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Jérémie Capitao-Miniconi∗, Élisabeth Gassiat∗ and Luc Lehéricy∗∗
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Abstract

Understanding what kind of noise in the observations allows to recover low dimensional
structures of a signal is of interest in statistical learning, as a first step to build efficient
dimension reduction procedures. In this work we give a new contribution on the type of
noise which can affect the data without preventing to build consistent estimators of the
support and distribution of the signal. We focus on the situation where the observations
are corrupted with additive and independent noise. We prove that for general classes of
supports, it is possible to recover both the support and the distribution of the signal with-
out knowing the noise distribution and with no sample of the noise. We exhibit classes
of distributions over which we prove adaptive minimax rates (up to a log log factor) for
the estimation of the support in Hausdorff distance. Moreover, for the class of distribu-
tions with compact support, we provide estimators of the unknown (in general singular)
distribution and prove maximum rates in Wasserstein distance. We also prove an almost
matching lower bound on the associated minimax risk.

1 Introduction

1.1 Context and aim

It is often observed that high dimensional data has a low intrinsic dimension. The compu-
tational geometry point of view gave rise to a number of interesting algorithms (see [6] and
references therein) for the reconstruction of a non linear shape from a point cloud, and the
case of non noisy data is by now relatively well understood. See for instance [1] for an overview
of the subject and references when the observations are sampled on an unknown manifold,
and [14] and [24] for the estimation of the distribution using the Wasserstein metric as loss
function. Some of the geometric ideas that have been developed to handle non noisy data can
be applied, or adapted, to handle noisy data and build estimators with controlled risk. How-
ever, the upper bound on the risk is meaningful only when the bound on the noise is small,
or even when the noise tends to 0 with the amount of data tending to infinity. See [2], [1],
[12], [16], [25], [3]. The estimation of the distribution with unknown but small (and orthogonal
to the unknown manifold) noise is handled in [14] with a kernel estimator. Non parametric
Bayesian methods have been explored in [5] for observations on a tubular neighborhood of the
unknown manifold, that is for bounded noise.

In this paper, we aim at giving a new contribution on the type of unknown noise which can
affect the data without preventing to build consistent estimators of the support and of the law
of the signal. We are interested in the estimation of possibly low dimensional supports, and of
distributions supported on such supports, when the observations are corrupted with additive
noise: this is called the deconvolution model. In contrast with previous literature, we consider
the setting where the distribution of the noise is unknown and where we do not have access to
auxiliary data to estimate it.

When we accept to consider noise with known distribution, usual estimation procedures are
roughly based on the fact that it is possible to get an estimator of the characteristic function
of the non noisy data by dividing an estimator of the characteristic function of the noisy data
by that of the noise. The authors of [20] consider data corrupted with Gaussian noise, and
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propose as estimator of the manifold an upper level set of an estimator of a kernel smoothed
density of the unknown distribution. With the truncated Hausdorff loss, the authors prove that
their estimator achieves a maximum risk (over some class of distributions) upper bounded by
(
√
log n)−1+δ for any positive δ, and prove a lower bound of order (log n)−1+δ for the minimax

risk. Taking an upper level set of an estimated density had been earlier proposed to estimate a
support based on non noisy data in [9]. In the context of full dimensional convex support and
with additive Gaussian noise, [7] proposes an estimation procedure using convexity ideas. The
authors prove an upper bound of order log log n/

√
log n and a lower bound of order (log n)−2/τ

for the minimax Hausdorff risk, for any τ ∈ (0, 1). Earlier work with known noise and with full
dimensional support is [22], where the author first builds an estimator of the unknown density
using deconvolution ideas, then samples from this estimated density and takes a union of balls
centered on the sampled points, such as in [13]. Focusing on the estimation of the distribution,
with known Gaussian noise, the authors of [11] prove matching upper and lower bounds for
the minimax risk using the Wasserstein distance. Results for other known noises, but limited
to one dimensional observations, can be found in [10].

1.2 Contribution and main results

The intuition behind our work is that certain geometrical properties of the support of the
signal induce sufficient structure for the deconvolution problem to be solvable even without
knowledge of the noise distribution. The main original contributions of our work are twofold.

• We exhibit simple geometric properties of a support so that, whatever the distribution
on such a support–provided it does not have too heavy tails–, the deconvolution problem
can be solved without any knowledge regarding the noise.

• We propose classes of distributions over which we prove adaptive minimax rates (up to
a log log factor) for the estimation of the support in Hausdorff distance. Moreover, for
the class of distributions with compact support, we provide estimators of the unknown
(in general singular) distribution and prove rates for the maximum risk in Wasserstein
distance. We also prove an almost matching lower bound on the associated minimax risk.

In Section 2, we precise the setting and the identifiability of the deconvolution problem
of [17], which our paper builds upon. The main assumption needed in [17] to ensure that the
recovery of the distribution of the signal is possible, (Adep), comes from a complex analysis
argument and does not have a clear probabilistic or geometric interpretation; as such it may
seem difficult to verify outside of specific cases. We exhibit in Section 2.3 simple geometric
properties of a support so that, whatever the distribution on such a support, (Adep) holds
and therefore the deconvolution problem can be solved without any knowledge regarding the
noise, see Corollaries 1 and 2. The genericity of these geometric conditions is considered in
Section 2.4.

Section 3 provides an overview of our estimation procedures and the estimation of the
characteristic function of the signal. We focus on support estimation in Section 4. We are
able to propose estimators achieving adaptive minimax rates (up to a log log factor) for the
estimation of the support in Hausdorff distance. The minimax rates are investigated over well
chosen classes of distributions, see Theorems 3, 4 and 5. Specifically, the minimax risk for the
Hausdorff distance is upper bounded by (log log n)L/(log n)κ for some L, where κ ∈ (1/2, 1]
is a parameter characterizing the heaviness of the tail of the distribution of the signal (κ = 1
corresponds to compactly supported distributions, and κ = 1/2 to sub-Gaussian distributions).
On the other hand, the minimax risk is lower bounded by 1/(log n)κ if κ ∈ (1/2, 1) and
1/(log n)1−δ if κ = 1, δ being any (small) positive number. Adaptivity is with respect to κ.
In some sense, exhibiting these classes of distributions allows to fill the gap between the upper
and lower bounds in [20] and [7], together with the extension to totally unknown noise.

Section 5 is devoted to the estimation of the distribution when it is compactly supported.
We consider the estimation of the unknown (in general singular) distribution of the hidden non
noisy data itself when it has a compact support. We prove almost matching upper and lower
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bounds of order 1/ log n for the estimation risk of the distribution in Wasserstein distance, see
Theorem 6 and Theorem 7.

Appendix A presents an index of the notations defined along the paper. Detailed proofs
for Sections 2, 3, 4 and 5 are given in the remaining appendices.

1.3 Notations

The Euclidean norm (in any dimension) will be denoted ∥ · ∥2. If A is a subset of RD, we write
d(x,A) = inf{∥x − y∥2 | y ∈ A}. For any r > 0, we write Br = (−r, r). For any measurable
function f on BDr , we write ∥f∥∞,r the essential supremum of f over BDr and ∥f∥2,r the norm
of f in L2(BDr ).

2 Geometric conditions for identifiability

In this section, we recall the general identifiability Theorem proved in [17]. We provide geo-
metric conditions on the support of the signal that ensure that this theorem can be applied.

2.1 Setting

We consider independent and identically distributed observations Yi, i = 1, . . . , n coming from
the model

Y = X + ε, (1)

in which the signal X and the noise ε are independent random variables. We assume that the
observation has dimension at least two, and that its coordinates can be partitioned in such a
way that the corresponding blocks of noise variables are independently distributed, that is

Y =

(
Y (1)

Y (2)

)
=

(
X(1)

X(2)

)
+

(
ε(1)

ε(2)

)
= X + ε (2)

in which Y (1), X(1), ε(1) ∈ Rd1 and Y (2), X(2), ε(2) ∈ Rd2 , for d1, d2 ⩾ 1 with d1 + d2 = D, and
we assume that the noise components ε(1) and ε(2) are independent random variables. We write
G the distribution of X and MG its support. For i ∈ {1, 2}, we write Q(i) the distribution of
ε(i), so that Q = Q(1) ⊗Q(2) is the distribution of ε.

We shall not make any more assumption on the distribution of the noise ε, and we shall
not assume that its distribution is known. Indeed in [17], it is proved that under very mild
conditions on the distribution of the signal X, model (2) is fully identifiable, that is one can
recover G, and thus its support, and Q from the convolution G ∗Q.

2.2 Identifiability Theorem

Let us introduce the assumptions on the distribution of the signal we shall use. To state the
first assumption, we let κ be a positive real number.

A(κ) There exist a, b > 0 such that for all λ ∈ RD, E
[
exp

(
λ⊤X

)]
⩽ a exp

(
b∥λ∥1/κ2

)
.

Assumption A(κ) is about the tail of G as the following proposition shows.

Proposition 1. • A random variable X satisfies A(1) if and only if its support is compact.

• A random variable X satisfies A(κ) for κ ∈ [0, 1) if and only if there exist constants
c, d > 0 such that for any t ⩾ 0,

P(∥X∥2 ⩾ t) ⩽ c exp(−dt1/(1−κ)).
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The proof of Proposition 1 is detailed in Appendix B.1.
Under A(κ), the characteristic function of the signal can be extended into the multivariate

analytic function

ΦX : Cd1 × Cd2 −→ C

(z1, z2) 7−→ E
[
exp

(
iz⊤1 X

(1) + iz⊤2 X
(2)
)]
.

The second assumption is the following.

(Adep) For any z0 ∈ Cd1 , z 7→ ΦX(z0, z) is not the null function and for any z0 ∈ Cd2 ,
z 7→ ΦX(z, z0) is not the null function.

It has been shown in [17] that several models satisfy this assumption, such as the repeated
measurements submodel (see Corollary 2.3 in [17]) or the noisy independent component analysis
submodel (see Corollary 2.2 in [17]). In particular, it follows directly from Corollary 2.4 of
[17] and the inverse function Theorem that the errors in variable regression model (in which
X(2) = g(X(1)) for some function g) satisfies assumption (Adep) when the regression function is
a non-constant differentiable function. In this paper, we are interested in identifying supports of
distributions and we will provide geometrical conditions so that Assumption (Adep) is verified,
see Section 2.3.

Obviously, if no centering constraint is put on the signal or on the noise, it is possible to
translate the signal by a fixed vector m ∈ RD and the noise by −m without changing the
observation. The model can thus be identifiable only up to translation.

Theorem 1 (from [17]). If the distribution of the signal satisfies A(κ) for κ ∈ (1/2, 1] and
(Adep), then the distribution of the signal and the distribution of the noise can be recovered up
to translation from the distribution of the observations.

The proof of this theorem is based on recovering ΦX for which the structure provided
by (Adep) is crucial. The arguments show that knowing the characteristic function of the
observations in a neighborhood of the origin allows to recover ΦX in a neighborhood of the
origin, and then over the whole multidimensional complex plane.

2.3 Sufficient geometrical conditions for (Adep) to hold

In [8], the authors prove that (Adep) holds for random variables supported on a sphere. In
this section, we provide very general conditions on the support of a random variable which
are sufficient for (Adep) to hold. At the end of this section, we show concrete examples where
these conditions are satisfied.

We define the following assumptions (H1) and (H2). Here, if A is a subset of RD, we write
Diam(A) its diameter sup{∥x− y∥2 | x, y ∈ A}.

(H1) There exist (A∆)∆>0 and (B∆)∆>0 such that A∆ ⊂ Rd2 , B∆ ⊂ Rd1 , P(X(2) ∈ A∆) > 0,
lim∆→0 Diam(B∆) = 0 and P(X(1) ∈ B∆ |X(2) ∈ A∆) = 1.

(H2) There exist (A∆)∆>0 and (B∆)∆>0 such that A∆ ⊂ Rd1 , B∆ ⊂ Rd2 , P(X(1) ∈ A∆) > 0,
lim∆→0 Diam(B∆) = 0 and P(X(2) ∈ B∆ |X(1) ∈ A∆) = 1.

We prove that these assumptions are sufficient to ensure identifiability provided that A(κ)
is satisfied. In what follows we shall say that a random variable satisfies (Adep) when its
characteristic function does.

Theorem 2. Assume that the distribution of X satisfies A(κ), (H1) and (H2). Then X
satisfies A(κ) and (Adep).

The proof of Theorem 2 is detailed in Section B.2.
One can interpret the assumptions (H1) and (H2) geometrically as shown in Figure 1. In

essence, it means that there exists a slice (along the first d1, resp. last d2, coordinates, with
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base A∆) such that the random variable belongs to this slice with positive probability and such
that on this slice, the support of the distribution is contained in an orthogonal slice (along the
last d2, resp. first d1, coordinates) of diameter shrinking to zero with ∆.

Let us introduce sets of support that guarantee that (H1) and (H2) hold for any signal with
support in these sets. Let π(1:d1) (resp. π(d1+1:D)) be the projection which extracts the first
d1 (resp. last d2) coordinates of vectors of Rd, and let

A1(∆, ε) = {M ⊂ RD | There exists x = (x1, x2) ∈ M

such that Diam

(
π(1:d1)

[
M∩ (Rd1 × B̄(x2, ε))

])
< ∆}

and

A2(∆, ε) = {M ⊂ RD | There exists x = (x1, x2) ∈ M

such that Diam

(
π(d1+1:D)

[
M∩ (B̄(x1, ε)× Rd2)

])
< ∆}.

The following corollary is a direct consequence of Theorem 2.

Corollary 1. Let M ∈ A := (∩∆>0 ∪ε>0 A1(∆, ε))∩(∩∆>0 ∪ε>0 A2(∆, ε)). Then any random
variable with support M satisfies (H1) and (H2).

This is analog to (H1) and (H2) in the sense that if M ∈ A, there exists sequences (A∆)∆>0

(of the form B̄(x1, ε)) and (B∆)∆>0 with Diam(B∆) < ∆ and such that if (X(1), X(2)) has
support M, then conditionally to X(1) ∈ A∆, X

(2) ∈ B∆ a.s., and likewise for (H2). Note that
this is not strictly equivalent since the A∆ are not necessarily open in (H1) and (H2).

In the case of compact supports, these sets (∩∆>0 ∪ε>0 A1(∆, ε)) admit a simple formula-
tion. Define the sets B1 and B2 as

B1 = {M ⊂ RD compact | ∃x1 ∈ Rd1 ,Card(({x1} × Rd2) ∩M) = 1},

and
B2 = {M ⊂ RD compact | ∃x2 ∈ Rd2 ,Card((Rd1 × {x2}) ∩M) = 1}.

Corollary 2. Let M be a subset of RD such that M ∈ B1 ∩ B2. If X is a random variable
with support M, then X satisfies A(1), (H1) and (H2).

The proof of Corollary 2 is detailed in Section B.3.

We now give some illustrations of when Corollaries 1 and 2 hold.
First, any closed Euclidean ball, and more generally any strictly convex compact set in

RD, is in B1 ∩ B2. To see this, consider the points of the set with maximal first (resp. last)
coordinate: they are unique by strict convexity, which ensures that the set is in B1 (resp. B2).
The same holds for any compact set with strictly convex convex hull.

For non-compact supports, it is possible to satisfy Corollary 1 but not be in B1 ∩ B2:
Figure 2 shows a situation where the sets A∆ and B∆ cannot be nested, since there is no single
“pinching point” as in B1 and B2.

2.4 Genericity of (H1) and (H2)

Write A = (∩∆>0 ∪ε>0 A1(∆, ε))
⋂
(∩∆>0 ∪ε>0 A2(∆, ε)) the set of supports we introduced in

Corollary 1.
We are interested in understanding whether signals ”almost always” have a support in A.

Several notions of genericity exist when one wants to show that a property is ”almost always”
true.
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Rd1

Rd2

B∆2

A∆2

B∆1

A∆1

M

Figure 1: Illustration of (H1) and A1. As A∆ narrows on the “tip” of the support, B∆ can be
taken smaller and smaller. This narrowing as A∆ tends to the extremal point of the support
is why B1 holds for compact supports with strictly convex convex hull.

A∆

B∆ Rd1

Rd2

Figure 2: Illustration of (H1) and A1 for a non-compact support. As A∆ goes to infinity and
becomes thinner, so does B∆.

One approach is to show that the property holds almost surely in a probabilistic sense.
The issue with this is that we need a measure on the closed subsets of RD, of which there is
no canonical example. As an illustration, we construct a small, random perturbation of the
Euclidean space (based on partitioning it into arbitrarily small simplices which are then moved
at random by a small amount). When applied to a compact set, this perturbation produces
a random variable taking values in the compact subsets of RD. We show that almost surely,
regardless of the initial support, this new support satisfies Corollary 2. The precise construction
of this transformation and the statement of the probabilistic genericity of Corollary 2 are
detailed in Section B.4.

Another approach of a more topological nature is to show that the set A, seen as a subset
of the metric space of all closed subsets of RD endowed with the Hausdorff distance, is a dense
Gδ set (i.e. it is a dense, countable intersection of open sets), or in other words, is comeagre.

This property follows from the fact that the sets ∪ε>0A1(∆, ε) are open with respect to
the Hausdorff distance, and are increasing in ∆. Therefore, A is a countable intersection of
open sets (i.e. a Gδ set) which is in addition dense (see Proposition 3 from Section B.5).
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Equivalently, this means that the complement of A is a meagre set, and therefore the set of all
supports satisfying (H1) and (H2) is comeagre. Do note that while this notion ensures that A
is dense in the set of all closed subsets of RD, its complement is also dense, see Proposition 3
as well.

