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Highlights

Quantifying Thermal Infra-Red directional anisotropy using Master and Landsat-
8 simultaneous acquisitions

Julien Michel, Olivier Hagolle, Simon J. Hook, Jean-Louis Roujean, Philippe Gamet

• Comparing Landsat-8 and Master Surface Brightness Temperature from simulta-
neous acquisitions show evidences of Thermal Infra-Red directional anisotropy
of up to 6K,

• Four parametric models from the litterature are fitted to the directional anisotropy
effect, allowing to be reduced by up to 5.8K,

• Global models fitted on all simultaneous observations at once can still reduce
directional anisotropy by up to 4.7K, reducing the error below 2K in most cases.
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Abstract

Satellite observations in the Thermal Infra-Red (TIR) domain provide valuable infor-
mation on Land Surface Temperatures, Evapo-Transpiration and water use efficiency
useful for monitoring vegetation health, agricultural practices and urban planning. By
2030, there will be 3 new high-resolution global coverage satellite TIR missions in
space, all of them with fields of view larger than ± 30°. Directional anisotropy in TIR
can affect the estimation of key application variables, such as temperature, and are
typically studied with field campaigns or physical modelling. In this work, we have
evaluated directional effects using simultaneous measurements from Landsat-8 and the
± 45° field of view MASTER airborne TIR sensor from NASA. Differences, as high
as 6K observed in the surface temperatures derived from these simultaneous observa-
tions are attributed to directional effects, with the greatest differences associated with
hotspot conditions, where the solar and satellite viewing directions align. Four well
studied parametric directional models were fitted to the temperature differences allow-
ing the amplitude of the measured directional effects to be reduced to below 1K, with
small variations between models. The results suggest it should be possible to imple-
ment a correction for directional effects as part of the ground segment processing for
the upcoming missions.

Keywords: Thermal Infra-Red, Land Surface Temperature, MASTER, Landsat-8,
Calibration, Anisotropy

1. Introduction

Earth observation satellites measuring the radiometric signal in the Thermal In-
fraRed (TIR) spectrum between 8-12 um are used to derive the Land Surface Temper-
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ature (LST), which is an Essential Climate Variable (ECV). LST is used to estimate
evapo-transpiration (ET) (Price, 1982; Courault et al., 2005; Anderson et al., 2012),
to detect plant water stress Boulet et al. (2015) and monitor and manage irrigation. A
new generation of TIR sensors planned for launch later this decade will scan the Earth
at high spatial and temporal resolutions, with a revisit of about 3 days at equator (and
more at higher latitudes), a ground sampling distance close to 60 m at Nadir, and 4 or
5 TIR channels, plus some optical bands (Table 1). TRISHNA Lagouarde et al. (2018)
is a joint Indo-French mission developed by, CNES and ISRO, with a nominal launch
date of 2025. It will be followed by the by the Surface Biology and Geology (SBG)
Cawse-Nicholson et al. (2021), a joint mission between NASA and the Italian Space
Agency (ASI) and the the Land Surface Temperature Mission (LSTM) Koetz et al.
(2018) from the European Space Agency later this decade.

Satellite Agency Launch Resolution Revisit FoV
TRISHNA CNES & ISRO 2025 57 m 3d (1 sat) 34°
SBG NASA 2027 60 m <8d (1 sat) 34°
LSTM ESA 2029/31 37 m 2d (2 sat) 28°
LANDSAT 8 & 9 NASA 2013/21 100 m 8d (2 sat) 7.5°
ECOSTRESS NASA 2018 38x69 m irregular 28°

Table 1: Main features of high resolution TIR satellites. For those missions with two satellites (2 sat), both
launch years are mentioned.

1.1. Directional anisotropy in the TIR domain from high resolution imagery

Similar to the reflective domain, TIR directional effects are induced by changes in
the proportions of sunlit and shaded elements within a pixel, that depends on the respec-
tive positions of the sun and viewing directions (Gastellu-Etchegorry, 1996; Norman
and Becker, 1995). When the viewing directions of the satellite and sensor coincide, all
shaded parts are occluded and all sunlit parts are seen, leading to a peak of LST called
the hotspot. The hotspot will be present in TRISHNA, SBG and LSTM scenes in the
tropics. The occurrence of hot-spot will be quite common with these satellite-sensor
systems due to overpass times being close to noon. It is worth emphasizing that TR-
ISHNA will provide a workaround to this problem by observing the same scene with
at least 3 different viewing angles within 8 days, thanks to its orbit design, by contrast
SBG and LSTM have opted for constant angles. Further away from the hotspot, the
proportions of sunlit and shaded areas will vary, which will generate directional effects
due to inherent anisotropy properties of most ground targets (Cao et al., 2019; Duffour
et al., 2016).

As all the up-coming high-resolution missions cited in table 1 will have a large
field of view, with maximum viewing zenith angles reaching between 30 and 40 de-
grees, directional effects in TIR domain may impact the accuracy of LST retrieval and
downstream products Mwangi et al. (2022). Therefore, pre-processing of the Level
2 products should benefit from a correction of such directional effects, depending on
the actual error budget associated with those directional effects outside of the hotspot
geometric conditions.
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Directional effects in the reflective domain have been well studied (Roujean et al.,
1992; Roujean, 2000; Wanner et al., 1995) and model-based corrections are routinely
applied to high resolution imagery such as Landsat and Sentinel-2 Claverie et al. (2018).
Current TIR HR (high-resolution) satellite imagery (resolution range 10 meter - 100
meter) is acquired by instruments with a narrow field of view (FOV), such as Landsat-
8 (± 7.5°) or ASTER (± 8.5°), where directional effects do not have a significant impact
on LST measurement. A noticeable exception is the ECOSTRESS mission flying on-
board the International Space Station (ISS) Fisher et al. (2020), with its wide FOV (
± 30°). Currently, there is no systematic correction of directional effects in the level 2
data processing of ECOSTRESS Hulley and Hook (2018).

