La notion de résonance: un exemple simple 1.1 Motivation L'objet de ce chapitre est de présenter sur un exemple particulièrement simple (monodimensionnel) la notion de résonance attachée aux problèmes de propagation d'ondes en domaine non borné. Le principal intérêt de cet exemple est que la plupart des calculs peuvent être menés explicitement, ce qui va nous permettre de faire apparaître cette notion de résonance en se passant des outils mathématiques dont nous aurons besoin pour traiter des cas plus généraux.

Avant de d'aborder le vif du sujet, commençons par donner une idée intuitive de cette notion de résonance. Prenons par exemple le problème des mouvements d'un navire soumis à l'action de la houle (sur lequel nous reviendrons très largement dans les chapitres 3 et 4). Les mouvements du navire dépendent de façon très complexe des caractéristiques de la houle qui excite ces mouvements (amplitude, fréquence, direction de propagation), du fait de la complexité des transferts d'énergie entre le liquide et la structure flottante. Même si nous considérons un modèle linéaire pour la description des mouvements, la dépendance de ces derniers par rapport à la fréquence est bien sûr non linéaire. On peut par exemple chercher à déterminer comment l'énergie emmagasinée par le navire varie en fonction de la fréquence de la houle incidente (pour une amplitude et une direction de propagation fixées) : on obtiendra une courbe analogue à celle qui est représentée sur la figure 1.1 et qui possède un certain nombre de pics associés à des fréquences particulières. Cette courbe de réponse en fréquence est significative de la stabilité dynamique du navire. Ce sont ses pics qui intéressent tout spécialement les hydrodynamiciens, puisqu'ils correspondent à des domaines de fréquences pour lesquelles l'amplitude des mouvements du navire (ou l'amplitude des déformations si la structure est élastique) devient maximale : ces pics représentent donc les zones où les risques d'instabilité sont les plus élevés.

La question à laquelle nous allons tenter de répondre dans la suite se pose alors tout naturellement : ne peut-on pas prévoir a priori la position de ces pics ? Ou, plus frequence de la houle energie du navire Figure 1.1 : une courbe de réponse en fréquence précisément: ne peut-on pas prévoir a priori la position des pics figurant sur toutes les courbes de réponse en fréquence de notre navire ? Il faut en effet comprendre qu'une seule courbe de réponse ne donne en général qu'une idée très partielle du comportement dynamique de la structure flottante, puisqu'elle ne correspond qu'à une seule configuration d'excitation de cette structure (ici, une seule direction de propagation de la houle). Il est donc nécessaire d'avoir à sa disposition autant de courbes de réponse que de configurations d'excitation possibles, les pics n'ayant évidemment aucune raison d'être situés dans les même zones sur deux courbes de réponse différentes.

La réponse à cette question est parfaitement connue dans un domaine assez voisin de celui qui nous concerne, et qu'on pourrait appeler un peu pompeusement "les vibrations des systèmes conservatifs" (cf. par exemple Sanchez Hubert et Sanchez Palencia [Sanchez-1989]). C'est dans ce cadre que s'inscrit par exemple l'étude des vibrations d'une structure élastique, ou d'un gaz dans une cavité fermée, ou encore d'un fluide incompressible dans un bassin. Pour tous ces exemples, la réponse à notre question se trouve dans la notion de fréquences et modes propres du système, qui constituent des quantités intrinsèques du système (au sens où elles sont indépendantes de la façon dont on l'excite), et dont la seule connaissance permet de reconstituer la réponse du système pour tout type d'excitation. Chacune des fréquences propres correspond à un pic infini d'une courbe de réponse.

Dans le cas d'un navire sur la houle, le caractère non borné de l'océan change considérablement la nature du problème. On ne peut plus parler de "système conservatif" puisque les vagues qui viennent heurter la coque du navire vont ensuite naturellement s'éloigner de celui-ci : l'énergie qu'elles véhiculent a donc tendance à s'éloigner vers l'infini, ce qui rend très improbable l'existence de fréquences propres du système. L'objet des résonances est précisément de généraliser cette notion de fréquence propre en introduisant la possibilité pour une fréquence de devenir complexe. Il ne s'agit pas ici de chercher à donner une signification physique à cette opération: notre but est plutôt d'interpréter le comportement du système (pour des fréquences réelles) à l'aide de propriétés mathématiques (qui font intervenir des valeurs complexes de la fréquence). Nous verrons en effet que le problème du mouvement d'un navire sur la houle se prolonge analytiquement aux fréquences complexes et que ce prolongement admet des pôles isolés ; l'amplitude des mouvements du navire et de l'océan devient infinie au voisinage de ces pôles: ils sont appelés les résonances du système couplé océan-navire.

On comprend aisément que si l'une de ces résonances est de partie imaginaire petite, elle joue "presque" le rôle d'une fréquence propre du système, au sens où la courbe de réponse va présenter un pic important (mais borné) au voisinage de sa partie réelle : intuitivement, ce pic sera d'autant plus élevé que la résonance sera plus proche de l'axe des fréquences réelles. Ceci donne un premier élément de réponse à notre question : pour localiser les pics de la réponse en fréquence, il nous suffit de déterminer les résonances, du moins celles qui sont de partie imaginaire assez petite. Nous verrons par la suite comment leur connaissance permet d'obtenir des informations quantitatives sur ces pics.

Ce chapitre est organisé de la façon suivante. Dans le paragraphe 1.2, on établit les équations de notre problème modèle qui consiste en une corde vibrante couplée à une poutre rigide. Le paragraphe 1.3 est consacré à la résolution explicite du problème dans un cas particulier correspondant à un couplage uniforme entre la corde et la poutre : nous verrons alors comment faire apparaître explicitement les résonances du problème, ainsi que leurs principales propriétés.

Un problème monodimensionnel 1.2.1 Equations du régime transitoire

Nous étudions ci-dessous la modélisation d'un problème monodimensionnel de couplage fluide-structure. On peut voir dans ce modèle une version extrêmement simplifiée du problème des mouvements d'un navire sur la houle. Il s'agit surtout d'un modèle pédagogique qui va nous permettre d'introduire avec très peu d'outils mathématiques la notion de résonance (signalons que ce chapitre est une version approfondie d'une étude partiellement publiée dans [Lenoir-1992] pour un cas légèrement plus compliqué).

Le système que nous considérons ici est constitué par une corde vibrante infinie (qui joue le rôle de l'océan dans l'exemple précédent, au sens où c'est le milieu dans lequel des ondes sont susceptibles de se propager), une poutre rigide (jouant quant à elle le rôle du navire) dont on supposera pour simplifier qu'elle ne peut se déplacer que dans une direction perpendiculaire à la corde, suivant un mouvement de translation uniforme (les rotations sont bloquées),

La notion de résonance: un exemple simple Nous allons établir les équations linéarisées du problème au voisinage de la position de repos (on suppose que l'amplitude des mouvements de la corde ou de la poutre est petite devant les longueurs d'ondes considérées). Les efforts de pesanteur sont négligés.

Equation de la corde

On note ρ la masse linéique de la corde, et T sa tension (supposée constante sur toute la longueur de la corde). Le mouvement de la corde est repéré par une fonction U(x, t) qui représente le déplacement vertical (c'est-à-dire dans la direction perpendiculaire à la corde) d'un point situé à l'abcisse x et à l'instant t. Cette fonction satisfait l'équation des cordes vibrantes (cf. par exemple Germain [Germain-1986]): (x, t) est la densité linéique d'efforts verticaux exercés sur la corde.

ρ ∂ 2 U ∂t 2 = T ∂ 2 U ∂x 2 + F c , ∀x ∈ R, ∀t > 0, où F c = F c

Equation de la poutre rigide

On note m la masse de la poutre, Y(t) le déplacement vertical (de l'un quelconque de ses points) par rapport à la position de repos et ±L les abscisses de ses extrémités. Le principe fondamental de la dynamique (projeté sur l'axe vertical) s'écrit simplement

m ∂ 2 Y ∂t 2 = +L -L F p (x, t) dx, ∀t > 0,
où F p représente la densité linéique d'efforts verticaux exercés sur la poutre. Rappelons que les mouvements de rotation sont supposés bloqués: c'est donc la seule équation à écrire pour la poutre.

Condition de couplage

Par K(x), on désigne la densité linéique de raideur des ressorts de couplage à l'abscisse x. La condition de couplage entre la corde et la masse s'écrit naturellement

F p (x, t) = -F c (x, t) = K(x) (U(x, t) -Y(t)),
où K(x) est considérée comme nulle à l'extérieur de la zone de couplage [-L, +L].

Le problème couplé

En éliminant F p et F c , on obtient les équations du problème couplé:

ρ ∂ 2 U ∂t 2 = T ∂ 2 U ∂x 2 -K (U -Y) sur R, m ∂ 2 Y ∂t 2 = +L -L K (U -Y) dx.
On peut simplifier légèrement l'écriture de ces équations en utilisant des variables sans dimension. En choisissant par exemple comme grandeurs caractéristiques L, ρL et L ρ/T respectivement pour les longueurs, les masses et le temps, on est amené à introduire les variables adimensionnelles suivantes:

x = x L , t = t L ρ/T , Ũ = U L , Ỹ = Y L , K = L 2 T K et m = m ρL .
Les équations portant sur ces nouvelles variables s'écrivent alors de la façon suivante (en omettant le symbole ∼ pour alléger les notations) :

∂ 2 U ∂t 2 = ∂ 2 U ∂x 2 -K (U -Y) sur R, (1.1) m ∂ 2 Y ∂t 2 = +1 -1 K (U -Y) dx, (1.2)
où la zone de couplage est maintenant le segment [-1, +1] (K(x) est nulle en dehors de cet intervalle). Pour être complet, il nous faudrait rajouter à ces équations des conditions initiales (à t = 0) portant sur U et Y ainsi que leurs dérivées premières en temps (puisqu'il s'agit d'un problème du second ordre en temps). Mais ces conditions ne jouent aucun rôle dans ce qui va nous intéresser maintenant: le cas particulier du régime périodique établi.

Etude des mouvements périodiques

Les équations (1.1) et (1.2) étant linéaires, on sait que toute solution périodique en temps peut s'écrire comme une superposition de solutions périodiques monochromatiques. On va donc rechercher des solutions particulières de (1.1)-(1.2) sous la forme U(x, t) Y(t) = Re u(x) y e -iωt , (1.3) où u(x) et y sont à valeurs complexes, et ω est la pulsation du mouvement (constante réelle positive).

Remarque 1.1 Notons que le choix d'une dépendance en temps de la forme e -iωt est arbitraire: on aurait pu choisir plutôt e iωt . Il est cependant important de s'en souvenir pour la suite car c'est ce choix qui nous permettra d'attribuer à une onde un sens de propagation.

En reportant l'expression (1.3) de U(x, t) et Y(t) dans (1.1)-(1.2), on obtient classiquement les équations du problème couplé pour le régime périodique qui portent maintenant sur les variables u(x) et y :

d 2 u dx 2 + (ω 2 -K) u + Ky = 0 sur R,
(1.4)

mω 2 - +1 -1 K dx y + +1 -1
Ku dx = 0.

(1.5)

Comme pour l'exemple du problème des mouvements d'un navire sur la houle, on s'intéresse à l'action d'une onde incidente sur le système: nous allons étudier comment une onde incidente provoque un mouvement de la poutre, et comment elle est "diffractée" par cet obstacle. Ceci suggère de décomposer u sous la forme

u = u I + u D , (1.6) 
où u I représente l'onde incidente, supposée connue, et u D est l'onde diffractée: c'est la perturbation de l'onde incidente due à la présence de la poutre.

Précisons ce que nous entendons par "onde incidente". Une définition naturelle consiste à dire que c'est une solution particulière de l'équation (1.4) en absence d'obstacle. Autrement dit, en posant K = 0, on a d 2 u I dx 2 + ω 2 u I = 0 sur R,

(1.7) dont les solutions s'écrivent simplement

A + e +iωx + A -e -iωx , (1.8) où A + et A -sont deux constantes complexes. Le terme e +iωx représente une onde qui se déplace dans la direction des x croissants ; en effet, la solution dépendant du temps qui lui correspond est d'après (1.3) la fonction U I (x, t) = cos{ω(x -t)} (voir la remarque 1.1). Le terme e -iωt est évidemment associé à une onde qui se propage dans l'autre sens. Ainsi, les seules ondes incidentes possibles sont obtenues en superposant deux ondes progressives qui se déplacent en sens inverses.

Revenons alors à l'onde diffractée u D dans la décomposition (1.6) de u. Comme u I satisfait (1.7), on en déduit que u D doit vérifier

d 2 u D dx 2 + (ω 2 -K) u D + Ky = Ku I sur R, mω 2 - +1 -1 K dx y + +1 -1 Ku D dx = - +1 -1 Ku I dx.
Ces équations sont en fait insuffisantes pour déterminer u D et y : il manque une information concernant le comportement asymptotique de u D à l'infini, information qui va permettre de préciser la signification de l'expression "onde diffractée". Dans le cas monodimensionnel qui nous intéresse, la façon d'exprimer cette information est particulièrement simple. En effet, à l'extérieur du segment [-1, +1], la fonction K est identiquement nulle, donc u D vérifie comme u I l'équation simplifiée (1.7) et est par conséquent de la forme (1.8). Or u D représente la perturbation de l'onde incidente due à la présence de la poutre, et on comprend mal comment cette présence pourrait donner naissance à une onde "venant de l'infini" (de la même façon qu'un caillou jeté dans l'eau génère à la surface libre des cercles concentriques qui "s'éloignent vers l'infini"). En d'autres termes, il ne faut conserver dans (1.8) que les ondes sortantes qui ont tendance à s'éloigner de l'obstacle, soit

u D (x) =
A + e +iωx si x > +1, A -e -iωx si x < -1.