3 The estimation procedures

3.1 Overview

The identifiability Theorem 1 is the base upon which our estimators are built. A key part
of its proof is the following result: if a multivariate analytic function ϕ satisfies ϕ(0) = 1,
ϕ(t) = ϕ(−t) for all t, as well as assumptions A(κ) for some κ > 1/2, (Adep) and

ϕ(t1, t2)ΦX(t1, 0)ΦX(0, t2) = ΦX(t1, t2)ϕ(t1, 0)ϕ(0, t2)

for all (t1, t2) in a neighborhood of zero in Rd1 ×Rd2 , then ϕ = ΦX . In particular, fixing some
νest > 0, the only function ϕ such that∫

B
d1
νest×B

d2
νest

|ϕ(t1, t2)ΦX(t1, 0)ΦX(0, t2)− ΦX(t1, t2)ϕ(t1, 0)ϕ(0, t2)|2

×|Φε(1)(t1)Φε(2)(t2)|2dt1dt2 = 0

is ΦX . Indeed the characteristic functions of the noises Φε(i) , i ∈ {1, 2}, are continuous and
equal to 1 in zero. Moreover, the introduction of these characteristic functions allow to combine
them with the characteristic functions ΦX of the signal to get the characteristic functions of
the observations, so that we are able to construct an empirical criterion Mn that estimates the
above integral, see (4). Finally, following the usualM -estimation procedure, we then construct

an estimator ϕ̂ of ΦX by minimizingMn over some set of multivariate analytic functions. Note
that the resulting ϕ̂ is in general not the characteristic function of a probability distribution.

A difference between our estimator and the one from [17] is that we do not directly use

ϕ̂ to estimate the distribution of the signal. Indeed, while there is always a one-to-one corre-
spondence between the distribution G and its characteristic function ΦX , the inverse Fourier
transform approach to recover G from ΦX breaks down when G is singular. However, it is
always possible to recover the convolution G ∗ Ψ of G by Ψ for any properly chosen kernel
Ψ. Moreover, when Ψ is an approximation of the unity, the distribution of Z will be close to
the Dirac in zero, thus X + Z will concentrate close to the support of X. In Section 4.1, we
propose an estimator of the support as an upper-level set of an estimated density following
ideas of [20], the main difference being with the smoothing kernel we choose. Indeed, with this
kernel, no prior knowledge on the intrinsic dimension is needed to build the estimator. The
precise choice of Ψ is non trivial and is given in Section 4.1.

Proposition 2 directly ensures that the estimator

ĝ := F−1
[
ϕ̂ · F [Ψ]

]
is close to ḡ := F−1 [ΦX · F [Ψ]] = G ∗ Ψ, whose upper level sets are close to MG. Here, for
any integrable function f from RD to R, we denote by F [f ] (resp. F−1[f ]) the (resp. inverse)
Fourier transform of f defined, for all y ∈ Rd, by

F [f ](y) =

∫
eit

⊤yf(t)dt and F−1[f ](y) = (
1

2π
)D
∫
e−it

⊤yf(t)dt.

Then, the estimator for the support of the signal is taken as the upper level set

M̂ = {y : ĝ(y) > λ},

where λ has to be well chosen. To obtain the best possible rates requires a further polynomial
truncation of ϕ̂ before Fourier inversion, depending on the parameter κ. We then provide a
model choice procedure to adapt in κ and get adaptive rates. Estimation of the distribution
starts from the estimation of the support and follows similar ideas.
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3.2 Estimation of the characteristic function

For any S > 0, let Υκ,S be the subset of multivariate analytic functions from CD to C defined
as follows.

Υκ,S =

{
ϕ analytic s.t. ∀z ∈ RD, ϕ(z) = ϕ(−z), ϕ(0) = 1 and ∀i ∈ ND \ {0},∣∣∣∣∣ ∂iϕ(0)∏d

a=1 ia!

∣∣∣∣∣ ⩽ S∥i∥1

∥i∥κ∥i∥1

1

}
(3)

where ∥i∥1 =
∑D
a=1 ia. If the distribution of X satisfies A(κ), then there exists S such that

ΦX ∈ Υκ,S , and the converse also holds, see Lemma 3.1 in [17].
Let Φε(i) be the characteristic function of ε(i), i = 1, 2, and define for all ϕ ∈ Υκ,S and any

ν > 0,

M(ϕ; ν|ΦX) =

∫
B

d1
ν ×Bd2

ν

|ϕ(t1, t2)ΦX(t1, 0)ΦX(0, t2)− ΦX(t1, t2)ϕ(t1, 0)ϕ(0, t2)|2

×|Φε(1)(t1)Φε(2)(t2)|2dt1dt2.

Fix some νest > 0, and define Mn for any ϕ as follows

Mn(ϕ) =

∫
B

d1
νest×B

d2
νest

|ϕ(t1, t2)ϕ̃n(t1, 0)ϕ̃n(0, t2)− ϕ̃n(t1, t2)ϕ(t1, 0)ϕ(0, t2)|2dt1dt2, (4)

where for all (t1, t2) ∈ Rd1 × Rd2 ,

ϕ̃n(t1, t2) =
1

n

n∑
ℓ=1

exp
{
it⊤1 Y

(1)
ℓ + it⊤2 Y

(2)
ℓ

}
.

By the law of large numbers, Mn(ϕ) is a consistent estimator of M(ϕ; νest|ΦX). As usual in
M-estimation to get consistency of the estimator, we need to minimize Mn over a closed set
of functions over which ΦX is the only minimizer of M(·; νest|ΦX). We thus introduce H a
subset of functions CD → CD such that all elements of H satisfy (Adep) and such that the set
of the restrictions to BDνest of functions in H is closed in L2(BDνest). Indeed we shall consider
consistency of the estimator in L2(BDνest), see Proposition 2 below. For instance, H can be
defined using submodels such as errors in variable regression with regression functions in a
closed set of smooth functions when it is believed that the signal X belongs to this submodel.
H can also be defined using geometric constraints such as those described in Section 2.3, as
soon as it is believed that the support of X satisfies those constraints since we need ΦX ∈ H.
We now introduce the following assumption.

(Amin) There exists α ∈ (0, 1) and ν0 > 0 such that for all ν ∈ (0, ν0], there exists c(ν, α) > 0
such that forall ΦX ∈ H ∩Υ1/2,S and for all ϕ ∈ H ∩Υ1/2,S such that ϕ ̸= ΦX ,∥∥∥∥ ϕ

ΦX
− ϕ(·, 0)

ΦX(·, 0)
− ϕ(0, ·)

ΦX(0, ·)
+ 1

∥∥∥∥
2,ν

⩾ c(ν, α)max

(∥∥∥∥ ϕ(·, 0)
ΦX(·, 0)

− 1

∥∥∥∥
2,ν

,

∥∥∥∥ ϕ(0, ·)
ΦX(0, ·)

− 1

∥∥∥∥
2,ν

)1+α

,

where f(·, 0) denotes the function t1 ∈ Rd1 7→ f(t1, 0) and likewise f(0, ·) : t2 ∈ Rd2 7→
f(0, t2) for any function f on RD.

From now on, we assume that H satisfies (Amin) for some fixed α ∈ (0, 1).
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Let also Cm[X] be the set of polynomial functions of degree m in D indeterminates. For

any integer m and any κ < 1, we define Φ̂n,m,κ be a (up to 1/n) measurable minimizer of the
functional ϕ 7→Mn(ϕ) over Υκ,S ∩H ∩ Cm[X], that is

Mn(Φ̂n,m,κ) ⩽ inf
ϕ∈Υκ,S∩H∩Cm[X]

Mn(ϕ) +
1

n
.

For good choices of m, Φ̂n,m,κ is a consistent estimator of ΦX in L2(BDν ) at polynomial rate.
The constants will depend on the signal through κ and S, and on the noise through its second
moment and the following quantity:

cν = inf{|Φε(1)(t)|, t ∈ Bd1ν } ∧ inf{|Φε(2)(t)|, t ∈ Bd2ν }. (5)

Note that for any noise distribution, for small enough ν, cν is a positive real number. For any
ν > 0, c(ν) > 0, E > 0, define Q(D)(ν, c(ν), E) the set of distributions Q = ⊗2

j=1Qj on RD
such that cν ⩾ c(ν) and

∫
RD ∥x∥2dQ(x) ⩽ E.

Proposition 2. For all κ0 > 1/2, ν ∈ (0, νest], S, c(ν), E, C > 0 and δ ∈ (0, 1), there exist
positive constants c and n0 such that the following holds: let κ ∈ [κ0, 1], for all ΦX ∈ Υκ,S ∩H
and Q ∈ Q(D)(ν, c(ν), E), for all n ⩾ n0 and s ⩾ 1, with probability at least 1− 2e−s,

sup
κ′∈[κ0,κ], m∈[ 2

κ′
log n

log log n ,C
log n

log log n ]

∫
B

d1
ν ×Bd2

ν

|Φ̂n,m,κ′(t)− ΦX(t)|2dt ⩽ c
( s

n1/(1+2α)

)1−δ
.

The proof of Proposition 2 is based on results in [8] and [17] and is detailed in Appendix C.

For sake of simplicity, we denote Φ̂n,κ the estimator Φ̂n,m,κ in whichm = ⌈4 logn
log logn⌉. Note that

with this value of m, we may apply the inequality in Proposition 2 uniformly for κ′ ∈ [κ0, κ]
whatever κ0 ∈ (1/2, 1] and κ ∈ (κ0, 1].

4 Estimation of the support

In Section 4.1, we provide an estimator of the support of the signal when κ is known, and
prove an upper bound for the maximum risk in Hausdorff distance. Section 4.2 is devoted to
the construction of an adaptive estimator of the support for unknown κ. In Section 4.3, we
prove a lower bound which shows that our estimator is minimax up to some power of log log n
for all κ ∈ (1/2, 1) and up to any small power of log n for κ = 1.

4.1 Upper bound

We shall consider the minimax risk in Hausdorff distance, which is defined, for A1 and A2

subsets of RD, as
dH(A1, A2) = sup

x∈A1∪A2

|d(x,A1)− d(x,A2)|.

When κ < 1, the support of G is not compact. Since we allow the support to be a non-compact
set, we define a truncated loss function as in [20]. We fix K a compact subset of RD (which
can be arbitrarily large) and for any S1, S2 subsets of RD, the truncated loss function is

HK(S1, S2) = dH(S1 ∩ K, S2 ∩ K).

We now define the class over which we will prove an upper bound for the maximum risk in
Hausdorff distance. Since consistency of Φ̂n,m,κ is obtained for X such that ΦX ∈ H∩Υκ,S we
summarize L(κ, S,H) as the set of distributions G such that, if X is a random variable with
distribution G, then ΦX ∈ H∩Υκ,S . Moreover, for any positive constants a, d and r0, we define
StK(a, d, r0) as the set of positive measures G such that for all x ∈ MG ∩ K, for all r ⩽ r0,
G(B(x, r)) ⩾ ard. The distributions in StK(a, d, r0) are called (a, d)-standard. Such a class of
distributions is commonly used for inferring topological information, see for instance [6].
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Remark 1. • If a measure µ (for instance the d-dimensional Hausdorff measure on a
manifold) is (a, d′)-standard for some positive constants a and d′, and if G admits a
density g with respect to µ such that g is lower bounded by c > 0, then G is (ac, d′)-
standard.

• We do not make any assumption on the reach of the support of G (see [15]) since it is
not necessary here, although it provides a convenient way to check the (a, d)-standard
assumption: if MG is a Riemannian manifold of dimension d with reach(MG) ⩾ τmin >
0, then the d-dimensional Hausdorff measure restricted to MG is (a, d)-standard for some
a > 0 (see Lemma 32 of [20]).

We now introduce the kernel we shall use for our construction. Fix A > 0 and define, for
all y ∈ R,

uA(y) = exp

{
− 1

(1− 2y)A
− 1

(1 + 2y)A

}
1|[− 1

2 ,
1
2 ]
(y)

and for all y ∈ RD,

ψA(y) = I(A) F−1[uA ∗ uA](∥y∥2) with I(A) =
1∫

F−1[uA ∗ uA](∥x∥2)dx
.

For h > 0 and x ∈ RD, we write ψA,h(x) = h−DψA(x/h), hence F [ψA,h](t) = F [ψA](th). Note
that F [ψA] has compact support, so we may define define the function ḡ by

∀y ∈ RD, ḡ(y) =
(

1

2π

)D ∫
e−it

⊤yF [ψA](ht) ΦX(t)dt,

which may be rewritten using usual Fourier calculus, for all y ∈ RD, as

ḡ(y) = (ψA,h ∗G)(y) =
1

hD

∫
RD

ψA

(
∥y − u∥2

h

)
dG(u).

The density ḡ is a kernel smoothing of the distribution G. The bandwidth parameter h will be
chosen appropriately in Theorem 3 below. We now construct an estimator of ḡ by truncating
Φ̂n,κ depending on κ. Adaptation with respect to κ is handled in Section 4.2. For some integer
mκ > 0 to be chosen later, let

∀y ∈ RD, ĝn,κ(y) =
(

1

2π

)D ∫
e−it

⊤yF [ψA](ht) TmκΦ̂n,κ(t)dt,

in which for any multivariate analytic function ϕ defined in a neighborhood of 0 in CD as
ϕ : x 7→

∑
(i1,...,iD)∈ND ci

∏D
a=1 x

ia
a , its truncation on Cm[X] for any integer m is

Tmϕ : x 7→
∑

(i1,...,iD)∈ND i1+···+iD⩽m

ci

D∏
a=1

xiaa .

Since for all t ∈ RD, Tmκ
Φ̂n,κ(−t) = Tmκ

Φ̂n,κ(t), the function ĝn,κ is real valued. Finally,
define an estimator of the support of the signal as the upper level set

M̂κ =
{
y ∈ RD | ĝn,κ(y) > λn,κ

}
,

for some λn,κ. The main theorem of this section gives an upper bound of the maximum risk.

Theorem 3. Let κ ∈ (1/2, 1], a > 0 , d ⩽ D, r0 > 0. For ch ⩾ exp (2D + 2) and ℓ ∈ (0, 1),
define mκ and h as

mκ =

⌊
1

6κ

log(n)

log log(n)

⌋
, h = chSm

−κ
κ

and λn,κ depending whether d < D or d = D as

10



• if d < D,

λn,κ =

(
1

h

)ℓ
,

• if d = D,

λn,κ =
1

4
acDAdA.

Then for any κ0 ∈ (1/2, 1], ν ∈ (0, νest], c(ν) > 0, E > 0, S > 0, there exists n0 and C > 0
such that for all n ⩾ n0,

sup
κ∈[κ0,1]

sup
G∈StK(a,d,r0)∩L(κ,S,H)

Q∈Q(D)(ν,c(ν),E)

log(n)κ

log(log(n))κ+
A+1
A

E(G∗Q)⊗n [HK(MG,M̂κ)] ⩽ C.

Remark 2. • We prove in the next section a nearly matching lower bound. Thus, the
minimax rate of convergence of the support in truncated Hausdorff distance depends on κ,
that is on the way the distribution of the signal behaves at infinity. This rate deteriorates
when the distribution of the signal has heavier tails. Indeed, since the distribution of the
noise is unknown, taking into account distant observation points to build the estimator
of the support becomes more difficult.

• When d < D, thanks to the use of the kernel ψA, our estimator does not require the
knowledge of d, which has to be compared with the estimator in [20] where prior knowledge
of d is needed.

• In [20], the upper bound on the rate is of order 1/
√
log n. Here we get a bound of order

1/(log n)κ depending on the tail of the distribution of the signal. We do not need to know
the distribution of the noise, contrarily to [20] where the distribution of the noise is used
in the construction of the estimator, as usual in the classical deconvolution literature.

• It may be seen from the proof of Theorem 3 that the choice λn,κ = 1
4ac

D
AdA is valid for

any d. However, this requires the knowledge of a.

• Note that there are two truncation steps: the first one is implicit in the construction of
Φ̂n,κ (chosen at the end of Section 3.2) and the second one appears in the definition of

ĝn,κ. This second truncation is necessary to control the error of Φ̂n,κ on BD1/h (instead of

the error on BDν in Proposition 2), and the degree mκ in the second truncation is always

smaller than the degree m used in the construction of Φ̂n,κ.

• The constant ℓ can be chosen arbitrarily between 0 and 1.

The proof of Theorem 3 is detailed in Appendix D.1. As in [20], the idea is to lower bound ḡ
on the support MG when the bandwidth parameter h becomes small, and to upper bound it on
every points further than a small distance (depending on h) from that support, see Lemmas 3
and 4 in Appendix D.1.

4.2 Adaptation to unknown κ

We now propose a data-driven model selection procedure to select κ such that the resulting
estimator has the right rate of convergence. As usual, the idea is to perform a bias-variance
trade off. Although we have an upper bound for the variance term, the bias is not easily
accessible. We will use Goldenshluger and Lepski’s method, see [21]. The variance bound is
given as follows:

σn(κ) = cσ
(log log n)κ+

A+1
A

(log n)κ
.

Fix some κ0 > 1/2. The bias proxy is defined as

Bn(κ) = 0 ∨ sup
κ′∈[κ0,κ]

(
HK(M̂κ,M̂κ′)− σn(κ

′)
)
.

11



The estimator of κ is now given by

κ̂n ∈ arg min {Bn(κ) + σn(κ), κ ∈ [κ0, 1]} ,

and the estimator of the support of the signal is M̂κ̂n
. The following theorem states that this

estimator is rate adaptive.

Theorem 4. For any κ0 ∈ (1/2, 1], ν ∈ (0, νest], c(ν) > 0, E > 0, S > 0, a > 0, d ⩽ D, there
exists cσ > 0 such that

lim sup
n→+∞

sup
κ∈[κ0,1]

sup
G∈StK(a,d)∩L(κ,S,H)

Q∈Q(D)(ν,c(ν),E)

log(n)κ

log(log(n))κ+
A+1
A

E(G∗Q)⊗n [HK(MG,M̂κ̂n
)] < +∞.

The proof of Theorem 4 is detailed in Appendix D.5.

4.3 Lower bound

The aim of this subsection is to prove a lower bound for the minimax risk of the estimation
of MG using the distance HK as loss function. The proof of Theorem 5 is based on Le Cam’s
two-points method, see [27], one of the most widespread technique to derive lower bounds.
Note that we can not use the lower bound proved in [20] since the two distributions they use
for the signal X in their two-points proof have Gaussian tails, for which κ = 1/2.

