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Abstract5

Satellite observations in the Thermal Infra-Red (TIR) domain provide valuable infor-

mation on Land Surface Temperatures, Evapo-Transpiration and water use efficiency

and are useful for monitoring vegetation health, agricultural practices and urban plan-

ning. By 2030, there will be 3 new high-resolution global coverage satellite TIR mis-

sions in space, all of them with fields of view larger than ± 30°. Directional anisotropy

in TIR can affect the estimation of key application variables, such as temperature, and

are typically studied by means of field campaigns or physical modelling. In this work,

we have evaluated directional effects using simultaneous measurements from Landsat-

8 and the ± 45° field of view MASTER airborne TIR sensor from NASA. Differences

as high as 6K are observed in the surface temperatures derived from these simultaneous

observations. Those differences are attributed to directional effects, with the greatest

differences associated with hotspot conditions, where the solar and satellite viewing

directions align. Five well studied parametric directional models have then been fit-

ted to the temperature differences, allowing the amplitude of the measured directional

effects to be reduced below 1K, with small variations between models. These results

suggest that a simple correction for directional effects could be implemented as part of

the ground segment processing for the upcoming missions.
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1. Introduction8

Earth observation from satellites provide radiometric data in the Thermal InfraRed9

(TIR) spectrum, namely in the 8-12 µm range, that further serve to estimate the Land10

Surface Temperature (LST), which is an Essential Climate Variable (ECV). LST is11

used in a broad range of applications, notably to estimate the surface energy balance12

(Anderson et al., 2008), and the evapo-transpiration (ET) (Price, 1982; Courault et al.,13

2005; Anderson et al., 2012), allowing to detect plant water stress (Boulet et al., 2015)14

and to monitor irrigation (Ishimwe et al., 2014).15

A new generation of TIR sensors is foreseen to be launched in the coming years.16

They will have a high spatial resolution (ground sampling distance close to 60 meters17

at Nadir), and enhanced temporal resolution (every 3 days at equator, and even less at18

higher latitudes), and between 4 and 5 TIR channels, as well as other optical channels.19

Table 1 displays the main characteristics of these missions. The first on the agenda is20

TRISHNA (Thermal infraRed Imaging Satellite for High-resolution Natural resource21

Assessment) (Lagouarde et al., 2018), scheduled to be launched in 2026. This is a22

joint Indian and French mission developed by ISRO and CNES. It should be followed23

in 2027 by the Surface Biology and Geology (SBG) (Cawse-Nicholson et al., 2021),24

which is a joint mission between NASA and the Italian Space Agency (ASI). Last, the25

Land Surface Temperature Mission (LSTM) (Koetz et al., 2018) from the European26

Space Agency will be launched in 2029 for the first satellite and 2030 for the second27

one. All sensors from these TIR missions will be equipped with large Fields of View28

(FOV), in order to achieve both global coverage and short revisit time.29

With maximum zenith angles reaching 30 to 40 degrees, it is expected that direc-30

tional effects will affect the thermal images and the retrieval of LST by several Kelvins.31

They could therefore jeopardize the detection and monitoring of water stress as well32

as other downstream products (Mwangi et al., 2022). A normalization effort seems33

mandatory in order to reach the target accuracy of 1K for LST. For instance, the hotspot34

phenomena later introduced in section 1.1 will frequently contaminate TRISHNA, SBG35

and LSTM scenes in the tropics due to their overpassing time at noon. It is worth em-36

phasizing that thanks to its orbit design, TRISHNA will provide a workaround to this37
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problem by observing the same scene with at least 3 different viewing angles within38

8 days, whereas SBG and LSTM have opted for constant angles. In all cases, pre-39

processing of the Level 2 products should benefit from a correction of the directional40

effects. It is noteworthy that even if viewing angles of a single are constant for a given41

location, directional effects correction may still be required for the joint use of data42

from the three missions.43

Satellite Status Agencies Launch Resolution Revisit FoV

ASTER End of life JAXA 1999 90 . 16 days 8.55°

Landsat-8 & 9 Flying NASA 2013/21 100 m 8d (2 sat) 7.5°

ECOSTRESS NASA 2018 38x69 m irregular 28°

TRISHNA In prep. CNES & ISRO 2025 57 m 3d (1 sat) 34°

SBG NASA 2027 60 m <8d (1 sat) 34°

LSTM ESA 2029/31 37 m 2d (2 sat) 28°

Table 1: Main features of high resolution TIR satellites. For missions with two satellites (2 sat), both launch

years are mentioned.

1.1. Directional anisotropy in the TIR domain44

Satellite measurements of the LST inherently averages the temperature of visible45

elements within a pixel (Li et al., 2013). TIR directional effects are induced by changes46

in the proportions of those elements, within a pixel observed from different viewing an-47

gles. In structured landscapes, those elements can be divided into sunlit elements and48

shaded elements: when the sun and viewing directions get closer, proportion of visible49

shaded elements decreases, resulting in a larger proportion of hotter sunlit elements be-50

ing observed. This artificially increases the observed temperature, forming the hotspot51

phenomenon (Jupp and Strahler, 1991). Another effect inducing TIR anisotropy is the52

gap fraction (Nilson, 1999), resulting from the change in proportions of elements with53

different emissivities, and thus different temperatures, under the same solar radiation.54

For instance, when observing a cropland, observations with large viewing angles will55

increase the proportion of vegetation observed, while at nadir, the proportion of soil ob-56

served will be higher. In general, for vegetation pixels such as canopies or croplands,57
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the gap fraction and hotspot effects result from the continuous change of proportions58

of sunlit and shaded leaves and sunlit and shaded background elements. More struc-59

tured landscapes such as rows in croplands can emphasise both the hotspot and gap60

fraction effects, depending on the row orientation with respect to the satellite azimuth61

(Lagouarde et al., 2014). Finally, It is noteworthy that directional effects may also62

affect the Land Surface Emissivity (LSE) (Sobrino and Cuenca, 1999; Ermida et al.,63

2020).64

Directional effects in the reflective domain have been well studied (Roujean et al.,65

1992; Wanner et al., 1995; Roujean, 2000) and model-based corrections are routinely66

applied to high resolution imagery such as Landsat and Sentinel-2 (Claverie et al.,67

2018). Directional effects in TIR domain were primarily investigated by means of68

simulations (Duffour et al., 2016; Cao et al., 2019; Bian et al., 2020, 2023) using69

physically-based radiative transfer codes such as 1D SCOPE (Yang et al., 2021) and 3D70

DART (Gastellu-Etchegorry, 1996; Gastellu-Etchegorry et al., 2017). Detailed DART71

mock-ups were built for various land-cover types. Parametric models (Ermida et al.,72

2018; Cao et al., 2021), are considered as the only mean to routinely correct for direc-73

tional effects, and thereby be used in the ground segments processors. They were eval-74

uated against SCOPE and DART simulations (Pinheiro et al., 2006; Bian et al., 2018;75

Cao et al., 2019), or by cross-comparison with field measurements(Duffour et al., 2016)76

and medium resolution LEO (Low Elevation Orbit) and GEO (geostationary) satellites77

with large FOVs (Vinnikov et al., 2012; Guillevic et al., 2013; Ren et al., 2014).78

Current operating TIR High-Resolution (HR, 10 meter to 100 meter) satellite im-79

agery is acquired by instruments with a narrow FOV, such as Landsat-8 (± 7.5°) or80

ASTER (± 8.5°), where directional effects do not have a significant impact on LST81

measurements. A noticeable exception is the ECOSTRESS mission flying onboard the82