Directional effects in TIR (Bian et al., 2020, 2023) domain were primarily investi-
gated by means of simulations of physically-based radiative transfer codes such as 1D
SCOPE Yang et al. (2021) and 3D DART Gastellu-Etchegorry et al. (2017). Detailed
DART mock-ups were built for various land-cover types. Another category of models,
so-called parametric models (Ermida et al., 2018; Cao et al., 2021) are considered as
the only means to routinely correct for directional effects and thereby be used in the
ground segments processors. They were evaluated against SCOPE and DART simula-
tions (Cao et al., 2019; Bian et al., 2018; Pinheiro et al., 2006), or by cross-comparison
between field measurementsDuffour et al. (2016) and medium resolution LEO (Low
Elevation Orbit) and GEO (geostationary) satellites (Guillevic et al., 2013; Ren et al.,
2014; Vinnikov et al., 2012) with a large field of view. It also noteworthy that di-
rectional effects also affect the Land Surface Emissivity (LSE) (Sobrino and Cuenca,
1999; Ermida et al., 2020).

1.2. Main contributions
Simulating directional effects is valuable to help understand the underlying physics,

and to calibrate and evaluate parametric models in a controlled environment. Simula-
tions however have a limited variability with respect to the natural landscape that will
be observed by a global coverage satellite mission. Databases of situ measurements
also lack sufficient diversity as they focus on a few plant species and land-cover types
over selected geographic areas. Lower resolution (larger area) pixels from LEO and
GEO satellites TIR images are a good complement to theoretical studies and field cam-
paigns butut their large pixels may include different types of landscapes whereas forth-
coming higher resolution TIR missions will focus on a finer scale enabling evalution
of water stress within a given field.

This work aims to assess a directional error budget in preparation of up-coming
high spatial resolution TIR missions by utilizing on on-orbit satellite-sensor data with
high spatial resolution (Landsat 8) combined with near simultaneous observations from
the MODIS/ASTER airborne simulator (MASTER) Hook et al. (2001). Evidence of
directional behavior has been identified and compared to several well-established di-
rectional models from the literature.

Landsat-8 is the well-known Earth-observation satellite from the Landsat series,
providing a global coverage of the globe with a 16-days revisit since 2013. Landsat-
8 has a TIR sensor resolution of 100 meters, though level 1 and 2 products further
interpolate LST products to 30 meters. The Landsat-8 FOV is quite narrow, as its
maximum VZA is 7.5°, and LST maps will be considered as acquired under near Nadir
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conditions in this study. MASTER Hook et al. (2001), is an airborne sensor jointly
developed by Ames Research Center (ARC), Jet Propulsion Laboratory (JPL) and the
EROS Data Center, to support algorithm development, calibration and validation for
theASTER and MODIS teams. The MASTER instrument has 50 channels in the 0.4 -
13 µm range, with 10 bands in the TIR wavelength range, with a large FOV (maximum
VZA of 42.5°). It has been regularly flown since 1998, providing more than 658 days
of acquisition. Spatial resolution ranges from 5 meters to 50 meters depending on the
aircraft altitude. While Landsat-8 can provide near Nadir observations, MASTER fully
covers the spatial resolution and VZA of the up-coming high resolution TIR missions
listed in table 1. Though ECOSTRESS could also be used for the purpose of this
work, its FOV ( 28°) does not cover the full field of view of the up-coming missions.
Moreover, ECOSTRESS has a very large swath, and a single Landsat-8 scene only
covers a fraction of the VZAs of ECOSTRESS. MASTER being an airborne sensor, it
covers the full range of VZA in a very narrow swath that fits completely into a Landsat-
8 image.

The remainder of this paper is organised as follows. Section 2 presents the matching
methodology, the data processing, as well as the directional models and models fitting
procedure. Section 3 presents LST comparison statistics for each match, the evidences
of the directional effects and the performances of directional models fitted on the data.
Section 4 discusses the limitations and possible follow-up to this study, and section 5
summarizes the results and future work.

2. Materials and methods

2.1. Matching methodology

The full MASTER archive metadata was provided by JPL, and Landsat-8 collection
2 level 2 archive metadata (as of 2022.02.17) was downloaded from the Land Processes
DAAC. From these data all pairs of MASTER and Landsat-8 products acquired during
day-time, on the same date, with acquisition times within 10 minutes of each other,
and with an overlap of respective bounding boxes no less than 50% were extracted. In
order to measure the difference between acquisition times, the distance presented in
equation 1 is used, as it takes into account both acquisition start and end time which
are available in metadata for both sensors. It is noteworthy that this distance is null if
one acquisition occurs fully within the time frame of the other.

∆T = max
(
max(T landsat8

start − T ecostress
end , 0),max(T ecostress

start − T landsat8
end , 0)

)
(1)

Using this search process, 52 matches were identified, for which the Landsat-8
overpass occurs during MASTER track flight. Those 52 matches correspond to 24
unique MASTER tracks since one track can correspond to more than one Landsat-8
product. Among those 52 matches, 7 MASTER tracks are missing in the archive. This
leaves 35 pairs for which both Landsat-8 products and MASTER L1B (radiance at
sensor) and L2 (derived LST and emissivities) products are available. Among those,
there are 16 pairs for which the processing described in section 2.2 does not yield a
valid difference image, because of cloud occurrences or insufficient swath final overlap.
Table 2 gives the products references of all valid pairs used in this study. As shown
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in figure 1, all sites are located in California or nearby. Figure 2 shows a detailed
map view of valid overlapping area for each MASTER track, with the overlap of the
second Landsat-8 image in blue when applicable. This map shows that most of the
time (tracks 3, 4, 6, 10, 12), the second Landsat-8 does not bring additional coverage,
to the noticeable exception of tracks 8 and 9.