Theorem 5. For any κ ∈ (1/2, 1), there exists Sκ > 0, aκ > 0 and H⋆
κ a set of complex

functions satisfying (Adep) such that the set of the restrictions of its elements to [−ν, ν]D is
closed in L2([−ν, ν]D) for any ν > 0, and such that for all S ⩾ Sκ, a ⩽ aκ, d ⩾ 1, 0 < r0 < 1,
E > 0 and ν ∈ (0, νest] such that c(ν) > 0, there exists C > 0 depending only on a, D, S, E
and ν, and there exists n0, such that for all n ⩾ n0,

inf
M̂

sup
G∈StK(a,d,r0)∩L(κ,S,H⋆

κ)

Q∈Q(D)(ν,c(ν),E)

E(G∗Q)⊗n [HK(MG,M̂)] ⩾
C

log(n)κ
, (6)

and for any δ ∈ (0, 1), there exists C > 0 depending only on a, D, S, E, ν and δ, and there
exists n0, such that for all n ⩾ n0,

inf
M̂

sup
G∈StK(a,d,r0)∩L(1,S,H⋆

1)

Q∈Q(D)(ν,c(ν),E)

E(G∗Q)⊗n [HK(MG,M̂)] ⩾
C

log(n)1+δ
, (7)

where the infimum in (6) and (7) is taken over all possible estimators M̂ of MG.

Remark 3. • The lower bound in Theorem 5 almost matches the upper bound for the
maximum risk of our estimator in Theorem 3. Thus our work identifies the main factor
in the minimax rate for the estimation of the support in Hausdorff loss. Notice that (7)
is weaker than (6) with κ = 1, but we were not able to find a fκ suitable to prove (6)
with κ = 1, see Lemma 7 in Appendix D.6.

• In [20], the lower bound does not match the upper bound by a larger power in the rate
(almost twice).

• The sets of supports we consider are not the same as that considered in [20]. In [20], the
authors assume that the support is a regular manifold with lower bounded reach. We do
not assume regularity, we only assume that the distribution of the signal is (a, d)-standard.

The proof of Theorem 5 is detailed in Appendix D.6.
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5 Estimation of the distribution of the signal

In this section, we assume that the support MG of G is a compact subset of RD. For any
η > 0 and A ⊂ RD, Aη will denote the η-offset of A, that is the set of all points x in RD such
that d(x,A) ⩽ η.

To estimate G, we shall consider the probability density ḡ defined in Section 4.1 and define
the probability distribution PψA,hn

on RD such that, for any O borelian set of RD,

PψA,hn
(O) =

∫
O
ḡ(y)dy.

We then estimate PψA,hn
using the estimation of ḡ defined in Section 4.1 for κ = 1, ĝn := ĝn,1.

Since ĝn can be non positive, we use ĝ+n = max {0, ĝn} and renormalize it to get a probability
distribution. We shall also estimate PψA,hn

with a probability distribution having support on

a (small) offset of the estimated support M̂ restricted to the closed euclidean ball B̄(0, Rn),

for some radius Rn that grows to infinity with n. Thus we fix some η > 0 and define P̂n,η such
that, for any O borelian set of RD,

P̂n,η(O) =
1∫

(M̂∩B̄(0,Rn))η
ĝ+n (y)dy

∫
O∩(M̂∩B̄(0,Rn))η

ĝ+n (y)dy = cn

∫
O∩(M̂∩B̄(0,Rn))η

ĝ+n (y)dy.

5.1 Upper bound for the Wasserstein risk

The aim of this subsection is to give an upper bound of the Wasserstein maximum risk for the
estimation of G. For any p ∈ [1,+∞) and any two probability measures µ and ν on RD, we
write Wp(µ, ν) the Wasserstein distance of order p between µ and ν, that is

Wp(µ, ν) = inf
π∈Π(µ,ν)

(∫
RD×RD

∥x− y∥p2dπ(x, y)
)1/p

,

where Π(µ, ν) is the set of probability measures on RD × RD that have marginals µ and ν.

Theorem 6. For all ν ∈ (0, νest], c(ν) > 0, E > 0, S > 0, η > 0, a > 0 , r0 > 0,
d ⩽ D, p ∈ [1,+∞), define mn, hn and λn as in Theorem 3 for κ = 1. Assume that
limn→+∞Rn = +∞ and that there exists δ ∈ (0, 12 ) such that Rn ⩽ exp(n1/2−δ). Then there
exist n0 and C > 0 such that for all n ⩾ n0,

sup
G∈StK(a,d,r0)∩L(1,S,H)

Q∈Q(D)(ν,c(ν),E)

E(G∗Q)⊗n [Wp(G, P̂n,η)] ⩽ C
log log(n)

log(n)
.

The proof of Theorem 6 is detailed in Appendix E.1. Note that the magnitude of η does
not appear to be crucial when looking at the proof, at least in an asymptotic perspective.
Considering an offset of size η of M̂ is meant to control the variance of the estimator P̂n,η.

Remark 4. • The lower bound in Theorem 7 almost matches the upper bound for the
maximum risk of our estimator in Theorem 6. Thus our work identifies the main factor
in the minimax rate for the estimation of the distribution in Wasserstein loss.

• Comparison with earlier results in the deconvolution setting [11] or [10] with known noise
is not easy since the classes of signals they consider is much different than the ones we
consider.

5.2 Lower bound for the Wasserstein risk

The aim of this subsection is to establish a lower bound for the minimax Wasserstein risk of
order p for any p ⩾ 1. Again, we can not use previous lower bounds proved in [11] or [10] since
they use in the two-points method signals with distributions having too heavy tails.
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Theorem 7. For any p ⩾ 1, there exists S1 > 0, a1 > 0 and H⋆
1 a set of complex functions

satisfying (Adep) such that the set of the restrictions of its elements to [−ν, ν]D is closed in
L2([−ν, ν]D) for any ν > 0, and such that for all S ⩾ S1, a ⩽ a1, d ⩾ 1, 0 < r0 < 1, E > 0
and ν ∈ (0, νest] such that c(ν) > 0, there exists C > 0 depending only on a, D, S, E and ν,
and there exists n0, such that for all n ⩾ n0,

inf
P̂n

sup
G∈StK(a,d,r0)∩L(1,S,H⋆

1)

Q∈Q(D)(ν,c(ν),E)

E(G∗Q)⊗n [Wp(G, P̂n)] ⩾ C
1

log(n)1+δ
,

where the infimum is taken on all possible estimate P̂n of G.

As for Theorem 5, we use Le Cam’s two-points method with the same two distribu-
tions G0(1) and G1(1). The proof essentially consists in showing that there exists a con-
stant C > 0 independent of γ such that Wp(G0(1), G1(1)) ⩾ CHK(M0(γ),M1(γ)), that is
Wp(G0(1), G1(1)) ⩾ Cγ for a constant C > 0. Once such an equality is established, the lower
bound follows from taking γ as for Theorem 5.

The rest of the proof is detailed in Appendix E.2.
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A Summary of notations

To help the reader, this section gathers the notations introduced in this paper, along with
where they are defined.

• For any r > 0, we write Br = (−r, r) and for any measurable function f on BDr , we
write ∥f∥∞,r the essential supremum of f over BDr and ∥f∥2,r = (

∫
BD

r
|f(u)|2du)1/2.

Section 1.3.

• ΦX : the characteristic function ofX, Φε(i) : the characteristic function of ε(i). Section 2.2.

• Assumption A(κ): There exist a, b > 0 such that for all λ ∈ RD, E
[
exp

(
λ⊤X

)]
⩽

a exp
(
b∥λ∥1/κ2

)
. Section 2.2.

• Assumption (Adep): For any z0 ∈ Cd1 , z 7→ ΦX(z0, z) is not the null function and for
any z0 ∈ Cd2 , z 7→ ΦX(z, z0) is not the null function. Section 2.2.

• MG: support of the distribution G. Section 2.2.

• For all (t1, t2) ∈ Rd1 × Rd2 , ϕ̃n(t1, t2) = 1
n

∑n
ℓ=1 exp

{
it⊤1 Y

(1)
ℓ + it⊤2 Y

(2)
ℓ

}
. Section 3.2.

• M(ϕ; ν|ΦX) and Mn(ϕ), Section 3.2:

M(ϕ; ν|ΦX) =

∫
B

d1
ν ×Bd2

ν

|ϕ(t1, t2)ΦX(t1, 0)ΦX(0, t2)− ΦX(t1, t2)ϕ(t1, 0)ϕ(0, t2)|2

× |Φε(1)(t1)Φε(2)(t2)|2dt1dt2,

Mn(ϕ) =

∫
B

d1
νest×B

d2
νest

|ϕ(t1, t2)ϕ̃n(t1, 0)ϕ̃n(0, t2)− ϕ̃n(t1, t2)ϕ(t1, 0)ϕ(0, t2)|2dt1dt2.
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• For S > 0 and κ > 0, Υκ,S = {ϕ analytic s.t. ∀z ∈ RD, ϕ(z) = ϕ(−z), ϕ(0) = 1 and ∀i ∈
ND \ {0},

∣∣∣ ∂iϕ(0)∏d
a=1 ia!

∣∣∣ ⩽ S∥i∥1

∥i∥κ∥i∥1
1

}. Section 3.2.

• H: a subset of functions CD → CD such that all elements of H satisfy (Adep) and
such that the set of the restrictions to [−νest, νest]D of functions in H is closed in
L2([−νest, νest]D). Section 3.2.

• For any integer m, Cm[X] is the set of polynomial functions of degree m in D indeter-
minates with complex coefficients. Section 3.2.

• For any integer m and any κ < 1, Φ̂n,m,κ is a (up to 1/n) measurable minimizer of the
functional ϕ 7→Mn(ϕ) over Υκ,S ∩H ∩ Cm[X]. Section 3.2.

• cν = inf{|Φε(1)(t)|, t ∈ [−ν, ν]d1} ∧ inf{|Φε(2)(t)|, t ∈ [−ν, ν]d2}. Section 3.2.

• For any ν > 0, c(ν) > 0, E > 0, Q(D)(ν, c(ν), E) is the set of distributions Q = ⊗2
j=1Qj

on RD such that cν ⩾ c(ν) and
∫
RD ∥x∥2dQ(x) ⩽ E. Section 3.2.

• dH(A1, A2) is the Hausdorff distance between A1 and A2 subsets of RD. Section 4.1.

• K: a compact subset of RD (which can be arbitrarily large). Section 4.1.

• For all S1, S2 subsets of RD, HK(S1, S2) = dH(S1 ∩ K, S2 ∩ K). Section 4.1.

• StK(a, d, r0): set of positive measures G such that for all x ∈ MG ∩ K, for all r ⩽ r0,
G(B(x, r)) ⩾ ard. The distributions in StK(a, d, r0) are called (a, d)-standard. Sec-
tion 4.1.

• L(κ, S,H): set of distributions G such that, if X is a random variable with distribution
G, then ΦX ∈ H ∩Υκ,S . Section 4.1.

• Fourier and inverse Fourier transform : when f is an integrable function from RD to R,
for all y ∈ RD, F [f ](y) =

∫
eit

⊤yf(t)dt and F−1[f ](y) = ( 1
2π )

D
∫
e−it

⊤yf(t)dt. End of
Section 3.1.

• For any A > 0, for all y ∈ R, uA(y) = exp
{
− 1

(1−2y)A
− 1

(1+2y)A

}
1|[− 1

2 ,
1
2 ]
(y). Section 4.1.

• For any A > 0 and y ∈ RD, ψA(y) = I(A) F−1[uA ∗ uA](∥y∥2), with
I(A) = 1∫

F−1[uA∗uA](∥x∥2)dx
and ψA,h(x) = h−DψA(x/h). Section 4.1.

• The constants cA > 0 and dA > 0: for all x ∈ {y ∈ RD : ∥y∥2 ⩽ cA}, ψA(x) ⩾ dA.
Section 4.1.

• For any multivariate analytic function ϕ defined in a neighborhood of 0 in CD as ϕ : x 7→∑
(i1,...,iD)∈ND ci

∏D
a=1 x

ia
a , for any integer m, its truncation on Cm[X] is

Tmϕ : x 7→
∑

(i1,...,iD)∈ND i1+···+iD⩽m ci
∏D
a=1 x

ia
a . Section 4.1.

• For all y ∈ RD, ḡ(y) = ( 1
2π )

D
∫
e−it

⊤yF [ψA](ht) ΦX(t)dt. Section 4.1.

• For all y ∈ Rd, ĝn,κ(y) =
(

1
2π

)D ∫
e−it

⊤yF [ψA](ht) TmκΦ̂n,κ(t)dt. Section 4.1.

• M̂κ =
{
y ∈ RD | ĝn,κ(y) > λn,κ

}
. Section 4.1.

• Γn,κ = ∥ĝn,κ − ḡ∥∞ = supy∈RD |ĝn,κ(y)− ḡ(y)|. Section 4.1.

• For any η > 0, Aη denotes the η-offset of A. Section 5.

• For any borelian set O of RD, PψA,hn
(O) =

∫
O ḡ(y)dy. Section 5.

• ĝn := ĝn,1 and ĝ+n = max {0, ĝn}. Section 5.
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• For any borelian set O of RD, P̂n,η(O) = 1∫
(M̂∩B̄(0,Rn))η

ĝ+n (y)dy

∫
O∩(M̂∩B̄(0,Rn))η

ĝ+n (y)dy =

cn
∫
O∩(M̂∩B̄(0,Rn))η

ĝ+n (y)dy.

• For any p ∈ [1,+∞) and any two probability measures µ and ν on RD, Wp(µ, ν) is the
Wasserstein distance of order p between µ and ν. Section 5.1.

• For k, l ∈ {1, . . . , D} with k ⩽ l, π(k:l) : (x1, . . . , xD) ∈ RD 7→ (xk, . . . , xl) ∈ Rl−k+1 and
π(k) = π(k:k). Section 2.3.

B Proofs for Section 2

B.1 Proof of Proposition 1

Case κ = 1.
First, it is clear that any compactly supported distribution satisfies A(1). Conversely, if

E[e⟨λ,X⟩] ⩽ a exp(b∥λ∥2), then for any µ > 0, we get, for any b′ > b, if we denote (ej)1⩽j⩽D
the canonical basis of RD,

P(∥X∥2 ⩾ Db′) ⩽
D∑
j=1

P(|Xj | ⩾ b′)

=

D∑
j=1

{P(Xj ⩾ b′) + P(Xj ⩽ −b′)}

=

D∑
j=1

{P(⟨µej , X⟩ ⩾ µb′) + P(−⟨µej , X⟩ ⩾ µb′)}

⩽
D∑
j=1

{
E [exp(⟨µej , X⟩)]

exp(b′µ)
+

E [exp(−⟨µej , X⟩)]
exp(b′µ)

}
by Markov inequality

⩽ 2D
a exp(bµ)

exp(b′µ)
−→

µ→+∞
0,

and hence ∥X∥2 ⩽ Db almost surely.

Case κ < 1.
Assume that for any λ ∈ RD, E[e⟨λ,X⟩] ⩽ a exp(b∥λ∥1/κ2 ) for some a, b > 0. Then by using

the same directional method as for κ = 1, we get that for any µ, t ⩾ 0,

P(∥X∥2 ⩾ t) ⩽ 2Da exp(bµ1/κ − µt)

= 2Da exp

(
−
(κ
b

) κ
1−κ

(1− κ)t
1

1−κ

)
by taking µ =

(
κt

b

) κ
1−κ

,

hence the result.

Now, assume that for any t ⩾ 0, P(∥X∥2 ⩾ t) ⩽ c exp(−dt1/(1−κ)) for some c, d > 0, then
by the Cauchy-Schwarz inequality, for any λ ∈ RD,

E[e⟨λ,X⟩] ⩽ E[e∥λ∥2∥X∥2 ].
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Then, using that for any nonnegative random variable Y , E[Y ] =
∫
t⩾0

P(Y ⩾ t)dt,

E[e⟨λ,X⟩] ⩽ 1 +

∫
t⩾1

P(e∥λ∥2∥X∥2 ⩾ t)dt

⩽ 1 +

∫
s⩾0

P(∥X∥2 ⩾ s)∥λ∥2 exp(∥λ∥2s)ds with t = e∥λ∥2s

⩽ 1 + c∥λ∥2
∫
s⩾0

exp(−ds
1

1−κ + ∥λ∥2s)ds

⩽ 1 + c∥λ∥1/κ2

∫
s′⩾0

exp(∥λ∥1/κ2 (−ds′
1

1−κ + s′))ds′ with s = s′∥λ∥1/κ−1
2 .

Note that −ds′
1

1−κ + s′ ⩽ κ( 1−κd )1/κ−1 for any s′ ⩾ 0, and −ds′
1

1−κ + s′ ⩽ −s′ when s′ ⩾
( 2d )

1/κ−1. In particular,

E[e⟨λ,X⟩] ⩽ 1 + c∥λ∥1/κ2

∫ ( 2
d )

1/κ−1

s′=0

exp(∥λ∥1/κ2 (−ds′
1

1−κ + s′))ds′

+ c∥λ∥1/κ2

∫
s′⩾( 2

d )
1/κ−1

exp(∥λ∥1/κ2 (−ds′
1

1−κ + s′))ds′

⩽ 1 + c∥λ∥1/κ2

(
2

d

)1/κ−1

exp

(
κ∥λ∥1/κ2

(
1− κ

d

)1/κ−1
)
+ c exp

(
−∥λ∥1/κ2

(
2

d

)1/κ−1
)
,

which proves that A(κ) holds.

B.2 Proof of Theorem 2

Consider a random variable X satisfying A(κ). Theorem 2 is a direct consequence of the
following Lemma 1. Indeed, for any z0 ∈ Cd1 and z ∈ Cd2 ,

E
[
exp

(
iz⊤0 X

(1) + iz⊤X(2)
)]

= E
[
E
[
exp

(
iz⊤0 X

(1)
)
|X(2)

]
exp

(
iz⊤X(2)

)]
.