International Space Station (ISS) (Fisher et al., 2020), with its wide FOV ( ± 30°).83

Currently, there is no systematic correction of directional effects in the level 2 data84

processing of ECOSTRESS (Hulley and Hook, 2018).85
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1.2. Main contributions86

Simulating directional effects is valuable to understand the underlying physics, and87

to evaluate parametric models in a controlled environment. Simulations however have88

a limited variability with respect to the natural landscape that will be observed by a89

global coverage satellite mission. Databases of in situ measurements also lack suffi-90

cient diversity as they focus on a few plant species and land-cover types over selected91

geographic areas. Lower resolution (larger area) pixels from LEO and GEO satellites92

TIR images are a good complement to theoretical studies and field campaigns but their93

large pixels may include different types of landscapes whereas forthcoming higher res-94

olution TIR missions will focus on a finer scale.95

This work aims to assess a directional error budget in preparation of up-coming96

high spatial resolution TIR missions by utilizing available Landsat-8 imagery (Roy97

et al., 2014) combined with near simultaneous observations from the MODIS/ASTER98

airborne simulator (MASTER) (Hook et al., 2001). Evidences of directional behavior99

are identified and compared to several well-established directional models from the100

literature.101

Landsat-8 is the well-known Earth-observation satellite from the Landsat series,102

providing a global coverage of the globe with a 16-days revisit since 2013. Landsat-8103

has a TIR sensor resolution of 100 meters, though level 1 and 2 products further inter-104

polate LST products to 30 meters. The Landsat-8 FOV is quite narrow, as its maximum105

View Zenith Angle (VZA) is 7.5°, and LST maps will therefore be considered as ac-106

quired under near Nadir conditions in this study. MASTER is an airborne sensor jointly107

developed by Ames Research Center (ARC), Jet Propulsion Laboratory (JPL), and the108

EROS Data Center to support algorithms development, calibration and validation for109

the ASTER and MODIS teams. The MASTER instrument has 50 channels in the 0.4110

- 13 µm range, with 10 bands in the TIR wavelength range, with a large FOV (maxi-111

mum VZA of 42.5°). It has been regularly flown since 1998, providing more than 658112

days of acquisition. Spatial resolution ranges from 5 meters to 50 meters depending113

on the aircraft flight altitude. While Landsat-8 can provide near Nadir observations,114

MASTER fully covers the spatial resolution and VZA of the up-coming HR TIR mis-115

sions listed in table 1. Though ECOSTRESS could also be considered, its FOV ( 28°)116
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does not cover the full FOV of the up-coming missions. Moreover, ECOSTRESS has117

a very large swath, and a single Landsat-8 scene only covers a fraction of the VZAs of118

ECOSTRESS. MASTER being an airborne sensor, it covers the full range of VZA in a119

very narrow swath that fits completely into a Landsat-8 image.120

The remainder of this paper is organised as follows. Section 2 presents the matching121

methodology, the data processing, as well as the directional models and models fitting122

procedure. Section 3 presents LST comparison statistics for each match, the evidences123

of the directional effects and the performances of directional models fitted on the data.124

Section 4 discusses the limitations and possible follow-up to this study, and section 5125

summarizes the results and future work.126

2. Materials and methods127

2.1. Matching methodology128

The full MASTER archive metadata has been kindly provided by JPL, and Landsat-129

8 collection 2 level 2 archive metadata (as of 2022.02.17) has been downloaded from130

the Land Processes DAAC. From these data, all pairs of MASTER and Landsat-8 prod-131

ucts acquired during day-time, on the same date, with acquisition times within 10 min-132

utes of each other, and with an overlap of respective bounding boxes no less than 50%133

have been selected.134

Using this search process, 52 matches were identified, for which the Landsat-8135

overpass occurs during MASTER track flight. Those 52 matches correspond to 24136

unique MASTER tracks since one track can correspond to two Landsat-8 product.137

Among those 52 matches, 7 MASTER tracks are missing in the archive, which invali-138

dates 17 pairs. This leaves 35 pairs for which both Landsat-8 products and MASTER139

L1B (radiance at sensor) and L2 (derived LST and emissivities) products are available.140

Among those, there are 16 pairs for which the processing described in section 2.2 does141

not yield a valid difference image, because of cloud occurrences or insufficient swath142

final overlap. Table 2 gives the products references of all valid pairs used in this study.143

As shown in figure 1, all sites are located in California or nearby. Figure 2 shows a144

detailed map view of valid overlapping area for each MASTER track, with the overlap145
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of the second Landsat-8 image in blue when applicable. This map shows that for most146

of the tracks (3, 4, 6, 10, 12), the second Landsat-8 does not bring additional coverage,147

to the noticeable exception of tracks 8 and 9.148

Id MASTER track id Landsat L2 product id

1 2013-03-29_18:06:53 LC08_L2SP_038037_20130329_20200912_02_T1

2 2013-04-11_18:14:46 LC08_L2SP_041036_20130411_20200912_02_T1

3a 2013-05-22_18:13:09 LC08_L2SP_040036_20130522_20200913_02_T1

3b 2013-05-22_18:13:09 LC08_L2SP_040037_20130522_20200913_02_T1

4 2013-12-05_18:23:35 LC08_L2SP_043035_20131205_20200912_02_T1

5a 2014-03-31_18:11:16 LC08_L2SP_039035_20140331_20200911_02_T1

5b 2014-03-31_18:11:16 LC08_L2SP_039036_20140331_20200911_02_T1

6a 2014-04-14_18:27:14 LC08_L2SP_041036_20140414_20200911_02_T1

6b 2014-04-14_18:27:14 LC08_L2SP_041037_20140414_20200911_02_T1

7 2014-04-28_18:22:43 LC08_L2SP_043035_20140428_20200911_02_T1

8a 2014-06-06_18:25:35 LC08_L2SP_044033_20140606_20200911_02_T1

8b 2014-06-06_18:25:35 LC08_L2SP_044034_20140606_20200911_02_T1

9a 2014-10-21_18:35:15 LC08_L2SP_043034_20141021_20200910_02_T1

9b 2014-10-21_18:35:15 LC08_L2SP_043035_20141021_20200911_02_T1

10a 2015-05-28_18:13:05 LC08_L2SP_040036_20150528_20200909_02_T1

10b 2015-05-28_18:13:05 LC08_L2SP_040037_20150528_20200909_02_T1

11 2018-06-19_18:28:30 LC08_L2SP_042034_20180619_20200831_02_T1

12a 2021-03-30_18:32:40 LC08_L2SP_043033_20210330_20210409_02_T1

12b 2021-03-30_18:32:40 LC08_L2SP_043034_20210330_20210409_02_T1

Table 2: List of valid MASTER and Landsat-8 pairs
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Figure 1: Location of the 12 MASTER tracks that have been matched to near simultaneous Landsat-8 acqui-

sitions

2.2. Data Processing149

2.2.1. Product downloads150

Landsat-8 products have been downloaded from the collection 2 level 2 archive151

from the EarthExplorer portal1. MASTER L1B products (radiances and viewing an-152

gles), as well as L2 products (LST and geo-location grids) have been requested on153

the MASTER website2. Landsat-8 viewing angles have been computed by using a C154

program publicly available on USGS website3.155

2.2.2. Target variables156

Surface Brightness Temperature (SBT). Both mission output LST and LSE maps. But157

they differ in the way those variables are estimated. On Landsat-8, there is a single158

1https://earthexplorer.usgs.gov/, consulted on 2023.03.01
2https://masterprojects.jpl.nasa.gov/, consulted on 2023.03.01
3https://www.usgs.gov/landsat-missions/solar-illumination-and-sensor-viewing-angle-coefficient-file,

consulted on 2022.09.12
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Figure 2: Detailed view of the overlapping MASTER tracks and Landsat-8 near simultaneous acquisitions.