(1.9)

On peut arriver à ce même résultat en imposant à u D de satisfaire la condition suivante, appelée condition de rayonnement sortante (dont l'expression est très voisine de celles que nous aurons à utiliser par la suite pour d'autres problèmes de diffraction):

lim |x|→+∞ du D d|x| (x) -iω u D (x) = 0.
(1.10)

On vérifie en effet immédiatement que cette condition permet de ne retenir que la solution (1.9) dans l'expression (1.8) de u D .

Remarque 1.2 On aurait pu se passer du passage à la limite |x| → +∞ dans l'expression de la condition de rayonnement puisque le terme entre accolades est identiquement nul pour une "onde sortante" alors qu'il est de module constant (non nul) pour une "onde entrante". L'expression donnée ici a simplement l'avantage d'être similaire à celle qu'on utilise pour plusieurs dimensions d'espace, mais elle est clairement équivalente à

du D d|x| (x) -iω u D (x) = 0 si |x| > 1,
condition qui conduit aussi à la solution sortante (1.9).

Remarque 1.3 Rappelons que la notion d'onde sortante ou entrante est directement liée au choix de la dépendance en temps dans (1.3) (cf. remarque 1.1). Le choix de e iωt nous aurait bien sûr conduits à remplacer -iω par +iω dans la définition de la condition de rayonnement sortante.

Nous avons donc finalement obtenu les équations du problème couplé portant sur l'onde diffractée u D et le déplacement de la poutre y. Connaissant une onde incidente u I (de la forme (1.8)), il s'agit de résoudre le problème ci-dessous, qui sera désigné dans la suite par (P ω ):

d 2 u D dx 2 + (ω 2 -K) u D + Ky = Ku I sur R, mω 2 - +1 -1 K dx y + +1 -1 Ku D dx = - +1 -1 Ku I dx, lim |x|→+∞ du D d|x| (x) -iω u D (x) = 0. (P ω )

Le cas d'un couplage uniforme

Nous allons ici mener à la main les calculs qui permettent de mettre en évidence les résonances associées au problème de couplage (P ω ). On ne peut évidemment pas effectuer ces calculs dans le cas général d'une répartition quelconque de ressorts: nous nous placerons dans le cas particulier où la densité linéique de raideur est constante sur l'intervalle de couplage [-1, +1]. La première partie de la démarche (S 1.3.1) garde cependant un caractère tout à fait général: elle consiste à montrer comment "découpler" les mouvements de la corde de ceux de la poutre, ce qui nous amènera à la résolution proprement dite (S 1.3.2). Nous aborderons alors la question des résonances du système, en commençant dans les paragraphes 1.3.3 et 1.3.4 par le cas simplifié où la poutre est bloquée (problème dit "de diffraction pure"). Le cas du problème couplé est traité finalement dans le S 1.3.5.

Découplage des problèmes

Considérons le problème couplé (P ω ) et supposons un instant que le déplacement vertical y de la poutre soit connu. L'équation vérifiée par l'onde diffractée u D peut alors être récrite

d 2 u D dx 2 + (ω 2 -K) u D = Ku I -Ky sur R, condition de rayonnement (C.R.),
ce qui suggère de rechercher u D sous la forme

u D = u 0 -y u 1 , (1.11) où u 0 et u 1 sont respectivement solutions de d 2 u 0 dx 2 + (ω 2 -K) u 0 = Ku I sur R (et C.R.), (1.12) d 2 u 1 dx 2 + (ω 2 -K) u 1 = K sur R (et C.R.). (1.13)
Physiquement, u 0 représente la perturbation de l'onde incidente u I lorsque la poutre est bloquée (y = 0) : c'est la solution du problème de diffraction pure. La fonction u 1 correspond quant à elle à l'onde créée par une vibration de la poutre d'amplitude unité (en absence de toute onde incidente): on parle souvent de problème de rayonnement pur. Notons bien que la détermination de u 0 et u 1 revient à résoudre le problème couplé (P ω ) dans deux cas particuliers où le mouvement de la poutre est imposé (au lieu d'être lui-même une inconnue) ; nous verrons dans le paragraphe suivant comment les déterminer explicitement lorsque K est constant sur [-1, +1]. Supposons donc que u 0 et u 1 aient été déterminés. On peut alors revenir à l'équation de la dynamique de la poutre dans le problème (P ω ), ce qui nous permet d'exprimer y en fonction de u 0 et u 1 :

y = - +1 -1 K (u I + u 0 ) dx mω 2 - +1 -1 K (u 1 + 1) dx .
(1.14) Nous avons ainsi réussi à "découpler" la corde vibrante et la poutre pour la résolution de (P ω ) ; il faut commencer par déterminer la réponse de la corde pour deux excitations particulières (diffraction pure et rayonnement pur) ; on en déduit alors la réponse de la poutre (formule (1.14)), ce qui permet enfin de reconstituer l'onde diffractée (décomposition (1.11)).

Cette démarche est très générale pour le traitement de problèmes de couplage fluidestructure (ou autre type de couplage) lorsque l'un des deux milieux (disons la structure) possède un nombre fini (ou éventuellement dénombrable) de degrés de liberté. Dans ce cas, il faut résoudre autant de problèmes de rayonnement pur que de degrés de liberté de la structure.

Résolution explicite

Nous supposons maintenant que K(x) est constante sur l'intervalle [-1, +1] (on note encore K cette constante). Il s'agit de déterminer explicitement les solutions u 0 et u 1 de (1.12) et (1.13).

Commençons par traiter le cas de u 0 . Nous choisissons une onde incidente u I qui se dirige vers les x croissants, d'amplitude unité, soit

u I (x) = e +iωx .
(1.15)

Notons ω K la racine complexe de ω 2 -K, où l'on convient pour fixer les idées que cette racine est de partie imaginaire positive lorsque

ω 2 -K < 0 : autrement dit, √ z = i √ -z
si z < 0 (ce choix n'a en fait aucune importance dans la suite: les résultats que nous allons obtenir restent inchangés si on remplace

ω K par -ω K ). Sur chacun des intervalles ] -∞, -1[, ] -1, +1[ et ] + 1, +∞[, la résolution de (1.
12) est immédiate. On trouve, en tenant compte de la condition de rayonnement sortante (qui impose que u 0 est de la forme (1.9)): (1.16) et ce, si ω K = 0 : dans le cas contraire, l'expression de u 0 sur ] -1, +1[ est différente ; mais ce cas ne présente, en ce qui nous concerne, aucun intérêt.

u 0 = A -e -iωx sur ] -∞, -1[, u 0 = A 0 cos(ω K x) + B 0 sin(ω K x) -e +iωx sur ] -1, +1[, u 0 = A + e +iωx sur ] + 1, +∞[,
Pour déterminer les quatre constantes A -, A + , A 0 et B 0 , il reste à écrire la continuité de u 0 et du 0 /dx en ±1; on aboutit au système

α K (ω) A 0 -iβ K (ω) B 0 = 2ω e -iω , α K (ω) A 0 + iβ K (ω) B 0 = 0, (1.17) où on a noté α K (ω) = ω cos ω K -iω K sin ω K et β K (ω) = ω K cos ω K -iω sin ω K . (1.18) Remarque 1.4 Notons que α K et β K ne s'annulent pas pour ω réel différent de √ K;
en effet tg ω K est réel ou imaginaire pur en même temps que ω K .

Le système (1.17) admet donc pour unique solution (toujours si ω K = 0)

A 0 = ω α -1 K (ω) e -iω et B 0 = iω β -1 K (ω) e -iω .
Ainsi, la solution du problème de diffraction pure s'écrit:

u 0 =    ω α -1 K (ω) cos ω K -iω β -1 K (ω) sin ω K -1 e -iω(x+2) sur ] -∞, -1], ω e -iω α -1 K (ω) cos(ω K x) + iβ -1 K (ω) sin(ω K x) -e +iωx sur [-1, +1], ω α -1 K (ω) cos ω K + iω β -1 K (ω) sin ω K -e +2iω e +iω(x-2) sur [+1, +∞[. (1.19)
On procède de la même façon pour la solution du problème de rayonnement pur (1.13) ; on obtient .20) La connaissance de u 0 et u 1 nous permet alors de déterminer le déplacement y de la poutre (par la formule (1.14)):

u 1 =    K ω -2 K 1 -ω α -1 K (ω) cos ω K e -iω(x+1) sur ] -∞, -1], K ω -2 K 1 -ω α -1 K (ω) cos(ω K x) sur [-1, +1], K ω -2 K 1 -ω α -1 K (ω) cos ω K e +iω(x-1) sur [+1, +∞[. ( 1 
y = -I 0 (ω) mω 2 -I 1 (ω) , (1.21)
où les deux quantités I 0 (ω) et I 1 (ω) sont définies par

I 0 (ω) = +1 -1 K (u I + u 0 ) dx = 2Kω (ω K α K (ω)) -1 e -iω sin ω K , I 1 (ω) = +1 -1 K (u 1 + 1) dx = 2Kω 2 ω -2 K 1 -K sin ω K (ω ω K α K (ω)) -1 .
Nous avons finalement obtenu le résultat recherché: les formules (1.19), (1.20) et (1.21) nous donnent explicitement la solution (u D , y) = (u 0 -yu 1 , y) du problème couplé (P ω ) (pour l'onde incidente (1.15)).

Résonances du problème de diffraction pure

Avant d'étudier les propriétés de la solution du problème couplé (u D , y) que nous venons de calculer, nous allons dans un premier temps nous contenter de traiter le cas du problème de diffraction pure (1.12). Rappelons que sa solution u 0 représente l'onde diffractée (correspondant à l'onde incidente (1.15)) lorsque la poutre est bloquée à son état de repos. Au vu de l'expression (1.19), il apparaît comment l'amplitude de cette onde dépend des fonctions α K (ω) et β K (ω) définies en (1.18): si la fréquence ω est choisie telle que l'une de ces deux quantités devient voisine de 0, l'amplitude de l'onde sera élevée. Il est cependant facile de vérifier que ni α K (ω), ni β K (ω) ne peuvent s'annuler, tant que ω reste réel: l'amplitude de l'onde diffractée est donc toujours bornée. L'objet de ce paragraphe est de montrer que si on prolonge u 0 aux valeurs complexes de ω, on peut trouver certains ω pour lesquels l'amplitude de u 0 devient infinie: ces valeurs sont précisément les résonances du problème de diffraction.

La question de savoir comment prolonger u 0 aux ω complexes est ici évidente puisque nous avons explicitement son expression: il suffit de constater que u 0 n'est que la trace d'une fonction dépendant analytiquement de ω.

Ce constat nécessite tout de même une petite précision concernant la quantité

ω K = √ ω 2 -K, où l'on rappelle que l'on a convenu de poser ω K = i √ K -ω 2 lorsque ω 2 < K.
Pour pouvoir définir ω K lorsque ω ∈ C, il nous faut choisir une détermination de la racine carrée complexe qui soit cohérente avec cette convention. On peut par exemple poser

√ z = ρ 1/2 e iθ/2 lorsque z = ρ e iθ avec ρ > 0 et θ ∈ - π 2 , 3π 2 . (1.22)
La fonction √ z ainsi définie possède une coupure à la traversée de la demi-droite suivante : z = ρ e -iπ/2 | ρ > 0 (ce choix est en fait arbitraire: on aurait pu convenir de placer la coupure sur toute autre demi-droite (issue de 0) du demi-plan complexe Im z < 0). La quantité ω K est donc analytique dans le plan complexe muni d'une coupure située sur la courbe ω 2 -K = -iρ, ρ > 0.

On en déduit que les fonctions α K (ω) et β K (ω) définies en (1.18) sont analytiques dans ce même domaine de C. Leurs inverses respectifs sont donc méromorphes: ce sont des fonctions analytiques possédant des pôles isolés (qui coïncident évidemment avec les zéros de α K (ω) et β K (ω)). Ainsi la solution u 0 du problème de diffraction pure est une fonction méromorphe de ω, et ses pôles sont exactement ceux de α -1 K (ω) et β -1 K (ω). Il nous reste à constater que la coupure introduite par la fonction ω K n'a plus lieu d'être pour u 0 . En effet, considérons par exemple la fonction cos ω K : en remarquant que son développement en série entière ne fait intervenir que des puissances paires de ω K (autrement dit des puissances entières de ω 2 -K), on voit clairement que cos ω K est analytique dans tout le plan complexe (y compris au voisinage de la coupure associée à ω K ). Il en va de même pour la fonction ω K sin ω K . L'expression (1.19) de u 0 ne fait intervenir que des fonctions qui possèdent cette propriété. Nous avons par conséquent démontré la Proposition 1.5 La solution u 0 = u 0 (ω) du problème de diffraction pure (1.12) se prolonge en une fonction méromorphe de ω dans C; ses pôles sont les zéros des fonctions α K (ω) et β K (ω) définies en (1.18). Ils sont appelés les résonances du problème de diffraction pure.

Pour obtenir ce résultat, nous avons procédé en deux étapes: une étape de résolution du problème de diffraction pure (1.12) suivie d'une étape de prolongement analytique de sa solution. On aurait pu chercher à procéder dans l'ordre inverse: prolonger dans un premier temps le problème (1.12) aux fréquences complexes, puis le résoudre. Ceci est tout à fait possible et conduit au même résultat. En utilisant la forme explicite (1.9) de la condition de rayonnement, le "prolongement" du problème de diffraction pure aux ω complexes est alors défini par Ce résultat a pour conséquence la propriété de localisation suivante des résonances dans le plan complexe: Proposition 1.7 Les résonances du problème de diffraction pure sont toutes situées dans le demi-plan complexe inférieur Im ω < 0.

d 2 u 0 dx 2 + (ω 2 -K) u 0 = Ku I sur R (et C.R.), u 0 = A ± exp(±iωx) lorsque x → ±∞,
On pourrait chercher à le vérifier directement à partir des expressions (1.18) de α K (ω) et β K (ω), ce qui est loin d'être évident. Nous en donnerons dans le paragraphe suivant (cf. Proposition 1.7) une démonstration qui s'applique dans un cas général (et non plus seulement pour un couplage uniforme).

