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Transcranial ultrasound stimulation (TUS) has been shown to be a safe and effective technique for non-
invasive superficial and deep brain stimulation. Safe and efficient translation to humans requires esti-
mating the acoustic attenuation of the human skull. Nevertheless, there are no international guidelines
for estimating the impact of the skull bone. A tissue independent, arbitrary derating was developed by
the U.S. Food and Drug Administration to take into account tissue absorption (0.3 dB/cm-MHz) for
diagnostic ultrasound. However, for the case of transcranial ultrasound imaging, the FDA model does not
take into account the insertion loss induced by the skull bone, nor the absorption by brain tissue.
Therefore, the estimated absorption is overly conservative which could potentially limit TUS applications
if the same guidelines were to be adopted. Here we propose a three-layer model including bone ab-
sorption to calculate the maximum pressure transmission through the human skull for frequencies
ranging between 100 kHz and 1.5 MHz. The calculated pressure transmission decreases with the fre-
quency and the thickness of the bone, with peaks for each thickness corresponding to a multiple of half
the wavelength. The 95th percentile maximum transmission was calculated over the accessible surface of
20 human skulls for 12 typical diameters of the ultrasound beam on the skull surface, and varies between
40% and 78%. To facilitate the safe adjustment of the acoustic pressure for short ultrasound pulses, such
Aubry).
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as transcranial imaging or transcranial ultrasound stimulation, a table summarizes the maximum
pressure transmission for each ultrasound beam diameter and each frequency.
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Transcranial Ultrasound Stimulation (TUS) allows for the stim-
ulation of superficial [1e9] and deep [10e13] regions with unpar-
alleled resolution for a non-invasive technique [14,15]. As is the
case for any biomedical use of ultrasound waves, it also comes with
potential risks that must be anticipated to ensure patient safety.

There are two main risks associated with the application of TUS,
namely thermal and mechanical bioeffects [16,17]. Concerning
thermal bioeffects, mechanical energy can be transferred into
thermal energy through viscous absorption leading to tissue
heating [18e21]. This article is focused on mechanical bioeffects,
which concern mainly the risk of acoustic cavitation [22e26].
Currently, there are no established guidelines for the safe applica-
tion of ultrasonic neuromodulation in humans. Nevertheless,
dedicated recommendations could be developed based on existing
guidelines for diagnostic ultrasound from regulatory bodies like the
U.S. Food and Drug Administration (FDA) [27].

The Mechanical Index (MI) was introduced to inform the clinical
user about the relative risk from mechanical effects [28]. It is
defined by the spatial-peak value of the peak rarefactional pressure
at the location where the pulse intensity integral is maximum. The
location of themaximum intensity is often located at the focal point
[29], deep into tissues, so the FDA developed a “derating” factor to
account for the attenuation of the ultrasound beam during the
propagation into tissues. For simplicity of implementation, a single
arbitrary derating factor is used for all clinical situations. However,
the derating implemented by the FDA (0.3 dB cm�1 MHz�1) is lower
than the attenuation of any solid tissue in the body and does not
take into account the insertion loss induced by the skull bone
[30e34]. The current MI implementation thus overestimates the
actual pressure inside the brain and is overconservative for trans-
cranial applications both diagnostic and neuromodulatory. Adding
a conservative maximum transmission coefficient of the pressure
amplitude through the skull to the MI would partially account for
this overestimation. Further, incorporating a more realistic value of
tissue absorption would also improve the pressure estimation.

Here, we introduce a conservative analytical model to estimate
the maximum possible transmission through a human skull at a
given frequency and a given thickness of the skull, a model where all
parameters tend towards the worst-case scenario. We then applied
this model to the entire surface of 20 human skulls for a [100 kHz -
1.5 MHz] range of ultrasound frequencies. The pressure transmission
coefficients were calculated at each frequency for a set of ultrasound
beam diameters on the skull surface ranging between 5 mm and
100 mm (5 mm, then 10e100 mm with 10 mm increments), at
100,000 locations uniformly distributed at the surface of the skull.
The maximum transmission computed over the 1.4 M locations is
compared to experimental data published in the literature.
Fig. 1. A 3-layer model was used here, with 3 impedances reflecting the skin, skull and
brain. The thickness of the skull (L), considered of homogenous composition, is used in
the model.
2. Methods

2.1. Analytical model of ultrasonic transmission

The objective of the model is to estimate themaximum pressure
transmission through a human skull model. A 3-layer model is
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proposed, with 3 impedances representing the skin, skull and brain
(Fig. 1). A harmonic plane wave at normal incidence is considered.