When two Landsat-8 images match a given track, the first image (a) is displayed in red and second image (b)

in blue.
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usable TIR band (B10, 10.6 - 11.19 µm), which prevents a joint estimation of LST and159

LSE. LSE is therefore derived by modulating the LSE from the ASTER Global Emis-160

sivity Database (Hulley et al., 2015) with the Normalized Difference Index (NDVI) and161

Snow Difference Index (NDSI) measured by Landsat-8. Various rules are applied to162

clamp emissivity values in corner cases. One important thing to note is that any emis-163

sivity lower than 0.6 is considered invalid and flagged as missing data. LST is then164

obtained by inverting the radiative transfer equation 1, with the atmospheric transmit-165

tance, upwelled and downwelled radiance estimated using (MODerate resolution atmo-166

spheric TRANsmission (MODTRAN) (Berk et al., 2014), Modern-Era Retrospective167

analysis for Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 2017)168

and data from he GEOS-5 FP-IT Atmospheric Data Assimilation System (GEOS-5169

ADAS) (Malakar et al., 2018).170

Lλ(θ) = [ϵλBλ(Ts) + (1 − ϵλ)L
↓

λ]τλ(θ) + L↑λ(θ) (1)

where Lλ(θ) is the at sensor radiance, λ is the wavelength, θ is the observation angle,171

ϵλ the surface emissivity, Ts is the Surface Temperature, L↓λ is the downwelled radiance,172

τλ(θ) is the atmospheric transmittance, L↑λ(θ) is the upwelled radiance and Bλ(Ts) is the173

Planck function defined in equation 2.174

Bλ(Ts) =
2hc2

πλ5
(
exp

hc
kλTs −1

) = C1

λ5
(
exp

C2
λTs −1

) (2)

Where h = 6.63×10−34Ws2 (Planck constant), c = 2.99×108ms−1 (speed of light),175

k = 1.38 × 10−23WsK−1 (Boltzmann constant), C1 = 2πhc2 = 3.74 × 10−16Wm2 (first176

radiative constant) and C2 = hc/k = 1.44 × 104µmK (second radiative constant).177

MASTER, on the other hand, uses the ASTER TES algorithm to retrieve LST val-178

ues (Hook et al., 2011), using MODTRAN radiative transfer code and atmospheric179

parameters the Global Data Assimilation System (GDAS) products from the National180

Center for Environmental Prediction (NCEP). Those parameters are optimized for a181

flight altitude of 20 kilometers. Level 2 products include LST estimates as well emis-182

sivity estimates for channels 43, 44, 47, 48 and 49.183

Since the algorithms for the separation of emissivity and LST are different, those184
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two variables may exhibit differences that are not related to directional effects. In order185

to limit the impact of those differences, this study recomputes the Surface Brightness186

Temperature (SBT), which corresponds to the temperature of a black-body emitting the187

same surface radiance, for both sensors, by means of equation 3, where λ = 10.9µm188

(center wavelength of Landsat-8 B10 band).189

SBT = B−1
λ (emis ∗ Bλ(LS T )) (3)

Note that equation 3 is only changing the balance between already estimated emis-190

sivities and LST, under the same radiative transfer budget.191

Equivalent Landsat-8 emissivity from MASTER. MASTER channels 47 and 48 overlap

Landsat-8 B10 spectral sensitivity response, as shown in figure 3. Since the overlaps

are significant, an equivalent Landsat-8 B10 emissivity is derived from MASTER, by

means of linear combination of emissivities of channel 47 and 48, as shown in equation

4 to 6. The weights of the linear combinations are derived from the integration of the

product of spectral sensitivities response, which correspond to the green and orange

areas in figure 3. Weights are given in equation 7. This equivalent emissivity will be

used as the MASTER emissivity throughout this study.

ϵ∗ =
w47

w47 + w48
ϵ47 +

w48

w47 + w48
ϵ48 (4)

w47 =

∫
λ

S RS landsat−8
B10 (λ) ∗ S RS MAS T ER

47 (λ) (5)

w48 =

∫
λ

S RS landsat−8
B10 (λ) ∗ S RS MAS T ER

48 (λ) (6)

192 w47

w47 + w48
= 0.605,

w48

w47 + w48
= 0.395 (7)

2.2.3. Geometric processing193

In order to compare measurements from products from the different sensors, they194

need to be first resampled to a common cartographic sampling grid. For each pair, this195

grid is defined using the Universal Transverse Mercator (UTM) cartographic projection196

of the Landsat-8 image of the pair. The sampling grid is defined according to the197

overlap area of the two products, and aligned to a multiple of the target resolution. The198
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Figure 3: Spectral Sensitivity Response of Landsat-8 and MASTER overlapping Thermal Infra-Red spectral

bands

target resolution is set to 100 meters for pairs of Landsat-8 and MASTER images, since199

the native resolution of Landsat-8 TIR bands is 100 meter.200

Landsat-8 resampling is achieved through an averaging filter, which should not201

incur any aliasing artifacts since the Landsat-8 LST and emissivity measurements are202

resampled at 30 meters resolution through bicubic interpolation. MASTER being a203

whisk-broom sensor, its sampling is regular in viewing angle and therefore irregular in204

ground geometry: both spacing between pixels and pixel size increase with the viewing205

angle. Resampling of those measurements to the target ground grid is achieved by206

means of Gaussian Weights Averaging (GWA), as described in equation 8, through its207

implementation in the pyresample library (Hoese et al., 2022):208

V(x, y) =
∑

i∈N(x,y)

e
−(x−xi )2+(x−xi )2

σ2 Vi (8)

Where (Vi, xi, yi) are swath samples of measurement V at location (xi, yi), N(x, y)209

are the N nearest neighbours of target ground location (x, y), and σ is a user-defined210

parameter, which is set using equation 9:211

σ(r,R,mt f ) =
max(r,R)
π

√
−2ln(mt f ) (9)

Where mt f is the value of the Modulation Transfer Function (MTF) at Nyquist212

cut-off frequency, allowing to trade level of blur and aliasing off, r is the native sensor213

resolution and R is the target resolution. In this work, MTF has been set to 0.1, which214

yields a sigma of 68.3 meters for MASTER.215

Given that all MASTER flights occurred at an altitude between 19 702 meters and216

20 088 meters, depending on the position in the swath and the flight azimuth, the output217
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100 meter pixels cover between 12.5 milliradians and 23.7 milliradians of the initial218

instantaneous MASTER FOV, which is 2.25 milliradians per pixel.219

2.2.4. Quality filtering220

Only samples that are marked as clear and not flagged as water or snow in the Pixel221

Quality Assessment mask from the Level 2 Landsat-8 products are kept for analysis.222

No additional quality filtering is performed on the MASTER side.223

2.2.5. Angular distance224

Let (θ0, ϕ0) and (θ1, ϕ1) denote two viewing directions by their zenith angle θ and225

azimuth angle ϕ.The angle between those two viewing directions is given by equation226

10:227

Dang(θ0, ϕ0, θ1, ϕ1) = arccos
(

sin(θ0)× sin(θ1)× cos(ϕ0 −ϕ1)+ cos(θ0)× cos(θ1)
)

(10)