Id MASTER track id Landsat L2 product id
1 2013-03-29_18:06:53 LC08_L2SP_038037_20130329_20200912_02_T1

2 2013-04-11_18:14:46 LC08_L2SP_041036_20130411_20200912_02_T1

3a 2013-05-22_18:13:09 LC08_L2SP_040036_20130522_20200913_02_T1

3b 2013-05-22_18:13:09 LC08_L2SP_040037_20130522_20200913_02_T1

4 2013-12-05_18:23:35 LC08_L2SP_043035_20131205_20200912_02_T1

5a 2014-03-31_18:11:16 LC08_L2SP_039035_20140331_20200911_02_T1

5b 2014-03-31_18:11:16 LC08_L2SP_039036_20140331_20200911_02_T1

6a 2014-04-14_18:27:14 LC08_L2SP_041036_20140414_20200911_02_T1

6b 2014-04-14_18:27:14 LC08_L2SP_041037_20140414_20200911_02_T1

7 2014-04-28_18:22:43 LC08_L2SP_043035_20140428_20200911_02_T1

8a 2014-06-06_18:25:35 LC08_L2SP_044033_20140606_20200911_02_T1

8b 2014-06-06_18:25:35 LC08_L2SP_044034_20140606_20200911_02_T1

9a 2014-10-21_18:35:15 LC08_L2SP_043034_20141021_20200910_02_T1

9b 2014-10-21_18:35:15 LC08_L2SP_043035_20141021_20200911_02_T1

10a 2015-05-28_18:13:05 LC08_L2SP_040036_20150528_20200909_02_T1

10b 2015-05-28_18:13:05 LC08_L2SP_040037_20150528_20200909_02_T1

11 2018-06-19_18:28:30 LC08_L2SP_042034_20180619_20200831_02_T1

12a 2021-03-30_18:32:40 LC08_L2SP_043033_20210330_20210409_02_T1

12b 2021-03-30_18:32:40 LC08_L2SP_043034_20210330_20210409_02_T1

Table 2: List of valid MASTER and Landsat-8 pairs

2.2. Data Processing
2.2.1. Product downloads

Landsat-8 products were downloaded from the collection 2 level 2 archive from
the EarthExplorer portal1. MASTER L1B products, containing radiances and viewing
angles, as well as L2 products, containing LST and geo-location grids, were requested
on the MASTER website2. Landsat-8 viewing angles have been computed by using a
C program publicly available on USGS website3.

2.2.2. Target variables
Both mission outputs are LST and LSE maps. But they differ in the way they are es-

timated. On Landsat-8, there is a single usable TIR band (B10, 10.6 - 11.19 µm), which

1https://earthexplorer.usgs.gov/, consulted on 2023.03.01
2https://masterprojects.jpl.nasa.gov/, consulted on 2023.03.01
3https://www.usgs.gov/landsat-missions/solar-illumination-and-sensor-viewing-angle-coefficient-file,

consulted on 2022.09.12
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Figure 1: Location of the 12 MASTER tracks that have been matched to near simultaneous Landsat-8 acqui-
sitions

Figure 2: Detailed view of the overlapping MASTER tracks and Landsat-8 near simultaneous acquisitions.
When two Landsat-8 images match a given track, the first image (a) is displayed in red and second image (b)
in blue.
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prevents a joint estimation of LST and LSE. LSE is therefore derived by modulating
the LSE from the ASTER Global Emissivity Database Hulley et al. (2015) with the
Normalized Difference Index (NDVI) and Snow Difference Index (NDSI) measured
by Landsat-8. Various rules are applied to clamp emissivity values in corner cases.
One important thing to note is that any emissivity lower than 0.6 is considered invalid
and flagged as missing data. LST is then obtained by inverting the radiative transfer
equation 2, with the atmospheric transmittance, upwelled and downwelled radiance
estimated using MODTRAN, MERRA-2 and FP-IT data Malakar et al. (2018).

Lλ(θ) = [ϵλBλ(Ts) + (1 − ϵλ)L
↓

λ]τλ(θ) + L↑λ(θ) (2)

where Lλ(θ) is the at sensor radiance, λ is the wavelength, θ is the observation angle,
ϵλ the surface emissivity, Ts is the Surface Temperature, L↓λ is the downwelled radiance,
τλ(θ) is the atmospheric transmittance, L↑λ(θ) is the upwelled radiance and Bλ(Ts) is the
Planck function defined in equation 3.

Bλ(Ts) =
2hc2

πλ5
(
exp

hc
kλTs −1

) = C1

λ5
(
exp

C2
λTs −1

) (3)

Where h = 6.63×10−34Ws2 (Planck constant), c = 2.99×108ms−1 (speed of light),
k = 1.38 × 10−23WsK−1 (Boltzmann constant), C1 = 2πhc2 = 3.74 × 10−16Wm2 (first
radiative constant) and C2 = hc/k = 1.44 × 104µmK (second radiative constant).

MASTER, on the other hand, uses the ASTER TES algorithm to retrieve LST val-
ues Hook et al. (2011), using MODTRAN radiative transfer code and atmospheric pa-
rameters from the NCEP GDAS product. Those parameters are optimized for a flight
altitude of 20 kilometers. Level 2 products include LST estimates as well emissivity
estimates for channels 43, 44, 47, 48 and 49.

Since the algorithms are different for the separation of emissivity and LST, those
two variables may exhibit differences that are not related to directional effects. In order
to limit the impact of those differences, this study recomputes the Surface Brightness
Temperature (SBT), which corresponds to the temperature of a black-body emitting
the same surface radiance, for both sensors, by mean of equation 4, where λ = 10.9m
(center wavelength of Landsat-8 B10 band).

SBT = B−1
λ (emis ∗ Bλ(LS T )) (4)

MASTER channels 47 and 48 overlap Landsat-8 B10 spectral sensitivity response,
as shown in figure 3. Since the overlaps are significant, an interpolated MASTER emis-
sivity is derived at Landsat-8 B10 wavelength center, by means of linear interpolation
of emissivities of channel 47 and 48, and will be used as the MASTER emissivity in
this study.

2.2.3. Geometric processing
In order to compare measurements from products from the different sensors, they

need to be first resampled to a common cartographic sampling grid. For each pair, this
grid is defined using the Universal Transverse Mercator (UTM) cartographic projection
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Figure 3: Spectral Sensitivity Response of Landsat-8 and MASTER overlapping Thermal Infra-Red spectral
bands

of the Landsat-8 image of the pair. The sampling grid is defined according to the
overlap area of the two products, and aligned to a multiple of the target resolution. The
target resolution is set to 100 meter for pairs of Landsat-8 and MASTER images, since
the native resolution of Landsat-8 TIR bands is 100 meters.