Modes résonnants du problème de diffraction pure

On s'intéresse ici au comportement de la solution u 0 (ω) du problème de diffraction pure au voisinage d'une résonance, c'est-à-dire d'un zéro de α K (ω) ou β K (ω). Soit donc ω une résonance ; supposons pour fixer les idées que ω est un zéro de α K (ω), ce qui signifie que dans un voisinage de ω, on a

α -1 K (ω) = C (ω -ω) -+ O (ω -ω) -+1 , où C ∈ C et ≥ 1 est l'ordre du zéro ω de α K (ω)
. D'après l'expression (1.19) de u 0 , on en déduit que dans ce même voisinage +∞[, (1.25) où on a noté ωK = √ ω2 -K. Cette fonction est appelée un mode résonnant associé à la résonance ω.

u 0 (ω) = (ω -ω) -ũ0 + O (ω -ω) -+1 , (1.24) ũ0 étant la fonction ũ0 =    C ω cos ωK e -iω(x+2) sur ] -∞, -1], C ω e -iω cos(ω K x) sur [-1, +1], C ω cos ωK e +iω(x-2) sur [+1,
De la même façon, si ω est un zéro de β K (ω), le comportement de u 0 (ω) au voisinage de ω est encore de la forme (1.24) où le mode résonant ũ0 est maintenant donné par -2) sur [+1, +∞[.

ũ0 =    -iC ω sin ωK e -iω(x+2) sur ] -∞, -1], iC ω e -iω sin(ω K x) sur [-1, +1], iC ω sin ωK e +iω(x
(1.26)

Les modes résonnants admettent une autre caractérisation: il apparaissent comme les solutions non triviales du prolongement (1.23) du problème de diffraction pure homogène (c'est-à-dire lorsque l'onde incidente u I est nulle). Plus précisément, on a la Proposition 1.8 Une résonance est une valeur de ω ∈ C pour laquelle le prolongement (1.23) du problème de diffraction pure admet pour u I = 0 une solution non nulle (un "mode résonnant").

Démonstration. Comme dans le paragraphe 1.3.2, le problème homogène associé à (1.23) se résout explicitement : u 0 est de la forme

u 0 = A -e -iωx sur ] -∞, -1[, u 0 = A 0 cos(ω K x) + B 0 sin(ω K x) sur ] -1, +1[, u 0 = A + e +iωx sur ] + 1, +∞[, où la continuité de u 0 et du 0 /dx en ±1 impose α K (ω) A 0 -iβ K (ω) B 0 = 0, α K (ω) A 0 + iβ K (ω) B 0 = 0.
Pour que ce système admette une solution non nulle, il faut que ω soit un zéro de α K (ω) ou β K (ω); la fonction u 0 correspondante est alors définie par les expressions (1.25) ou (1.26) (la constante C figurant dans ces formules pouvant prendre n'importe quelle valeur).

Nous sommes maintenant en mesure de justifier le résultat annoncé dans la proposition 1.7 sur la position des résonances dans le plan complexe. Ce résultat est lié au comportement asymptotique d'un état résonnant à l'infini: on constate en effet que la fonction ũ0 définie par (1.25) ou (1.26) est exponentiellement décroissante ou croissante selon que Im ω est positive ou négative.

Démonstration de la Proposition 1.7

Commençons par démontrer qu'il n'existe pas de mode résonnant associé à un nombre d'onde ω de partie imaginaire strictement positive. On raisonne par l'absurde en admettant l'existence d'un ω de partie imaginaire strictement positive tel que le problème homogène associé à (1.23) admette une solution u 0 = 0. Nous avons vu que cette solution est nécessairement de la forme (1.25) ou (1.26): elle est par conséquent exponentiellement décroissante à l'infini. En multipliant l'équation de la corde vibrante dans (1.23) par u 0 et en intégrant le tout par parties sur R (ce que rend loisible le comportement à l'infini de u 0 ) on obtient

- R du 0 dx 2 dx -K +1 -1 |u 0 | 2 dx + ω 2 R |u 0 | 2 dx = 0.
Si Im ω 2 = 0 (autrement dit, si ω n'est pas imaginaire pur), on peut prendre la partie imaginaire de cette équation, ce qui montre que R |u 0 | 2 dx = 0, donc que u 0 = 0. Dans le cas contraire (c'est-à-dire si ω 2 = -|ω| 2 ), la nullité de la partie réelle de l'équation conduit au même résultat. Ceci contredit l'hypothèse initiale u 0 = 0. La Proposition 1.8 nous permet d'en déduire que les résonances du Problème de diffraction pure sont de partie imaginaire négative ou nulle ; la possibilité pour des résonances d'être réelles étant exclue en vertu de la Remarque 1.4.

De ce résultat découle une propriété générale des modes résonnants:

Corollaire 1.9 Les modes résonnants sont exponentiellement croissants à l'infini.

Résonances et modes résonnants du problème couplé

Nous revenons ici au problème couplé corde -poutre dont la solution a été calculée explicitement dans le paragraphe 1.3.2. Le prolongement analytique de cette solution aux ω complexes ne pose pas plus de difficultés que pour le problème de diffraction pure. Les pôles de ce prolongement n'ont par contre aucune raison d'être les mêmes. Nous allons montrer la Proposition 1.10 La solution (u D (ω), y(ω)) du problème couplé (P ω ) se prolonge en une fonction méromorphe de ω dans C; ses pôles (appelés "résonances du problème couplé") sont soit les zéros de β K (ω), soit les solutions de m ω 2 -I 1 (ω) = 0.

(1.27)

Rappelons que I 1 (ω) a été défini au S 1.3.2 par

I 1 (ω) = 2Kω 2 ω -2 K 1 -K sin ω K (ω ω K α K (ω)) -1 .
(1.28)

Remarque 1.11 Les zéros de β K (ω) sont résonances à la fois du problème de diffraction pure et du problème couplé. Ceci peut se comprendre intuitivement en remarquant que le mode résonnant associé à un zéro de β K (ω) (dont l'expression est donnée en (1.26)) est antisymétrique par rapport à x = 0 (c'est-à-dire u 0 (-x) = -u 0 (x)). Le seul mouvement autorisé pour la poutre étant celui de translation verticale, ce mode n'a aucune action sur la poutre. Il n'en aurait évidemment pas été de même pour un modèle légèrement plus élaboré autorisant un mouvement de rotation de la poutre.

Démonstration. Les résonances du problème couplé sont les valeurs de ω pour lesquelles la solution (u 

D (ω), y(ω)) = (u 0 (ω) -y(ω)u 1 (ω), y(ω))
(ω) = ω + O(ω 2 K ))
. Il reste à déterminer lesquels de ces points sont effectivement des résonances du problème couplé.

Commençons par les zéros de α K (ω). Nous savons que si ω est un zéro de α K (ω), la solution u 0 (ω) du problème de diffraction pure se comporte comme indiqué en (1.24) ; on peut être légèrement plus précis en constatant que

u 0 (ω) = α -1 K (ω) v(ω) + O(1), où v(ω) =    ω cos ω K e -iω(x+2) sur ] -∞, -1], ω e -iω cos(ω K x) sur [-1, +1], ω cos ω K e +iω(x-2) sur [+1, +∞[.
En procédant de même pour la solution u 1 (ω) du problème de rayonnement pur, on voit que

u 1 (ω) = -K ω -2 K e +iω α -1 K (ω) v(ω) + O(1).
Il nous reste à remarquer que le comportement de y(ω) est quant à lui donné par

y(ω) = -K ω -2 K e +iω -1 + O (α K (ω)) ,
de sorte que l'onde diffractée u 0 (ω) -y(ω)u 1 (ω) reste bornée dans un voisinage de ω : les zéros de α K (ω) ne sont donc pas des résonances du problème couplé.

Le cas des zéros de β K (ω) est beaucoup plus simple. Si β K (ω) = 0, la fonction u 0 (ω) possède le comportement (1.24) où ũ0 est défini par (1.26), alors que u 1 (ω) et y(ω) restent bornés (sauf bien sûr si ω est aussi une solution de (1.27): dans ce cas, ω aura deux bonnes raisons d'être une résonance). On en déduit que

(u D (ω), y(ω)) = (ω -ω) -(ũ 0 , 0) + O (ω -ω) -+1 ,
(1.29) ce qui montre que ω est bien une résonance du problème couplé.

Enfin, si ω est une racine d'ordre ≥ 1 de l'équation (1.27), la solution de (P ω ) se développe au voisinage de ω sous la forme

(u D (ω), y(ω)) = -C (ω -ω) -(-u 1 (ω), 1) + O (ω -ω) -+1 ,
(1.30) où C ∈ C. Les zéros de (1.27) sont donc aussi des résonances du problème couplé.

Les formules (1.29) et (1.30) nous fournissent le comportement asymptotique du prolongement analytique de la solution du problème couplé au voisinage d'une résonance, ce qu'on peut écrire sous une forme unique:

(u D (ω), y(ω)) = (ω -ω) -(ũ D , ỹ) + O (ω -ω) -+1 ,
où ≥ 1 est l'ordre de la résonance ω, et le couple (ũ D , ỹ) est le mode résonnant associé. Si ω est un zéro de β K (ω), les modes résonnants sont de la forme (ũ 0 , 0) où ũ0 est défini en (1.26): le fait que ỹ soit nul dans ce cas nous montre bien qu'il s'agit d'un état résonnant de la corde "découplée" de la poutre (cf. remarque 1.11). Par contre, si ω est une racine de (1.27), le mode résonnant est défini à une constante multiplicative près par (-u 1 (ω), 1) où u 1 (ω) est donné par (1.20): le couplage entre les deux milieux apparaît clairement.

Comme pour le problème de diffraction pure, ces modes résonnants correspondent aussi aux solutions non triviales du "prolongement" aux ω complexes du problème homogène associé à (P ω ), autrement dit

d 2 ũD dx 2 + (ω 2 -K) ũD + K ỹ = 0 sur R, mω 2 - +1 -1 K dx ỹ + +1 -1 K ũD dx = 0, ũD = A ± exp(±iωx) lorsque x → ±∞.
(1.31) Ceci se vérifie en procédant exactement comme dans la démonstration de la Proposition 1.8: nous ne le détaillons donc pas.

Proposition 1.12 Toutes les résonances du problème couplé sont situées dans le demiplan Im ω ≤ 0.

Démonstration. La démarche est la même que pour la Proposition 1.7 (mais les différences méritent cette fois d'être détaillées). Si ω est une résonance de partie imaginaire strictement positive, ses modes résonnants satisfont (1.31) et sont donc exponentiellement décroissant à l'infini. Ceci nous permet d'intégrer par parties sur R le produit de ũD par l'équation de la corde vibrante dans (1.31). Il vient

- R dũ D dx 2 dx -K +1 -1 |ũ D | 2 dx + ω 2 R |ũ D | 2 dx + +1 -1 K ỹũ D dx = 0.
Par ailleurs, en multipliant l'équation de la poutre par ỹ, on a

mω 2 - +1 -1 K dx |ỹ| 2 + +1 -1 K ũD ỹ dx = 0.
La partie imaginaire de la somme de ces deux équations est donc nulle, soit

Im ω2 R |ũ D | 2 dx + m |ỹ| 2 = 0,
ce qui montre que si ω n'est pas imaginaire pur, le mode résonnant est nul, d'où la contradiction de l'hypothèse initiale. Si ω est un imaginaire pur, on peut conjuguer la seconde équation, puis la retrancher à la première, ce qui conduit encore à la nullité du mode résonnant. Remarque 1.13 (i) Contrairement au problème de diffraction pure, on ne peut pas affirmer qu'il n'y a pas de résonance réelle. En fait, dans certaines situations, on sait même en trouver explicitement: si m = 2K(pπ) -2 où p est un entier non nul, on vérifie facilement que la fréquence suivante : ω = p 2 π 2 + K est solution de l'équation (1.27) (ce sont les seules situations où on peut trouver une résonance réelle).

(ii) La principale différence entre les résonances de parties imaginaires strictement négatives et les résonances réelles vient du comportement à l'infini des modes résonnants associés. Dans le premier cas, les équations (1.31) nous montrent que le mode est exponentiellement croissant à l'infini, alors qu'il est borné si ω est réel. Son comportement est même bien meilleur, puisque si ω est réel, ũD s'annule en dehors de l'intervalle de couplage ] -1, +1 [ (voir l'expression (1.20) de u 1 pour les ω donnés dans l'item précédent). Ainsi, un mode résonnant associé à une résonance réelle est "découplé de l'infini": pour cette raison, on parle parfois plutôt de "fréquences et modes propres".

Chapitre 2 La résolvante du problème d'acoustique

Le phénomène que nous avons exhibé au Chapitre précédent n'est pas spécifique aux problèmes de couplage fluide-structure pour lesquels de l'énergie peut être échangée entre deux des éléments du système, en l'espèce la corde et la poutre: la même notion de fréquence de résonance est également pertinente pour l'analyse d'une situation aussi simple que la diffraction d'une onde acoustique par un obstacle borné pour peu qu'on ne se limite pas au cas monodimensionnel. Les fréquences de résonance sont alors significatives de la concentration d'énergie acoustique au voisinage de l'obstacle ; c'est particulièrement clair quand l'obstacle présente une cavité dont l'ouverture est étroite, une quantité maximale d'énergie est susceptible d'être emmagasinée par la cavité quand la fréquence d'excitation est proche d'une fréquence propre de la cavité considérée comme fermée. On voit qu'ici c'est la forme de l'obstacle qui joue le rôle déterminant et non plus la raideur du ressort ou la masse de la poutre.