This distance is used in this work to measure proximity to hotspot conditions, as228

well as to measure distance between MASTER and Landsat-8 viewing directions.229

2.3. Directional parametric models230

Four models investigated by Cao et al. (2019) have been used in this work: the231

Ross-Li model (Roujean et al., 1992; Wanner et al., 1995; Ren et al., 2014), the LSF-Li232

model (Su et al., 2002), the Vinnikov model (Vinnikov et al., 2012) and the RL model233

(Roujean, 2000; Lagouarde and Irvine, 2008). In addition to those models, we also234

investigated the LSF-RL model from Cao et al. (2021). Models are presented in table 3,235

where θv (resp. θs) is the view (resp. solar) zenith angle, and ∆ϕ denotes the difference236

between solar and view azimuth angle. Unless stated otherwise, remaining notations237

and kernel expressions will be those from Cao et al. (2019). The full kernel functions238

are not provided here for the sake of conciseness. All models m will be expressed as239

stated in equation 11, with k0, ..., kn being the free parameters of the model:240

T (θv, θs,∆ϕ) = m(θv, θs,∆ϕ, k0, ..., kn) × TNadir (11)
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For the sake of consistency with the other models, the Roujean-Lagouarde (RL)241

kernel has been rewritten as equation 12:242

KRL(θv, θs, khs) =
e−khs f − e−khs fn

1 − e−khs fn
(12)

with f and fn as written in Cao et al. (2019) (eq. 13 and 14). This mainly moves243

the original ∆T parameter out of the kernel formulation, in order to use it as a kernel244

coefficient in table 3. It must be stressed that the RL model is the only one that does245

not have a volumetric kernel, but only a geometric kernel. The LSF-RL complement246

the RL model with the LSF volumetric kernel. To make that more obvious, in table 3,247

the parameter k0 always represents the isotropic contribution, while k1 stands for the248

coefficient of the volumetric kernel (and therefore the RL model has no k1 parameter),249

and k2 is the coefficient of the geometric or hotspot kernel. The hotspot width parameter250

inside the exponential in 12 is labelled khs, and it should be noted that the RL and LSF-251

RL models are the only models with parameters non-linearity.252

Model Iso Volumetric Geometric / Hotpsot

Ross-Li k0 + k1 KRossThick(θv, θs, ∆phi) +k2 KLiSparseR(θv, θs, ∆phi)

LSF-Li k0 + k1 Klsf(θv, θs, ∆phi) +k2 KLiDenseR(θv, θs, ∆phi)

Vinnikov k0 + k1 Kemis(θv, θs, ∆phi) +k2 Ksolar(θv, θs, ∆phi)

RL k0 + k2 KRL(θv, θs, ∆phi, khs)

LSF-RL k0 + k1 Klsf(θv, θs, ∆phi) + k2 KRL(θv, θs, ∆phi, khs)

Table 3: Formulations of the five directional models from Cao et al. (2019) as well as of the LSF-RL model

from Cao et al. (2021) investigated in this work

The fitting of model parameters on the data has been performed by ordinary Least-253

Squares as stated in equation 13:254

min
(k0,k1,k2,khs)

∥ m(θv, θs,∆phi, k0, ..., khs) × TNadir − TDir(θv, θs,∆ϕ) ∥2 (13)

where Landsat-8 SBT is used as TNadir and MASTER SBT is used as TDir. Pa-255

rameters k0, k2 and khs are assumed to be strictly positive, and in Cao et al. (2019)256

the authors observe that k1 is always negative. Additionally, khs can not equal 0 in or-257
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der to avoid a null denominator in the exponential fraction. In order to enforce those258

constraints while still using unconstrained least-squares fitting, the models have been259

re-parametrized with exponential, and a small offset of 1e-6 has been added to khs to260

avoid the under-determination around 0, as shown in equation 14:261

k0 = ek′0 , k1 = −ek′1 , k2 = ek′2 , khs = 1e − 6 + ek′hs (14)

Optimization has been performed using the Levenberg-Marquardt algorithm imple-262

mented in scipy (Virtanen et al., 2020). Initial values have been set to 1. for k0, 0.01263

for k1 and k2, which corresponds to a variation of SBT of 1% that is consistent with the264

observations in the dataset, and 1 for khs, where k0, k1, k2 and khs defined in table 3.265

2.4. Land-cover analysis266

According to the literature, Land cover is one of the main drivers for TIR direc-267

tional anisotropy, as both gap fraction and hotspot effects are driven by the structure of268

the landscape, and in particular, of the vegetation. In order to provide insights on the269

land-cover classes covered by each of the tracks, five high level classes have been ex-270

tracted from the Copernicus Global Land Service maps at 100 meter resolution (Tsend-271

bazar et al., 2021). This land cover source has been selected because it is available as272

open-data, it covers the area of interest and provides several years of land cover maps273

covering the observation period. Maps from Copernicus GLS only cover years 2015274

to 2019, whereas MASTER tracks cover years2013 to 2021, therefore tracks prior to275

2015 have been assigned the 2015 land cover, while tracks posterior to 2019 have been276

assigned the 2021 land cover, under the assumption that land cover only marginally277

changes from one year to another, especially for high level classes. High level classes278

are aggregated from the land-cover maps as described in table 4. Furthermore, since279

vegetation can be at different stages of growth depending on plant type and season, the280

cropland, low vegetation and forests classes have been further stratified according to281

the Normalized Difference Vegetation Index (NDVI) (Kriegler et al., 1969) computed282

from Landsat-8 in three sub-classes : low NDVI (between 0 and 0.2), intermediate283

NDVI (between 0.2 and 0.6), and high NDVI (greater than 0.6).284
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High level class Copernicus Global Land Service classes (label)

Urban Urban / built up (50)

Bare Bare / sparse vegetation (60)

Croplands Cultivated and managed vegetation/agriculture (cropland) (40)

Low vegetation Shrubs (20)

Herbaceous vegetation (30)

Herbaceous wetland (90)

Moss and lichen (100)

Forests Closed forest, evergreen needle leaf (111)

Closed forest, evergreen, broad leaf (112)

Closed forest, deciduous needle leaf (113)

Closed forest, deciduous broad leaf (114)

Closed forest, mixed (115)

Closed forest, unknown (116)

Open forest, evergreen needle leaf (121)

Open forest, evergreen broad leaf (122)

Open forest, deciduous needle leaf (123)

Open forest, deciduous broad leaf (124)

Open forest, mixed (125)

Open forest, unknown (126)

Table 4: The five high level class derived from class aggregation of the Copernicus Global Land Service

classes
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Table 5 gives the proportions of each classes for each analysed MASTER track.285

All proportions are given in percentage of the total number of available pixels. In this286

table, it can be noted that low vegetation and croplands seldom reach the highest NDVI287

strata, while forests have intermediate to high NDVI, which is expected and advocate288

for the consistency between the derived land-cover maps and the observed landscapes.289

Track (1) is mostly composed of bare soil. Tracks (8) and (9) are the only ones with290

a significant proportion of croplands, all in the intermediate NDVI strata. Tracks (2)291

and (6) are the only ones with a significant proportion of urban pixels, and are com-292

plemented with low to intermediate NDVI classes of low vegetation. Remaining tracks293

are a mix of forests with intermediate to high NDVI, and low vegetation with low to294

intermediate NDVI.295

bare urban crops forests low veg.