Landsat-8 resampling is achieved through an averaging filter, which should not
incur any aliasing artifacts since the Landsat-8 LST and emissivity measurements are
resampled at 30 meters resolution through bicubic interpolation. MASTER being a
whisk-broom sensor, its sampling is regular in viewing angle and therefore irregular
in ground geometry : both spacing between pixels and pixel size increase with the
viewing angle. Resampling of those measurements to the target ground grid is achieved
by means of Gaussian Weights Averaging (GWA), as described in equation 5, through
its implementation in the pyresample library Hoese et al. (2022).

V(x, y) =
∑

i∈N(x,y)

e
−(x−xi )2+(x−xi )2

σ2 Vi (5)

Where (Vi, xi, yi) are swath samples of measurement V at location (xi, yi), N(x, y)
are the N nearest neighbours of target ground location (x, y), and σ is a user-defined
parameter, which is set using equation 6, where mt f is the value of the Modulation
Transfer Function (MTF) at Nyquist cut-off frequency, allowing to trade level of blur
and aliasing off, r is the native sensor resolution and R is the target resolution. In this
work, MTF has been set to 0.1, which yields a sigma of 68.3 meters for MASTER.

σ(r,R,mt f ) =
max(r,R)
π

√
−2ln(mt f ) (6)

2.2.4. Quality filtering
Only samples that are marked as clear and not flagged as water or snow in the Pixel

Quality Assessment mask from the Level 2 Landsat-8 products are kept for analysis.
No additional quality filtering is performed on the MASTER side.
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2.2.5. Angular distance
Let (θ0, ϕ0) and (θ1, ϕ1) denote two viewing directions by their zenith angle θ and

azimuth angle ϕ.The angle between those two viewing directions is given by equation
7. This distance is used in this work to measure proximity to hotspot conditions, as
well as to measure distance between MASTER and Landsat-8 viewing directions.

Dang(θ0, ϕ0, θ1, ϕ1) = arccos(sin(θ0) × sin(θ1) × cos(ϕ0 − ϕ1) + cos(θ0) × cos(θ1))) (7)

2.3. Directional parametric models
Four models investigated in Cao et al. (2019) have been used in this work: the

Ross-Li model (Roujean et al., 1992; Wanner et al., 1995; Ren et al., 2014), the LSF-Li
model FRIEDL and STRAHLER (2002), the Vinnikov model Vinnikov et al. (2012)
and the RL model (Roujean, 2000; Lagouarde and Irvine, 2008). They are presented in
table 3, with θv (resp. θs) denotes the view (resp. solar) zenith angle, and ∆ϕ denotes the
difference between solar and view azimuth angle. Unless stated otherwise, remaining
notations and kernel expressions will be those from Cao et al. (2019). The full kernel
functions are not provided here for the sake of conciseness. All models m will be
expressed as stated in equation 8, with k0, ..., kn being the free parameters of the model.

T (θv, θs,∆ϕ) = m(θv, θs,∆ϕ, k0, ..., kn) × TNadir (8)

For the sake of consistency with the other models, the Roujean-Lagouarde (RL)
kernel has been rewritten as equation 9, with f and fn as written in paper Cao et al.
(2019) (eq. 13 and 14). This mainly move the original ∆T parameter out of the kernel
formulation, in order to use it as a kernel coefficient in table 3. It must be stressed
that the RL model is the only one that does not have a volumetric kernel, but only a
geometric kernel. To make that more obvious, in table 3, the parameter k0 always rep-
resents the isotropic contribution, while k1 stands for the coefficient of the volumetric
kernel (and therefore the RL model has no k1 parameter), and k2 is the coefficient of
the geometric or hotspot kernel. The hotspot width parameter inside the exponential
in 9 is labelled khs, and it should be noted that the RL model is the only model with
parameters non-linearity.

KRL(θv, θs, khs) =
e−khs f − e−khs fn

1 − e−khs fn
(9)

Model Iso Volumetric Geometric / Hotpsot
Ross-Li k0 + k1 KRossThick(θv, θs, ∆phi) +k2 KLiSparseR(θv, θs, ∆phi)
LSF-Li k0 + k1 Klsf(θv, θs, ∆phi) +k2 KLiDenseR(θv, θs, ∆phi)
Vinnikov k0 + k1 Kemis(θv, θs, ∆phi) +k2 Ksolar(θv, θs, ∆phi)
RL k0 + k2 KRL(θv, θs, ∆phi, khs)

Table 3: Formulations of the four directional models from Li et al. (2021) investigated in this work

min
(k0,k1,k2,khs)

∥ m(θv, θs,∆phi, k0, ..., khs) × TNadir − TDir(θv, θs,∆ϕ) ∥2 (10)
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In this work, the fitting of the models parameters on the data has been performed by
ordinary Least-Square as stated in equation 10, where Landsat-8 SBT is used as TNadir

and MASTER SBT is used as TDir. Parameters k0, k2 and khs are assumed to be strictly
positive, and in Cao et al. (2019) the authors observe that k1 is always negative. Ad-
ditionally, khs can not equal 0 in order to avoid a null denominator in the exponential
fraction. In order to enforce those constraints, while still using unconstrained least-
squares fitting,the models have been re-parametrized with exponential, and a small off-
set of 1e-6 has been added to khs to avoid the under-determination around 0, as shown
in equation 11. Optimization has been performed using the Levenberg-Marquardt al-
gorithm implemented in scipy Virtanen et al. (2020). Initial values have been set to
1. for k0, 0.01 for k1 and k2, which corresponds to a variation of Surface Brightness
Temperature of 1% that is consistent with the observations in the dataset, and 1 for khs.

k0 = ek′0 , k1 = −ek′1 , k2 = ek′2 , khs = 1e − 6 + ek′hs (11)

3. Results

3.1. Statistics per site

Table 4 shows the bias and RMSE of LST and SBT differences, for each MAS-
TER track, and for samples for which angles between viewing directions are below 7°.
Though each track exhibits an absolute LST bias lower than 1.8 K (1.6 K for SBT),
the biases of each track vary significantly within this range. Standard deviation values
on differences range from 0.7 K to up to 2.2 K for LST and 0.615K to 2.088K, if we
exclude track (10) which exhibits a very large standard deviation. For all tracks, SBT
difference standard deviation is lower than LST difference standard deviation, which
makes it more suitable for the analysis in this paper, as it seems to discard discrepancies
related to the different LST - emissivity separation methods. Limiting the difference in
viewing angles excludes directional effects from the possible causes of this variability.
Other possible explanations may include mean acquisition time difference, differences
in meteorological conditions and atmospheric corrections tied to local meteorological
conditions, or evolution of MASTER calibration through time. In order to concentrate
the study on the directional effects, SBT differences for each track will be corrected
from the bias, and therefore the standard deviation in table 4 corresponds to the Root
Mean Squared Error (RMSE) of the de-biased data.