Let us show that z 7→ E[exp(iz⊤0 X(1) + iz⊤X(2))] is the null function if and only if the random
variable E[exp(iz⊤0 X(1)) |X(2)] is zero PX(2)-a.s. Define h the measurable function such that

E
[
exp

(
iz⊤0 X

(1)
)
|X(2)

]
= h

(
X(2)

)
PX(2) − a.s.,

and assume that for all z ∈ Cd2 , E[h(X(2)) exp(iz⊤X(2))] = 0. Write Ψ(h, iz) this expectation
(which is zero for all z ∈ Cd2), and note that Ψ(h, iz) = Ψ

(
h, iz

)
. As a consequence,

E
[
Re(h(X(2))) exp

(
iz⊤X(2)

)]
=

1

2

(
Ψ(h, iz) + Ψ

(
h, iz

))
= 0,

and likewise for Im(h). By replacing h(X(2)) by its real or imaginary part, let us now assume
that it is real-valued.

Denote for all x ∈ Rd2 , h+(x) = max {h(x), 0} and h−(x) = max {−h(x), 0}. We get for all
z ∈ Cd2 ,

E
[
h+

(
X(2)

)
exp

(
iz⊤X(2)

)]
= E

[
h−

(
X(2)

)
exp

(
iz⊤X(2)

)]
.

If h(X(2)) is not zero PX(2)-a.s., then the measures with density h+ and h− with respect
to PX(2) have positive (and equal) total measure. After dividing by this total measure, we
obtain two probability measures with equal characteristic functions, therefore they are the same
probability distributions, so that h+(X

(2)) = h−(X
(2)), PX(2)-a.s., which implies h(X(2)) = 0,

PX(2)-a.s.
Likewise, for any z0 ∈ Cd2 , z 7→ E[exp(iz⊤X(1) + iz⊤0 X

(2))] is the null function if and only
if E[exp(iz⊤0 X(2)) |X(1)] is zero PX(1)-a.s.
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Lemma 1. Assume (H1) and (H2). Then, for all z ∈ Cd1 , E[exp (iz⊤X(1)) |X(2)] is not PX(2)-
a.s. the null random variable and for all z ∈ Cd2 , E[exp (iz⊤X(2)) |X(1)] is not PX(1)-a.s. the
null random variable

Proof of Lemma 1. Let z ∈ Cd1 be such that E[exp (iz⊤X(1))|X(2)] is PX(2)-a.s. the null
random variable. Then for any ∆ > 0, if we denote A∆ and B∆ the sets given by (H1) and
take x∆ ∈ B∆,

E[exp(iz⊤(X(1) − x∆))|X(2)]1|X(2)∈A∆
= 0 P

X
(2)
1

-a.s.,

and taking the real part of this equation shows that

E[cos(Re(z)⊤(X(1) − x∆)) exp (−Im(z)⊤(X(1) − x∆))|X(2)]1|X(2)∈A∆
= 0 PX(2)a.s. (8)

Using that Diam(B∆) → 0 as ∆ → 0 from (H1), we can fix ∆ > 0 small enough that if
x ∈ B∆, cos(Re(z)

⊤(x − x∆)) > 0. Since P(X(1) ∈ B∆ |X(2) ∈ A∆) = 1, this means that the
expectation in (8) is positive, which is a contradiction. Thus E[exp (iz⊤(X(1) − x∆))|X(2)] is
not PX(2)-a.s. the null random variable.

The proof of the other part of Lemma 1 is analogous using (H2).

B.3 Proof of Corollary 2

Let M be a compact subset of RD. Let us first prove that the function u 7−→ Diam({u} ×
Rd2 ∩M) is upper semi-continuous.

Let u ∈ Rd1 . Since M is compact, there exist sequences un → u and (xn, yn) in
({un}×Rd2 ∩M) such that ∥xn− yn∥2 = Diam({un}×Rd2 ∩M) and limn→+∞ ∥xn− yn∥2 =
lim supv→uDiam({v} × Rd2 ∩ M). Moreover, we may assume that there exists (x, y) in
({u} × Rd2 ∩ M) such that xn → x and yn → y. Taking the limit along those sequences
shows that Diam({u} ×Rd2 ∩M) ⩾ ∥x− y∥ = lim supv→uDiam({v} ×Rd2 ∩M), proving the
claimed upper-semi continuity.

Now, since M is compact, there exists R > 0 such that M ⊂ B̄(0, R). If moreover M ∈ B1,
there exists x1 ∈ Rd1 such that Diam({x1} × Rd2 ∩M) = 0. Using the upper semi-continuity
shows that M ∈ ∩n⩾1A2(1/n,R). Likewise, if M ∈ B2, there exists x2 ∈ Rd2 such that
Diam(Rd1 × {x2} ∩M) = 0 and M ∈ ∩n⩾1A1(1/n,R).

The end of the proof follows from Corollary 1 and the fact that any random variable with
compact support satisfies A(1).

B.4 Measure theoretical genericity and random perturbation of the
space

In this section, we construct a random and small perturbation of RD and show that any
compact set is almost surely transformed into a compact set in B1 ∩ B2.

More precisely, for any ε > 0, we define a (random) continuous bijection f : RD −→ RD
such that almost surely, |f(x) − x| ⩽ ε for all x ∈ RD, and such that if M is compact, then
f(M) is in B1 ∩ B2 almost surely. This random bijection does not depend on which support
M is considered, and can for instance be seen as a modeling of the imperfections of “realistic”
supports, or as a way to introduce a Bayesian prior on the support. In that sense, compact
supports are almost surely in B1 ∩B2, and thus compactly supported random variables almost
surely satisfy (Adep).

There is no canonical way to define a random perturbation of RD. Our approach is to tile
the space with simplices, then add a small perturbation to each vertex of the tiling, keeping the
transformation linear inside each simplex. Visually, this results in a small, random crumpling
of the Euclidean space.
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B.4.1 Simplicial tiling of RD

Let us recall a few definitions about simplicial complexes. For any k ∈ {0, . . . , D}, a k-simplex
of RD is the convex hull of (k + 1) affinely independent points of RD. A simplicial complex P
is a set of simplices such that every face of a simplex from P is also in P, and the non-empty
intersection of any two simplices F1, F2 ∈ P is a face of both F1 and F2. P is a homogeneous
simplicial D-complex if each simplex of dimension less than D of P is the face of a D-simplex
of of P. For any simplex F , we write relint(F ) its relative interior. Finally, a homogeneous
simplicial D-complex P is called a simplicial tiling of A ⊂ RD if the relative interior of its
simplices form a partition of A. Note that the facets of P, that is, its D-simplices, do not
necessarily form a partition of A: two facets can have a non-empty intersection when they
share a face.

First, consider a finite simplicial tiling of the hypercube [0, 1]D, and extend it to RD by
mirroring it along the hyperplanes orthogonal to the canonical axes crossing them at integer
coordinates. Formally, for any k = (k1, . . . , kD) ∈ ZD, the hypercube

∏D
i=1[ki, ki + 1] contains

the tiling of [0, 1]D, mirrored along axis i if and only if ki is odd. The faces of the hypercubes
defined in this way match, as each pair of hypercubes sharing a face are mirrors of each other
with respect to that face. Thus, the resulting tiling P is a simplicial tiling of RD.

Let (xn)n∈N be the sequence of vertices of the simplicial tiling P (i.e. its 0-simplices). We
identify each simplex F ∈ P with the set of its 0-dimensional faces {xi}i∈I , and write FI in
that case. Note that the set I is unique for any given simplex F and characterizes F .

B.4.2 Perturbation of the tiling

Fix a small r > 0. Let (εn)n∈N be a sequence of i.i.d. uniform variables on [−r, r]D, and define
Pε the simplicial complex defined by

Pε = {{xi + εi}i∈I : {xi}i∈I ∈ P}.

Note that since the original tiling of [0, 1]D was finite, there exists r0 > 0 such that for any
(εn)n∈N ∈ ([−r0, r0]D)N, the vertices of any simplex in P are still affinely independent after
being moved according to ε and any two simplices F, F ′ ∈ P sharing a face F ′′ (resp. with no
intersection) are transformed into two simplices of Pε that share exactly the transformation
of F ′′ (resp. with no intersection), so that Pε is indeed a simplicial complex. Finally, Pε still
covers RD (as seen when moving each vertex in [−1, 2]D one after the other along a continuous
path, showing that no hole is created in the covering of [0, 1]D at any point in time), so for any
r ∈ (0, r0], Pε is almost surely a simplicial tiling of RD.

Since the relative interiors of the simplices of P define a partition of RD, for each z ∈
RD, there exists exactly one face FI ∈ P such that z ∈ relint(FI). Writing z =

∑
i∈I αixi

(for α ∈ (0, 1]|I| such that
∑
i∈I αi = 1), we define the image of z by the perturbation as

fε(z) =
∑
i∈I αi(xi + εi). In other words, each simplex is deformed according to the linear

transformation given by the perturbation of its vertices.
The mapping fε is a (random) bijective and continuous transformation of RD that is

“small”, in the sense that almost surely, supz∈RD ∥z − fε(z)∥ ⩽ r.
Note that the transformation fε can be made with arbitrarily small granularity: the same

approach works when considering tilings of [0, δ]D for any δ > 0 instead of [0, 1]D (up to

changing r). We may also iterate several random independent transformations fε
(1) ◦· · ·◦fε(m)

for m ⩾ 1, and the transformation of M will still almost surely belong to B1 ∩ B2.

Theorem 8. Let r ∈ (0, r0] with r0 as above, ε = (εn)n∈N be a sequence of i.i.d. uniform r.v.
on [−r, r]D, δ > 0, and fε be the bijective transformation of RD defined above.

Then for any (random) continuous mapping H : RD → RD that is independent of ε, the

mapping F : z 7−→ δfε(H(z)
δ ) satisfies: for any compact set M ⊂ RD, F (M) ∈ B1 ∩ B2 a.s..

This shows that for any compact set M ∈ RD, a small change into the set F (M) where F
is a transformation of RD of the type described in the Theorem almost surely results in a set
in B1 ∩ B2.
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B.4.3 Proof of Theorem 8

Let M be a compact set of RD. Since ε and H are independent, and thus fε and H(M) are
independent, writing µH the distribution of H(M):

P(F (M) ∈ B1 ∩ B2) =

∫
P
(
fε(

h

δ
) ∈ B1 ∩ B2

)
dµH(h) = 1,

provided that for any compact set M′ ∈ RD, fε(M′) ∈ B1 ∩ B2 a.s..
Thus, it suffices to show that for any compact set M ∈ RD, almost surely, fε(M) is in the

set B1 from Corollary 2. The proof for B2 is identical.
We will show that Card(arg maxz∈fε(M) π

(1)(z)) = 1, where π(1)(z) is the first coordinate of
z. First, since M is compact and fε is continuous, fε(M) is compact, therefore the supremum
of π(1) is reached at least at one point.

Lemma 2. The two following properties hold almost surely.

1. Let F ′
I , F

′
J ∈ Pε be two different simplices, then at least one of the two following points

holds:

• supx∈fε(M)∩relint(F ′
I)
π(1)(x) ̸= supx∈fε(M)∩relint(F ′

J )
π(1)(x)

• π(1) does not reach its maximum on fε(M)∩ relint(F ′
I) or does not reach its maxi-

mum on fε(M) ∩ relint(F ′
J).

2. Let F ′
I ∈ Pε, then the supremum of π(1) on fε(M)∩ relint(F ′

I) is reached at at most one
point of relint(F ′

I).

A consequence of this lemma is that almost surely, the maximizer of π(1) on fε(M) is
unique, as all maximizers of π(1) on fε(M) belong to the relative interior of one simplex of
Pε, which shows that fε(M) is almost surely in B1.

Proof of Lemma 2. The following functions will be of use in the proof. For any finite J ⊂ N
such that F ′

J = {xi + εi}i∈J ∈ Pε, for any j ∈ J and α ∈ (0, 1], let

uα,J : e ∈ R 7−→ sup

{
α(π(1)(xj) + e) +

∑
k∈J\{j}

αkπ
(1)(xk + εk), where

z = αxj +
∑

k∈J\{j}

αkxk ∈ M, αk ∈ (0, 1] and α+
∑
k

αk = 1

}
.

In other words, uαJ
is the supremum of π(1) on the slice of fε(M) ∩ relint(F ′

J) that gives
weight α to the vertex (xj + εj). To simplify the notations, let wk : z 7−→ αk be the “weight”
functions. It is straightforward to check that

1. the function uα,J is linear with slope α,

2. supx∈fε(M)∩relint(F ′
J )
π(1)(x) = supα∈(0,1] uα,J(π

(1)(εj)),

3. the function h : π(1)(εj) 7−→ supx∈fε(M)∩relint(F ′
J )
π(1)(x) (all coordinates of all εk other

than π(1)(εj) being fixed) is convex,

4. if the supremum of π(1) on the closure of fε(M) ∩ relint(F ′
J) is reached at some point

z ∈ F ′
J when π(1)(εj) = e, then wj(z) is a sub-gradient of h at e,

5. since the number of points where the sub-gradient of a convex function on R is not unique
is at most countable, almost surely (whether all coordinates of all εk other than π(1)(εj)
are fixed or not), h has a unique sub-gradient at π(1)(εj).
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Let us now prove the first point of the lemma. Let F ′
I = {xi+ εi}i∈I and F ′

J = {xi+ εi}i∈J
be two different simplices of Pε, and let j ∈ J \ I (by exchanging the two simplices, we may
assume without loss of generality that J is not a subset of I).

Consider the following, conditionally to (εn)n ̸=j and π
(2:D)(εj). Assume that h(π(1)(εj)) =

supx∈fε(M)∩relint(F ′
I)
π(1)(x) (otherwise we are in the first case of the first point of the lemma).

We may assume without loss of generality (by point 5 above) that the sub-gradient of h at
π(1)(εj) is unique. Two cases are possible:

• the sub-gradient of h at π(1)(εj) is 0. Then π
(1) does not reach its maximum on fε(M)∩

relint(F ′
J), since if z is a maximizer of π(1), then wj(z) = 0 by point 4,

• the sub-gradient of h at π(1)(εj) is positive, so there exists a single point e such that
h(e) = supx∈fε(M)∩relint(F ′

I)
π(1)(x). Since π(1)(εj) is uniform on [−r, r] by construction,

we almost surely have π(1)(εj) ̸= e, and thus this second case almost surely never happens.

For the second point of the lemma, by points 4 and 5, if the set of maximizers of π(1) on
fε(M) ∩ relint(F ′

J) is a non-empty set Z, then for any j ∈ J , almost surely, wj is constant
on Z. Since every point z ∈ F ′

J is characterized by the vector (wj(z))j∈J , this shows that Z
contains a single point, which concludes the proof.

B.5 Density of A and its complement

The proposition below shows that any support M can be altered by a small perturbation to
produce both supports that satisfy (H1) and (H2) and supports that satisfy neither. A fortiori,
the same is true for (Adep), as on one hand (H1), (H2) and A(κ) ensure (Adep) by Theorem 2
and on the other hand a small perturbation of the signal (by adding noise with independent
components supported on a small neighborhood of zero) is enough to no longer satisfy (Adep).

Proposition 3. The set A = (∩∆>0 ∪ε>0 A1(∆, ε))
⋂

(∩∆>0 ∪ε>0 A2(∆, ε)) of supports sat-
isfying Corollary 1 and its complement are dense in the set of closed subsets of RD endowed
with the Hausdorff distance.

Proof. First, let us show that A is dense.
Let δ > 0 and let M be a closed subset of RD, we show that there exists a closed M′ in

∩∆>0(A1(∆, δ) ∩ A2(∆, δ)) (and thus in A) such that dH(M,M′) ⩽ 8δ.
For k, l ∈ {1, . . . , D} with k ⩽ l, write π(k:l) the projection π(k:l) : (x1, . . . , xD) ∈ RD 7→

(xk, . . . , xl) ∈ Rl−k+1 and π(k) = π(k:k).
Let z = (z1, z2) ∈ M with z1 = π(1:d1)(z) and z2 = π(d1+1:D)(z), M′ is defined by cutting

the space in half through z orthogonally to the space of the first d1 cooordinates and spreading
the two halves apart, connecting them by a single segment to ensure it is in A2(∆, δ), then cut
and connect again orthogonally to the (d1 + 1)-th axis to be in A1(∆, δ).

Formally, define M′ as the union of:

• {y | y = (y1, y2) ∈ M, π(1)(y1) ⩽ π(1)(z1) and π
(1)(y2) ⩽ π(1)(z2)},

• {(y1 + 4δ(1, 0, . . . , 0), y2) | y = (y1, y2) ∈ M, π(1)(y1) ⩾ π(1)(z1) and π
(1)(y2) ⩽ π(1)(z2)},

• {(y1, y2 + 4δ(1, 0, . . . , 0)) | y = (y1, y2) ∈ M, π(1)(y1) ⩽ π(1)(z1) and π
(1)(y2) ⩾ π(1)(z2)},

• {(y1 + 4δ(1, 0, . . . , 0), y2 + 4δ(1, 0, . . . , 0)) | y = (y1, y2) ∈ M, π(1)(y1) ⩾ π(1)(z1) and
π(1)(y2) ⩾ π(1)(z2)},

• the segment between z and (z1 + 4δ(1, 0, . . . , 0), z2) and the segment between z and
(z1, z2 + 4δ(1, 0, . . . , 0)).

An illustration of this construction is given in Figure 3.
By construction, the Hausdorff distance between this set M′ and M is smaller than 8δ (the

points in the first four sets have moved at most 8δ and the segments are at distance at most 8δ of
z). M′ is also closed, and taking x = (z1+2δ(1, 0, . . . , 0), z2) and x2 = (z1, z2+2δ(1, 0, . . . , 0))
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Figure 3: Transforming M into a set M′ ∈ B1 ∩ B2

in the definition of A1(∆, δ) and A2(∆, δ) is enough to check that M′ ∈ A1(∆, δ) ∩ A2(∆, δ)
for any ∆ > 0.