ndvi low inter high low inter high low inter high

(1) 80.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 18.6 0.3 0.0

(2) 1.9 25.2 0.1 0.1 0.1 0.0 3.1 3.0 34.1 29.2 3.2

(3) 16.0 11.9 0.0 0.0 0.0 0.1 15.7 8.6 20.0 26.4 1.1

(4) 0.1 3.9 0.0 0.1 0.0 0.3 26.8 56.8 0.5 9.9 1.4

(5) 17.5 0.0 0.0 0.1 0.2 0.0 0.7 0.0 73.9 7.5 0.0

(6) 0.8 51.0 0.2 2.4 1.0 0.1 5.0 4.8 1.9 29.0 3.8

(7) 0.1 3.1 0.3 3.4 1.5 0.0 15.5 57.0 0.2 13.2 5.4

(8) 0.2 13.4 4.0 28.3 8.7 0.1 10.9 14.4 1.3 17.5 0.7

(9) 0.0 2.2 9.0 26.3 4.3 0.0 6.1 0.8 18.2 32.9 0.1

(10) 20.6 14.5 0.0 0.1 0.0 0.1 13.5 4.7 20.4 25.4 0.6

(11) 14.5 0.0 0.0 0.0 0.0 0.5 23.2 0.9 18.9 39.6 2.3

(12) 0.9 1.0 0.1 0.9 0.3 1.9 28.9 33.4 12.8 14.5 5.2

Table 5: Percentage of land-cover classes for each track. Vegetation classes are further stratified according

to Landsat-8 NDVI into [0,0.2] (low), [0.2,0.6] (intermediate) and [0.6, 1.0] (high). Classes exceeding 15%

of available pixels are highlighted in bold for the sake of readability.
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3. Results296

3.1. SBT difference analysis297

Table 6 shows the biases and RMSE of LST and SBT differences (Landsat-8 -298

MASTER), for each MASTER track, and for samples for which angles between view-299

ing directions are below 7°. Though each track exhibits an absolute LST bias lower300

than 1.8 K (1.6 K for SBT), the biases of each track vary significantly within this range.301

Standard deviation values range from 0.7 K to up to 2.2 K for LST and 0.6K to 2K for302

SBT, if we exclude track (10) which exhibits a very large standard deviation. Those303

values are in line with recent Landsat-8 LST performance assessment for Landsat-8304

Collection 2 Level 2 (Niclòs et al., 2021). For all tracks, SBT standard deviation is305

lower than LST standard deviation. SBT is therefore more suitable for the analysis in306

this paper, as it seems to discard discrepancies related to the different LST - emissivity307

separation methods detailed in section 2.2.2. In order to further reduce discrepancies308

unrelated to directional anisotropy, on each track SBT differences will be corrected309

from the bias, so that similar viewing angles between MASTER and Landsat-8 corre-310

spond to a null SBT difference on average. It is noteworthy that standard deviation in311

table 6 corresponds to the Root Mean Squared Error (RMSE) of the de-biased data.312

Figure 4 shows the SBT difference maps for each track, which have been corrected313

from the biases shown in table 6. Most tracks exhibit a pattern related to the position314

in the MASTER swath, and thus to the MASTER VZA. This is for instance the case315

form tracks (2), (6), (7), (8) and (12), where MASTER SBT appears to be consistently316

warmer on the western side of the swath than on the eastern side of the swath. Tracks317

(4), (9) and (10) have the highest SBT difference standard deviations in table 6 and ex-318

hibit spatial patterns that seem uncorrelated to TIR anisotropy. Inspection of Landsat-8319

cirrus band B9 in level 1C products from collection 2 reveals that track (10) is heavily320

contaminated by unmasked cirrus clouds, which explains both its high SBT difference321

standard deviation and large spatial patterns in SBT difference map. Likewise, a closer322

inspection of track (4) reveals that the SBT difference map is completely dominated323

by terrain effects, which explains both its high SBT difference standard-deviation and324

noisy spatial patterns. Inspection of remaining tracks reveals that track (9) is also partly325
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LST SBT

Track #samples Bias Std dev Bias Std dev

(1) 2013-03-29 5187 -0.6 0.7 -0.7 0.6

(2) 2013-04-11 69125 0.3 1.4 0.6 1.3

(3) 2013-05-22 59011 1.4 1.6 1.1 1.5

(4) 2013-12-05 7409 0.7 1.9 0.4 1.9

(5) 2014-03-31 22037 1.2 1.0 0.9 0.6

(6) 2014-04-14 73182 0.4 1.2 0.2 1.1

(7) 2014-04-28 13012 0.6 1.0 1.0 1.0

(8) 2014-06-06 138921 -0.3 1.8 -0.1 1.7

(9) 2014-10-21 74247 -1.5 2.1 -1.5 2.1

(10) 2015-05-28 97435 -0.1 5.5 -0.3 5.4

(11) 2018-06-19 36706 -1.3 1.7 -1.6 1.6

(12) 2021-03-30 62572 -1.7 1.9 -1.1 1.7

Table 6: Bias and RMSE of Land Surface Temperature and SBT difference (Landsat-8 - MASTER) for

samples with an absolute viewing angles distance bellow 7°
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contaminated by unmasked cirrus clouds and terrain effects. Tracks (4), (9) and (10)326

have therefore been excluded from the analysis in the remaining of this paper.327

3.2. Directional effects analysis328

3.2.1. Distance to hotspot vs. distance to Landsat-8 viewing direction329

In figure 5, SBT differences, corrected from the biases shown in table 6, are anal-330

ysed with respect to both MASTER view angular distance to hotspot and to Landsat-8331

viewing direction. All graphs exhibit the same v-shaped curve, which is induced by the332

relative viewing geometries between Landsat-8 and MASTER. Since Landsat-8 has a333

narrow FOV, the minimum angular distance between views occurs far from the hotspot334

condition (usually between 20° and 50° of distance to the hotspot), and with MASTER335

view close to Nadir. On the left of the minimum point, which corresponds to the west-336

ern part of the MASTER swath, the MASTER view gets closer to the hotspot, which337

correlates with MASTER temperature getting hotter than Landsat-8 temperature. This338

is especially visible for tracks (2), (8) and (12), which are also the tracks that come339

closer to the hotspot. On the right of the minimum point, which corresponds to the340

eastern part of the MASTER swath, the view gets away from the hotspot condition,341

which correlates in most views with MASTER getting colder than Landsat-8.342

3.2.2. MASTER view zenith and azimuth343

Figure 6 allows to better understand the angular configurations of each MASTER344

track with respect to the position of the sun. Two kinds of configurations can be ob-345

served. In hotspot conditions, when the sun is close to the principal observation plane,346

as in tracks (2), (8) and (12), the temperature steadily increases while coming closer to347

the sun position. On track (8), MASTER view zenith gets higher than the sun zenith348

which results in a cool-down of the SBT. Track (12) shows that the sun is almost in the349

principal plane, which explains why this track has the smallest distance to the hotspot.350

When the sun is far from the principal observation plane however, SBT gets colder351

with higher view zenith angle, on both ends of the swath. The difference with Landsat-352

8 SBT comes to a minimum near nadir, but the position of this minimum varies and353
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Figure 4: Maps of SBT difference (Landsat-8 - MASTER), corrected of the bias computed in table 6 for all

tracks (negative values are in red and mean that MASTER is warmer than Landsat-8)
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Figure 5: SBT difference (Landsat-8 - MASTER) with respect to angular distance from MASTER to hotspot

and from MASTER to Landsat-8, corrected of the bias computed in table 6 (negative values are in red and

mean that MASTER is warmer than Landsat-8)
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seems to be influenced by the position of the sun. This may be related to gap fraction354

effect and can be observed on tracks (1), (3), (5), (6), (7) and (11).355

Figure 6: SBT difference (Landsat-8 - MASTER) with respect to MASTER view zenith and azimuth, cor-

rected of the bias computed in table 6. Average sun position is marked by an orange star. (negative values

are in red and mean that MASTER is warmer than Landsat-8)