3.2. SBT Difference maps

Figure 4 shows the SBT difference maps for each track, which have been corrected
from the biases shown in table 4, so that similar viewing angles between MASTER and
Landsat-8 correspond to a null SBT difference on average. Most tracks exhibit a pattern
related to the position in the MASTER swath, and thus to the MASTER zenith angle.
This is for instance the case form tracks (2), (6), (7), (8) and (12), where MASTER SBT
on the western side of the swath appears to be consistently warmer than the eastern side
of the swath. Track (4) exhibits a very noisy pattern with no trends, while track (10)
exhibit heavy spatial patterns unrelated to position in swath, which is consistent with
the high standard deviation observed in table 4.
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LST SBT
Track #samples Bias Std dev Bias Std dev
(1) 2013-03-29 5187 -0.56 0.72 -0.978 0.687
(2) 2013-04-11 69125 0.34 1.44 0.573 1.330
(3) 2013-05-22 59011 1.39 1.64 0.992 1.494
(4) 2013-12-05 7409 0.72 1.93 0.376 1.900
(5) 2014-03-31 22037 1.22 1.02 0.780 0.610
(6) 2014-04-14 73182 0.44 1.16 0.171 1.113
(7) 2014-04-28 13012 0.59 1.03 1.008 1.081
(8) 2014-06-06 138921 -0.34 1.84 -0.074 1.758
(9) 2014-10-21 74247 -1.50 2.14 -1.601 2.088
(10) 2015-05-28 97435 -0.14 5.55 -0.271 5.441
(11) 2018-06-19 36706 -1.35 1.72 -1.627 1.642
(12) 2021-03-30 62572 -1.73 1.90 -1.081 1.703

Table 4: Bias and RMSE of Land Surface Temperature and Surface Brightness Temperature difference
(Landsat-8 - MASTER) for samples with an absolute viewing angles distance bellow 7°

Figure 4: Maps of Surface Brightness Temperature difference (Landsat-8 - MASTER), corrected of the bias
computed in table 4 for all tracks (negative values are in red and mean that MASTER is warmer than Landsat-
8)
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3.3. Directional effects analysis
3.3.1. Distance to hotspot vs. distance to Landsat-8 view

In figure 5, SBT differences, corrected from the biases shown in table 4, are anal-
ysed with respect to both MASTER view angular distance to hotspot and to Landsat-8
view. All graphs exhibit the same v-shaped curve, with the minimum angular distance
between views occurring far from the hotspot condition (usually between 20° and 50°
of distance to the hotspot). On the left of the minimum point, the MASTER view gets
closer to the hotspot, which correlates with MASTER temperature getting hotter than
Landsat-8 temperature. This is especially visible for tracks (2), (8) and (12), which
are also the tracks that come closer to the hotspot. On the right of the minimum point,
the view gets away from the hotspot condition, which correlates in most views with
MASTER getting colder than Landsat-8.

Figure 5: Surface Brightness Temperature difference (Landsat-8 - MASTER) with respect to angular distance
from MASTER to hotspot and from MASTER to Landsat-8, corrected of the bias computed in table 4
(negative values are in red and mean that MASTER is warmer than Landsat-8)

3.3.2. MASTER view zenith and azimuth
Figure 6 allows better understanding the angular configurations of each MASTER

track with respect to the position of the sun. Two kinds of configuration can be ob-
served. When the sun is close to the principal observation plane, as in tracks (2), (8)
and (12), the temperature steadily increases while coming closer to the sun position.
On track (8), MASTER view zenith gets higher than the sun zenith which results in a
cooldown of the SBT. Figure for track (10) shows that the sun is almost in the principal
plane, which explain why this track has the smallest distance to the hotspot. When the
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sun is far from the principal observation plane containing the solar and Nadir viewing
directions, however, SBT get colder with higher view zenith angle, on both ends of the
swath. The difference with Landsat-8 SBT comes to a maximum near nadir, but the
position of this maximum varies and seems to be influenced by the position of the sun.
This can be observed for instance for tracks (3), (5), (6), (7) and (11).

Figure 6: Surface Brightness Temperature difference (Landsat-8 - MASTER) with respect to MASTER view
zenith and azimuth, corrected of the bias computed in table 4. Average sun position is marked by an orange
star. (negative values are in red and mean that MASTER is warmer than Landsat-8)

Figure 7 allows better observing those two configurations. It shows the distributions
of the bias-corrected SBT with respect to MASTER signed view zenith angle (positive
angle are to the east and therefore closer to the sun, negative to the west). The solid
red line indicates the mean difference, while the dashed red lines indicate ± 1 standard
deviation. In configurations (2), (8) and (12) where the sun is almost in the principal
plane, MASTER SBT gets steadily warmer than Landsat-8 from west to east. For
track (8), SBT starts to get colder past the sun zenith. For tracks (3), (5), (6), (7) and
(11), MASTER gets colder on both end of the swath, with a varying position for the
maximum position. Dotted blue vertical lines indicate the FOV of the up-comping
TRISHNA and SBG missions.