Malgré la simplicité de la situation physique que nous envisageons dans ce chapitre, l'étude est plus difficile car, d'une part nous avons l'ambition de traiter des formes quelconques, et il ne sera donc plus possible de calculer les solutions 'à la main', d'autre part les ondes diffractées par l'objet s'atténuent en s'éloignant en dimensions deux ou trois, ce qui complique l'écriture et la prise en compte de la condition de rayonnement. Nous commencerons par l'étude du problème associé à des fréquences complexes, ce qui est tout-à-fait équivalent au traitement d'un problème d'acoustique dans un milieu dissipatif ; les fréquences de résonance se présenteront alors comme les singularités du prolongement analytique de la résolvante soit de l'opérateur qui fait passer de la donnée à la solution du problème dissipatif.

Nous traitons donc du problème de la diffraction d'une onde acoustique: 2.1 Le problème dissipatif

∆ϕ + ν 0 ϕ = 0 dans Ω, ∂ϕ ∂n = f (x) sur Γ, lim R→∞ x =R ∂ϕ ∂n -i √ ν 0 ϕ 2 dγ = 0 (2.1) 25 onde incidente

Formulation variationnelle

Si nous remplaçons ν 0 par un nombre complexe ν de partie imaginaire positive il devient possible de chercher des solutions d'énergie finie dans Ω, c'est-à-dire de chercher ϕ ∈ H 1 (Ω) qui vérifie ∆ϕ + νϕ = 0 dans Ω, ∂ϕ ∂n = f (x) sur Γ.

(2.2)

Ce problème admet la formulation variationnelle suivante:

Trouver ϕ ∈ H 1 (Ω) tel que ∀ψ ∈ H 1 (Ω) Ω ∇ϕ • ∇ψ -ν Ω ϕ ψ = Γ f ψ dγ (2.3) Proposition 2.1 Le problème (2.
3) admet une solution et une seule, dès que Im ν = 0.

Démonstration. La forme bilinéaire associée

a(ϕ, ψ) = Ω ∇ϕ • ∇ ψ -ν Ω ϕ ψ est coercive. Soient en effet ε >0 et β ∈ C tels que Re β > ε et Im β > Re (β) Re (ν) + ε Im ν , alors |β| |a(ϕ, ϕ)| ≥ |β a(ϕ, ϕ)| ≥ Re (β a(ϕ, ϕ)) ≥ ε ϕ 2 H 1 (Ω) , puisque Re (βa(ϕ, ϕ)) = Re (β) Ω ∇ϕ 2 + (Im β Im ν -Re β Re ν) Ω |ϕ| 2 .
Le problème (2.3) peut encore se mettre sous la forme

(I + S(ν)) ϕ = F (f ) dans H 1 (Ω), (2.4) où (S(ν)ϕ, ψ) H 1 (Ω) = -(1 + ν) Ω ϕ ψ et (F (f ), ψ) H 1 (Ω) = Γ f ψ dγ (2.5)
Définition 2.2 Nous appellerons résolvante l'opérateur suivant:

R(ν) = (I + S(ν)) -1 : H 1 (Ω) → H 1 (Ω). Proposition 2.3 La fonction ν → R(ν) est holomorphe dans {ν ∈ C | Im(ν) > 0 }
Démonstration. La famille des I + S(ν) étant une famille holomorphe d'isomorphismes de H 1 (Ω), il en est de même de la famille de leurs inverses (cf [Kato-1976] ou le début de la démonstration du Théorème de Steinberg C.1).

Nous montrerons, et c'est là le Principe d'absorption limite que lorsque ν → ν 0 ∈ R + , avec Im ν > 0, la solution ϕ de (2.2) tend vers celle de (2.1). En fait, on prolongera R(ν), définie ci-dessus pour des valeurs de ν de partie imaginaire positive, à tout C\R - en une fonction méromorphe de ν, dont les pôles sont situés dans le demi-plan complexe Im ν < 0.

Remarque 2.4 Si on applique la même processus asymptotique à la solution du problème (2.3), où Im ν < 0, la limite n'est plus solution du problème (2.1): elle satisfait la condition de rayonnement entrante:

lim R→∞ x =R ∂ϕ ∂n + i √ ν 0 ϕ 2 dγ = 0.

Réduction à un domaine borné

De même que pour l'étude du cas d'un nombre d'onde réel, il est possible de réduire le problème de diffraction à un domaine borné ; c'est ici d'autant plus essentiel que lors de la mise en oeuvre de la procédure d'absorption limite, le comportement à l'infini de la solution change drastiquement selon la valeur de la partie imaginaire de ν. Nous commencerons par utiliser à cet effet une formule de représentation intégrale, réservant pour un chapitre ultérieur la description de la méthode fondée sur le développement en série de fonctions à variables séparées, qui présente des difficultés supplémentaires.

Définition 2.5 Pour Im ν > 0, on note G ν (x) et on appelle solution fondamentale de ∆ + νI l'unique solution bornée de l'équation suivante:

∆G ν + νG ν = δ. On aura, avec ν = ρe iθ , θ ∈] -π, +π[, et √ ν = √ ρe iθ/2 , (i) en bidimensionnel G ν (x) = 1 4i H (1) 0 ( √ ν x ), (2.6)
où H

(1) 0 est la fonction d'ordre 0 et de première espèce [Abramowitz-1972].

(ii) en tridimensionnel 

G ν (x) = -1 4π e i √ ν x x . ( 2 
ψ(x) = F ψ(y) ∂ ∂n y G ν (x -y) - ∂ψ ∂n (y) G ν (x -y) dγ y pour x ∈ O, 0 = F ψ(y) ∂ ∂n y G ν (x -y) - ∂ψ ∂n (y) G ν (x -y) dγ y pour x ∈ O .
(2.8) 

où
ϕ(x) = F σ(y) ∂ ∂n y G ν (x -y) -µ(y)G ν (x -y) dγ y , pour x ∈ F, alors ϕ ∈ H 1 (O ).
Démonstration. C'est une conséquence du comportement asymptotique de G ν à l'infini, on a en effet, tant en bidimensionnel qu'en tridimensionnel

G ν (x) ∼ Ce -x Im( √ ν) .

Le problème réduit

On a donc montré que la solution ϕ de (2.2) est justiciable de la représentation intégrale suivante:

ϕ = I Γ [ϕ, - ∂ϕ ∂n ; G ν ] = ÏΓ [ϕ; G ν ] -İΓ [ ∂ϕ ∂n ; G ν ] (2.10) avec I Γ [ϕ, - ∂ϕ ∂n ; G ν ] (x) = Γ ϕ(y) ∂ ∂n y G ν (x -y) - ∂ϕ ∂n (y) G ν (x -y) dγ y .
(2.11)

En particulier le long de toute frontière Σ entourant Γ, on aura

Q λ ϕ(x) = Q λ I Γ [ϕ, - ∂ϕ ∂n ; G ν ] (x) = Γ ϕ(y) ∂ ∂n y G λ ν (x, y) - ∂ϕ ∂n (y) G λ ν (x, y) dγ y , (2.12) avec Q λ χ = ∂χ ∂n + λχ |Σ et G λ ν (x, y) = Q λ G ν (x -y).
(2.13) Nous sommes donc conduits au problème suivant posé dans le domaine borné Ω' limité par les frontières Γ et Σ :

∆ϕ + νϕ = 0 dans Ω , ∂ϕ ∂n = f sur Γ, Q λ ϕ = Q λ I Γ [ϕ , -f ; G ν ]sur Σ.
(2.14) qui a pour formulation variationnelle

Trouver ϕ ∈ H 1 (Ω ) tel que ψ ∈ H 1 (Ω ), on ait Ω ∇ϕ • ∇ ψ -ν Ω ϕ ψ + λ Σ ϕ ψ dγ = Γ f ψ dγ + Σ Q λ I Γ [ϕ , -f ; G ν ] ψ dγ (2.15)
soit encore l'expression suivante: 

(I + S (ν)) ϕ = F (f, ν) dans H 1 (Ω ), avec (2.16) (S (ν)ϕ , ψ ) H 1 (Ω ) = -(1 + ν) Ω ϕ ψ + λ Σ ϕ ψ dγ - Σ Q λ ÏΓ [ϕ ; G ν ] ψ dγ (2.17) Figure 2.3 : réduction à un domaine borné et (F (f, ν), ψ ) H 1 (Ω ) = Γ f ψ dγ - Σ Q λ İΓ [f ; G ν ] ψ dγ. ( 2 
u ∈ H 1 (D), tel que ∀v ∈ H 1 (D), a(u, v) = (µ + τ ) (u, v) L 2 (D) , où a(u, v) = D ∇u • ∇ v + λ ∂D u v dγ + τ D u v
Pour τ suffisamment grand, la forme sesquilinéaire a est coercive. En effet

H 1 (D) ⊂ c H 2/3 (D) ⊂ → L 2 (D),
puisque D est borné. D'après le Lemme 2.11 ci-dessous, il en résulte que pour tout ε > 0, il existe

C ε tel que v H 2/3 (D) ≤ ε v H 1 (D) + C ε v L 2 (D) .
Choisissons alors τ réel positif ; comme la trace est continue H 2/3 (D) → L 2 (∂D), si on note K sa norme, on aura

|a(u, u)| ≥ D ∇u 2 + τ D |u| 2 -|λ| ∂D |u| 2 dγ ≥ D ∇u 2 + τ D |u| 2 -2K 2 ε 2 u 2 H 1 (D) + C 2 ε u 2 L 2 (D) ≥ (1 -2 |λ| K 2 ε 2 ) u 2 H 1 (D) + (τ -1 -2 |λ| K 2 C 2 ε ) u 2 L 2 (D) ,
et la coercivité de a pour peu que l'on choisisse 

ε 2 < (2 |λ| K 2 ) -1 et τ > 1 + 2 |λ| K 2 C 2 ε . Si on note G l'opérateur compact, qui à f ∈ H 1 (D) fait correspondre la solution u du problème a(u, v) = (f, v) L 2 (D) ,
U ⊂ c V ⊂ → W, alors, ∀ε > 0, ∃C ε tel que ∀u ∈ U, u V ≤ ε u U + C ε u W .
Démonstration. Raisonnons par l'absurde et supposons que

∃ε, ∀n, ∃u n , u n U = 1 et u n V > ε + n u n W ;
la suite u n étant bornée dans U, on peut en extraire une sous-suite u n convergente dans V et W, soit vers u, et on aura ∀n

u V > ε + n u W .
Il en résulte que u W = 0, soit u = 0, et par conséquent ε = 0, ce qui est contraire à l'hypothèse.

Notation

Nous noterons désormais V (Σ, λ) l'ensemble, dénombrable, des valeurs propres du problème intérieur associé à (2.14): Démonstration.

∆ψ + νψ = 0 dans D, Q λ ψ = 0 sur Σ, ( 2 
La construction même de (2.14) assure tout d'abord que ce problème a pour solution la trace de celle de (2.2). D'après la formule de Green, pour

x ∈ Ω ϕ (x) = Γ∪Σ ϕ (y) ∂ ∂n y G ν (x -y) - ∂ϕ ∂n (y) G ν (x -y) dγ y .
Posons alors

ψ(x) = Σ ϕ (y) ∂ ∂n y G ν (x -y) - ∂ϕ ∂n (y) G ν (x -y) dγ y ;
il est clair que ψ se prolonge à D tout entier en une solution de (2.20). Supposons que

ν ∈ V (Σ, λ), alors ϕ (x) = Γ ϕ (y) ∂ ∂n y G ν (x -y) - ∂ϕ ∂n (y) G ν (x -y) dγ y ;
il en résulte que ϕ se prolonge à Ω tout entier en une solution de (2.2). De l'unicité de (2.2) on déduit alors que (2.14) est bien posé et que sa solution est la trace sur Ω de celle de (2.2).

Réciproquement nous démontrerons que si ν ∈ V (Σ, λ), alors (2.14) admet plusieurs solutions. Notons ψ un vecteur propre de (2.20) associé à la valeur propre ν et posons f = ∂ψ /∂n |Γ et ψ la solution de (2.2) dont la dérivée normale sur Γ est égale à f. La fonction

Ψ = ψ |Ω -ψ |Ω vérifie Q λ I Γ [Ψ, - ∂Ψ ∂n ; G ν ] |Σ = -Q λ I Γ [ψ , - ∂ψ ∂n ; G ν ] |Σ + Q λ I Γ [ψ, - ∂ψ ∂n ; G ν ] |Σ = Q λ I Γ [ψ, - ∂ψ ∂n ; G ν ] |Σ
puisque ψ vérifie ∆ψ + νψ = 0 dans le domaine D intérieur à Γ tout entier, et que par conséquent

I Γ [ψ , - ∂ψ ∂n ; G ν ] |Ω = 0.
Par conséquent

Q λ I Γ [Ψ, - ∂Ψ ∂n ; G ν ] |Σ = Q λ ψ |Σ = Q λ Ψ |Σ , puisque Q λ ψ |Σ = 0.
Il en résulte que Ψ est solution du problème (2.14) homogène.

Il ne reste plus qu'à s'assurer que Ψ n'est pas nul: s'il n'en était pas ainsi, on aurait ψ |Ω = ψ |Ω , ce qui constitue un prolongement de ψ à R n tout entier selon une solution dans H 1 (R n ) de ∆ϕ + νϕ = 0, nécessairement nulle. Ce résultat constitue une contradiction avec l'hypothèse selon laquelle ψ est un vecteur propre de (2.20).