To show that the complement of A is dense, let M be a closed subset of RD and η > 0,
and let M′ = {x + y |x ∈ M, y ∈ [−η, η]D}. Then dH(M,M′) ⩽ η

√
D by construction, and

for any ∆ ⩽ 2η and ε > 0, M′ /∈ A1(∆, ε), and thus M′ ∈ A∁ where A∁ is the complement of
the set A.

Note that if M is the support of a random variable X, then M′ is the support of X + Y ,
where Y is a uniform random variable on [−η, η]D that is independent of X. Since ΦX+Y =
ΦXΦY and ΦY does not satisfy (Adep), ΦX+Y does not satisfy it either.

C Proof of Proposition 2

Let κ0 ∈ (1/2, 1].
From Lemma H.3 of [18], there exists a constant cT > 0 such that for all κ′ ∈ [κ0, 1],

m ⩾ D/κ′ and ϕ ∈ Υκ′,S ,

∥ϕ− Tmϕ∥∞,νest ⩽ cT (Sνest)
mm−κ′m+D.

Let κ′ ∈ [κ0, 1] and assume that m ⩾ 2
κ′

logn
log logn , then we get ∥ϕ− Tmϕ∥∞,νest = O(n−2+on(1)),

where on(1) denotes a sequence tending to 0 when n tends to infinity. In particular, there
exists n0 such that for all n ⩾ n0,

sup
κ′∈[κ0,1]

sup
ν∈(0,νest]

sup
m⩾ 2

κ′
log n

log log n

sup
ϕ∈Υκ′,S

∥ϕ− Tmϕ∥2,ν ⩽
1

n
(9)

and

sup
κ′∈[κ0,1]

sup
m⩾ 2

κ′
log n

log log n

sup
ϕ∈Υκ′,S

|Mn(ϕ)−Mn(Tmϕ)| ⩽ c∥ϕ− Tmϕ∥∞,νest ⩽
1

n
(10)

for some c > 0 that depends only on νest, κ0 and S, using that supϕ∈Υκ0,S
∥ϕ∥∞,νest < +∞.

Let now κ ∈ [κ0, 1] and ΦX ∈ Υκ,S ∩ H. By definition, for any m ⩾ 1 and κ′ ∈ [κ0, κ],

Φ̂n,m,κ′ is such that Φ̂n,m,κ′ ∈ Υκ′,S ∩H and

Mn(TmΦ̂n,m,κ′) ⩽ inf
ϕ∈Υκ′,S∩H

Mn(Tmϕ) +
1

n

⩽Mn(TmΦX) +
1

n

and thus, by (10),

sup
κ′∈[κ0,κ]

sup
m⩾ 2

κ′
log n

log log n

Mn(Φ̂n,m,κ′) ⩽Mn(ΦX) +
2

n
. (11)
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Straightforward computations prove that for some constant C, for all ϕ ∈ Υκ0,S ,

|Mn(ϕ)−M(ϕ; νest|ΦX)| ⩽ C
∥Zn∥∞,νest√

n

where Zn(t) =
√
n(ϕ̃n(t) − ΦX(t)Φε(1)(t1)Φε(2)(t2)). Therefore, for any ν ∈ (0, νest], writing

ζm,κ′ = Φ̂n,m,κ′ − ΦX , for some constant C,

M(Φ̂n,m,κ′ ; ν|ΦX) ⩽M(Φ̂n,m,κ′ ; νest|ΦX)

⩽ 2C
∥Zn∥∞,νest√

n
+

2

n
.

Combining this with the concentration properties of Zn described in the proof of Lemma A.1
of [17] shows that for any δ > 0, there exist cδ > 0 and n0 (which do not depend on κ) such
that for all n ⩾ n0, with probability at least 1− e−cδn,

sup
κ′∈[κ0,κ]

sup
m⩾ 2

κ′
log n

log log n

M(Φ̂n,m,κ′ ; νest|ΦX) ⩽ δ.

In addition, since Υκ0,S ∩ H is compact in L2([−νest, νest]D), ϕ 7→ M(ϕ; νest|ΦX) is continu-
ous on L2([−νest, νest]D), and M(ϕ; νest|ΦX) = 0 implies ϕ = ΦX for all ϕ ∈ H ∩ Υκ0,S by
Theorem 1, and for all η > 0, there exists δ > 0 such that

inf
ϕ∈Υκ0,S∩H s.t. ∥ϕ−ΦX∥2,νest⩾η

M(ϕ; νest|ΦX) > δ.

Therefore, for all η > 0, there exist cη > 0 and n0 (which do not depend on κ) such that for
all n ⩾ n0, with probability at least 1− e−cηn,

sup
κ′∈[κ0,κ]

sup
m⩾ 2

κ′
log n

log log n

∥ζm,κ′∥2,νest ⩽ η. (12)

Now, using (20) in [8] (which is a consequence of direct computations and norm comparisons
in [18] Section J) we get that there exists η1 > 0 such that as soon as ∥ζm,κ′∥2,νest ⩽ η1,

M(Φ̂n,m,κ′ ; ν|ΦX) ⩽ cM
∥Zn∥∞,νest√

n
∥ζm,κ′∥1−ϵ(∥ζm,κ′∥2,νest )

2,νest
+

2

n
, (13)

where for all u > 0, ϵ(u) = b/ log log(1/u) for some b > 0. Fix now ν ∈ (0, νest], c(ν) > 0 and
E > 0 such that Q ∈ Q(D)(ν, c(ν), E). In particular, cν ⩾ c(ν) > 0. Assumption (Amin) and
Proposition 1 in [19] imply that there exists η2 > 0 and c depending only on ν, cν and c(ν, α)
such that as soon as ∥ζm,κ′∥2,νest ⩽ η2,

M(Φ̂n,m,κ′ ; ν|ΦX) ⩾ c∥ζm,κ′∥2(1+α)2,νest
. (14)

Let η = min{η1, η2}. Then, by (14) and (13), as soon as ∥ζm,κ′∥2,νest ⩽ η,

∥ζm,κ′∥2+2α
2,ν ⩽

2

c
max

(
cM

∥Zn∥∞,νest√
n

∥ζm,κ′∥1−ϵ(∥ζm,κ′∥2,νest )

2,νest
,
2

n

)
. (15)

Now, following the proof of (25) of Section A.3 of [17], for any ν′ ⩾ ν, m ⩾ 1 and ϕ ∈ Cm[X],

∥ϕ∥2,ν′ ⩽ mD/2(4
ν′

ν
)m+D/2∥ϕ∥2,ν . (16)

Assuming m ∈ [ 2
κ′

logn
log logn , C

logn
log logn ] in the following series of inequalities (for some fixed C >
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2/κ′),

∥ζm,κ′∥2,νest ⩽ 2max(∥Tmζm,κ′∥2,νest ,
3

n
) by (9)

⩽ 2max

(
∥Tmζm,κ′∥2,νm

D
2 (4

νest
ν

)m+D
2 ,

3

n

)
by (16)

⩽ 4max

(
∥ζm,κ′∥2,νm

D
2 (4

νest
ν

)m+D
2 ,

3m
D
2 (4νestν )m+D

2

n

)
by (9)

⩽ nϵ(1/n) max

(
∥ζm,κ′∥2,ν ,

1

n

)
, (17)

up to increasing the constant b in the definition of u 7→ ϵ(u), which can be done without loss of
generality. Together with (15) and (12), one gets for all s ∈ [1, cηn] (assuming cη ⩽ 1 without
loss of generality), with probability at least 1 − e−cηn − e−s ⩾ 1 − 2e−s (on the event where
∥Zn∥∞,νest ⩽ cZ

√
s and (12) holds) that for all κ′ ∈ [κ0, κ] and m ∈ [ 2

κ′
logn

log logn , C
logn

log logn ],

∥ζm,κ′∥2+2α
2,ν ⩽ cmax

(√
s

n
nϵ(1/n)

(
∥ζm,κ′∥2,ν ∨

1

n

)1−ϵ(∥ζm,κ′∥2,νest )

,
1

n

)

for some constant c > 0 that does not depend on κ, κ′ or m, from which Proposition 2 follows.

D Proofs for Section 4

D.1 Proof of Theorem 3

The following properties of ψA and F [ψA] will be of use.

(I) The support of F [ψA] is the unit ball {y ∈ RD : ∥y∥2 ⩽ 1}.

(II) ψA > 0 and F [ψA] ⩾ 0.

(III) ψA is continuous so that there exist constants cA > 0 and dA > 0 such that for all
x ∈ {y ∈ RD : ∥y∥2 ⩽ cA}, ψA(x) ⩾ dA.

(IV) ψA and ψA,h are probability densities on RD.

(V) (Lemma in [26]) For all A > 0, there exists βA > 0 such that

lim
∥t∥2→∞

exp {βA∥t∥
A

A+1

2 }ψA(t) = 0 (18)

(VI) It holds

∥ψA,h∥2 =
I(A)

hD/2
∥uA ∗ uA∥2. (19)

We shall also need the following lemmas.

Lemma 3. Assume G ∈ StK(a, d, r0), then for any h ⩽ r0/cA,

inf
y∈MG∩K

ḡ(y) ⩾ acdAdA

(
1

h

)D−d

.

The proof of Lemma 3 is detailed in Section D.2.

Lemma 4. For any C1 > 0, there exists h0 > 0 depending only on C1, D and A such that for
any h ⩽ h0,

sup

{
ḡ(y) | y ∈ K, d(y,MG) > h

[
D

βA
log

(
1

h

)]A+1
A

}
⩽ C1.
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The proof of Lemma 4 is detailed in Section D.3.
The last ingredient is to control the difference between the convoluted density and its

estimator, defined as Γn,κ = ∥ĝn,κ − ḡ∥∞ = supy∈RD |ĝn,κ(y) − ḡ(y)|. The following Lemma
uses Proposition 2 to show that it converges uniformly to zero with high probability.

Lemma 5. Let κ0 ∈ (1/2, 1] and S > 0. For all κ ∈ [κ0, 1], take mκ ⩽ 1
6κ

logn
log logn such that

infκ∈[κ0,1]mκ → +∞ as n→ +∞. Let h = chSm
−κ
κ for some ch ⩾ exp {2D + 2}.

Then for any ν ∈ (0, νest], c(ν) > 0, E > 0, for any η > 0, there exists n0 such that for all
n ⩾ n0,

sup
κ∈[κ0,1]

sup
G∈StK(a,d,r0)∩L(κ,S,H)

Q∈Q(D)(ν,c(ν),E)

P(G∗Q)⊗n(Γn,κ ⩾ η) ⩽
2

n
.

The proof of Lemma 5 is detailed in Appendix D.4.
To prove Theorem 3, the idea is to lower bound ḡ on the support MG when the bandwidth

parameter h becomes small, and to upper bound it on every points further than a small distance
(depending on h) from that support.

Let now κ0 ∈ (1/2, 1], ν ∈ (0, νest], c(ν) > 0, E > 0, S > 0 and C > 0. Let κ ∈ [κ0, 1],
Q ∈ Q(D)(ν, c(ν), E) and G ∈ StK(a, d, r0) ∩ L(κ, S,H).

By Lemma 3, for any h ⩽ (r0/cA) ∧ 1,

inf
y∈MG∩K

ĝn,κ(y) ⩾ inf
y∈MG∩K

ḡ(y)− Γn,κ ⩾ acdAdA

(
1

h

)D−d

− Γn,κ ⩾
acdAdA

2

(
1

h

)D−d

as soon as Γn,κ ⩽ acdAdA
2 , and this lower bound is strictly larger than λn,κ for any d. This

implies that on the event where Γn,κ ⩽ acdAdA
2 , MG ∩ K ⊂ M̂κ ∩ K. Next,

sup

y∈K:d(y,MG)⩾h
[

D
βA

log( 1
h )

]A+1
A

ĝn,κ(y) ⩽ sup

y∈K:d(y,MG)⩾h
[

D
βA

log( 1
h )

]A+1
A

ḡ(y) + Γn,κ.

Choosing C1 =
acdAdA

16 and applying Lemma 4 we get that, on the event where Γn,κ ⩽ acdAdA
16 ,

sup

y∈K,d(y,MG)⩾h
[

D
βA

log( 1
h )

]A+1
A

ĝ(y) ⩽ 2C1,

and this upper bound is strictly less than λn,κ for any d. This implies that{
y : y ∈ K, d(y,MG) > h

[
D

βA
log

(
1

h

)]A+1
A

}
∩ M̂κ = ∅.

As a result, we have proved that for all κ0 ∈ (1/2, 1], S > 0, a > 0, d ⩽ D, ν ∈ (0, νest],
c(ν) > 0 and E > 0, there exist c′ > 0 and n0 such that for all n ⩾ n0, for all κ ∈ [κ0, 1],
G ∈ StK(a, d, r0) ∩ L(κ, S,H) and Q ∈ Q(D)(ν, c(ν), E), with (G ∗Q)⊗n-probability at least
1− 2

n ,
log(n)κ

log(log(n))κ+
A+1
A

HK(MG,M̂κ) ⩽ c′. (20)

Using the fact that HK(MG,M̂κ) is uniformly upper bounded, the theorem follows.
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D.2 Proof of Lemma 3

Let y ∈ MG ∩ K. By property (III) of ψA,

ḡ(y) =
1

hD

∫
ψA

(
∥y − u∥

h

)
dG(u)

⩾
1

hD

∫
∥u−y∥2⩽cAh

ψA(
∥y − u∥

h
)dG(u)

⩾
1

hD
dAG(B(y, cAh))

⩾
1

hD
dAa(cAh)

d.

D.3 Proof of Lemma 4

Recall the definition of ḡ: for all y ∈ RD,

ḡ(y) =
1

hD

∫
ψA

(
∥y − u∥

h

)
dG(u).

Let C1 > 0 and ϵ > 0. By Property (V) of ψA, there exists T > 0 (depending on A and C1)
such that for any t ⩾ T , ψA(t) ⩽ C1 exp(−βAtA/(A+1)). Take y ∈ RD such that d(y,MG) >

( ε
βA

)
A+1
A h log( 1h )

A+1
A , then for all u ∈ MG,

∥y−u∥
h ⩾ (β−1

A log( 1
hε ))

A+1
A , therefore there exists

h0 > 0 depending only on ε, D, A and T (thus C1 such that h ⩽ h0 implies ∥y−u∥
h ⩾ T and

thus

ψA(
∥y − u∥

h
) ⩽ C1 exp {−βA(

∥y − u∥
h

)A/(A+1)}

⩽ C1 exp {− log(
1

hε
)}

= C1h
ε,

and finally ḡ(y) ⩽ C1(
1
h )
D−ε since G is a probability distribution. Lemma 4 follows by taking

ε = D.

D.4 Proof of Lemma 5

Recall Γn,κ = ∥ĝn,κ − ḡ∥∞. We first relate it to ∥TmκΦ̂n,κ − ΦX∥2,1/h.

Lemma 6. Let κ ∈ (0, 1], h > 0, m > 0. For any A > 0,

Γn,κ ⩽ I(A)
∥uA ∗ uA∥2

hD/2
∥Tmκ

Φ̂n,κ − ΦX∥2,1/h.

Proof. For y ∈ RD,

ĝn,κ(y)− ḡ(y) = (
1

2π
)D
∫
e−it

⊤yF [ψA](th)(TmκΦ̂n,κ(t)− ΦX(t))dt.

Since F [ψA](th) is 0 for ∥t∥2 > 1/h,

ĝn,κ(y)− ḡ(y) = (
1

2π
)D
∫
e−it

⊤yF [ψA](th)(Tmκ
Φ̂n,κ(t)− ΦX(t))1|∥t∥2⩽1/hdt

= F−1[F [ψh]{(Tmκ
Φ̂n,κ − ΦX)1|∥t∥2⩽1/h}](y)

= F−1[F [ψA,h]] ∗ F−1[(Tmκ
Φ̂n,κ − ΦX)1|∥t∥2⩽1/h](y). (21)

By Young’s convolution inequality,

∥ĝn,κ − ḡ∥∞ ⩽ ∥F−1[F [ψA,h]]∥2∥F−1[(TmκΦ̂n,κ − ΦX)1|∥t∥2⩽1/h]∥2.
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Finally, using Parseval’s equality and the fact that F−1[F [ψA,h]] = ψA,h,

∥ĝn,κ − ḡ∥∞ ⩽ ∥ψA,h∥2∥TmκΦ̂n,κ − ΦX∥2,1/h,

and use that ∥ψA,h∥2 = I(A)
hD/2 ∥uA ∗ uA∥2 to conclude the proof.

Let us now show that with proper choices for the parameters mκ and h, Γn,κ tends to 0
with high probability.

Let κ0 ∈ (1/2, 1], ν ∈ (0, νest], c(ν) > 0, E > 0, S > 0 and C > 0. By Proposition 2,
taking s = log n and δ small enough (to be chosen later), there exists c and n0 such that for
all n ⩾ n0,

sup
κ∈[κ0,1]

sup
G∈StK(a,d,r0)∩L(κ,S,H)

Q∈Q(D)(ν,c(ν),E)

P(G∗Q)⊗n

(
∥Φ̂n,κ − ΦX∥2,1/h ⩽ c(log n)n−(1−δ)/(1+2α)

)
⩾ 1− 2

n
.

(22)
Take these c and n0, and let κ ∈ [κ0, 1], Q ∈ Q(D)(ν, c(ν), E) and G ∈ StK(a, d, r0)∩L(κ, S,H).

Using inequalities analogous to (28)-(29) p.17 of [17], we get that for all integer m,

∥TmΦ̂n,κ − ΦX∥22,1/h ⩽ 4U(h) + 4mD(2 + 2
1

hν
)2m+D

(
2V (ν) + ∥Φ̂n,κ − ΦX∥22,ν

)
, (23)

where

U(h) = ch−D−2m−2/κS2mm−2κm+2D exp(2κ(S/h)1/κ)

and V (ν) = c(Sν)2m+2/κm−2κm+2D.