Figure 7 allows better observing those two configurations. It shows the distribu-356

tions of the bias-corrected SBT with respect to MASTER signed VZA (positive angle357

are to the east and therefore closer to the sun, negative to the west). The dotted red line358

indicates the mean difference, while the dashed red lines indicate ± 1 standard devia-359

tion. In configurations (2), (8) and (12) where the sun is almost in the principal plane360

and close to hotspot, MASTER SBT gets steadily warmer than Landsat-8 from east to361

west. For track (8), SBT starts to get colder past the sun zenith. For tracks (1), (3),362

(5), (6), (7) and (11), MASTER gets colder on both end of the swath, with a varying363
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position for the maximum position, which may be related to gap fraction. Dotted blue364

vertical lines indicate the FOV of the up-comping TRISHNA and SBG missions. One365

can note that the 1 standard deviation red dashed lines show that the standard devia-366

tion is almost constant throughout the MASTER signed VZA, and equal to standard367

deviation estimated in table 6. This standard deviation therefore probably accounts for368

uncertainties between sensors that are not related to TIR anisotropy.369

Figure 7: SBT difference, corrected of the bias computed in table 6, with respect to MASTER signed view

zenith angle (positive angles are to the east, negative to the west). The solid red line indicates the mean

values, the red dashed line indicates mean ± 1 standard deviation. Blue dotted lines indicate TRISHNA and

SBG FOV.

Table 7 gives a quantitative analysis of the directional effects budget for each track,370

based on the mean difference trend for each track (see dotted red curves in figure 7).371
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Within MASTER FOV, the amplitude of directional effects ranges from 1.5K to more372

than 6K for track (12), the closest track to hotspot conditions. Restricted to the foreseen373

TRISHNA and SBG FOV, this budget value falls to 4.7K.374

MASTER Trishna

id Min. -43° 43° amp. Min. -34° 34° amp.

(1) 2013-03-29 0.3 1.3 3.6 3.3 0.3 1.1 2.5 2.2

(2) 2013-04-11 -1.3 3.6 -1.2 4.9 -1.2 2.6 -1.2 3.9

(3) 2013-05-22 -0.3 1.8 3.2 3.4 -0.3 0.7 1.9 2.2

(5) 2014-03-31 -0.1 1.7 0.5 1.8 -0.1 1.4 0.2 1.5

(6) 2014-04-14 -0.3 0.8 2.4 2.7 -0.3 0.4 1.5 1.7

(7) 2014-04-28 -0.5 2.0 0.1 2.5 -0.5 1.5 -0.0 2.0

(8) 2014-06-06 -0.7 3.5 1.2 4.1 -0.7 2.5 0.1 3.1

(11) 2018-06-19 -0.2 4.1 4.0 4.3 -0.2 2.7 2.0 2.9

(12) 2021-03-30 -3.0 3.1 -2.9 6.3 -2.4 2.2 -2.5 4.7

Table 7: For each MASTER track, minimum average SBT difference, average SBT difference at both ends of

swath and amplitude (amp.) of SBT difference between minimum and maximum are displayed, left for the

MASTER FOV, right, for a limitation to TRISHNA FOV (all in K). The max-min column gives an estimate

of directional effects.

3.2.3. Sensitivity to land-cover375

Figure 8 shows the mean and standard deviation curves of SBT difference with re-376

spect to MASTER signed view zenith angle, for the major land-cover classes (> 15%)377

highlighted in table 5. It can be observed that though slight differences may appear378

between classes on the same track, most of the time all classes follow a similar trend379

for a given track. The NDVI strata seems to be the main driver for consistency, as can380

be noted on track (1) and (5) with bare soil and low vegetation with low NDVI, on381

track (3) with forests and low vegetation, both with intermediate NDVI, and on track382

(8) between croplands and low vegetation, both with a low NDVI. On track (6), it can383

be observed that the urban class behaves very similarly to the low vegetation with low384

NDVI class, which may indicate that urban class in actually a fair mix of artificial and385
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vegetated surfaces. Track (3) might exhibit some sort of gap fraction effect, with in-386

termediate NDVI classes getting to a lower minimum than low NDVI classes. Forests387

with high NDVI seem to behave slightly differently than other intermediate NDVI veg-388

etation classes, with only two examples on track (7) and (12). Interestingly, forests389

with high NDVI also exhibit a smaller standard deviation with respect to other classes.390

Some kind of ordering can be observed for instance on track (7) and (11), with lower391

NDVI classes yielding lower differences.392

It should however be noted that in most of the cases, mean curves of each classes are393

within the ± standard-deviation of other classes. This seems to indicate that in the 100394

meter resolution range, with this combination of limited dataset and land-cover source,395

pixels are mixed and exhibit average directional trends rather than sharp vegetation396

or crop types related signatures. Due to the severe classes imbalance between tracks,397

estimating model parameters independently on each class would further reduce the398

variability of angular configurations and thus the significance of the experiment. A399

much larger dataset would be necessary for per-class estimation of models parameters.400

In the next section, model estimations will therefore only be performed jointly for all401

classes.402

3.3. Directional model fitting403

3.3.1. Per-track parameters estimation404

In this section, each of the five models presented in table 3 is fitted independently405

on de-biased SBT from each track, using the methodology presented in 2.3. Models are406

fitted using all pixels from all land-cover classes of a track, which provides the required407

variability to fit the 3 to 4 parameters depending on the model. Figure 9 shows how408

each model fits the scatter plot for each track. SBT differences are expressed as a409

percentage variation to facilitate the comparison with the model. All models seem to410

be able to fit the observed directional effects, with the RL and LSF-RL being slightly411

more versatile than the other, and the Vinnikov model struggling to cope with higher412

VZA. This can be observed for instance on tracks (2) and (12) where the Vinnikov413

model diverges below 0°. Hotspot shape seems to be correctly captured by the other414

four models in track (2), (8) and (12). Differences for all models start to show for415
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Figure 8: Mean ± standard-deviation of unbiased SBT difference with repect to MASTER signed view zenith

angle for the major land-cover classes (> 15%) of each land cover classes as highlighted in table 5.
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higher viewing angles close to or outside limits of the data range.416

Figure 9: Least-Square fitting of the five TIR directional models from table 3 on SBT differences. Vertical

axis represent the percentage of variation of SBT between Landsat-8 (considered as Nadir) and MASTER.

In this figure, each model is fitted separately on each track.