Les fréquences de diffusion

L'étude que nous venons de réaliser est limitée au cas des ν de partie imaginaire positive ; nous allons voir ci-dessous comment on peut la prolonger à des ν de partie imaginaire négative ou nulle. L'ingrédient essentiel en est le Théorème de Steinberg [Steinberg-1968] qui traite du caractère méromorphe des inverses d'une famille d'opérateurs, perturbations analytiques compactes d'un isomorphisme. Le caractère analytique découlera de la dépendance analytique de G ν vis-à-vis de ν, le caractère compact du fait que Ω est borné.

Le prolongement analytique de la résolvante

Remarquons tout d'abord qu'en vertu de (2.6) et (2.7), la formule (2.11) se prolonge analytiquement à C \ R -; le prolongement de S (ν) en résulte.

Proposition 2.14 L'opérateur S (ν) défini en (2.17) est compact sur H 1 (Ω ); de plus la fonction ν

S → S (ν) : C \ R -→ L(H 1 (Ω ), H 1 (Ω ))
est holomorphe.

Démonstration.

On a

S (ν) H 1 (Ω ) ≤ sup ψ ∈H 1 (Ω ) 1 ψ H 1 (Ω ) |1 + ν| ϕ L 2 (Ω ) ψ L 2 (Ω ) + |λ| ϕ L 2 (Σ) ψ L 2 (Σ) + ϕ L 2 (Γ) ψ L 2 (Σ) Γ ∂G λ ν (•, y) ∂n y L 2 (Σ) dγ y et par conséquent S (ν)ϕ H 1 (Ω ) ≤ C 1 ϕ L 2 (Ω ) + C 2 ϕ L 2 (Σ) + C 3 ϕ L 2 (Γ) ≤ C ϕ H 2/3 (Ω ) ; la compacité de S (ν) : H 1 (Ω ) → H 1 (Ω ) en résulte.
La dépendance holomorphe de S (ν) vis-à-vis de ν est une conséquence immédiate de celle de G ν .

Définition 2.15 Nous noterons R (ν) la résolvante du problème réduit, soit

R (ν) = (I + S (ν)) -1 .
Corollaire 2.16 La fonction R (ν) se prolonge à C\R -en une fonction méromorphe : ses pôles sont les valeurs de ν ∈ C \ R -pour lesquelles I + S (ν) n'est pas inversible, soit encore -1 est valeur propre de l'opérateur compact S (ν).

Démonstration. La Proposition 2.13 nous prouve que I +S (ν) est inversible pour Im ν > 0 et ν ∈ V (Σ, λ), or S (ν) est compact et dépend holomorphiquement de ν d'après la Proposition 2.14 ; la conclusion découle alors du Théorème de Steinberg C.1.

Définition 2.17 On notera P l'ensemble des pôles du prolongement analytique de R (ν), Lemme 2.18 Les valeurs propres de partie imaginaire positive de (2.20) sont des pôles de R (ν), ce qui peut s'exprimer sous la forme suivante:

V (Σ, λ) ∩ {ν | Im ν > 0 } ⊂ P .
Démonstration. La proposition 2.13, (ii) nous montre que la solution de (2.14) n'est pas unique pour ν ∈ V (Σ, λ) ∩ {ν | Im ν > 0 } ; il en résulte qu'un tel ν est un pôle de R (ν).

Remarque 2.19 D'après le Lemme 2.18, V (Σ, λ) est inclus dans l'ensemble P des pôles de ν → R (ν); il semble donc que la construction que nous venons de réaliser ne soit pas intrinsèque et dépende de Σ et λ. Nous allons voir qu'elle fournit malgré tout le prolongement analytique de la solution R(•)F (f ) de (2.2). Précisons auparavant la position des pôles de P qui ne sont pas valeurs propres de (2.20).

Lemme 2.20 Les pôles de P \ V (Σ, λ) sont de partie imaginaire négative ou nulle.

Démonstration. Supposons donc qu'un pôle ν de P \ V (Σ, λ) soit de partie imaginaire positive, ce qui implique que le problème (2.14) admette, pour f = 0, une solution non nulle, soit ψ .

Selon la Proposition 2.13 et puisque ν ∈ V (Σ, λ), ψ se prolonge à Ω tout entier en une solution de (2.2). Comme f = 0, et que (2.2) est bien posé selon la Proposition 2.1, il en résulte que cette solution, et par conséquent ψ est nulle ; ceci constitue une contradiction.

Le prolongement analytique de la solution

Définition 2.21 Pour f ∈ L 2 (Γ), fixé, notons P f l'ensemble des pôles de ν → R (ν) F (f, ν).
Lemme 2.22 Les pôles de ν → R (ν) F (f, ν) sont indépendants de λ, ce sont des pôles de ν → R (ν) de partie imaginaire négative, ce qui s'exprime également sous la forme

P f ⊂ P ∩ {ν | Im ν < 0 } . Démonstration.
Comme ν → F (f, ν) est analytique, il est clair tout d'abord que P f ⊂ P .

Supposons tout d'abord que Im(λ) > 0. La Remarque 2.12 nous prouve que l'inclusion suivante est vérifiée :

V (Σ, λ) ⊂ {ν | Im(ν) > 0 } . Par ailleurs, on a vu à la Proposition 2.13 que pour ν ∈ {ν | Im(ν) > 0 } \ V (Σ, λ), le problème (2.14) admet pour unique solution ψ (ν), la restriction à Ω de la solution ψ(ν) de (2.2), cette dernière dépend analytiquement de ν dans {ν | Im(ν) > 0 } selon la Proposition 2.3. Par conséquent, la fonction ν → ψ (ν)
est analytique dans le demi-plan des ν de partie imaginaire positive ; les éléments de V (Σ, λ), qui sont des pôles de R (ν), ne sont en fait que des singularités fictives de ψ (ν) = R (ν)F (f, ν). Les pôles de ψ (ν) appartiennent donc à P \ V (Σ, λ), ils sont de partie imaginaire négative ou nulle d'après le Lemme 2.20.

Le principe du prolongement analytique associé au fait que pour Im(ν) > 0, ψ (ν) coïncide avec ψ(ν) |Ω (qui ne dépend pas de λ), montre que le prolongement de ψ (ν) à C \ R -n'en dépend pas non plus.

Remarque 2.23 En fait, on peut montrer qu'un ν 0 réel positif ne peut être pôle de

ν → R (ν) F (f, ν).
Il s'agit d'un résultat dû à Rellich, relatif à l'unicité de la solution du problème de diffraction muni de la condition de rayonnement pour un ν 0 réel. Proposition 2.24 Si ν * est un pôle de ν → R (ν) qui ne soit pas valeur propre du problème (2.20), alors ∃f ∈ L 2 (Γ) telle que ν * soit un pôle de ν → R (ν)F (f, ν). Ce résultat peut encore s'exprimer sous la forme suivante:

P ∩ V (Σ, λ) c ⊂ f ∈L 2 (Γ) P f . Démonstration. D'après le Corollaire C.2 du Théorème de Steinberg, nous savons qu'il suffit que F (f, ν * ) ∈ R(I + S (ν * )) pour qu'un pôle ν * de R (ν) soit également pôle de R (ν)F (f, ν). Nous montrerons donc que si ν * ∈ V (Σ, λ) est un pôle de R (ν), alors F (f, ν * ) ne peut appartenir à l'image de I + S (ν * ) pour tout f ∈ L 2 (Γ) . On raisonnera par l'absurde en supposant que ∀f ∈ L 2 (Γ), F (f, ν * ) ∈ R(I + S (ν * )) = (N (I + S * (ν * )) ⊥ . D'après la formule (2.17), nous avons ∀ ϕ , ψ ∈ H 1 (Ω ) (S * (ν * ) ϕ , ψ) H 1 (Ω ) = -(1 + ν * ) Ω ϕ ψ + λ Σ ϕ ψ dγ - Σ ϕ (y) Γ ψ(x) ∂ ∂n x G λ ν * (x, y) dγ x dγ y (2.21) Supposons maintenant que ϕ ∈ N (I + S * (ν * )), alors ∀f ∈ L 2 (Γ), (F (f, ν), ϕ ) H 1 (Ω ) = 0, soit Γ f ϕ dγ - Σ ϕ (y) Γ f (x) G λ ν * (x, y) dγ x dγ y = 0, ou encore Γ f (x) ϕ (x) - Σ ϕ (y) G λ ν * (x, y) dγ y dγ x = 0; et par conséquent ϕ (x) = Σ ϕ (y) G λ ν * (x, y) dγ y sur Γ. (2.22)
Mais, par ailleurs, ((I + S * (ν * )) ϕ , ψ) H 1 (Ω ) = 0, et par conséquent, en vertu de la formule (2.21), ϕ est solution du problème suivant: La nullité de θ, et donc de ϕ , en découle puisque

∆ϕ + ν * ϕ = 0 dans Ω , ∂ϕ ∂n = ∂ ∂n Σ ϕ (y) G λ ν * (•, y) dγ y sur Γ, ∂ϕ ∂n + λ ϕ = 0 sur Σ. La fonction θ(x) = Σ ϕ (y) G λ ν * (x,
ν * ∈ V (Σ, λ) et V (Σ, λ) = V (Σ, λ), ce qui prouve que N (I + S * (ν * )) = {0} et constitue une contradiction avec l'hypothèse. Nous avons donc démontré l'existence de f ∈ L 2 (Γ) telle que F (f, ν * ) ∈ R(I + S (ν * )); par conséquent ν * est un pôle de R (ν)F (f, ν). Définition 2.25 Rappelons que la fonction ν → ξ(ν) : D → H 1 loc (Ω) est holomorphe dans le domaine D si pour tout ouvert borné Ω ⊂ Ω, la restriction de ξ à Ω est elle-même holomorphe dans D → H 1 (Ω );

rappelons également que le principe du prolongement analytique reste valable pour des fonctions à valeurs dans H

1 loc (Ω). Proposition 2.26 La fonction ν → R(ν)F (f ) : {ν | Im ν > 0 } → H 1 loc (Ω) se pro- longe à C \ R -en
une fonction méromorphe dont les pôles coïncident avec ceux de ν → R (ν)F (f, ν), ce qui peut se traduire par l'expression suivante:

P f = P f où P f note l'ensemble des pôles de R(•)F (f ). Démonstration. Fixons λ et Σ, et posons ϕ ν = R (ν)F (f, ν); par ϕ ν nous désignerons la fonction égale à ϕ ν dans Ω et donnée par ϕ ν (x) = Γ ϕ ν (y) ∂ ∂n y G ν (x -y) - ∂ϕ ν ∂n (y) G ν (x -y) dγ y dans Ω \ Ω . (2.23) Pour Im ν > 0 et ν ∈ V (Σ, λ), la Proposition (2.13) montre que la fonction ϕ ν n'est rien d'autre que R(ν)F (f ); la formule (2.23) associée à l'holomorphie de la fonction G ν montre que ν → ϕ ν est holomorphe pour ν ∈ C\(R -∪P ). Il en résulte que ϕ ν définit le prolongement analytique de R(ν)F (f ).
Si R (ν)F (f, ν) est holomorphe au voisinage de ν, alors la formule (2.23) montre que ϕ ν est également holomorphe, il en résulte que tout pôle du prolongement analytique de R(ν)F (f ) est également un pôle de R (ν)F (f, ν).

Réciproquement, si le prolongement analytique ϕ ν de R(ν)F (f ) est holomorphe au voisinage de ν; alors comme ϕ ν|Ω = R (ν)F (f, ν), ∀ν ∈ P , en vertu du principe du prolongement analytique, R (ν)F (f, ν) est holomorphe au voisinage de ν. Il en résulte que chaque pôle du prolongement analytique de R (ν)F (f, ν) est un pôle de celui de R(ν)F (f ).

Nous montrerons maintenant qu'un choix judicieux de λ permet la détermination des pôles de R(ν)F (ν) à partir de ceux de R (ν). Ce résultat est particulièrement important car il est beaucoup plus aisé de calculer les pôles de R (ν) que ceux de R(ν)F (f ), qui de plus dépendent des données. En fait, les pôles de R (ν) sont les valeurs de ν qui font de -1 une valeur propre de S (ν); en d'autres termes ce sont les solutions du problème non-linéaire de valeurs propres suivant:

Ω ∇ϕ • ∇ ψ + λ Σ ϕ ψ dγ - Σ ψ (y) Γ ϕ (x) ∂ ∂n x G λ ν (x, y) dγ x dγ y = ν Ω ϕ ψ .
(2.24)

Théorème 2.27 Si Im λ > 0, alors

P ∩ {ν | Im ν > 0 } = V (Σ, λ) et P ∩ {ν | Im ν ≤ 0 } = f ∈L 2 (Γ) P f .
Démonstration. Il suffit de remarquer qu'en vertu de l'hypothèse, selon la Remarque 2.12, Remarque 2.28 C'est dire en fait que les pôles de R (ν) de partie imaginaire négative ou nulle forment l'ensemble des singularités de ν → R(ν)F (f ) susceptibles de se manifester pour une donnée f ou une autre ; on les appelle fréquences de diffusion ou encore fréquences de résonance.

V (Σ, λ) ⊂ {ν | Im ν > 0 } . La conclusion

Le principe d'absorption limite

Proposition 2.29 Si ν 0 ∈ R + n'est pas un pôle de R (ν), alors la fonction R(ν 0 )F (f ) vérifie la condition de rayonnement sortante.

Démonstration. On a vu que

P f ⊂ P ∩ {ν | Im ν ≤ 0 } et par conséquent R(ν)F (f ) → R(ν 0 )F (f ) = ϕ ν 0 ,
dans H 1 loc (Ω); la formule (2.23) et la Remarque 2.6, permettent alors de montrer que R(ν 0 )F (f ) vérifie la condition de rayonnement.