Thus, applying Lemma 6 and using h = chSm
−κ
κ , there exists C > 0 (which does not depend

on κ) such that on the event where (23) holds:

Γ2
n,κ ⩽ C(chS)

−2D−2mκ−2/κm2D(κ+1)+2
κ S2mκexp(2κc

−1/κ
h mκ)

+ CmD(1+κ)
κ (2 + 2

mκ
κ

chSν
)2mκ+D

(
(Sν)2mκ+2/κm−2κmκ+2D

κ + ∥Φ̂n,κ − ΦX∥22,ν

)
. (24)

The first term of the upper bound is upper bounded as follows.

(chS)
−2D−2mκ−2/κm2D(κ+1)+2

κ S2mκexp(2κc
−1/κ
h mκ)

= S−2D−2/κ exp {(−2D − 2mκ − 2/κ) log(ch) + (2D(κ+ 1) + 2) log(mκ) + 2κc
−1/κ
h mκ}

⩽ C exp {(−2 log(ch) + 1)mκ + 2(D(κ+ 1) + 1) log(mκ)} (25)

⩽ C exp {(−2 log(ch) + 3 + 2D(κ+ 1))mκ}, (26)

for another constant C > 0, where inequality (25) holds because 2κc
1/κ
h > 1 and inequality (26)

holds because log(mκ) ⩽ mκ. The second term of the upper bound is upper bounded by

mD(1+κ)
κ (2 + 2

mκ
κ

chSν
)2mκ+D

(
(Sν)2mκ+2/κm−2κmκ+2D

κ + ∥Φ̂n,κ − ΦX∥22,ν

)
⩽ C mD(1+2κ)

κ (2κmκ)
2κmκ(2κ)−2κmκ(chSν)

−2mκ−D

×

(
(Sν)2mκ+2/κm−2κmκ+2D

κ + ∥Φ̂n,κ − ΦX∥22,ν

)

⩽ C

(
exp

{
(−2 log(ch) + (3D + 2κ))mκ

}

+ (2κmκ)
2κmκ exp

{
(−2 log(ch) +D(1 + 2κ))mκ

}
∥Φ̂n,κ − ΦX∥22,ν

)
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for another constant C > 0. Putting all together, we get that for yet another constant C > 0,

Γ2
n,κ ⩽ Cmax

(
exp

{
(−2 log(ch) + 3 + 2D(κ+ 1))mκ

}
, exp

{
(−2 log(ch) + (3D + 2κ))mκ

}
,

(2κmκ)
2κmκ exp

{
(−2 log(ch) +D(1 + 2κ))mκ

}
∥Φ̂n,κ − ΦX∥22,ν

)
.

Choosing ch ⩾ exp {2D + 2} and mκ ⩽ 1
6κ

logn
log logn , it follows that

Γ2
n,κ ⩽ Ce−mκ

[
1 ∨ n1/6∥Φ̂n,κ − ΦX∥22,ν

]
. (27)

By (22), taking δ < 1− 1+2α
6 (which is possible since α < 1), we obtain that on the event

of (22), Γ2
n,κ ⩽ Ce−mκ −→ 0 (up to changing C), which concludes the proof.

D.5 Proof of Theorem 4

Fix κ0 ∈ (1/2, 1], S > 0, a > 0, d ⩽ D, ν ∈ (0, νest], c(ν) > 0, E > 0. Using the end of the proof
of Theorem 3, there exist n0 and c

′ such that for all κ ∈ [κ0, 1], all G ∈ StK(a, d, r0)∩L(κ, S,H)
and all Q ∈ Q(D)(ν, c(ν), E), with (G ∗Q)⊗n-probability at least 1− 2

n ,

log(n)κ

log(log(n))κ+
A+1
A

HK(MG,M̂κ) ⩽ c′. (28)

Let us now choose cσ = c′ and consider the event where (20) holds. By the triangular inequality,
for any κ ∈ [κ0, 1],

HK(MG,M̂κ̂n
) ⩽ HK(MG,M̂κ) +HK(M̂κ,M̂κ̂n

)

⩽ σn(κ) +HK(M̂κ,M̂κ̂n
).

Now, using the definition of Bn(·), if κ ⩽ κ̂n, then

HK(M̂κ,M̂κ̂n
) ⩽ Bn(κ̂n) + σn(κ)

while if κ ⩾ κ̂n, then
HK(M̂κ,M̂κ̂n

) ⩽ Bn(κ) + σn(κ̂n)

so that in all cases,

HK(M̂κ,M̂κ̂n
) ⩽ Bn(κ̂n) + σn(κ) +Bn(κ) + σn(κ̂n)

⩽ 2Bn(κ) + 2σn(κ)

using the definition of κ̂n, and therefore

HK(MG,M̂κ̂n
) ⩽ 2Bn(κ) + 3σn(κ).

By the triangular inequality and the definition of Bn(·),

Bn(κ) ⩽ 0 ∨ sup
κ′∈[κ0,κ]

{
HK(M̂κ,MG) +HK(MG,M̂κ′)− σn(κ

′)
}

⩽ HK(M̂κ,MG) + 0 ∨ sup
κ′∈[κ0,κ]

{
HK(MG,M̂κ′)− σn(κ

′)
}

⩽ σn(κ).

Thus, for all κ ∈ [κ0, 1], all G ∈ StK(a, d, r0) ∩ L(κ, S,H) and all Q ∈ Q(D)(ν, c(ν), E), with
(G ∗Q)⊗n-probability at least 1− 2

n ,

HK(MG,M̂κ̂n
) ⩽ 5σn(κ),

and using the fact that HK(MG,M̂κ̂) ⩽ supx,x′∈K d(x, x
′) on the event of probability at most

2/n where this does not hold, Theorem 4 follows.
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D.6 Proof of Theorem 5

As usual for the two-points method, the idea is to find two distributions having support as far
as possible in HK-distance, and a noise such that the joint distributions of the observations
have total variation distance upper bounded by some C < 1. We shall consider the noise as
in [17], with independent identically distributed coordinates having density q defined as

q : x ∈ R 7−→ cq
1 + cos(cx)

(π2 − (cx)2)2

for some c > 0, where cq is such that q is a probability density, and with characteristic function

F [q] : t 7→ cq

[(
1−

∣∣∣∣ tc
∣∣∣∣) cos

(
π
t

c

)
+

1

π
sin

(
π

∣∣∣∣ tc
∣∣∣∣)]1−c⩽t⩽c.

Let us now define the two distributions to apply the two-points method. For any κ ∈ (1/2, 1],
we first choose a density function fκ according to the following Lemma.

Lemma 7. For any κ ∈ (1/2, 1), p ⩾ 1, there exists a continuous density function fκ : R → R
in Lp(R), positive everywhere, and positive constants A,B such that for all u ∈ R,

|F [fκ](u)| ⩽ A exp(−B|u| 1κ ) and |F [fκ]
′(u)| ⩽ A exp(−B|u| 1κ ).

For any δ ∈ (0, 1), there exists a continuous compactly supported density function f1 : [−1, 1] →
R positive everywhere such that

|F [f1](u)| ⩽ A exp(−B|u|δ) and |F [f1]
′(u)| ⩽ A exp(−B|u|δ).

The proof of Lemma 7 is detailed in Section D.7.
Then, inspired by [20], for all γ ∈ (0, 1], define g̃γ : R → R and gγ : R → RD−d for all x ∈ R

as

g̃γ(x) = cos

(
x

γ

)
and gγ(x) = (g̃γ(x), 0, . . . , 0)

⊤
.

Let M0(γ) = {(u, γgγ(u)) : u ∈ R}, M1(γ) = {(u,−γgγ(u)) : u ∈ R}, and let J ∈ RD×D be the
matrix

J =


1 0 0 . . . 0
1 1/2 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 .

For any κ ∈ (1/2, 1], let U(κ) be the random variable in R having density fκ defined in
Lemma 7 and let S0(κ) = (U(κ), γgγ(U(κ))), S1(κ) = (U(κ),−γgγ(U(κ))). For i ∈ {0, 1}, we
shall denote Ti(κ) the distribution of Si(κ). Finally we define Xi(κ) = JSi(κ), i = 0, 1 and
Gi(κ) the distribution of Xi(κ). When κ < 1, the supports of Si(κ) and Xi(κ) do not depend
on κ. They are illustrated in Figure 4. The transformation J is such that the the support
of Xi is the graph of a bijective function, which makes it easy to satisfy (Adep) through for
instance assumptions (H1), (H2) and Theorem 2 from Section 2.3.

Lemma 8. For any i ∈ {0, 1} and κ ∈ (1/2, 1], Xi(κ) satisfies A(κ).

The proof of Lemma 8 is detailed in Section D.8.

Lemma 9. There exists a0 > 0 such that for i ∈ {0, 1}, for any d ⩾ 1, r0 < 1 and a ⩽ a0,
Gi(κ) ∈ StK(a, d, r0).

The proof of Lemma 9 is detailed in Section D.9.

Lemma 10. For any i ∈ {0, 1} and κ ∈ (1/2, 1], ΦXi(κ) satisfy (Adep)
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Figure 4: Left: support of S0 and S1 when γ = 1. Right: support of X0 and X1 when γ = 1.

The proof of Lemma 10 is detailed in Section D.10.
We finally set H⋆

κ = {ΦX0(κ),ΦX1(κ)}. As a finite set, it is closed in L2([−ν, ν]D).
Let us comment on dimensionality. The distributions used here are distributions with

support of dimension 1. This is not an issue since the d in the definition of StK(a, d, r0) is
an upper bound on the dimension of the support. We could also have used supports with
dimension d by adding to Xi(κ) an independent uniform distribution on a Euclidean ball of a
linear space of dimension d.

The support of Gi(κ) is JMi(γ), and the following lemma follows easily from the fact that
for i ∈ {0, 1}, JMi(γ) = γJMi(1).

Lemma 11. For any γ > 0,

HK(JM0(γ), JM1(γ)) = γHK(JM0(1), JM1(1)). (29)

To obtain the lower bound, the parameter γ will be chosen as large as possible while making
sure that the joint distributions of the observations have total variation distance smaller than
some C < 1.

In the following, we will write A, B, C (with upper case letters) positive constants that can
change from line to line. As in [17] and [20], we use the upper bound:

∥(G0(κ) ∗Q)⊗n − (G1(κ) ∗Q)⊗n∥TV ⩽ 1− (1− ∥(G0(κ) ∗Q)− (G1(κ) ∗Q)∥TV )n ,

where ∥ · − · ∥TV denotes the total variation distance. Using Le Cam’s two-points method,
the minimax rate will be lower bounded by H(JM0(γ), JM1(γ)), that is γ, (see Lemma 11)
provided that there exists a constant C > 0 such that ∥(G0(κ) ∗Q)⊗n − (G1(κ) ∗Q)⊗n∥TV ⩽
C < 1, so that we only need to find C > 0 such that∫

RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)| ⩽ C

n
.

Since Q has a density q over RD, G0(κ) ∗ Q and G1(κ) ∗ Q also have a density over RD. We
first prove that for i ∈ {0, 1},∫

RD

D∏
j=1

x2j

∣∣∣∣d(Gi(κ) ∗Q)

dx
(x)

∣∣∣∣2 dx < +∞. (30)

Indeed,∫
RD

D∏
j=1

x2j

∣∣∣∣d(Gi(κ) ∗Q)

dx
(x)

∣∣∣∣2 dx ⩽

∥∥∥∥d(Gi(κ) ∗Q)

dx

∥∥∥∥
∞

∫
RD

D∏
j=1

x2jd(Gi(κ) ∗Q)(x).
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First,
∥∥∥d(Gi(κ)∗Q)

dx

∥∥∥
∞

⩽ ∥q∥D∞ <∞. Moreover, for k ∈ {1, . . . , D}, writing Xi(κ)
[k] and ε[k] for

the k-th coordinate of Xi(κ) and ε,∫
RD

D∏
j=1

x2j |d(Gi(κ) ∗Q)(x)| = E[
D∏
k=1

(Xi(κ)
[k] + ε[k]))2]

= E[(Xi(κ)
[1] + ε[1])2(Xi(κ)

[2] + ε[2])2]

D∏
k=3

E[(ε[k])2]. (31)

We have that (Xi(κ)
[2]+ ε[2])2 ⩽ a2(Xi(κ)

[1])2+2γXi(κ)
[1]+2Xi(κ)

[1]ε[2]+(1+γ)(ε[2])2+γ2,
using (31) and the fact that ε[2] is independent of all other variables and that, for k ∈ {1, 2},
X

[1]
i is independent of ε[k], we finally get that

∫ ∏D
j=1 x

2
j |d(Gi(κ) ∗Q)(x)| is upper bounded by

product and sum of expectation of ((ε[j])2)j∈{1,...,D}, (Xi(κ)
[1])2, (Xi(κ)

[1])3 and (Xi(κ)
[1])4

which are all finite thanks to Lemma 7.
By the Cauchy-Schwarz inequality,∫
RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)|

⩽ πD/2

∫ D∏
j=1

(1 + x2j )

∣∣∣∣d((G0(κ)−G1(κ)) ∗Q)

dx
(x)

∣∣∣∣2 dx
1/2

. (32)

By Parseval’s identity, for all η ∈ {0, 1}D,∫
RD

D∏
j=1

x
2ηj
j

∣∣∣∣d((G0(κ)−G1(κ)) ∗Q)

dx
(x)

∣∣∣∣2 dx
=

∫
RD

∣∣∣∣∣∣
 D∏
j=1

∂
ηj
tj

 (F [G0(κ)]−F [G1(κ)])(t)F [Q](t)

∣∣∣∣∣∣
2

dt

=

∫
[−c,c]D

∣∣∣∣∣∣
 D∏
j=1

∂
ηj
tj

 (F [G0(κ)]−F [G1(κ)])(t)F [Q](t)

∣∣∣∣∣∣
2

dt,

since F [Q] and for η ∈ {0, 1}D, ∂ηF [Q] are supported on [−c, c]D. Moreover, they are bounded
functions, so that there exists a constant C (depending only on D) such that∫

RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)|

⩽ C
∑

η∈{0,1}D

∫
[−c,c]D

∣∣∣∣∣∣
 D∏
j=1

∂
ηj
tj

 (F [G0(κ)]−F [G1(κ)])(t)

∣∣∣∣∣∣
2

dt

=
∑

η∈{0,1}D

∫
[−c,c]D

∣∣∣∣∣∣
 D∏
j=1

∂
ηj
tj

 (t 7→ F [S0]−F [S1])(A
⊤
a t)

∣∣∣∣∣∣
2

dt.

Using the change of variable u = A⊤t, and noticing that {A⊤t ; t ∈ [−c, c]D} ⊂ [−2c, 2c]D,
there exists a constant C > 0 depending on D and a such that∫

RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)|

⩽ C
∑

η∈{0,1}D

∫
[−2c,2c]D

∣∣∣∣∣∣
 D∏
j=1

∂
ηj
tj

 (F [S0]−F [S1])(u)

∣∣∣∣∣∣
2

du.

31



For all t = (t1, . . . , tD) ∈ RD, for i ∈ {0, 1}, F [Ti](t) = F [T̃i](t1, t2), where T̃i is the distribution
of the 2 first coordinates of Si(κ) under Ti. There exists a constant C > 0 such that∫

RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)|

⩽ C
∑

η∈{0,1}2

∫
[−2c,2c]2

∣∣∣∣∣∣
 2∏
j=1

∂
ηj
tj

 (F [T̃0]−F [T̃1])(t)

∣∣∣∣∣∣
2

dt. (33)

Following the same approach as [20], we get that for all t = (t1, t2) ∈ R2,

(F [T̃0]−F [T̃1])(t) =

∫
R
{eit1u+iγt2g̃γ(u) − eit1u−iγt2g̃γ(u)}fκ(u)du

= 2i

∫
R
eit1u sin(t2γg̃γ(u))fκ(u)du

= 2i

∫
R
eit1u

∞∑
k=0

(−1)kt2k+1
2 γ2k+1

(2k + 1)!
g̃2k+1
γ (u)fκ(u)du.

Since
∑∞
k=0

∫
R

|t2|2k+1γ2k+1

(2k+1)! |g̃2k+1
γ (u)|fκ(u)du is finite, we can switch integral and sum thanks

to Fubini Theorem, so that

(F [T̃0]−F [T̃1])(t) = 2i

∞∑
k=0

(−1)kt2k+1
2 γ2k+1

(2k + 1)!

∫
R
eit1ug̃2k+1

γ (u)fκ(u)du

= 2i

∞∑
k=0

(−1)kt2k+1
2 γ2k+1

(2k + 1)!
mk(t1),

with for all u ∈ R,

mk(u) = F [g̃2k+1fκ](u) = (F [g̃] ∗ F [g̃] ∗ . . . ∗ F [g̃]︸ ︷︷ ︸
2k+1 times

∗F [fκ])(u). (34)

Since

F [x 7→ cos(
x

γ
)] =

1

2
δ− 1

γ
+

1

2
δ 1

γ
,

for all u ∈ R,

(F [g̃] ∗ F [g̃] ∗ . . . ∗ F [g̃]︸ ︷︷ ︸
2k+1 times

)(u) = F [cos(
·
γ
)] ∗ . . . ∗ F [cos(

·
γ
)]︸ ︷︷ ︸

2k+1 times

=

(
1

2

)2k+1 2k+1∑
j=1

(
2k + 1

j

)
δaj ,

where aj = (2j − 2k − 1)/γ. By (34),

mk(u) =

(
1

2

)2k+1 2k+1∑
j=0

(
2k + 1

j

)
F [fκ](u− aj).