In the case of a lossless media, an analytical solution can be
calculated by considering 5 waves: the contra propagating waves
(incident and reflected) in medium 1 and 2, and the transmitted
wave in medium 3 [35]. Taking into account the boundary condi-
tions, it can be shown that the intensity transmission coefficient is
given by Ref. [36]:

T ¼ 4Z1Z3
ðZ1 þ Z3Þ2 cos2k2Lþ ðZ2 þ Z1Z3=Z2Þ2 sin2k2L

(1)

where k2 is the wave vector in the second medium.
We propose here to take into account the attenuation of the

wave in the skull. The attenuation is modeled by a homogenous
absorption coefficient a (in Np.m�1) such that a plane wave prop-
agating along a distance L is given by:

Pðx¼ LÞ¼ Pðx¼0Þejðut�kLÞe�fL (2)

where Pðx¼ 0Þ is the plane wave at the reference position, u the
pulsation of the wave, and k the wave vector.

The acoustic pressure P3ðx¼ LÞ in the third medium (the brain)
at the location of the third interface is the sum of all the successive
reflected waves at the two interfaces that were transmitted in the
third medium:

P3ðx¼ LÞ¼ t12t23P0e
jðut�k2LÞe�fL þ t12t23r23r21P0e

jðut�3k2LÞe�3fL

þ t12t23r23r21r23r21P0e
jðut�5k2LÞe�5fL þ…

(3)

where tij ¼ 2Zj
ZiþZj

is the pressure transmission coefficient of a wave

propagating frommedium i to medium j, and where rij ¼ Zj�Zi
ZjþZi

is the

pressure reflection coefficient of a wave propagating from medium
i to medium j. Equation (3) can be rewritten as:

P3ðx¼ LÞ¼ t12t23P0e
jðut�k2LÞe�fL�

1þ r23r21e
�2jk2Le�2fL þðr23r21Þ2e�4jk2Le�4fL þ…

�

(4)

where the sum of the geometrical series can be calculated as:

http://creativecommons.org/licenses/by/4.0/
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P3ðx¼ LÞ¼ t12t23P0e
jðut�k2LÞe�fL

�
1

1� r23r21e�2jk2Le�2fL

�
(5)

The pressure transmission coefficient is thus given by:

t¼ 4Z2Z3e�fLe�jk2L

ðZ1 þ Z2ÞðZ2 þ Z3Þ � ðZ1 � Z2ÞðZ3 � Z2Þe�2fLe�2jk2L
(6)

which can be finally written as:

t¼ 4Z2Z3e�fL

ðZ1 þ Z2ÞðZ2 þ Z3Þejk2L � ðZ1 � Z2ÞðZ3 � Z2Þe�2fLe�jk2L
(7)

A linear relationship of the absorption coefficient in the bone
with the ultrasound frequency f was chosen [29,37]:

f ¼ bf (8)

which leads to the transmission coefficient as a function of
frequency:
t¼ 4Z2Z3e�bfL

ðZ1 þ Z2ÞðZ2 þ Z3Þejk2L � ðZ1 � Z2ÞðZ3 � Z2Þe�2bfLe�jk2L
(9)
Table 1
Density, sound speed, impedance [42] and attenuation [38e40] used in the analytical mo
brain tissue are not relevant for the current modeling of the attenuation of the skull.

Density kg.m�3 Sound speed m.s�1

Skin 1116 1537
Skull 1990 2930
Brain 1041 1562

Fig. 2. Thickness computation of skull #3 following the eight steps described in the Methods
been used for this figure.
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This formula can be used to compute the intensity transmission
coefficient. In a lossless media ða ¼ 0Þ, the model corresponds to
Equation (1) (see supplementary materials).

The impedances of the three media were calculated from the
density and speed of sound values shown in Table 1.

