. Another challenging issue

is to deal with problems having a high number of objectives, as well as to address other discrete

optimization domains, such as permutation problems, for which other single-objective surrogates

exist in the specialized literature. A main question is then to study at what extent our findings

hold for di↵erent objective and decision spaces.

Finally, the work conducted in this paper is of fundamental nature in the sense that we adopt

a benchmark-oriented validation methodology, without targeting a specific real-word optimization

setting. Considering a real-world application implies to deal with a number of additional and

di�cult questions. For instance, it could happen that for some complex applications, a restricted,

yet not empty, subset of Walsh functions of possibly di↵erent high orders, are to be used so that

the considered real-world problem can be fit accurately. This suggests to derive improved learning

techniques to discover those functions without experiencing scalability issues at the training phase.

Besides, the amount of computational ressources, in terms of parallel and distributed CPU cores,

that are available in practice when tackling a real-world expensive application, can be substantial.

This suggests that an ensemble of Walsh surrogates can be coordinated and trained in parallel,

hence allowing one to sample an eventually large number of solutions that cover the Pareto front

in a more e↵ective way. It is our hope that the comprehensive study conducted in this paper

will accelerate the establishment of a unified methodology for designing and analyzing discrete

surrogate-assisted multi-objective optimization algorithms.
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