Table 5 gives a quantitative analysis of the directional effects budget for each track.
Figures presented in this table have been computed to highlight the mean difference
sketched by the solid red curve in figure 7. Within MASTER FOV, amplitude of di-
rectional effects range from 1.5K to more than 6K for track (12), the closest track to
hotspot conditions. Restricted to the foreseen TRISHNA and SBG FOV, this budget
falls to 4.71K.
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Figure 7: Surface Brightness Temperature difference, corrected of the bias computed in table 4, with respect
to MASTER signed view zenith angle (positive angles are to the east, negative to the west). The solid red
line indicates the mean values, the red dashed line indicates mean ± 1 standard deviation. Blue dotted lines
indicate TRISHNA and SBG FOV.

MASTER Trishna
id Min. -43° 43° amp. Min. -34° 34° amp.
(1) 0.25 1.38 3.66 3.41 0.25 1.12 2.49 2.26
(2) -1.27 3.61 -1.17 4.88 -1.24 2.62 -1.19 3.85
(3) -0.29 1.77 3.26 3.55 -0.29 0.64 2.03 2.32
(4) -0.40 0.47 1.18 1.57 -0.40 -0.18 1.18 1.57
(5) -0.12 1.74 0.51 1.86 -0.12 1.38 0.19 1.50
(6) -0.27 0.81 2.40 2.67 -0.27 0.40 1.49 1.75
(7) -0.51 2.00 0.05 2.51 -0.51 1.46 -0.04 1.98
(8) -0.65 3.43 1.23 4.09 -0.65 2.43 0.13 3.08
(9) -0.34 2.72 -0.30 3.06 -0.12 1.82 -0.04 1.95
(10) -0.32 3.53 1.29 3.85 -0.32 1.82 1.52 2.13
(11) -0.20 4.03 4.01 4.23 -0.20 2.64 2.03 2.85
(12) -3.02 3.05 -2.87 6.25 -2.35 2.17 -2.54 4.71

Table 5: For each MASTER track, minimum average Surface Brightness Temperature difference, average
Surface Brightness Temperature difference at both ends of swath and amplitude (amp.) of SBT difference
between minimum and maximum are displayed, left for the master field of view, right, for a limitation to
TRISHNA’s field of view (all in K). The max-min column gives an estimate of directional effects.
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3.4. Directional model fitting

3.4.1. Per-track parameters estimation
In this section, each of the four models presented in table 3 is fitted independently

on de-biased Surface Brightness Temperature from each track, using the methodology
presented in 2.3. Figure 8 shows how each model fits the scatter plot for each track,
where Surface Brightness Temperature differences are expressed as a percentage vari-
ation to facilitate the comparison with the model. All models seem to be able to fit the
observed directional effects, with the RL being slightly more versatile than the other,
and the Vinnikov model struggling to cope with higher VZA. This can be observed for
instance on tracks (2) and (12) where the Vinnikov model diverges below 0°. Hotspot
shape seems to be correctly captured by the other 3 models in track (2), (8) and (12).
Differences for all models start to show for higher viewing angles close to or outside
limits of the data range.

Figure 8: Least-Square fitting of the 4 TIR directional models from table 3 on Surface Brightness Tem-
perature differences. Vertical axis represent the percentage of variation of Surface Brightness Temperature
between Landsat-8 (considered as Nadir) and MASTER. In this figure, each model is fitted separately on
each track.

In table 6, the correction performance of each model is measured for each track in
terms of Root Mean Squared Error (RMSE) and amplitude (max - min of red curve
in figure 7). Regarding RMSE, it can be observed that all models allow reducing the
RMSE with respect to the uncorrected values, except for track (4) for which the cor-
rection has no effect. This can be explained by the fact that track (4) exhibits a very flat
distribution shape, with no sign of directional effects (figure 7). Though performances
on RMSE improvement are very close from one model to another, The Ross-Li model
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is the best model for RMSE for 6 tracks, including tracks with strong hotspot such as
(12) and (8). whereas the RL model only tops for 2 tracks, and the Vinnikov model
for 3 tracks. Gains on RMSE range from 0.24K to 0.92K depending on the track,
excluding tracks (4) and (10).

In terms of directional effects amplitude, table 6 shows that all models allow to
significantly reduce the amplitude, below 1 K for the majority of tracks. Reductions
for tracks with high hotspot effects are particularly strong, with track (12) going from
more than 6K to less than 0.7 K for instance. The Vinnikov model is the best model
for half of the tracks, but tracks with strong hotspot effect such as (8) and (12) are won
by either RL or LSF-Li. Regarding amplitude, performances of the different models
are less close to each other, but this can be explained by the use of maximum - mini-
mum difference, which will be highly sensitive to outliers. Gains on directional effects
amplitude range from 1.6K to 5.8K depending on the track, excluding tracks (4) and
(10).

id RMSE Amp
Raw Vin. RL Ross LSF Raw Vin. RL Ross LSF

(1) 1.86 0.98 1.02 0.99 0.98 3.41 0.63 1.05 1.03 0.79
(2) 2.26 1.46 1.45 1.49 1.48 4.88 0.27 0.54 1.09 1.10
(3) 2.01 1.53 1.56 1.55 1.55 3.55 0.46 0.98 1.09 1.26
(4) 3.46 3.46 3.46 3.46 3.46 1.57 1.45 1.57 1.54 1.50
(5) 1.13 0.82 0.81 0.82 0.81 1.86 0.37 0.44 0.30 0.21
(6) 1.56 1.18 1.19 1.16 1.16 2.67 0.26 0.37 0.60 0.45
(7) 1.57 1.21 1.22 1.21 1.21 2.51 0.37 0.92 0.87 0.78
(8) 2.34 1.86 1.89 1.85 1.85 4.09 0.79 1.25 0.72 0.42
(9) 2.44 2.21 2.22 2.19 2.21 3.06 0.53 0.89 1.05 0.79
(10) 4.86 4.72 4.74 4.69 4.72 3.85 2.63 2.83 1.55 2.61
(11) 2.81 1.90 1.90 1.89 1.89 4.23 1.13 1.40 0.91 1.05
(12) 2.65 1.85 1.85 1.84 1.84 6.25 0.68 0.45 0.65 0.50

Table 6: Root Mean-Square error and amplitude (max - min of red curve in figure 7) for raw Surface Bright-
ness Temperature corrected of the bias computed in table 4, and for MASTER temperature normalized with
four models, with parameters estimated for each track.

