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Context

Deep model

Signal

Spectrogram

Dataset

Recent advances in deep generative audio 
● Complex sounds
● Diverse and realistic
● Rely on complex architectures 
● Trained on large datasets

Major limitations 
● Time consuming process
● Tasks with limited data available
● Energy cost of training

Deep generative model for audio

Improve generalisation of deep generative models trained on limited data
Objective

Introduction
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Latent Geometry
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Ambient spaceLatent space

Hypothesis : geometrical considerations are overlooked by most generative models

Euclidean latent space 
➔ Interpretation of linear distances in Z 
➔ Interpolation / Extrapolation
➔ Mismatch Prior / Posterior

State of the art

The manifold hypothesis
Most real-world high-dimensional datasets lie 
in the vicinity of a manifold of much lower 
dimension.



Geometry Aware VAE
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State of the art

Modelling the latent space as a Riemannian manifold
❖ Learn a Riemannian metric from data that captures the geometry

Exploit the learned geometry
❖ Interpolate with respect to geodesics in the ambient space

➢ Realistic and smooth interpolations
❖ Geometry-aware sampling

➢ Sample onto the data manifold using the learned metric
➢ Improved sample quality and diversity

MNIST
 (120 samples)

VAE

GA-VAE

Data augmentation in high dimensional low sample size setting using a geometry-based variational 
autoencoder. Chadebec, C., Thibeau-Sutre, E., Burgos, N., & Allassonnière, S. (2022). IEEE 

Gaussian prior
Geometric

prior



Research Approach
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Conclusion
Understand the topology of audio manifolds and its implications for deep audio models 
● Modelling the latent space space structure as a Riemannian manifold to characterize the learned 

geometry.
● Derive geodesic interpolations and geometry aware sampling techniques to improve quality of 

generated samples.
● Interpretability of geodesic interpolations / distentangling

Exploit the latent geometry during training
● Design implicit data augmentation strategies informed by the latent geometry
● Regularize the training based on geometrical constraints
● Transfer the latent structure from a different task to inform training with inductive 

bias