Therefore,

sup
|t|⩽c

|mk(t)| ⩽ sup
|t|⩽c,0⩽j⩽2k+1

∣∣∣∣F [fκ]

(
t− 2j − 2k − 1

γ

)∣∣∣∣
and

sup
|t|⩽c

|m′
k(t)| ⩽ sup

|t|⩽c,0⩽j⩽2k+1

∣∣∣∣F [fκ]
′
(
t− 2j − 2k − 1

γ

)∣∣∣∣ .
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Assume first that κ ∈ (1/2, 1)
For γ that satisfies γ ⩽ 1

2c , by Lemma 7, there exist two constants A, B independent of γ
and k such that

sup
|t|⩽c,0⩽j⩽2k+1

∣∣∣∣F [fκ]

(
t− 2j − 2k − 1

γ

)∣∣∣∣ ⩽ A exp(−Bγ− 1
κ )

and

sup
|t|⩽c,0⩽j⩽2k+1

∣∣∣∣F [fκ]
′
(
t− 2j − 2k − 1

γ

)∣∣∣∣ ⩽ A exp(−Bγ− 1
κ ).

Thus,
sup
|t|⩽c

|mk(t)| ⩽ A exp(−Bγ− 1
κ ), (35)

and
sup
|t|⩽c

|m′
k(t)| ⩽ A exp(−Bγ− 1

κ ). (36)

For all η ∈ {0, 1}2, and t ∈ [−c, c]2, 2∏
j=1

∂
ηj
tj

 (F [T̃0]−F [T̃1])(t) =

2∏
j=1

∂
ηj
tj

[
2i

∞∑
k=0

(−1)kt2k+1
2 γ2k+1

(2k + 1)!
mk(t1)

]

= 2iη2

∞∑
k=0

(−1)kt2k2 γ
2k+1

(2k)!
∂η1t1 mk(t1) + 2i(1− η2)

∞∑
k=0

(−1)kt2k+1
2 γ2k+1

(2k + 1)!
∂η1t1 mk(t1),

so that ∣∣∣∣∣∣
 2∏
j=1

∂
ηj
tj

 (F [T̃0]−F [T̃1])(t)

∣∣∣∣∣∣
⩽ 2

∞∑
k=0

|t2|2kγ2k+1

(2k)!
|∂η1t1 mk(t1)|+ 2

∞∑
k=0

|t2|2k+1γ2k+1

(2k + 1)!
|∂η1t1 mk(t1)|.

By (35) and (36), there exists a constant C > 0 which depends only on D and A such that 2∏
j=1

∂
ηj
tj

 (F [S̃0]−F [S̃1])(t) ⩽ C exp(−Bγ− 1
κ ) sup

|t2|⩽c

(
γ cosh(|t2|γ) + sinh(|t2|γ)

)
.

For γ small enough, there exists a constant C1 > 0 which depends only on D, A > 0 and C > 0
such that ∣∣∣∣∣∣

 2∏
j=1

∂
ηj
tj

 (F [T̃0]−F [T̃1])(t)

∣∣∣∣∣∣ ⩽ C exp(−Bγ− 1
κ ).

Finally, using (33), there exist constants C > 0 and B > 0 which depend only on D such that∫
RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)| ⩽ C exp(−Bγ− 1
κ ).

Taking γ = cγ(log n)
−κ with cγ ⩽ Bκ1 shows that there exists C > 0 such that∫

RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)| ⩽ C

n
.

Let us now consider the case κ = 1
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For γ that satisfies γ ⩽ 1
2c , by Lemma 7, for all δ ∈ (0, 1), there exist two constants A > 0,

B > 0 independent of γ and k such that

sup
|t|⩽c,0⩽j⩽2k+1

∣∣∣∣F [f1]

(
t− 2j − 2k − 1

γ

)∣∣∣∣ ⩽ A exp(−Bγ−δ),

and

sup
|t|⩽c,0⩽j⩽2k+1

∣∣∣∣F [f1]
′
(
t− 2j − 2k − 1

γ

)∣∣∣∣ ⩽ A exp(−Bγ−δ).

Thus, there exist constants A > 0 and B > 0 independent of γ and k such that

sup
|t|⩽c

|mk(t)| ⩽ A exp(−Bγ−δ), (37)

and
sup
|t|⩽c

|m′
k(t)| ⩽ A exp(−Bγ−δ). (38)

Doing the same computation as in the case κ ∈ (1/2, 1) shows that for all η ∈ {0, 1}2 and
t ∈ [−c, c]2, ∣∣∣∣∣∣

 2∏
j=1

∂
ηj
tj

 (F [T̃0]−F [T̃1])(t)

∣∣∣∣∣∣
⩽ 2

∞∑
k=0

|t2|2kγ2k+1

(2k)!
|∂η1t1 mk(t1)|+ 2

∞∑
k=0

|t2|2k+1γ2k+1

(2k + 1)!
|∂η1t1 mk(t1)|.

By (37) and (38), there exist constants C > 0 and B > 0 which depend only on D such that 2∏
j=1

∂
ηj
tj

 (F [T̃0]−F [T̃1])(t) ⩽ C exp(−Bγ−δ) sup
|t2|⩽c

(
γ cosh(|t2|γ) + sinh(|t2|γ)

)
.

For γ small enough, there exists a constant C > 0 which depends only on D such that∣∣∣∣∣∣
 2∏
j=1

∂
ηj
tj

 (F [T̃0]−F [T̃1])(t)

∣∣∣∣∣∣ ⩽ C exp(−Bγ−δ).

Finally, using (33), there exists a constant C > 0 which depends only on D such that∫
RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)| ⩽ C exp(−Bγ−δ).

Taking γ = cγ(log n)
− 1

δ with cγ ⩽ B
1

δ+1 shows that there exists C > 0 such that∫
RD

|d(G0(κ) ∗Q)(x)− d(G1(κ) ∗Q)(x)| ⩽ C

n
.

D.7 Proof of Lemma 7

Case κ ̸= 1.
This case is based on [23]. In the following, we will note constants that can change with

upper case A, B and C. In [23], Theorem 2, the author defines for any positive constants
µ > 0, q > 1 and a > 0 a function ζq,µ,a, such that for x ∈ R,

ζq,µ,a(x) = −i
∫
C
zµ exp(zq − qax2z)dz,
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where C is a curve in the complex plane so that the maximum of |zµ exp(zq− qax2z)| for z ∈ C
is attained on the positive real line. The author shows that ζq,µ,a and ζ2q,µ,a are integrable
functions.

The author uses the saddle-point integration method to show that there exist A > 0 and
B > 0 which depend on q, µ and a such that

|F [ζq,µ,a](t)| ⩽ A exp(−Bx
2q

q+1 ). (39)

Finally, for κ ∈ (1/2, 1), fix µ > 0, a > 0, and define

fκ = cfκRe[ζ 1
2κ−1 ,µ,a

]2 ∗ u1,

where u1 : x ∈ R 7→ exp(− 1
1−4x2 )1|(−1/2,1/2)(x) and cfκ is a constant that ensures that fκ is a

density.
Let us first prove that there exist A and B positive constants such that |F [Re[ζq,µ,a]

2](t)| ⩽
A exp(−B|t|1/κ).

|F [Re[ζ 1
2κ−1 ,µ,a

]2](t)| = |F [Re[ζ 1
2κ−1 ,µ,a

]] ∗ F [Re[ζ 1
2κ−1 ,µ,a

]](t)|

⩽ A

∫
R
exp(−B|x− y|1/κ −B|y|1/κ)dy

=

∫
|y−x|⩾|x|/2

exp(−B|x− y|1/κ −B|y|1/κ)dy

+

∫
|y−x|<|x|/2

exp(−B|x− y|1/κ −B|y|1/κ)dy

⩽ A exp(−B|x|1/κ). (40)

Finally, for all t ∈ R, using that |F [u1](t)| ⩽ 1,

|F [fκ](t)| = |F [Re[ζ 1
2κ−1 ,µ,a

]2](t)| |F [u1](t)|

⩽ cfκA exp(−B|x| 1κ ).

For x ∈ R, F [fκ(x)]
′ = F [x 7→ xfκ(x)] and

xfκ(x) = cfκv ∗ Re[ζ 1
2κ−1 ,µ,a

]2(x) + cfκu1 ∗ ζ̃(x),

where v : x ∈ R 7→ xu1(x) and ζ̃ : x ∈ R 7→ xRe[ζ 1
2κ−1 ,µ,a

]2(x).

Following the same proof as Theorem 2 of [23], there exists A > 0 and B > 0 such that for
all t ∈ R, |F [x 7→ xRe[ζ 1

2κ−1 ,µ,a
](t)]| ⩽ A exp(−B|t|1/κ), so that, following the proof of (40),

|F [ζ̃]|(t) ⩽ A exp(−B|t|1/κ). Hence, there exists A > 0 and B > 0 such that |F [fκ]
′(t)| ⩽

A exp(−B|t|1/κ).
Finally, note that fκ is continuous as a convolution of an integrable function with a smooth

function, and that for all x ∈ R, fκ(x) > 0 since Re[ζ 1
2κ−1 ,µ,a

] and u are not the null function

almost everywhere.

Case κ = 1.
Let δ ∈ (0, 1) and define f1 : x ∈ R 7→ cf1(u 1

1−δ
∗ u 1

1−δ
)(x), where cf1 is a constant that

ensures that f1 is a probability density.
There exist A > 0 and B > 0 such that F [f1](x) ⩽ A exp(−B|x|δ), see Lemma in [26].

Moreover, F [f1]
′(x) = 2cf1F [u 1

1−δ
](x)F [u 1

1−δ
]′(x) ⩽ A∥x 7→ xu 1

1−δ
(x)∥1 exp(−B|x|δ).

Finally, note that f1 is continuous and does not vanish on its support.

35



D.8 Proof of Lemma 8

First, by Lemma 7, for any κ ∈ (1/2, 1], U(κ) satisfies A(κ).
Let i ∈ {0, 1}. For any λ = (λ1, . . . , λD) ∈ RD,

E[exp(λ⊤Xi(κ))] = E
[
exp

((
λ1 +

1

2
λ2

)
U(κ) + (−1)iγλ2

1

2
cos

(
U(κ)

γ

))]
⩽ eγ

1
2 |λ2|E

[
exp

((
λ1 +

1

2
λ2

)
U(κ)

)]
. (41)

Since U(κ) satisfies A(κ), there exist positive constants A > 0 and B > 0 such that for all

λ = (λ1, . . . , λD) ∈ RD, E[exp(λ⊤Xi(κ))] ⩽ A exp(B|λ| 1κ ). Applying this in (41),

E[exp(λ⊤Xi(κ))] ⩽ A exp

(
γ
1

2
|λ2|+B

∣∣∣∣(λ1 + 1

2
λ2

)∣∣∣∣ 1κ
)

⩽ A′ exp(B′|λ| 1κ )

for some other constants A′ and B′ since 1 ⩽ κ, so that Xi(κ) satisfies A(κ).

D.9 Proof of Lemma 9

The proof is done in five steps.

1. We show that γgγ is 1-lipschitz.

2. For i ∈ {0, 1} and κ ∈ ( 12 , 1], we compute the density pi of Ti(κ) with respect to the
1-dimensional Hausdorff measure µH and we show that for any compact set K, there
exists b(κ,K) > 0 such that, for all u ∈Mi(γ) ∩ K, |pi(u)| ⩾ b(κ,K).

3. We show that for i ∈ {0, 1}, µH(· ∩Mi(γ)) is in StK(2, d, r0).

4. We deduce that for i ∈ {0, 1} and d ⩾ 1, Ti is in StK(2b(κ,K), d, r0).

5. Finally, we show that for i ∈ {0, 1}, d ⩾ 1 and a small enough, Gi(κ) ∈ StK(a, d, r0).

Proof of 1 For all x ∈ R, |γg̃′γ(x)| = | sin(xγ )| ⩽ 1, which implies that γgγ is 1-Lipschitz.

Proof of 2 Let us first compute the density pi of Ti(κ) with respect to µH . For i ∈ {0, 1},
denote ζi : x ∈ R 7→ (x, (−1)iγgγ(x)). Let B be an open subset of RD. For any κ ∈ ( 12 , 1],

Ti(κ)(B) = P[ζi(U(κ)) ∈ B] = P[U(κ) ∈ ζ−1
i (B)] =

∫
ζ−1
i (B)

fκ(u)du.

Let Jac ζi : u ∈ R 7→
√
1 + γ2g̃γ(u)2 be the Jacobian of ζi. By the Area Formula (see equation

(2.47) in [4]),

si(κ)(B) =
∫
ζ−1
i (B)

fκ(u)

Jac ζi(u)
Jac ζi(u)du =

∫
B∩Mi(γ)

fκ(π
(1)(u))

Jac ζi(π(1)(u))
dµH(u).

We then have that for all x ∈ RD,

pi(x) =
fκ(π

(1)(x))

Jac ζi(π(1)(x))
1|Mi(γ)(x).

Since fκ is continuous and does not vanish on its support, for any compact set K, Mi(γ) ∩ K
is a compact subset of the support of fκ. Thus, since fκ is continuous and does not vanish on
its support, for any compact set K, there exists c(κ,K) > 0 such that for all u ∈ Mi(γ) ∩ K,
fκ(u) ⩾ c(κ,K). Moreover, for i ∈ {0, 1}, Jac ζi(u) ⩽

√
2. Therefore, for all x ∈ Mi(γ) ∩ K,

|pi(x)| ⩾ c(κ,K)√
2

.
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Proof of 3 Recall that the 1-dimensional Hausdorff measure µH is defined as the limit
limη→0 µ

η
H , where for any set Z

µηH(Z) = inf

{∑
i∈N

Diam(Ai) : X ⊂
⋃
i

Ai and ∀i,Diam(Ai) ⩽ η

}
.

For any z ∈Mi(γ), there exists x0 ∈ R such that z = (x0, (−1)iγgγ(x0)) and, for any r > 0,

B(z, r) ∩Mi(γ) ⊃ {(x, (−1)iγgγ(x)), x ∈ B(x0, r)}

since |x− x0| ⩽ r implies ∥γgγ(x)− γgγ(x0)∥∞ ⩽ r.
Let (Ai)i∈N be a covering of {(x, (−1)iγgγ(x)), x ∈ B(x0, r)}, and Bi = π(1)(Ai), then Bi

is a covering of B(x0, r). For all η > 0,

µηH({(x, (−1)iγgγ(x)), x ∈ B(x0, r)}) ⩾ µηH(B(x0, r)),

thus µH(B(z, r) ∩Mi(γ)) ⩾ µH(B(x0, r)) = 2r. If r0 ⩽ 1, then for any r ⩽ r0,

µH(B(z, r) ∩Mi(γ)) ⩾ 2rd,

which proves 3.
Proof of 4 Let xi ∈Mi(γ) ∩ K and r0 < 1. Then for all r ⩽ r0,

Ti(B(xi, r) ∩Mi(γ)) =

∫
B(xi,r)∩Mi(γ)

pi(u)dµH(u)

⩾ b(κ,K)µH(B(xi, r) ∩Mi(γ)) ⩾ 2b(κ,K)rd.

Proof of 5 For i ∈ {0, 1}, let xi ∈ JMi(γ) ∩ K, r0 < 1, and take K̃ such that J−1K ⊂ K̃.
For all r ⩽ r0,

Gi(κ)(B(xi, r)) = P[JSi(κ) ∈ B(xi, r)] ⩾ P
[
Si(κ) ∈ B

(
J−1xi,

r

∥J∥op

)]
⩾

2b(κ, J−1K)

∥J∥op
r

⩾
2b(κ, K̃)

∥J∥op
r,

so that for some a0 and all a ⩽ a0, Gi(κ)(B(xi, r)) ⩾ ard.

D.10 Proof of Lemma 10

Let us write mi,γ(x) = (x + (−1)i γ2 cos(xγ ), 0, . . . , 0), so that Xi(κ) = (U(κ),mi,γ(U(κ)). For

i ∈ {0, 1}, let wi,κ,γ be the density of the first coordinate of mi,γ(U(κ)), then

Mκ = sup
x∈R,γ∈[0,1],i∈{0,1}

{wi,κ,γ(x) ∨ fκ(x)}

is an upper bound of the density of Xi(κ)
(1) and of the first coordinate of Xi(κ)

(2) with respect
to the Lebesgue measure. Let us show that Mκ is finite. First, note that mi,γ is one-to-one
from R to R × {0}D−2 and m−1

i,γ is Lipschitz with Lipschitz constant upper bounded by 1/2.
One can easily check that for all x ∈ R,

wi,κ,γ(x) = fκ((mi,γ)1(x, 0, . . . , 0))
1

(mi,γ)′1(m
−1
i,γ (x, 0, . . . , 0))

,

where (mi,γ)1(x) is the first coordinate of mi,γ(x). Since (mi,γ)
′
1 is lower bounded by 1/2,

Mκ ⩽ supx∈R fκ(x), which is finite.
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For any ∆ > 0, define the sets:

A
(1)
∆ = [−∆,∆] and B

(2)
∆ = B̄

(
0, (

1

2
+ 2)∆

)
∩ (R× {0}D−2),

A
(2)
∆ = [−∆,∆]× {0}D−2 and B

(1)
∆ = B̄(0,∆) ∩ R.

Define c∆,κ = P[U(κ) ∈ A
(1)
∆ ] ∧ infγ∈[0,1],i∈{0,1} P[mi,γ(U(κ)) ∈ A

(2)
∆ ], and let us prove that

c∆,κ > 0.

First, P[U(κ) ∈ A
(1)
∆ ] > 0 since the density of U(κ) is positive everywhere on its support.

Then, for i ∈ {0, 1},

P[mi,γ(U(κ)) ∈ A
(2)
∆ ] = P

(
U(κ) + (−1)i

1

2
γ cos

(
U(κ)

γ

)
∈ [−∆,∆]

)
⩾ P

(
U(κ) ∈ [−∆/2,∆/2], (−1)i

1

2
γ cos

(
U(κ)

γ

)
∈ [−∆/2,∆/2]

)
⩾ P

(
U(κ) ∈ [−∆/2,∆/2], cos

(
U(κ)

γ

)
∈ [−∆/γ,∆/γ]

)
⩾ P

(
U(κ) ∈

[
−∆

2
,
∆

2

]
∩ [arccos(∆), π − arccos(∆)]

)
,

which is positive.