Figure 9 shows the raw and corrected SBT with respect to the signed VZA for 5
tracks with very strong directional effects. It can be noticed that the correction does not
seem to have any effect on the standard-deviation, and thus it does not amplify or create
any noise. For track (2), the best model in terms of amplitude is Vinnikov according
to table 6, closely followed by RL, which can be explained by the lesser performances
of the Ross-Li and LSF-Li models at higher VZA (out of TRISHNA FOV). For track
(3), the best model is also Vinnikov, with amplitude two times less than the next best
model, which is RL. Indeed, the latter seems to fail to completely compensate the
directional trends, with SBT differences still slightly positives for positive VZA and
negative for negative VZA. On track (8), the best model is LSF-Li by a large amount
according to table 6, which is not that obvious on figure 9. There are remaining trends
in almost all models, and all of them struggle at higher VZA. Track (11) is noisier
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and the model fitting is poorer, with only the Ross-Li model achieving a correction
with an amplitude below 1 K, though differences on figure 9 are not obvious. For
track (12), which is the track with the strongest hotspot effect due to the proximity of
MASTER viewing direction and solar direction (see figure 6), all models have strong
performances according to table 6 but the RL model is the best in terms of amplitude,
which is confirmed on figure 9 by fewer oscillations for higher VZA.

Figure 9: Corrected Surface Brightness Temperature versus signed VZA for raw and model-corrected surface
brightness temperature, for 5 tracks with high directional effects amplitudes. Blue dashed lines indicate
Trishna field of view.

3.4.2. Global models parameters estimation
Fitting models on each track separately allows to assess how well those models ex-

plain the observed data. However, this strategy can not apply to operational directional
corrections in ground segments, where simultaneous observations will not be available
to fit the models. This section investigates the performances of global models, with
a single set of parameters for each model to correct all tracks at once. Parameters of
those global models are fitted on all tracks altogether, using the methodology presented
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in 2.3, and excluding tracks (4) and (10) for their high level of noise and lack of direc-
tional effects evidence. Figure 10 shows how well those global models with the scatter
plots for each track. It can be observed that even if the goodness of fit is lesser than
in figure 8, it is still relatively high, except for the Ross-Li model which seems to miss
the trend of tracks (4) and (9). Global models also struggle to model the near hotspot
conditions of track (12).

Table 7 shows the quantitative performance analysis of global models. As in table
6, no model clearly outperform the others. All models achieve a systematic decrease
of RMSE ranging from 0.2K to 0.8K and a systematic decrease of directional effects
amplitude ranging from 1.3K to 4.7K (excluding again track (4) and (10) from the
analysis). Even if their performances are lower than those achieved by per track models
presented in section 3.4.1, global models still provide valuable corrections.

Figure 10: Least-Square fitting of the 4 TIR directional models from table 3 on Surface Brightness Tem-
perature differences. Vertical axis represent the percentage of variation of Surface Brightness Temperature
between Landsat-8 (considered as Nadir) and MASTER. In this figure, each model is jointly fitted on all
tracks but (4) and (10).

Figure 11 present the same tracks as in figure 9 but corrected with the global mod-
els. While all tracks exhibit residual angular trends, within the Trishna field of view,
all models exhibit performances that may be of interest for downstream applications.
Track (11) has the highest residual effects, which is compliant with figures in table 7,
showing a residual amplitude of around 2K for all models. On track (12), which is
the closest to hotspot conditions, the Vinnikov model performs poorly with respect to
the other models, and even introduces an artificial angular trend. This is again in line
with the observed RMSE performance in table 7. Remaining models on track (12) all
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id RMSE Amp
Raw Vin. RL Ross LSF Raw Vin. RL Ross LSF

(1) 1.86 1.21 1.33 1.12 1.06 3.41 1.15 1.42 1.89 0.99
(2) 2.26 1.50 1.55 1.60 1.56 4.88 1.02 1.77 2.07 2.21
(3) 2.01 1.59 1.61 1.66 1.60 3.55 1.45 1.09 1.80 1.38
(4) 3.46 3.53 3.47 4.06 3.61 1.57 1.97 1.52 1.52 1.73
(5) 1.13 0.86 0.83 1.02 1.02 1.86 0.96 0.54 0.63 1.12
(6) 1.56 1.19 1.19 1.19 1.20 2.67 0.62 0.37 0.94 0.70
(7) 1.57 1.23 1.24 1.28 1.28 2.51 0.81 0.84 1.07 1.47
(8) 2.34 1.88 1.93 1.99 1.93 4.09 1.41 1.52 1.72 0.95
(9) 2.44 2.22 2.27 2.50 2.32 3.06 0.90 1.83 1.92 1.59
(10) 4.86 4.75 4.80 4.77 4.75 3.85 3.09 3.22 2.97 2.84
(11) 2.81 2.21 1.99 2.32 2.13 4.23 2.85 2.12 2.98 1.94
(12) 2.65 2.11 2.04 2.05 1.95 6.25 2.51 2.89 2.13 1.57

Table 7: Root Mean-Square error and amplitude (max - min of red curve in figure 7) for raw Surface Bright-
ness Temperature corrected of the bias computed in table 4, and for MASTER temperature normalized with
four models, with parameters jointly on all tracks except for tracks (10) and (4).

significantly reduce the angular trend that can be observed in raw SBT differences.
Figure 12 present a complete viewing angles sampling of each global model, in

the mean solar conditions of track (12). All models seem to have captured the hotspot
model, while the shape of the hotspot itself varies from one model to another. the
Vinnikov model hotspot seem ahead of the sun zenith angle, which may explain its
lesser performance in correcting track (12). Table 8 shows the estimated parameters
for each model. One can note that the Ross-Li Volumetric kernel contribution is very
low with respect to the others.