There is currently no consensus on themodeling of the ultrasonic
attenuation in the skull. Vastly different values have been measured
or estimated, ranging from 83 to 515 Np.m�1.MHz�1 [38]. In order to
estimate themaximum transmission coefficients, the lowest value of
attenuation in the skull was used, i.e., 83 Np.m�1.MHz�1 [38e40].
We assumed a linear relationship with frequency even though more
complex models have been published [41]. Overall, this model aims
at estimating the transmission coefficient as a function of the ul-
trasound frequency and the thickness of the skull.
2.1.1. Application of the 3-layer model with absorption to 20 human
skulls

Local variations in the thickness of the skull have an impact on
the transmission coefficient when applied to an ultrasound beam
passing through the skull with a given diameter. Thus, to define a
maximum transmission coefficient by ultrasound frequency and
del. The lowest value of attenuation in the skull was used. Attenuation for skin and

Impedance rayl Attenuation Np.m�1.MHz�1

1.7 e

5.8 83
1.6 e

. For representation purposes in step 4 to 7, only 1.000 points (instead of 100.000) have
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beam diameter on the skull surface, this analytical model was
applied on the whole surface of twenty human skulls.

Twenty computed tomography (CT) scans of human skulls from
previous studies [43] were processed in Matlab R2021b to deter-
mine their thickness with the following steps (Fig. 2):

(1) Isotropic interpolation of the CT image at a resolution of
0.3*0.3*0.3 mm.

(2) Minimal thresholding by setting all negative values to zero.
(3) Creation of a skull mask with the voxels above a threshold

value defined for each skull by the Otsu method [44] and
morphological closing on this binary image using a 3D
spherical structuring element with a 3 mm radius.

(4) Creation of a semi-sphere of 100.000 points around the skull.
(5) Ray tracing between the center of this sphere and each of its

points.
(6) Determination of the intersecting points between the

external surface of the skull and these 100.000 rays.
(7) Computation of the normal vector to the surface at each

intersecting point; consideration of the vectors from a
manually determined ROI including the entire skull except
the facial skeleton and skull base.

(8) At each of these points, computation of the thickness of the
skull at high resolution (0.03 mm) with minimum and
maximum limits of 1 mm [45,46] and 20 mm [47],
respectively.

The analytical model previously described was applied to each
of these outer surface points for ultrasound frequencies between
100 kHz and 1.5 MHz. Finally, at each of these points, these single
values were averaged across all points within diameters between
5 mm and 100 mm to model different ultrasound beam diameters
on the skull surface (Fig. 3).

The maximum transmission coefficient by ultrasound frequency
and beam diameter is defined as the FDA-recognized standard 95th
percentile (AAMI/ANSI HE75 [48]) of the values of all points of all 20
human skulls.
2.1.2. Comparison with experimental values
The transmission coefficient values from this conservative

model were compared to experimental values found in the
Fig. 3. Pressure transmission as a function of ultrasound frequency and thickness of
the skull, using the 3-layer analytical model.
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scientific literature using different ultrasound frequencies and ul-
trasound beam diameters on the skull surface. The literature
included transcranial ultrasound in general (neuromodulation pa-
pers or not). In any case these articles had to include (i) experi-
mentally measured pressure transmission ratio through the skull,
(ii) ultrasound frequency, and (iii) information to calculate the ul-
trasound beam diameter on the skull surface.

3. Results

3.1. Transmission coefficient in the [100kHz-1.5 MHz] frequency
range

Fig. 2 displays the pressure transmission coefficient as a function
of the ultrasound frequency and the thickness of the skull.

Globally, the transmission coefficient decreases with both the
frequency and the thickness of the skull. Peaks appear regularly
when the thickness of the skull is equal to a multiple of half the
ultrasonic wavelength in the skull.

3.1.1. Maximum transmission coefficient by ultrasound frequency
and beam diameter on the skull surface

The analytical model was then applied to each point of 20 hu-
man skulls, corresponding to a total of 1.465.136 points (Fig. 4A).
The Otsu threshold values ranged from 446 HU to 698 HU
(mean ± SD: 564 ± 77 HU). Fig. 4B illustrates the impact of
geometrical averaging for 20 mm and 60 mm beam diameters.

The maximum transmission coefficients of acoustic pressure
vary from 40% to 78%. These coefficients are displayed by ultra-
sound frequency and ultrasound beam diameter on the skull sur-
face in Fig. 5.