Chapitre 3

Les mouvements d'un navire sur la houle

On établit dans ce paragraphe les équations linéarisées régissant les mouvements d'un corps flottant librement, sans vitesse d'avance, à la surface de l'océan, supposé non borné et de profondeur infinie. Il s'agit d'un problème de couplage entre un milieu fluide à la surface duquel des ondes, dites de gravité, sont susceptibles de se propager, et une structure que nous supposerons pour simplifier rigide.

Introduction et notations

Définition du système au repos

Soit F un corps rigide flottant à la surface de l'océan. Lorsque le système fluideflotteur est au repos, le fluide occupe un domaine Ω non borné (Ω ouvert de R 3 ) dont la frontière ∂Ω est constituée par la surface libre au repos SL et la partie immergée Γ (la 'carène') de la frontière du corps F (voir la figure 3.1 ).

Un point x du fluide sera repéré par ses coordonnées (x 1 , x 2 , x 3 ) relativement à un repère orthonormé (O, e 1 , e 2 , e 3 ) défini de la façon suivante : le plan (O, e 1 , e 2 ) contient la surface libre SL au repos ; (O, e 3 ) définit la verticale ascendante, O étant un point arbitrairement choisi. On notera : n la normale unitaire à ∂Ω, dirigée vers l'extérieur de Ω, Ω 0 le domaine occupé par le fluide au repos en absence de flotteur, SL 0 la surface libre en absence de flotteur, c'est-à-dire le plan (O, e 1 , e 2 )), Ω F la partie immergée du corps flottant (c'est-à-dire l'intérieur de Ω 0 \Ω), et SL F la surface de flottaison du corps : SL F = SL 0 \SL. 

Le système en mouvement

Lorsque le système fluide-flotteur est en mouvement, le fluide occupe un domaine dépendant du temps Ω(t) dont la frontière est constituée par la surface libre SL(t) et la partie immergée Γ(t) de la frontière du corps. On notera n(t) la normale unitaire à ∂Ω(t) dirigée vers l'extérieur de Ω(t).

Les hypothèses de linéarisation

La linéarisation des équations va s'effectuer sous la traditionnelle hypothèse des 'petites perturbations' de sorte que toutes les grandeurs physiques considérées χ peuvent s'écrire sous forme d'un développement :

χ = χ (0) + εχ (1) + O(ε 2 ), (3.1)
où ε est un 'petit paramètre' représentant l'ordre de grandeur de la perturbation. L'ordre 0 est associé au système au repos ; le problème linéarisé se limite à l'étude de l'ordre 1. Les principales hypothèses nécessaires à cette linéarisation sont les suivantes : les ondes considérées sont de faible 'cambrure' (rapport entre le creux et la longueur d'onde) et d'amplitude faible devant les dimensions du corps ; les mouvements du corps sont du même ordre de grandeur que l'amplitude des ondes considérées.

Ces hypothèses vont nous permettre en particulier d'écrire les équations de l'écoulement fluide dans le 'domaine moyen' occupé par le fluide (c'est-à-dire le domaine Ω occupé par le fluide au repos) et non dans le 'domaine réel' Ω(t) qui, à chaque instant, dépend de l'élévation de la surface libre et de la position du corps.

3.2 Le mouvement du fluide

Le potentiel des vitesses

Le fluide est supposé parfait, incompressible et en écoulement irrotationnel. Le champ des vitesses est alors défini par le gradient d'un potentiel scalaire Φ(x, t) vérifiant l'équation de Laplace : ∆Φ = 0 dans Ω(t).

Φ peut être développé sous la forme (3.1), soit Φ = Φ (0) + εΦ (1) + O(ε 2 ) où Φ (0) peut être choisi identiquement nul puisqu'il caractérise l'état du système au repos. On a donc au premier ordre :

∆Φ (1) = 0 dans Ω. (3.2)

La condition de surface libre

Les conditions que nous devons écrire sur la surface libre SL(t) sont de deux types : une condition cinématique qui exprime le fait que c'est une surface matérielle, et une condition dynamique qui traduit la continuité de la pression à sa traversée (la pression à l'extérieur de Ω(t) est supposée constante : c'est la pression atmosphérique au niveau de la mer).

Condition cinématique

Si l'équation de la surface libre s'exprime sous la forme F (x; t) = 0, on aura 0 = dF dt = ∇F • dx dt + ∂F ∂t et comme le vecteur ∇F est normal à la surface libre, on en déduit que la vitesse normale d'un point x(t) astreint à demeurer sur la surface libre n'est autre que -(∂F/∂t)/ ∇F , et qu'elle est par conséquent indépendante de la trajectoire particulière du point ; on pourra donc parler de la vitesse normale de la surface libre. La condition cinématique qui exprime l'égalité entre la vitesse normale de la surface libre et la vitesse normale du fluide (soit ∇Φ • ∇F/ ∇F ) en tout point de cette dernière se traduit donc par ∇Φ • ∇F + ∂F/∂t = 0.

Si on désigne alors par η(x 1 , x 2 ; t) l'élévation de la surface libre, c'est-à-dire le déplacement vertical (suivant e 3 ) d'un point x de la surface libre relativement à sa position au repos, SL(t) aura pour équation η(x 1 , x 2 ; t) -x 3 = 0. La condition cinématique s'écrit par conséquent:

∂η ∂t + ∇Φ • ∇(η -x 3 ) = 0 sur SL(t).
De la même façon que Φ, l'élevation de surface libre η peut se développer sous la forme (3.1) : η = εη (1) + O(ε 2 ). Cette condition devient donc, au premier ordre :

∂η (1) ∂t - ∂Φ (1) ∂x 3 = 0 sur SL. (3.3)

Condition dynamique

Pour l'exprimer, il nous faut connaître la pression en tout point de la surface libre. Celle-ci nous est donnée par l'équation de Bernoulli, qui relie la pression p au potentiel des vitesses Φ en tout point du domaine fluide : 

p ρ + gx 3 + ∂Φ ∂t + 1 2 |∇Φ| 2 = C(t)
p 0 ρ + ε gη (1) + ∂Φ (1) ∂t + O(ε 2 ) = C(t) sur SL,
ce qui d'une part montre que C(t) peut être choisi constant et égal à p 0 /ρ, et d'autre part nous donne la condition dynamique à l'ordre 1 :

∂Φ (1) ∂t + gη (1) = 0 sur SL. (3.5)
On peut éliminer η entre les deux équations (3.3) et (3.5) ; on est alors conduit à une condition de surface libre portant uniquement sur le potentiel :

∂ 2 Φ (1) ∂t 2 + g ∂Φ (1) ∂x 3 = 0 sur SL. (3.6)
Enfin, il nous reste à écrire une condition de glissement sur la carène du corps, autrement dit, la continuité de la vitesse normale sur Γ(t). Nous verrons dans le paragraphe suivant comment exprimer cette condition en fonction des variables définissant la position du corps.

Le mouvement du navire

Les équations du mouvement du corps vont découler de l'application du principe fondamental de la dynamique que nous écrirons

dk dt = R et dσ dt = M, (3.7)
où k et σ représentent respectivement la résultante et le moment du torseur des quantités de mouvement (ou torseur cinétique), R et M sont les éléments de réduction du torseur des efforts extérieurs appliqués sur le corps, ces deux torseurs étant définis relativement au point G(t), position instantanée du centre de gravité du corps.

La cinématique du corps rigide

Dans ce paragraphe, après avoir défini les variables qui nous permettront de décrire le mouvement du corps, nous expliciterons le torseur cinétique (k, σ). Le paragraphe suivant sera consacré au torseur des efforts extérieurs (R, M).

Tout point du corps sera repéré par ses coordonnées y(t) dans le repère fixe (G, e 1 , e 2 , e 3 ) où G désigne la position du centre de gravité du corps lorsque le système fluide-flotteur est au repos. Notons F t (y) la position à l'instant t du point du corps qui occupe la position y au repos. Le corps étant supposé rigide, on aura

F t (z) -F t (y) = z -y , ∀y, z, et par conséquent, puisque 2 (a • b) = a + b 2 -a 2 -b 2 , (F t (z) -F t (y)) • (F t (z ) -F t (y )) = (z -y) • (z -y ).
La transformation F t étant biunivoque, il en résulte que

F t (z) -F t (y) ne dépend que de z -y soit F t (z) -F t (y) = A t (z -y), ainsi que A t (z -x) = F t (z) -F t (x) = F t (z) -F t (y) + F t (y) -F t (x) = A t (z -y) + A t (y -x) et F t (λz) -F t (λy) = λ (F t (z) -F t (y)) , soit λ (F t (z) -F t (y)) = A t λ(z -y);
la linéarité de A t en résulte, et par conséquent le caractère affine de F t . Simplifiant les notations, nous noterons y(t) à la place de F t (y), et nous aurons par conséquent

y(t) = A(t)y + b(t). (3.8)
Il en résulte en particulier que

dy dt = dA dt A -1 (t)(y(t) -b(t)) + db dt .
La matrice A(t) étant celle d'une isométrie, est unitaire, et nous aurons

0 = d dt (z • y) = d dt A(t) A -1 (t)z • y = d dt A -1 (t)z • A t (t)y = d dt A t (t)z • A t (t)y = d dt A t (t)z • A t (t)y + A t (t)z • d dt A t (t)y = z • d dt A(t) A t (t)y + d dt A(t) A t (t)z • y
il en résulte que la matrice

D(t) = dA dt A -1 est antisymétrique, soit par conséquent, en notant D =   0 -α 3 α 2 α 3 0 -α 1 -α 2 α 1 0   , on obtient dy dt = α(t) ∧ y(t) + β(t).
(3.9)

Les mouvements étant supposés de faible amplitude, on peut décomposer y(t) sous la forme

y(t) = y + εy (1) (t) + O(ε 2 ), (3.10) et β(t) et α(t) sous la forme β(t) = εβ (1) (t) + O(ε 2 ) et α(t) = εα (1) (t) + O(ε 2 ),
puisque, à l'équilibre, β = 0 et α = 0. En reportant ces développements dans (3.9) on en déduit :

dy (1) dt = α (1) (t) ∧ y + β (1) (t) ; c'est dire que y(t) = y + ε{τ (1) (t) + ω (1) (t) ∧ y} + O(ε 2 ). (3.11)
La vitesse d'un point du corps s'exprimera sous la forme :

v(t) = εv (1) (t) + O(ε 2 ) où v (1) = dτ (1) dt (t) + dω (1) dt (t) ∧ y. (3.12)
Nous noterons dans la suite S (1) le vecteur de R 6 dont les trois premières composantes sont celles de τ (1) et les trois suivantes, celles de ω (1) : 

S (1) = τ (1) ω (1) . ( 3 

La condition de glissement sur la carène

Nous sommes maintenant en mesure d'exprimer la condition de continuité de la vitesse normale sur Γ(t) :

∇Φ • n(t) = v(t) • n(t) sur Γ(t),
où n(t) désigne la normale à Γ(t). La normale n(t) étant un vecteur lié au corps solide peut se mettre sous la forme n(t) = y(t) -z(t), soit donc d'après (3.11):

n(t) = n + ε ω (1) (t) ∧ n + O(ε 2 ).
(3.14)

Ainsi, la condition de glissement s'écrit au premier ordre :

∇Φ (1) • n = v (1) • n = dτ (1) dt • n + dω (1) dt • (y ∧ n) sur Γ,
ce qu'on peut exprimer de la façon suivante :

∂Φ (1) ∂n = dS (1) dt • N sur Γ, (3.15) 
où S (1) est donné par (3.13) et N, appelé normale généralisée, est le vecteur de R 6 défini par :

N = n y ∧ n .
(3.16)

Expression du torseur des quantités de mouvement

La résultante k(t) et le moment σ(t) du torseur cinétique (relativement au centre de gravité G(t) du corps) sont par définition :

k(t) = F(t) v(t) dµ et σ(t) = F(t) (y(t) -G(t)) ∧ v(t) dµ,
où F(t) désigne le volume occupé par le corps à l'instant t, et dµ la mesure de masse du corps. Les développements de y(t) et v(t) étudiés plus haut nous montrent alors que

k(t) = εk (1) (t) + O(ε 2 ) et σ(t) = εσ (1) (t) + O(ε 2 ) avec : k (1) (t) = F dτ (1) dt + dω (1) dt ∧ y dµ et σ (1) (t) = F y ∧ dτ (1) dt + dω (1) dt ∧ y dµ.
On a donc :

k (1) (t) = dτ (1) dt F dµ + dω (1) dt ∧ F y dµ,
où la dernière intégrale est nulle puisque l'origine du repère est le centre de gravité du corps au repos.

Par conséquent :

k (1) (t) = m dτ (1) dt , (3.17)
où m est la masse totale du corps flottant. De la même façon, on obtient

σ (1) (t) = F y ∧ dω (1) dt ∧ y dµ ;
ce qu'on peut écrire sous la forme matricielle :

σ (1) (t) = J dω (1) dt , (3.18)
où J est la matrice d'inertie du corps. Elle est symétrique et positive car

(Jλ • τ ) = F (y ∧ (λ ∧ y) • τ ) dµ = F (λ ∧ y • τ ∧ y) dµ ,
et de plus (Jλ • λ) = 0 si et seulement si la masse est concentrée sur les points de F où λ ∧ y = 0, soit l'axe de vecteur directeur λ ; c'est dire que la matrice d'inertie est définie positive hormis dans le cas où F se réduit à un fil rectiligne. Comme

a ∧ (b ∧ c) = (a • c) b -(a • b) c on aura σ (1) (t) = dω (1) dt F y 2 dµ - F y • dω (1) dt y dµ, soit encore J =   F (y 2 2 + y 2 3 ) dµ -F y 1 y 2 dµ -F y 1 y 3 dµ -F y 1 y 2 dµ F (y 2 1 + y 2 3 ) dµ -F y 2 y 3 dµ -F y 1 y 3 dµ -F y 2 y 3 dµ F (y 2 1 + y 2 2 ) dµ   (3.19)
On peut résumer ces résultats de la manière suivante :

Proposition 3.2 Le torseur cinétique s'exprime sous la forme 

k (1) σ (1) = M dS (1) dt (3.20) avec M = mI 0 0 J (3.