For any ∆ > 0 define B
(1)
∆,i,γ = m−1

i,γ (A
(2)
∆ ). Then

Diam(B
(1)
∆,i,γ) = sup

x,y∈B(1)
∆,i,γ

|x− y|

= sup
x,y∈A(2)

∆

|m−1
i,γ (x)−m−1

i,γ (y)|

⩽
1

2
sup

x,y∈A(2)
∆

∥x− y∥ ⩽ ∆.

Thus, B
(1)
∆,i,γ ⊂ B

(1)
∆ , and

P[(Xi(κ))
(1) ∈ B

(1)
∆,i|(Xi(κ))

(2) ∈ A
(2)
∆ ] ⩾ P[(Xi(κ))

(1) ∈ B
(1)
∆,i,γ |(Xi(κ))

(2) ∈ A
(2)
∆ ] = 1.

Similarly, define B
(2)
∆,i,γ = mi,γ(A

(1)
∆ ) = {(x+ (−1)iγ 1

2 cos(
x
γ ), 0, . . . , 0) , x ∈ [−∆,∆]}, then

Diam(B
(2)
∆,i,γ) = sup

x,y∈A(1)
∆

∣∣∣∣x+ (−1)iγ
1

2
cos

(
x

γ

)
− y − (−1)iγ

1

2
cos

(
y

γ

)∣∣∣∣
⩽ 2∆ + γ

1

2

∣∣∣∣cos(xγ
)
− cos

(
y

γ

)∣∣∣∣
⩽

(
1

2
+ 2

)
∆.

Thus, B
(2)
∆,i,γ ⊂ B

(2)
∆,i, and

P[(Xi(κ))
(2) ∈ B

(2)
∆,i|(Xi(κ))

(1) ∈ A
(1)
∆ ] ⩾ P[(Xi(κ))

(2) ∈ B
(2)
∆,i,γ |(Xi(κ))

(1) ∈ A
(1)
∆ ] = 1.

Thus, the distribution of Xi(κ) satisfies (H1) and (H2). Lemma 10 follows from Lemma 8 and
Theorem 2.

E Proofs for Section 5

E.1 Proof of Theorem 6

We shall need two technical lemmas. The following one is easily proved following the arguments
at the end of the proof of Theorem 3.
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Lemma 12. Let G be a probability measure with compact support MG. Assume that G ∈
StMG

(a, d, r0) for some constants a > 0, d > 0 and r0 > 0. Recall that Γn := Γn,1 = ∥ĝn−ḡ∥∞.
Then

(1) For any C1 > 0 and c > 0, there exists h0 > 0 such that if hn ⩽ h0, on the event where

C1 + Γn < λn < acdAdA(
1

hn
)D−d − Γn,

it holds
MG ⊂ M̂ ⊂ (MG)c.

(2) For mn, hn, λn chosen as in Theorem 3, for all C1 ∈ (0, acdAdA) and δ′ > 0, there exist

C > 0 and n0 ⩾ 0 such that for all n ⩾ n0, with probability at least 1− 2 exp(−n1/2−δ′),

Γ2
n ⩽ Ce−mn and C1 + Γn < λn < acdAdA(

1

hn
)D−d − Γn.

and in particular, for all c > 0 and δ′ > 0, there exists n′0 ⩾ 0 such that for all n ⩾ n′0,
with probability at least 1− 2 exp(−n1/2−δ′),

MG ⊂ M̂ ⊂ (MG)c.

In particular, since Rn −→ +∞ and MG is compact, up to increasing n0, on this event,

MG ⊂ M̂ ∩ B̄(0, Rn) ⊂ (MG)c.

In the rest of the proof of the Theorem, we lighten the notation M̂ ∩ B̄(0, Rn) into M̂
(equivalently, we redefine the estimator M̂ as the intersection of the estimator of Section 4.1
with the closed euclidean ball of radius Rn).

Lemma 13. Let G be a probability measure with compact support MG. Assume that G ∈
StMG

(a, d, r0) for some constants a > 0, d > 0 and r0 > 0. Then for any α > 0, c > 0 and
p ∈ [1,+∞), there exists C(α, c) > 0 such that, on the event where

MG ⊂ M̂ ⊂ (MG)c,

it holds

∥ḡ∥
L1(RD\(M̂)c)

⩽ C(α, c)hαn and

∫
RD\(M̂)c

∥x∥p|ḡ(x)|dx ⩽ C(α, c)hαn.

Proof. By definition,

∥ḡ∥
L1(RD\(M̂)c)

=
1

hDn

∫
x∈MG

∫
y∈RD\(M̂)c

ψA

(
∥y − x∥2

hn

)
dydG(x).

By Point (V) of the properties of ψA, for any A > 0, there exists C > 0 such that for any

x ∈ MG and y ∈ RD \ (M̂)c,

ψA

(
∥y − x∥2

hn

)
⩽ C exp

(
−βA

∥y − x∥A/(A+1)
2

h
A/(A+1)
n

)
⩽ C exp

(
−βA

d(y,MG)
A/(A+1)

h
A/(A+1)
n

)
.

Since MG ⊂ M̂, for all y ∈ RD \ (M̂)c, d(y,MG) ⩾ c, so for any α > 0, there exists a constant
C̃ > 0 such that

C exp

(
−βA

d(y,MG)
A/(A+1)

h
A/(A+1)
n

)
⩽ C̃

hD+α
n

d(y,MG)D+α
.
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Moreover, since MG is compact, Diam(MG) is finite, so that on the event where MG ⊂ M̂,∫
RD\(M̂)c

1

d(y,MG)D+α
dy ⩽

∫
RD\(MG)c

1

d(y,MG)D+α
dy <∞.

⩽
∫
RD

(
1

c ∨ (∥y∥ −Diam(MG)/2)

)D+α

dy <∞.

Therefore, for all c > 0 and α > 0, there exists C depending on A, D, c, α and Diam(MG)
such that

∥ḡ∥
L1(RD\(M̂)c)

⩽ Chαn.

The proof that the same holds for
∫
RD\(M̂)c

∥x∥pḡ(x)dx is similar.

Let G ∈ StMG
(a, d, r0) be such that if X ∼ G, then ΦX ∈ H ∩Υ1,S . Fix p ∈ [1,+∞). We

use a bias-variance decomposition of Wp(G, P̂n,η) through the triangle inequality

Wp(G, P̂n,η) ⩽Wp(G,PψA,h
) +Wp(PψA,h

, P̂n,η).

The proof is done is several steps :

(1) We first show that there exists C > 0 depending only on A and D such that the bias
satisfies

Wp(G,PψA,hn
) ⩽ Chn.

(2) We prove that for any α ⩾ 1, on the event where

MG ⊂ M̂ ⊂ (MG)c,

there exists C ′ > 0 such that

Wp(PψA,hn
, P̂n,η) ⩽ C ′(hαn + Γn).

(3) We show that the choice of the parameters mn, hn and λn gives the result.

Proof of (1)
Let Yψ be a random variable with density ψA,hn

and independent of X, so that the distri-
bution of X + Yψ is PψA,hn

. By definition of Wp,

W p
p (G,PψA,hn

) ⩽ E(∥X + Yψ −X∥p2) = E(∥Yψ∥p2) = hpn

∫
RD

∥u∥pψA,1(u)du,

and the integral is finite by point (V) of the properties of ψA.
Proof of (2)
If ν and µ are probability measures on RD having respective densities f and g with respect

to the Lebesgue measure, letting ω be the measure with density min(f, g) with respect to the
Lebesgue measure, a ∈ RD, and δa the Dirac measure in a, by convexity of x 7→ xp,

W p
p (µ, ν) ⩽ 2p−1

(
W p
p (µ, ω + (1− ω(RD))δa) +W p

p (ν, ω + (1− ω(RD))δa)
)

⩽ 2p−1

∫
RD

∥x− a∥p(f(x)− g(x)− 2min(f(x), g(x)))dx

= 2p−1

∫
RD

∥x− a∥p|f(x)− g(x)|dx,

so that

W p
p (µ, ν) ⩽ 2p−1 min

a∈RD

∫
RD

∥x− a∥p|f(x)− g(x)|dx. (42)
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This entails

W p
p (PψA,hn

, P̂n,η) ⩽ 2p−1 min
a∈RD

∫
RD

∥x− a∥p|ḡ(x)− cnĝ
+
n (x)1|(M̂)η

)(x)|dx

⩽ 2p−1

∫
(M̂)η

∥x∥p|ḡ(x)− cnĝ
+
n (x)|dx+ 2p−1

∫
RD\(M̂)η

∥x∥pḡ(x)dx. (43)

For S compact subset of RD, write MS = supx∈S ∥x∥p and Vol(S) for the Lebesgue measure
of S, then∫

(M̂)η

∥x∥p|ḡ(x)− cnĝ
+
n (x)|dx ⩽M

(M̂)η

∫
(M̂)η

|ĝ+n (x)− ḡ(x)|dx+M
(M̂)η

|cn − 1|
cn

⩽M
(M̂)η

Vol((M̂)η)Γn +M
(M̂)η

|cn − 1|
cn

.

We also have

|cn − 1|
cn

=

∣∣∣∣ 1cn − 1

∣∣∣∣ =
∣∣∣∣∣
∫
(M̂)η

(ĝ+n (y)− ḡ(y))dy −
∫
RD\(M̂)η

ḡ(y)dy

∣∣∣∣∣
⩽ ∥ĝn − ḡ∥

L1((M̂)η)
+ ∥ḡ∥

L1(RD\(M̂)η)
.

Using Hölder’s inequality,

∥ĝn − ḡ∥
L1((M̂)η)

⩽ Vol((M̂)η)Γn.

By Lemma 13, for any α > 0, there exists C such that∫
(M̂)η

∥x∥p|ḡ(x)− cnĝ
+
n (x)|dx ⩽ 2M

(M̂)η
Vol((M̂)η)Γn +M

(M̂)η
Chαn.

For any c > 0, when M̂ ⊂ (MG)c, one has (M̂)η ⊂ (MG)η+c. This inclusion entails M
(M̂)η

⩽

M(MG)η+c
and Vol((M̂)η) ⩽ Vol((MG)η+c). Therefore, for any c > 0,∫

(M̂)η

∥x∥p|ḡ(x)− cnĝ
+
n (x)|dx ⩽ 2M(MG)η+c

Vol((MG)η+c)Γn +M(MG)η+c
Chαn. (44)

Again by Lemma 13, on the event where MG ⊂ M̂ ⊂ (MG)η,∫
RD\(M̂)η

∥x∥p|ḡ(x)|dx ⩽ C ′hαn. (45)

Finally, using (43), (44) and (45), for any α ⩾ 1, there exists C > 0 such that

W p
p (PψA,hn

, P̂n,η) ⩽ C(hαn + Γn).

Proof of (3)
Using (1) and (2), for sequences hn, mn and λn satisfying the assumptions of Theorem 6,

on the event where MG ⊂ M̂ ⊂ (MG)η, for any α ⩾ p, there exists C > 0 such that

Wp(G, P̂n,η) ⩽ C(hn + (hαn + Γn)
1/p) ⩽ 2C(hn + Γ1/p

n ).

We may assume hn ⩽ 1 for all n without loss of generality. As stated in Lemma 12, for any δ′ >
0, there exist C ′ and n0 such that for all n ⩾ n0, with probability at least 1− 2 exp(−n1/2−δ′),
Γ
1/p
n ⩽ C ′e−mn/(2p) and MG ⊂ M̂ ⊂ (MG)η, and therefore

Wp(G, P̂n,η⋆) ⩽ Cm−1
n

41



on this event, up to changing the constant C.
On the event of probability at most 2 exp(−n1/2−δ′) where this does not hold, since the

support of P̂n,η⋆ is a subset of B̄(0, Rn), Wp(G, P̂n,η⋆) ⩽ 2Rn.
Therefore, taking δ′ < δ where δ is as defined in the statement of the Theorem, there exists

C > 0 such that for n ⩾ n0,

E(G∗Q)⊗n [Wp(G, P̂n,η⋆)] ⩽ Cm−1
n ,

which concludes the proof.

E.2 Proof of Theorem 7

Let P̂n be an estimator of G. According to [27],

sup
G∈StK(a,d,r0)∩L(1,S,H⋆

1)

Q∈Q(D)(ν,c(ν),E)

E(G∗Q)⊗n [Wp(G, P̂n)]

⩾
1

2
Wp(G0(1), G1(1))(1− ∥G0(1) ∗Q)−G1(1) ∗Q∥1)n.

Using the same two distributions G0(1), G1(1) and the same set H⋆
1 as in Theorem 5. We have

shown in Theorem 5 that there exists a constant C > 0 such that

∥G0(1) ∗Q−G1(1) ∗Q∥TV ⩽
C

n
,

taking γ of the form c log(n)−1−δ for any δ > 0 and c small enough, which implies that the
minimax risk is lower bounded by Wp(G0(1), G1(1)). We show that there exist constants c > 0
and n0 > 0 such that for n ⩾ n0

Wp(G0(1), G1(1)) ⩾ cγ.

Let Uγ be the set of u ∈ R such that | cos(uγ )| ⩾ 1/2, that is Uγ =
⋃
k∈Z[kπγ − πγ

3 , kπγ + πγ
3 ].

For each k ∈ Z, let Ik,γ := [kπγ − πγ
2 , kπγ +

πγ
2 ]. Let us also define, for any two sets A and B

of Rd, d(A,B) = infx∈A,y∈B ∥x− y∥2. We first show that

d(M0(γ) ∩ (Uγ × RD−1),M1(γ)) ⩾ γ(
1

4
√
2
∧ π

6
).

Let x ∈M0(γ)∩ (Uγ×RD−1) and y ∈M1(γ). There exists k ∈ Z such that x ∈M0(γ)∩ ((Uγ ∩
Ik,γ) × RD−1). If y ∈ Ik,γ × RD−1 (that is, if the first coordinate of x and y are in the same
interval Ik,γ), then

∥x− y∥2 ⩾ d(M0(γ) ∩ ((Uγ ∩ Ik,γ)× RD−1),M1(γ) ∩ (Ik,γ × RD−1)).

All points of M0(γ) are of the form (u, u + 1
2γ cos(

u
γ ), 0, . . . 0)

⊤ and the distance between

(u, u + 1
2γ cos(

u
γ ), 0, . . . , 0)

⊤ and the diagonal defined by D := {(u, u, 0, . . . , 0)⊤ : u ∈ R} is
1

4
√
2
γ| cos(uγ )|. Since the sets M0(γ) ∩ ((Uγ ∩ Ik,γ)×RD−1) and M1(γ) ∩ (Ik,γ ×RD−1) are on

opposite sides of the diagonal D,

d(M0(γ) ∩ ((Uγ ∩ Ik,γ)× RD−1),M1(γ) ∩ (Ik,γ × RD−1))

⩾ d(M0(γ) ∩ ((Uγ ∩ Ik,γ)× RD−1),D)

=
1

4
√
2
γ,

so that ∥x− y∥2 ⩾ 1
4
√
2
γ. If now y /∈ Ik,γ × RD−1,

d(M0(γ) ∩ ((Uγ ∩ Ik,γ)× RD−1),M1(γ) ∩ ((R \ Ik,γ)× RD−1)) ⩾ d(Uγ ∩ Ik,γ ,R \ Ik,γ)

=
πγ

6
,
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so that ∥x− y∥2 ⩾ πγ
6 , and thus d(M0(γ) ∩ (Uγ × RD−1),M1(γ)) ⩾ γ( 1

4
√
2
∧ π

6 ).

Now, let us show that Wp(G0(1), G1(1)) ⩾ γ( 1
8
√
2
∧ π

12 ). Let π be a transport plan between

G0(1) and G1(1), then∫
M0(γ)×M1(γ)

∥x− y∥p2dπ(x, y)

⩾
∫
M0(γ)∩(Uγ×RD−1)×M1(γ)

∥x− y∥p2dπ(x, y)

⩾ d(M0(γ) ∩ (Uγ × RD−1),M1(γ))
p π(M0(γ) ∩ (Uγ × RD−1)×M1(γ))

= d(M0(γ) ∩ (Uγ × RD−1),M1(γ))
p G0(1)(M0(γ) ∩ (Uγ × RD−1))

= d(M0(γ) ∩ (Uγ × RD−1),M1(γ))
p P[U(1) ∈ Uγ ]

since G1(1) has support M1(γ) and by definition of G0(1). Therefore, by taking the infimum
on all transport plans between G0(1) and G1(1),

Wp(G0(1), G1(1)) ⩾ γ(
1

4
√
2
∧ π

6
)P[U(1) ∈ Uγ ]1/p.

U(1) admits a density f1 with respect to Lebesgue measure that is supported on [−1, 1] and
continuous. Let us write ω one of its modulus of continuity. We have

P[U(1) ∈ Uγ ] =
∫
[−1,1]

f1(x)1|Uγ
(x)dx

=
∑

k∈[−1/(πγ),1/(πγ)]

∫
[kπγ−πγ

3 ,kπγ+
πγ
3 ]

f1(x)dx

⩽
∑

k∈[−1/(πγ),1/(πγ)]

(∫
[kπγ−πγ

3 ,kπγ+
πγ
3 ]

f1(kπγ)dx+
2πγ

3
ω(πγ/3)

)

⩽
∑

k∈[−1/(πγ),1/(πγ)]

2

3

∫
[kπγ−πγ

2 ,kπγ+
πγ
2 ]

f1(kπγ)dx+
3

πγ

2πγ

3
ω(πγ/3)

⩽
∑

k∈[−1/(πγ),1/(πγ)]

2

3

∫
[kπγ−πγ

2 ,kπγ+
πγ
2 ]

f1(x)dx

+
3

πγ

(
2πγ

3
ω(πγ/3) + πγω(πγ/2)

)
⩽

2

3

∫
[−1,1]

f1(x)dx+ 3

(
2

3
ω(πγ/3) + ω(πγ/2)

)
−→
γ→0

2

3

∫
[−1,1]

f1(x)dx =
2

3
.

Therefore, there exists n0 such that for all n ⩾ n0, Wp(G0(1), G1(1)) ⩾ γ( 1
8
√
2
∧ π

12 ).
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