3.1.2. Comparison with experimental values from the scientific
literature

Seven publications [6,12,40,49e52] with experimental mea-
surements of transmission coefficients were selected for compari-
son with the model provided here. Ultrasound frequency, beam
diameter on the skull surface, and sound pressure transmission
coefficient are presented in Table 2 for each of these studies. As
would be expected from a conservative model, the values given by
the model are consistently higher by some margin than those
measured experimentally.

4. Discussion

We introduce a simple model that provides a reasonable esti-
mate of the maximum transmission of pressure amplitude through
a human skull. This estimation is essential to anticipate the me-
chanical risks related to ultrasound. The literature is not unanimous
on the global attenuation coefficients to be applied to an incident
ultrasound beam, with a significant variability between models
[38].

More complex models have been introduced in the past to
simulate the propagation of an ultrasound wave through a human
skull [53e55]. Such refined models could be used to estimate the
in-situ pressure in the brain for a given transducer and a given
treatment geometry [3,56], provided the user can run the corre-
sponding simulations. Nevertheless, not all users involved in
transcranial ultrasound have access to such numerical models. Also,
to experimentally measure the acoustic pressure through a human
skull requires a fine and demanding methodology and is also not
within the reach of all users. Moreover, depending on the
morphology and thickness of the skull, the transmission co-
efficients differ. These differences are not straightforward: the
thinnest regions do not necessarily correspond to the highest



Fig. 4. Pressure transmission coefficient computation for skull #3 for a range of ultrasound frequencies (300, 600 and 900 kHz in A.) and a range of ultrasound beam diameters on
the skull surface (20 and 40 mm in B.).
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transmission. Indeed, the skull thicknesses associated with the
highest transmission coefficients depend on the ultrasound fre-
quency as shown in Fig. 4.
Fig. 5. Maximum pressure transmission as a function of ultrasound frequency and
ultrasound beam diameter on the skull surface. The values shown here are the 95th

percentile of all points of all 20 skulls. The "0 mm" line corresponds to the single values
not averaged over the ultrasound beam diameter.
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The main objective of this work was to provide a conservative
and yet realistic model to estimate the maximum expected pres-
sure transmission and thus adjust the acoustic pressure in a con-
servative way. The following choices were made to introduce a
conservative worst-case scenario model:

(i) all the ultrasonic waves were assumed to be normal to the
surface of the skull on both the outer and inner tables [40],

(ii) the defocusing impact of the skull was neglected, and only
the transmission amplitude was considered, assuming that a
perfect phase aberration correction was applied to the
transducer [57e59],

(iii) the skull was considered of homogenous composition and a
low value of ultrasound attenuation in the skull was used.
The diploe is known to attenuate ultrasound beams more
because of its additional scattering [30,31]. Nevertheless,
cortical bone only was considered and is used as the lower
bound of the absorption coefficient in cortical cranial bone
reported in the literature.

Following the first application of ultrasound stimulation to non-
human primates [1], TUS has been rapidly translated to human
volunteers [3,6,12,13,56,60e63]. As no guidelines are currently
available for safe and effective TUS, various methods have been
used to estimate the acoustic transmission and thus adjust the
acoustic pressure of TUS devices. The most conservative approach
consisted in completely neglecting the tissue absorption and using
the acoustic pressure measured at the focus in free water [62].



Table 2
Comparison between values of pressure transmission through the skull from the scientific literature and from this study. Because of the conservative worst-case scenario
model, values from this study are higher than experimental ones.

Authors Values from the scientific literature Corresponding values in this study

US
frequency

US beam diameter on the skull
surface

Pressure
transmission

US
frequency

US beam diameter on the skull
surface

Maximum pressure
transmission

White et al. (2006) 272 kHz 25 mm 61% 300 kHz 30 mm 73%
548 kHz 25 mm 48% 600 kHz 30 mm 60%
840 kHz 25 mm 41% 900 kHz 30 mm 55%

Marsac et al.
(2017)

800 kHz 92 mm 32% 800 kHz 100 mm 52%
1.3 MHZ 92 mm 16% 1.3 MHZ 100 mm 43%

Gimeno et al.
(2019)