Model k0 k1 k2 khs

Ross-Li 1.00461367 -2.20506684e-28 0.00790642
LSF-Li p1.23614655 -0.22100502 0.01071329
Vinnikov 1.00016802 -0.02243967 0.02400083
RL 0.99956675 0.00612598 1.8459600e-08

Table 8: Parameters of the global models, estimated from all pairs but tracks (4) and (10)

4. Discussion

This study exhibit evidences of strong directional effects up to an amplitude of 6K
within a FOV of ± 45°, with real high-resolution TIR data, and shows encouraging per-
formances of state-of-the art parametric models to mitigate their impact on temperature
accuracy. However, two aspects of this work need to be further analysed and discussed
: the inherent limitations related to the scarce data availability on one hand, and the
derivation of the model parameters in a real-world ground segment scenario.
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Figure 11: Corrected Surface Brightness Temperature versus signed VZA for raw and model-corrected sur-
face brightness temperature, using models jointly fitted on all tracks but (4) and (10), for 5 tracks with high
directional effects amplitudes. Blue dashed lines indicate Trishna field of view.

Figure 12: Polar plot of the different models, jointly fitted on all tracks but track (4) and (10), using average
solar angles of track (12). Sun position is indicated by an orange star mark.
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4.1. Limitations of the study
Due to the scarce availability of simultaneous observations between MASTER and

Landsat-8 on one hand, and the limited coverage of MASTER flights on the other, this
study only covers a limited range of landscapes, all of them located in California, U.S..
Therefore, it can not be used to draw solid conclusions on other kinds of landscape
such as desert bare soil, very dense rain-forest canopy or tundras for instance. The ge-
ographic limitations also come with a low variety of solar angles conditions, excluding
extreme latitude and equator for instance.

Moreover, since this study relies on Landsat-8 acquisitions which as a local over-
passing time of approximately 10:30 AM, its results are mainly valid for medium morn-
ing sun angles, whereas most upcoming missions will have a local over-passing time
around noon. The solar zenith angle will therefore be lower, leading to solar angular
conditions that have not been analysed in this study. It is conjectured to observe lower
but more frequent directional effects for sun position closer to zenith though SBT val-
ues could be higher.

Finally, this study adopts an undiscriminating point of view regarding the actual
land-cover of each pixel, whereas the literature, which is driven by work on radiative
transfer modeling, strongly suggests that different models or at least model parameters
should be applied to different land-covers. Though we tried to determine trends related
to the NDVI values from Landsat-8 in our dataset, we did not observe anything signifi-
cant, and therefore the land-cover agnostic approach was privileged. However, it must
be stressed that if a directional effect correction is to be implemented into up-coming
missions ground-segment as a routine level 2 processing, relying on land-cover dis-
crimination and phenology will be hard to achieve for a global coverage mission. Nev-
ertheless, exogenous land-cover and phenology maps could be used for that purpose
Phiri et al. (2020). Last, TIR directional effects in urban environment follow very dif-
ferent physical causes and trends (Lagouarde and Irvine, 2008; Lagouarde et al., 2010),
and may require completely different models.

4.2. Model parameters estimation for up-coming ground segments
Another open question is if such a correction is to be implemented within future

ground segments and which credit to give to the estimated model parameters over time,
as TIR signal is ephemeral. In this study, models have been first been fitted to each
track independently, resulting in good correction performances of up to 5.8K in ampli-
tude, but with important variations of the parameters from one track to another. Such
variability suggests that models parameters might depend on land unit or equivalently
to target structure, and that reliability of parameters estimation depends on the ob-
servation condition they are fitted to. For instance, the RL kernel, which has been
designed to model hotspot, is the best performing kernel for track (12) that is closest to
hotspot condition, which can be explained either because this model is a good model
for hotspot or that it requires hotspot condition to be fitted properly. It must however
again be stressed that such scene based individual parameters estimation is out of reach
for routinely correcting data from global coverage satellites such as TRISHNA, LSTM
or SBG.

On the other hand, the global models that have been fitted simultaneously on all
tracks still exhibit interesting correction performances of up to 4.7K in the studied
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tracks. This work therefore suggest that such global models could be used routinely in
a ground segment and be beneficial for downstream applications, with the limitations
already highlighted in section 4.1.

While the determination of factors that should drive model parameters is probably
best served by the physical process modelling scientific community, this paper pro-
poses valuable dataset and methodology to assess model performances before putting
them into production. Though in this work the analysed data are limited to 12 tracks
in California, in the future, MASTER or other airborne TIR sensors with wide field
of views might be used to acquire more of those simultaneous observations with the
Landsat series, effectively building a database of the assessment and calibration of di-
rectional parametric models, should attention be paid to the simultaneous over-passing
time.

5. Conclusion

In this paper, simultaneous observations in space and time between Landsat-8 and
the FOV MASTER airborne TIR sensors have been leveraged to analyse potential di-
rectional effects and their error budget for up-coming High Resolution TIR missions.
Twelve MASTER tracks where identified with a Landsat-8 overpass during the flight
and the analysis of their Surface Brightness Temperature differences exhibits direc-
tional effects ranging from 1.6K to more than 6K within MASTER full FOV depending
to the proximity to hotspot conditions. Three tracks are close to those conditions and
one is almost within the principal acquisition plane, leading to the highest 6K ampli-
tude. Four states of the art parametric models for TIR anisotropy have been selected
from the literature for having been extensively tested on simulated data. Those four
models have been fitted to each of the identified MASTER track, using Landsat-8 as
the target Nadir Surface Brightness Temperature of reference. The corrected temper-
ature exhibits a systematic decrease of the RMSE of 0.24K to 0.92K, and a reduction
of the amplitude associated to directional effects of 1.6K to 5.8K, bringing down the
directional error budget to less that 1K in almost all cases. Global models, fitted si-
multaneously on all valid tracks, have also been assessed, with a reduction of RMSE
of 0.2K to 0.8K and a reduction of the directional effect amplitude of 1.3K to 4.7K,
bringing down the directional error budget below 2K in most cases. Those results sug-
gest that future ground segments of up-coming high-resolution missions with a FOV
greater than 30° would benefit from implementing such a correction. This paper also
lays grounds for a directional model in flight calibration procedure for those up-coming
missions, should more airborne data be gathered during Landsat overpasses in the fu-
ture.

The data used in this study have been made publicly available as an open dataset
Michel et al. (2023).
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