In table 8, the correction performance of each model is measured for each track in417

terms of Root Mean Squared Error (RMSE) and amplitude (max - min of red curve418

in figure 7). Regarding RMSE, it can be observed that all models allow reducing the419

RMSE with respect to the uncorrected values. Though performances on RMSE im-420

provement are very close from one model to another, the LSF-Li reaches the best per-421

formances for 8 tracks out of 9, while the Ross-Li and LSF-RL models reaches the best422

performances on 7 tracks out of 9. On track (12), which is the closest to the hotspot,423

all models seem to perform almost equally. Gains on RMSE range from 0.2K to 0.9K424
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depending on the track.425

In Cao et al. (2019), lower RMSE are found on simulated data (bellow 0.5K). Thea426

authors recommend the following ranking for models (best to worst) : LSF-Li, Ross-427

Li, Vinnikov and RL. This is consistent with RMSE on table 8 with the LSF-Li being428

the best model 8 times out of 9, the Ross-Li, Vinnikov and LSF-RL models 7 times out429

of 9, and the RL model only 5 times out of 9.430

In terms of directional effects amplitude, table 8 shows that all models allow to431

significantly reduce the amplitude, below 1 K for the majority of tracks. Reductions432

for tracks with high hotspot effects are particularly strong, with track (12) going from433

more than 6K to less than 0.7 K for instance. The Vinnikov model is the best model434

for more than half of the tracks, but tracks with strong hotspot effect such as (8) and435

(12) are won by either RL, LSF-Li or LSF-RL. Regarding amplitude, performances436

of the different models are less close to each others, but this can be explained by the437

use of maximum - minimum difference, which is highly sensitive to outliers. Gains on438

directional effects amplitude range from 1.6K to 5.8K depending on the track.439

id RMSE Amp

Raw Vin. RL Ross LSF LRL Raw Vin. RL Ross LSF LRL

(1) 1.8 1.0 1.0 1.0 1.0 1.0 3.3 0.6 1.4 1.0 0.8 0.9

(2) 2.3 1.5 1.5 1.5 1.5 1.5 4.9 0.3 0.6 1.1 1.1 0.7

(3) 2.0 1.5 1.6 1.6 1.5 1.6 3.4 0.5 1.2 1.0 1.2 0.9

(5) 1.1 0.8 0.8 0.8 0.8 0.8 1.8 0.4 0.4 0.3 0.2 0.4

(6) 1.6 1.2 1.2 1.2 1.2 1.2 2.7 0.2 0.4 0.6 0.5 0.3

(7) 1.6 1.2 1.2 1.2 1.2 1.2 2.5 0.3 0.9 0.8 0.8 0.9

(8) 2.3 1.8 1.9 1.8 1.8 1.8 4.1 0.8 1.3 0.7 0.4 0.2

(11) 2.8 1.9 1.9 1.9 1.9 1.8 4.3 1.1 1.4 0.9 1.0 1.0

(12) 2.7 1.9 1.9 1.8 1.8 1.9 6.3 0.7 0.5 0.7 0.5 0.5

Table 8: Root Mean-Square error and amplitude (max - min of red curve in figure 7) for raw SBT corrected of

the bias computed in table 6, and for MASTER temperature normalized with five models, with parameters es-

timated for each track. Note that model names have been shortened (Vin: Vinnikov, RL: Roujean-Lagouarde,

Ross: Ross-Li, LSF: LSF-Li, LRL: LSF-RL).
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Figure 10 shows the raw and corrected SBT with respect to the signed VZA for 5440

tracks with very strong directional effects. It can be noted that the correction does not441

seem to have any effect on the standard-deviation, and thus it does not amplify or create442

any noise. For track (2), the best model in terms of amplitude is Vinnikov according443

to table 8, closely followed by RL and LSF, though it can be observed that the Ross-Li444

and LSF-Li models struggle at higher VZA (out of TRISHNA FOV). For track (3), the445

best model is also Vinnikov, with amplitude two times less than the next best model,446

which is RL. Indeed, the latter seems to fail to completely compensate the directional447

trends, with SBT differences still slightly positives for positive VZA and negative for448

negative VZA. On track (8), the best model is LSF-RL by a large amount according to449

table 8, which is confirmed on figure 10 with a smooth a regular corrected SBT.450

Although directional trends are considerably reduced after correction, there are re-451

maining trends in almost all models, and all of them struggle at higher VZA. Track (11)452

is noisier and the model fitting is poorer, with only the Ross-Li model achieving a cor-453

rection with an amplitude below 1 K, though differences on figure 10 are not obvious.454

For track (12), which is the track with the strongest hotspot effect due to the proxim-455

ity of MASTER viewing direction and solar direction (see figure 6), LSF-Li, RL and456

LSF-RL models have the best performances according to table 8 which is confirmed457

on figure 10 by fewer oscillations for higher VZA.458

3.3.2. Global models parameters estimation459

Fitting models on each track separately allows to assess how well those models ex-460

plain the observed data. However, this strategy does not apply to operational directional461

corrections in ground segments, where simultaneous observations will not be available462

to fit the models. This section investigates the performances of global models, with463

a single set of parameters for each model to correct all tracks at once. Parameters of464

those global models are fitted on all pixels from all tracks altogether, using the method-465

ology presented in 2.3. Figure 11 shows how well those global models fit the scatter466

plots for each track. It can be observed that even if the goodness of fit is lesser than in467

figure 9, it is still relatively high. However, global models also struggle to model the468

near hotspot conditions of track (12).469
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Figure 10: Corrected SBT versus signed VZA for raw and model-corrected SBT, for 5 tracks with high

directional effects amplitudes. Blue dashed lines indicate Trishna FOV.
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Table 9 shows the quantitative performance analysis of global models. As in table470

8, no model clearly outperform the others. All models achieve a systematic decrease471

of RMSE ranging from 0.2K to 0.9K and a systematic decrease of directional effects472

amplitude ranging from 1.3K to 4.8K. Even if their performances are lower than those473

achieved by per track models presented in section 3.3.1, global models still provide474

valuable corrections. It can be observed that if the RL model is frequently the best475

model in terms of RMSE, it is never the best model in terms of amplitude. The ranking476

according to the number of times a model is the best model in terms of RMSE is the477

following (best to worst) : RL, LSF-RL, Vinnikov and LSF-Li, Ross-Li. This ranking478

differs from the ranking of Cao et al. (2019), in which models are not fitted globally.479

id RMSE Amp

Raw Vin. RL Ross LSF LRL Raw Vin. RL Ross LSF LRL

(1) 1.8 1.2 1.3 1.0 1.0 1.2 3.3 1.2 1.2 1.6 0.9 1.0

(2) 2.3 1.5 1.6 1.6 1.6 1.6 4.9 1.0 1.8 1.8 2.2 2.0

(3) 2.0 1.6 1.6 1.6 1.6 1.6 3.4 1.2 1.3 1.4 1.2 1.4

(5) 1.1 0.9 0.8 1.2 1.1 0.8 1.8 1.1 0.6 0.5 1.1 0.7

(6) 1.6 1.2 1.2 1.2 1.2 1.2 2.7 0.6 0.5 0.7 0.7 0.3

(7) 1.6 1.2 1.2 1.3 1.3 1.2 2.5 0.8 0.9 1.0 1.4 1.0

(8) 2.3 1.9 1.9 2.0 1.9 1.9 4.1 1.4 1.9 1.9 1.0 1.4

(11) 2.8 2.2 1.9 2.2 2.1 1.9 4.3 2.8 2.1 2.8 1.9 1.9

(12) 2.7 2.1 2.0 2.1 2.0 2.1 6.3 2.5 2.7 1.7 1.5 3.2

Table 9: Root Mean-Square error and amplitude (max - min of red curve in figure 7) for raw SBT corrected

of the bias computed in table 6, and for MASTER temperature normalized with five models, with parameters

jointly estimated on all tracks.Note that model names have been shortened (Vin: Vinnikov, RL: Roujean-

Lagouarde, Ross: Ross-Li, LSF: LSF-Li, LRL: LSF-RL).

Figure 12 presents the same tracks as in figure 10 but corrected with the global480

models. While all tracks exhibit residual angular trends, within the TRISHNA FOV,481

all models exhibit performances that may be of interest for downstream applications.482

Track (11) has the highest residual effects, which is compliant with figures in table 9,483
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Figure 11: Least-Square fitting of the five TIR directional models from table 3 on SBT differences. Vertical

axis represent the percentage of variation of SBT between Landsat-8 (considered as Nadir) and MASTER.