270 kHz 54 mm 50% 300 kHz 60 mm 71%

Riis et al. (2021) 500 kHz 28.5 mm 46% 500 kHz 30 mm 62%
Chen et al. (2022) 150 kHz 43 mm 47% 200 kHz 50 mm 72%

350 kHz 44 mm 33% 400 kHz 50 mm 64%
500 kHz 28 mm 36% 500 kHz 30 mm 62%
750 kHz 26 mm 17% 800 kHz 30 mm 57%
1 MHz 27 mm 12% 1 MHz 30 mm 53%
1.5 MHz 27 mm 4% 1.5 MHz 30 mm 46%
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Other teams used the ultra-conservative constant derating used by
the FDA for all human tissues (0.3 dB cm�1 MHz�1) to estimate the
transcranial maximum in situ acoustic pressure [13,63]. Others
performed numerical simulations of the propagation of the
acoustic waves through the skull [3,56]. Finally, some investigators
used the transmission coefficient measured experimentally on one
fragment of human parietal bone [61], or the experimental value of
the transmission coefficient published by other research teams
[60].

We offer here a model that can be used in the absence of subject
specific modeling. The model is currently based on the analysis of
20 human skulls. Fig. 5 can be used as a guide to derate the
maximum pressure in the brain with a conservative model.

For example, consider here a 1 MHz transducer with 8 cm active
diameter and a 12 cm radius of curvature used to achieve deep
brain TUS (6 cm deep in the brain). We assume that a peak negative
pressure of 1 MPa was measured in free water with a calibrated
hydrophone. As the focal point is 6 cm deep in the brain, it implies
that the skull bone is 12 - 6 ¼ 6 cm away from the transducer. From
a simple geometric consideration with the skull surface halfway
between the transducer and the geometrical focus, the diameter of
the beam intersecting the skull is thus 8/2 ¼ 4 cm. Based on Fig. 5,
themaximum transmission through the skull is 52%. Themaximum
pressure at focus will thus be 0.52 MPa. The pressure additionally
suffers from the attenuation of the 6 cm propagation in the brain.
The attenuation in the brain is higher than other soft tissues, and a
reasonable value is 0.5 dB cm�1 MHz�1 [42]. It corresponds to an
additional attenuation of 3 dB, corresponding to a pressure atten-
uation of 30%. For the transducer considered here the maximum
pressure in the brain would be estimated to be 0.52 MPa *
(1e0.3) ¼ 0.52 MPa * 0.7 ¼ 0.36 MPa. Using the existing FDA
derating approach for diagnostic ultrasound, 1 MPa at 6 cm deep at
1 MHz would produce an MI of 0.81. But the better estimate within
brain tissue, after bone attenuation would be 0.36.

One limitation of this article is the number of skulls included in
the study. The inclusion of 20 human skulls establishes a first proof
of concept and introduces the impact of the size of the transducer.
The results are in line with previously reported transmission co-
efficients but are not sufficient to set new standards. Further work
will need to be performed to include more skulls and provide a
more reliable value of themaximum transmission. Themodel could
additionally be refined by taking into account the anatomical
variability of the bones and differentiate the temporal, parietal and
occipital bone attenuation. Nevertheless, the authors believe that
53
this paper provides the methodology for establishing reasonable
conservative maximum transmission coefficients through human
skulls. All the authors are active members of the safety committee
of the ITRUSST consortium [64]. The committee intends to build
upon the results presented here to provide recommendations for
safe transcranial ultrasound stimulation. We believe that the
maximum transmission coefficient will be key to assess the me-
chanical safety of TUS. The thermal safety must not be neglected
and will be addressed separately.
5. Conclusions

The three-layer model with absorption introduced here led to
the estimation of conservative values of maximum pressure
transmission through human skulls that can be used to safely
adjust the acoustic pressure for transcranial ultrasound. It can be
directly applied for a safe use of transcranial diagnostic ultrasound
provided the calculated Mechanical Index stays below the FDA
recommendations. It must be kept in mind that thermal safety
needs to be addressed separately to ensure a safe use of transcranial
ultrasound. Further work will be conducted by the authors
(members of the ITRUSST safety committee) to reach a consensus
on how to extend these safety considerations to long sonications
like the ones used for ultrasound neurostimulation.
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