Les efforts exercés sur le corps

Les efforts extérieurs appliqués sur le corps sont de deux types : le poids et les efforts de pression sur la carène Γ(t). Nous avons vu au paragraphe 3.2 que la pression en tout point du domaine fluide est donnée (voir (3.4)) par

p = p 0 -ρgx 3 -ρ ∂Φ ∂t - ρ 2 |∇Φ| 2 dans Ω(t),
p 0 étant, rappelons-le, la pression atmosphérique au niveau de la mer et x 3 la coordonnée verticale dans le repère dont l'origine est située au niveau de la position moyenne de la surface libre. Nous décomposerons cette pression sous la forme :

p = p 0 + p s + p d où p s = -ρgx 3 et p d = -ρ ∂Φ ∂t - ρ 2 |∇Φ| 2 , (3.22)
p s représentant la pression hydrostatique relative qui ne dépend que de la position du point considéré, et p d , la pression hydrodynamique qui ne dépend que de la cinématique de l'écoulement fluide. Nous allons donc dans ce paragraphe exprimer successivement le torseur (R p , M p ) des efforts de pesanteur, le torseur (R s , M s ) associé aux efforts de pression hydrostatique et le torseur (R d , M d ) des efforts de pression hydrodynamique, ces trois torseurs étant définis relativement à la position G(t) du centre de gravité du corps. En ce qui concerne la pression atmosphérique, le torseur des efforts associés est nul, car elle s'applique à l'ensemble de la surface du corps.

Le torseur des efforts de pesanteur

Sa détermination ne présente aucune difficulté particulière ; il s'exprime de la façon suivante :

R p = -ge 3

F(t) dµ M p = -g F(t) (y(t) -G(t)) dµ ∧ e 3 soit, puisque G(t) est le centre de gravité de F(t), R p M p = -gme 3 0 , (3.23)
où m est la masse du navire.

Le torseur des efforts hydrostatiques

La résultante R s et le moment M s de ce torseur sont par définition :

R s = Γ(t) p s n(t) dγ et M s = Γ(t) p s (y(t) -G(t)) ∧ n(t) dγ, (3.24)
où on rappelle que n(t) est la normale intérieure à la carène Γ(t).

Développements au premier ordre

Il s'agit donc de déterminer les termes d'ordre 0 et 1 de ces quantités. Nous avons vu au paragraphe précédent (voir (3.8) et (3.12)) que :

   y(t) = y + ε {τ (1) (t) + ω (1) (t) ∧ y} + O(ε 2 ), G(t) = G + ε {τ (1) (t) + ω (1) (t) ∧ G} + O(ε 2 ), n(t) = n + ε ω (1) (t) ∧ n + O(ε 2 ).
Pour obtenir le développement de p s (donné par (3.22)), remarquons tout d'abord que pour un point lié au corps situé sur la carène Γ(t), on a x 3 (t) = G 3 + y 3 (t), où G 3 désigne la composante suivant e 3 de G (dans le repère initial (O, e 1 , e 2 , e 3 )). Il s'ensuit que :

x 3 (t) = (G 3 + y 3 ) + ε τ (1) 3 + (ω (1) ∧ y) • e 3 + O(ε 2 ), et par conséquent : p s = p (0) s + εp (1) s + O(ε 2 ) avec p (0) s = -ρg(G 3 + y 3 ), p (1) s = -ρg τ (1) 3 + (e 3 ∧ ω (1) ) • y . (3.25)
On en déduit :

R s = R (0) s + εR (1) s + O(ε 2 ) et M s = M (0) s + εM (1) s + O(ε 2 ), avec      R (0) s = Γ p (0) s n dγ, R (1) s = ω (1) ∧ R (0) s + Γ p (1) s n dγ, (3.26) car R (1) s = Γ p (0) s ω (1) ∧ n dσ + Γ p (1) s n dσ. Par ailleurs      M (0) s = Γ p (0) s y ∧ n dγ, M (1) s = ω (1) ∧ M (0) s + Γ p (1) s y ∧ n dγ. (3.27) puisque M (1) s = Γ p (0) s (ω (1) ∧ y) ∧ n dγ + Γ p (0) s y ∧ (ω (1) ∧ n) dγ + Γ p (1) s y ∧ n dγ. et (ω (1) ∧ y) ∧ n + y ∧ (ω (1) ∧ n) = ω (1) ∧ (y ∧ n)

Deux formules utiles

Le calcul de ces termes repose sur les formules suivantes :

Lemme 3.4 Si n est la normale intérieure à B, ∂B ϕn dγ = - B ∇ϕ dx (3.28) ∂B n ∧ ψ dγ = - B rot ψ dx (3.29) Démonstration.
Ce résultat découle de la formule de Green suivante, où n est la normale extérieure:

B ψ • ∇ϕ = - B ϕ div ψ + ∂B ϕ (ψ • n) dγ .
De même on utilisera

B rot ψ • ϕ = B ψ • rot ϕ + ∂B ((n ∧ ψ) • ϕ) dγ

Résultante

Pour le terme d'ordre 0 de la résultante on a 

R (0) s = -ρg Γ (G 3 + y 3 )n dγ, = -ρg ∂Ω F (G 3 + y 3 )n dγ + ρg SL F (G 3 + y 3 )n dγ, soit,
= ρg V F ω (1) ∧ e 3 - Γ τ (1) 3 + (e 3 ∧ ω (1) ) • y n dγ , = ρg V F ω (1) ∧ e 3 - ∂Ω F τ (1) 3 + (e 3 ∧ ω (1) ) • y n dγ + SL F τ (1) 3 + (e 3 ∧ ω (1) ) • y n dγ = ρg V F ω (1) ∧ e 3 + Ω F e 3 ∧ ω (1) dγ -e 3 SL F τ (1) 3 + (e 3 ∧ ω (1) ) • y dγ , ou encore, en notant S F la surface de SL F , R (1) s = ρge 3 -τ (1) 3 S F -ω (1) 1 SL F y 2 dγ + ω (1) 2 SL F y 1 dγ .
Définition 3.5 On appelle 'centre de flottaison' le point F, barycentre de SL F , considéré comme homogène, son expression est la suivante :

F = 1 S F SL F y dγ (3.31)
On pourra alors écrire 

R (1) s = ρgS F e 3 -τ (1) 3 -ω (1) 1 F 2 + ω (1) 2 F 1 (3.32) Moment A l'ordre 0, on a M (0) s = -ρg Γ (G 3 + y 3 )y ∧ n dγ, = -ρg ∂Ω F (G 3 + y 3 )y ∧ n dγ - SL F (G 3 + y 3 )y ∧ n dγ , = -ρg Ω F e 3 ∧
C = 1 V F Ω F y (3.34)
On obtient donc finalement

M (0) s = -ρgV F e 3 ∧ C. (3.35)
De même le terme d'ordre 1 du moment a pour expression :

M (1) s = -ρg V F ω (1) ∧ (e 3 ∧ C) + Γ τ (1) 3 + (e 3 ∧ ω (1) ) • y y ∧ n dγ , = -ρg V F ω (1) ∧ (e 3 ∧ C) + ∂Ω F τ (1) 3 + (e 3 ∧ ω (1) ) • y y ∧ n dγ , -ρg SL F τ (1) 3 + (e 3 ∧ ω (1) ) • y y ∧ e 3 dγ, or rot τ (1) 3 + (e 3 ∧ ω (1) ) • y y = ∇ τ (1) 3 + (e 3 ∧ ω (1) ) • y ∧ y = (e 3 ∧ ω (1) ) ∧ y et par conséquent, d'après (3.29), M (1) s = -ρg V F ω (1) ∧ (e 3 ∧ C) + Ω F (e 3 ∧ ω (1) ) ∧ y dγ , -ρg τ (1) 3 SL F y ∧ e 3 dγ + ω (1) 1 SL F y 2 (y ∧ e 3 ) dγ -ω (1) 2 SL F y 1 (y ∧ e 3 ) dγ
ou encore, comme

ω (1) ∧ (e 3 ∧ C) + (e 3 ∧ ω (1) ) ∧ C = e 3 ∧ (ω (1) ∧ C), et y ∧ e 3 = e 1 y 2 -e 2 y 1 , M (1) s = -ρgV F e 3 ∧ (ω (1) ∧ C) -ρgτ (1) 3 (e 1 F 2 -e 2 F 1 ) -ρgω (1) 1 e 1 SL F y 2 2 dγ -e 2 SL F y 1 y 2 dγ +ρgω (1) 2 e 1 SL F y 1 y 2 dγ -e 2 SL F y 2 1 dγ (3.36)
On peut donc finalement résumer tous ces résultats par la formule suivante :

R (0) s M (0) s = ρgV F e 3 C ∧ e 3 et R (1) s M (1) s = ρgV F 0 (ω (1) ∧ C) ∧ e 3 -K s S (1) ,
(3.37) où S (1) est donné par (3.13) et K s est la matrice 6 × 6 dont la structure est la suivante :

K s =         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ks 0 0 0 0 0 0 0 0 0 0         , (3.38)
la sous-matrice Ks (3×3) étant définie par :

Ks = ρg   S F F 2 S F -F 1 S F F 2 S F SL F y 2 2 dγ -SL F y 1 y 2 dγ -F 1 S F -SL F y 1 y 2 dγ SL F y 2 1 dγ   .
(3.39)

Le torseur des efforts hydrodynamiques

Comme pour le torseur des efforts hydrostatiques, la résultante R d et le moment M d de ce torseur sont donnés par :

R d = Γ(t) p d n(t) dγ et M d = Γ(t) p d (y(t) -G(t)) ∧ n(t) dγ,
où la pression hydrodynamique définie en (3.22) se développe sous la forme :

p d = -ε ρ ∂Φ (1) ∂t + O(ε 2 ). (3.40)
On en déduit immédiatement que :

R d = εR (1) d + O(ε 2 ) et M d = εM (1) d + O(ε 2 ) avec R (1) d = -ρ Γ ∂Φ (1) ∂t n dγ et M (1) d = -ρ Γ ∂Φ (1) ∂t y ∧ n dγ,
ce qu'on peut encore écrire :

R (1) d M (1) d = -ρ Γ ∂Φ (1) ∂t N dγ, (3.41)
où N est la normale généralisée définie en (3.16).

Les équations du mouvement

Le principe fondamental de la dynamique

Nous connaissons maintenant les développements respectifs du torseur cinétique et du torseur des efforts appliqués sur le corps. Il nous reste donc à écrire le principe fondamental de la dynamique (3.7). A l'ordre 0, on a :

0 = R p M p + R (0) s M (0) s = (-m + ρV F )ge 3 ρgV F C ∧ e 3 ,
et par conséquent : A l'ordre 1, le principe fondamental s'écrit :

m = ρV F et C ∧ e 3 = 0, ( 3 
d dt k (1) σ (1) = R (1) s M (1) s + R (1) d M (1) d , soit, d'après (3.20), (3.37) et (3.41) : M d 2 S (1) dt 2 + KS (1) + ρ Γ ∂Φ (1) ∂t N dγ = 0, (3.43)
où K est obtenue à partir de l'expression (3.37) de (R

(1) s , M (1)
s ) en tenant compte du fait qu'à l'ordre 0, le corps est en équilibre, c'est-à-dire de (3.42) :

(ω (1) ∧ C) ∧ e 3 = -C 3 e 3 ∧ (ω (1) ∧ e 3 ) = -C 3 ω (1) -ω (1) 3 e 3 = -C 3 (ω (1) 1 e 1 + ω (1) 2 e 2 ).
Notons que K possède la même structure que K s (cf. (3.39)) ; il suffit de remplacer la sous-matrice Ks par la suivante :

K = ρg   S F F 2 S F -F 1 S F F 2 S F C 3 V F + SL F y 2 2 dγ -SL F y 1 y 2 dγ -F 1 S F -SL F y 1 y 2 dγ C 3 V F + SL F y 2 1 dγ   . (3.44)
K est appelée matrice de raideur hydrostatique. Elle n'agit pas sur les composantes 1, 2 et 6 de S (1) , autrement dit τ

(1)

1 , τ

(1)

2 et ω (1)
3 , c'est-à-dire les degrés de liberté du corps qui correspondent à des mouvements de corps rigide parallèles à la surface libre SL : ces mouvements ne peuvent naturellement pas engendrer de force de rappel hydrostatique. La matrice K n'est donc pas définie positive, mais la sous-matrice K l'est si et seulement si l'équilibre statique est stable, ce qui signifie que, à l'exception des mouvements de corps rigide parallèles à SL, le flotteur a tendance à revenir vers sa position de repos lorsqu'il en est écarté.