In this figure, each model is jointly fitted on all tracks.
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showing a residual amplitude of around 2K for all models. On track (12), which is the484

closest to hotspot conditions, the Vinnikov and LSF-RL model perform poorly with485

respect to the other models, the former even introduces an artificial angular trend while486

the latter fails to completely capture the angular tend. All remaining models on track487

(12) significantly reduce the angular trend that can be observed in raw SBT differences.488

Figure 12: Corrected SBT versus signed VZA for raw and model-corrected SBT, using models jointly fitted

on all tracks, for 5 tracks with high directional effects amplitudes. Blue dashed lines indicate TRISHNAp

FOV.

Figure 13 presents a complete viewing angles sampling of each global model, in489

the mean solar conditions of track (12). All models seem to have captured the hotspot490

effect, while the shape of the hotspot itself varies from one model to another. the491

Vinnikov model hotspot seems ahead of the sun zenith angle, which may explain its492

lesser performance in correcting track (12). Table 10 shows the estimated parameters493

for each model. One can note that the Ross-Li Volumetric kernel contribution is very494

low with respect to the others.495
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Figure 13: Polar plot of the different models, jointly fitted on all tracks, using average solar angles of track

(12). Sun position is indicated by an orange star mark.

Model k0 k1 k2 khs

Ross-Li 1 -7.4e-16 0.0091

LSF-Li 1.2 -0.22 0.011

Vinnikov 1 -0.023 0.024

RL 1 0.0061 1.8e-07

LSF-RL 1 -0.047 0.0058 9.7e-07

Table 10: Parameters of the global models, estimated from all pairs

4. Discussion496

This study exhibits evidences of strong directional effects up to an amplitude of497

6K within a FOV of ± 45°, with real high-resolution TIR data, and shows encouraging498

performances of state-of-the art parametric models to mitigate their impact on temper-499

ature accuracy. However, two aspects of this work need to be further analysed and500

discussed: the inherent limitations related to the scarce data availability on one hand,501

and the derivation of the model parameters in a real-world ground segment scenario.502

4.1. Limitations of the study503

Due to the scarce availability of simultaneous observations between MASTER and504

Landsat-8 on one hand, and the limited coverage of MASTER flights on the other, this505

study only covers a limited range of landscapes, all of them located in California, USA.506

Therefore, it can not be used to draw solid conclusions on other kinds of landscapes507

such as desert bare soil, very dense rain-forest canopy or tundras for instance. The ge-508

ographic limitations also come with a low variety of solar angle conditions, excluding509

extreme latitudes and equator for instance.510

35



Moreover, since this study relies on Landsat-8 acquisitions which have a local over-511

passing time of approximately 10:30 AM, its results are mainly valid for medium morn-512

ing sun angles, whereas most upcoming missions will have a local over-passing time513

around noon. The solar zenith angle will therefore be lower, leading to solar angular514

conditions that have not been analysed in this study. As hotspot conditions will be515

more frequent, It is conjectured to observe lower but more frequent directional effects516

for sun position closer to zenith, but in the mean time SBT values could be higher.517

Finally, this study adopts an undiscriminating point of view regarding the actual518

land-cover of each pixel, whereas the literature, which is driven by work on radiative519

transfer modeling, strongly suggests that different models or at least model parameters520

should be applied to different land-covers. We analysed the influence of land-cover on521

TIR anisotropy in section 3.2.3. We observed that classes seem to be mixed in our 100522

meter resolution dataset, and exhibit similar angular trends. The land-cover agnostic523

approach was therefore privileged. However, this could be revisited if a larger dataset524

was to be acquired, with more landscape variability. It must be stressed that if a direc-525

tional effect correction is to be implemented into up-coming missions ground-segment526

as a routine level 2 processing, relying on land-cover discrimination and phenology527

will be hard to achieve for a global coverage mission. Nevertheless, exogenous land-528

cover and phenology maps could be used for that purpose (Phiri et al., 2020). Last,529

TIR directional effects in urban environment follow very different physical causes and530

trends (Lagouarde and Irvine, 2008; Lagouarde et al., 2010), and may require different531

models, such as the combinations of base kernels investigated in Jiang et al. (2021).532

4.2. Model parameters estimation for up-coming ground segments533

Another open question is whether such a correction is to be implemented within534

future ground segments and which credit to give to the estimated model parameters535

over time. In this study, models have first been fitted to each track independently, re-536

sulting in good correction performances of up to 5.8K in amplitude, but with important537

variations of the parameters from one track to another. Such variability suggests that538

model parameters might depend on the canopy structure as well as on the observation539

conditions they are fitted to. For instance, the RL kernel, is the best performing kernel540
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for track (12) that is closest to hotspot condition, which can be explained either because541

this model is a good model for hotspot or because it requires hotspot condition to be542

fitted properly. It must however again be stressed that such scene based individual pa-543

rameters estimation is out of reach for routinely correcting data from global coverage544

satellites such as TRISHNA, LSTM or SBG.545

On the other hand, the global models that have been fitted simultaneously on all546

tracks still exhibit interesting correction performances of up to 4.7K in the studied547

tracks. This work therefore suggests that such global models could be used routinely548

in a ground segment and be beneficial for downstream applications, with the limitations549

already highlighted in section 4.1.550

While the determination of factors that should drive model parameters is probably551

best served by the physical process modelling scientific community, this paper pro-552

poses valuable dataset and methodology to assess model performances before putting553

them into production. Though in this work the analysed data are limited to 9 tracks554

in California, in the future, MASTER or other airborne TIR sensors with wide FOVs555

might be used to acquire more of those simultaneous observations with the Landsat556

series, effectively building a database for the assessment and calibration of directional557

parametric models, should attention be paid to the simultaneous over-passing time.558

5. Conclusion559

In this paper, simultaneous observations in space and time between Landsat-8 and560

the wide FOV MASTER airborne TIR sensors have been leveraged to analyse potential561

directional effects and their error budget for up-coming High Resolution TIR missions.562

Nine MASTER tracks where identified with a Landsat-8 overpass during the flight and563

the analysis of their SBT differences exhibits directional effects ranging from 1.6K to564

more than 6K within MASTER full FOV depending to the proximity to hotspot con-565

ditions. Three tracks are close to those conditions and one is almost within the prin-566

cipal acquisition plane, leading to the highest 6K amplitude. Other tracks also exhibit567

evidences of the gap fraction effect. Five state-of-the-art parametric models for TIR568

anisotropy have been selected from the literature for having been extensively tested on569
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simulated data. Those five models have been fitted to each of the identified MASTER570

track, using Landsat-8 as the target Nadir SBT of reference. The corrected temperature571

exhibits a systematic decrease of the RMSE of 0.2K to 0.9K, and a reduction of the am-572

plitude associated to directional effects of 1.6K to 5.8K, bringing down the directional573

error budget to less that 1K in almost all cases. Global models, fitted simultaneously574

on all valid tracks, have also been assessed, with a reduction of RMSE of 0.2K to 0.8K575

and a reduction of the directional effect amplitude of 1.3K to 4.7K, bringing down576

the directional error budget below 2K in most cases. Those results suggest that future577

ground segments of up-coming high-resolution missions with a FOV greater than 30°578

would benefit from implementing such a correction. This paper also lays grounds for a579

directional model in flight calibration procedure for those up-coming missions, should580

more airborne data be gathered during Landsat overpasses in the future.581

The data used in this study have been made publicly available as an open dataset (Michel582

et al., 2023).583
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