Notions de stabilité statique

Pour étudier K nous serons amenés à poser

ω = ω 1 ω 2 , X = τ 3 ω et B = SL F y 2 2 dγ -SL F y 1 y 2 dγ -SL F y 1 y 2 dγ SL F y 2 1 dγ Nous aurons donc KX • X = τ 2 3 S F + 2τ 3 ω ∧ F S F + C 3 V F ω 2 + B ω • ω = (τ 3 + ω ∧ F ) 2 S F -ω ∧ F 2 S F + C 3 V F ω 2 + SL F y ∧ ω 2 dγ; posons τ = τ 3 + ω ∧ F et y = y -F, nous aurons KX • X = τ 2 S F + C 3 V F ω 2 + SL F y ∧ ω 2 -F ∧ ω 2 dγ = τ 2 S F + C 3 V F ω 2 + SL F y ∧ ω 2 dγ car SL F y ∧ ω 2 -F ∧ ω 2 dγ = SL F (y -F ) ∧ ω 2 dγ -2 ω ∧ SL F (y -F ) dγ • (F ∧ ω) = SL F y ∧ ω 2 dγ F étant le centre de gravité de SL F ; soit donc KX • X = A X • X avec A =   S F 0 0 0 C 3 V F + SL F y 2 2 dγ -SL F y 1 y 2 dγ 0 -SL F y 1 y 2 dγ C 3 V F + SL F y 2 1 dγ   et X = τ ω
Si on note

B = SL F y 2 2 dγ -SL F y 1 y 2 dγ -SL F y 1 y 2 dγ SL F y 2 1 dγ on constate que B ω • ω = SL F y ∧ ω 2 dγ
est symétrique définie positive, ce qui prouve que ses valeurs propres λ ± sont réelles positives :

λ ± = SL F y 2 dγ ± √ ∆ 2 (3.45) avec ∆ = SL F y 2 dγ -4 SL F y 2 1 dγ 2 SL F y 2 2 dγ 2 - SL F y 2 1 y 2 2 dγ 2 .
Si µ note une valeur propre de A et u un vecteur propre associé, on aura soit µ = S F , soit

C 3 V F u 2 u 3 + B u 1 u 2 = µ u 1 u 3 c'est-à-dire µ = C 3 V F + λ ± .
Il est alors clair que K est définie positive si C 3 V F + λ ± est positif ; c'est-à-dire si les 'métacentres' sont situés au dessus du centre de gravité. Notons bien que ces conditions sont moins restrictives que celle qui imposerait la positivité de C 3 , c'est-à-dire au centre de poussée d'être situé au dessus du centre de gravité.

On peut donner de ces quantités une autre expression : si v ± notent les vecteurs propres normalisés respectivement associés à λ ± , dans cette base, la matrice B a pour expression

B = SL F y ∧ (v + ∧ y ) • v + dg 0 0 SL F y ∧ (v -∧ y ) • v -dγ , soit λ ± = SL F v ± ∧ y 2 dγ

Les équations du problème couplé

Nous pouvons maintenant rassembler les équations régissant l'écoulement fluide et les mouvements du flotteur, soit (3.2), (3.6), (3.15) et (3.43). Nous omettrons désormais l'exposant (1) afin de simplifier les écritures.

                     Trouver Φ défini sur Ω et S ∈ R 6 tels que ∆Φ = 0 dans Ω, ∂ 2 Φ ∂t 2 + g ∂Φ ∂x 3 = 0 sur SL, ∂Φ ∂n - dS dt • N = 0 sur Γ, M d 2 S dt 2 + KS + ρ Γ ∂Φ ∂t N dγ = 0.
(3.46)

Notons que pour être complet, il nous faudrait rajouter à ces équations un jeu de conditions initiales portant sur Φ, ∂Φ/∂t, S et ∂S/∂t.

Le régime périodique établi

On s'intéresse ici aux mouvements provoqués par une houle incidente périodique en temps (monochromatique), définie par un potentiel incident Quand les mouvements sont consécutifs à une excitation périodique et non à un simple déséquilibre initial, on peut montrer sous des hypothèses assez larges que s'établit asymptotiquement en temps un régime périodique, ce qui conduit à rechercher une solution du problème précédent sous la forme : Notons pour terminer que nous n'avons jusqu'ici rien précisé sur le comportement de ϕ au voisinage de l'infini ; nous énoncerons plus loin la condition de rayonnement adéquate: elle fait jouer un rôle essentiel aux directions horizontales, et n'impose qu'une simple condition de décroissance dans la direction verticale.

Φ(x, t) dS dt (t) = Re ϕ I (x) + ϕ(x) s e -iωt , ω > 0. ( 3 
                     Trouver ϕ défini sur Ω et s ∈ C 6 tels que ∆ϕ = 0 dans Ω, ∂ϕ ∂x 3 - ω 2 g ϕ = 0 sur SL, ∂ϕ ∂n -s • N = - ∂ϕ I ∂n sur Γ, (-ω 2 M + K)s -ρω 2 Γ ϕN dγ = ρω 2 Γ ϕ I N dγ .

Quelques solutions particulières

Nous donnons dans ce paragraphe quelques solutions particulières du problème (3.49) dans le cas où il n'y a pas de corps flottant. Il s'agit donc de rechercher des solutions de :

∆ϕ I = 0 dans Ω 0 , ∂ϕ I ∂x 3 -νϕ I = 0 sur SL 0 , (3.50) où on a noté ν = ω 2 g . (3.51)
Ω 0 est le domaine occupé par le fluide en l'absence de corps flottant (soit le demiespace x 3 < 0), et SL 0 , sa frontière (soit le plan x 3 = 0). Contrairement à l'équation de Helmholtz, il n'existe pas de solution radiale de ce problème. Nous verrons cependant qu'on peut déterminer des 'ondes cylindriques' qui ne dépendent que de la distance à un axe vertical (les équations (3.50) étant alors vérifiées en dehors de cet axe, ce ne sont pas à proprement parler des ondes incidentes).

Les ondes planes

On recherche ici des solutions ϕ I de (3.50) qui ne dépendent que de deux directions spatiales incluant la verticale (disons: x 1 et x 3 ) et qui sont à variables séparées dans ces deux directions. On pose donc :

ϕ I (x) = α(x 1 ) γ(x 3 ).
Le problème (3.50) se ramène alors à :

α (x 1 ) + λ α(x 1 ) = 0 sur R, (3.52) γ (x 3 ) -λ γ(x 3 ) = 0 sur R -, γ (0) -νγ(0) = 0, (3.53)
où λ est un paramètre réel. Supposons que λ > 0 ; les solutions de (3.53) sont alors de la forme Ke √ λx 3 (en éliminant les solutions exponentiellement croissantes lorsque x 3 → -∞). La condition en x 3 = 0 impose par ailleurs √ λ = ν. On en déduit donc que :

ϕ I (x) = A e iνx 1 e νx 3 + B e -iνx 1 e νx 3 ,
où le premier terme correspond à une onde qui se propage dans la direction des x 1 croissants, et le second, des x 1 décroissants. Plus généralement, une onde plane qui se propage suivant une direction µ = µ 1 e 1 + µ 2 e 2 (vecteur unitaire dans le plan (0, x 1 , x 2 )) sera de la forme :

ϕ I (x) = A e iν(µ 1 x 1 +µ 2 x 2 ) e νx 3 . (3.54)
Notons que si λ est supposé négatif, toute solution de (3.52) est exponentiellement croissante soit en x 1 → +∞, soit en x 1 → -∞ : ce ne peut donc être une solution 'physiquement acceptable'.

Les ondes cylindriques

On recherche maintenant des solutions de (3.50) qui ne dépendent que de x 3 et de la distance à l'axe (O, e 3 ) : r = (x 2 1 +x 2 2 ) 1/2 . Ici encore, nous les supposerons à variables séparées en (r, x 3 ). On pose donc :

ϕ(x) = β(r) γ(x 3 ).
En coordonnées cylindriques (r, θ, x 3 ), le Laplacien s'exprime sous la forme : (3.56)

∆ϕ = 1 r ∂ ∂r r ∂ϕ ∂r + 1 r 2 ∂ 2 ϕ ∂θ 2 + ∂ 2 ϕ
Le comportement asymptotique des fonctions de Hankel lorsque r tend vers +∞ nous montre que dans cette expression, le premier terme correspond à une onde sortante, autrement dit qui se propage vers l'infini, et le second, à une onde entrante.

La conservation de l'énergie

Cette notion est similaire à celle introduite en acoustique, l'énergie potentielle liée à la compression du fluide est ici remplacée par une énergie potentielle liée à l'élévation de la surface libre.

Le cas transitoire

Définition 3.9 (Energie hydrodynamique) Si D note un domaine inclus dans le fluide, on appelle énergie hydrodynamique dans le domaine D la quantité suivante: La loi de conservation de l'énergie s'énonce alors de la façon suivante.

W D = ρ 2 D ∇Φ 2 + 1 g ∂D∩SL ∂Φ ∂t 2 dγ , ( 3 
Théorème 3.12 La dérivée temporelle de l'énergie hydrodynamique dans un domaine donné est égale au flux d'énergie entrant par le bord, soit

d dt W D = J ∂D .
(3.59)

Démonstration. Soit en effet Φ une solution des équations (3.46), on aura, en vertu de la formule de Green 

d dt W D = ρ D ∇Φ • ∇ ∂Φ ∂t + 1 g SL ∂ 2 Φ ∂t 2 ∂Φ ∂t dγ , = ρ ∂D ∂Φ ∂n ∂Φ ∂t dγ - SL ∂Φ ∂n ∂Φ ∂t dγ , = ρ ∂D\SL ∂Φ ∂n ∂Φ ∂t dγ .

Le cas harmonique

Calcul du flux d'énergie moyen

Nous aurons donc Comme dans le cas de l'acoustique linéarisée, l'objet de la condition de rayonnement est de sélectionner les solutions du problème (3.49) qui se comportent à l'infini comme des ondes sortantes. Pour le problème des mouvements d'un navire sur la houle, cette condition prend la forme suivante :

J ∂D = ρ ω 2π 2π/
lim R→∞ Σ R ∂ϕ ∂n -iνϕ 2 dγ = 0, où Σ R = {x ∈ Ω ; x 2 1 + x 2 2 = R 2 }. (3.65)
En procédant comme dans le cas bidimensionnel en acoustique, on vérifie aisément que seules les ondes cylindriques du type A H

(1) 0 (νr) e νx 3 , autrement dit les ondes cylindriques sortantes, satisfont cette condition. Le théorème de conservation de l'énergie s'écrit dans ce cas particulier :

J Σ R + J S = 0. (3.67)
Il en résulte que J Σ R et J S sont respectivement indépendants de R et de S.

On a

J Σ R = ρω 4ν Σ R iν φ ∂ϕ ∂n -ϕ ∂ φ ∂n dγ, = ρω 4ν Σ R ∂ϕ ∂n -iνϕ 2 - ∂ϕ ∂n 2 + ν 2 |ϕ| 2 dγ.
On aboutit alors au résultat en tenant compte de la condition de rayonnement.

On peut préciser ce résultat et montrer, que dans la formule précédente, la contribution des deux termes au flux d'énergie est la même : Proposition 3.18 Si ϕ vérifie la condition de rayonnement, on a

J S = ρω 2ν lim R→∞ Σ R ∂ϕ ∂n 2 dγ = ρω 2ν lim R→∞ Σ R ν 2 |ϕ| 2 dγ.
(3.68) 3.7.5 Les problèmes de rayonnement et de diffraction C'est finalement le problème suivant que nous résoudrons: 

                             Trouver ϕ défini sur Ω et s ∈ C 6 tels que ∆ϕ = 0 dans Ω, ∂ϕ ∂x 3 -ν ϕ = 0 sur SL, ∂ϕ ∂n -s • N = - ∂ϕ I ∂n sur Γ, (-ω 2 M + K)s -ρω 2 Γ ϕN dγ = ρω 2 Γ ϕ I N dγ , lim R→∞ Σ R ∂ϕ ∂n -iν ϕ 2 dγ = 0, ( 3 

Découplage par linéarité

Il est possible d'éviter la résolution du système couplé (3.69) en résolvant séparément le problème de diffraction pour lequel le corps est fixe, et les problèmes de rayonnement pour lesquels le corps est animé d'un mouvement d'amplitude unité selon chacun de ses six degrés de liberté. Soient donc les problèmes suivants :

                 ∆ϕ 0 = 0 dans Ω, ∂ϕ 0 ∂x 3 -νϕ 0 = 0 sur SL, ∂ϕ 0 ∂n = - ∂ϕ I ∂n surΓ, lim R→∞ Σ R ∂ϕ 0 ∂n -iνϕ 0 2 dγ = 0, (3.70) et, pour i = 1, 6                  ∆ϕ i = 0 dans Ω, ∂ϕ i ∂x 3 -νϕ i = 0 sur SL, ∂ϕ i ∂n = N i surΓ, lim R→∞ Σ R ∂ϕ i ∂n -iνϕ i 2 dγ = 0.
(3.71)

Il s'agit en fait de 7 problèmes de même nature: seule la condition aux limites sur Γ change ; elle revient à ∂ϕ/∂n = f pour 7 fonctions f particulières. La solution ϕ du problème (3.69) est alors de la forme

ϕ = ϕ 0 + 6 i=1 s i ϕ i , (3.72)
d'où on déduit que les s i sont solutions du système matriciel suivant :

-

ω 2 M + K s -ρω 2 6 i=1 s i Γ ϕ i N dγ = ρω 2 Γ (ϕ 0 + ϕ I )N dγ. (3.73)
Une façon habituelle de récrire ce système consiste à séparer les parties réelle et imaginaire du terme associé au torseur des efforts de pression hydrodynamique ; on pose

ρω 2 6 i=1 s i Γ ϕ i N dγ = ω 2 M a (ω) -iωC(ω) s,
où M a (ω) et C(ω) (qui dépendent des ϕ i ) sont appelées respectivement les matrices de masses ajoutées et d'amortissement. Le système (3.73) prend alors la forme

-ω 2 (M + M a (ω)) -iωC(ω) + K s = ρω 2 Γ (ϕ 0 + ϕ I )N dγ.
Chapitre 4

La résolvante du problème d'hydrodynamique

Dans ce Chapitre, nous traitons du problème couplé du mouvement sur la houle dont les équations (3.69), ont été établies au Chapitre 3 ; si nous posons ν 0 = ω 2 /g, nous obtenons le système suivant:

Trouver

ϕ défini sur Ω et s ∈ C 6 tels que ∆ϕ = 0 dans Ω, ∂ϕ ∂x 3 -ν 0 ϕ = 0 sur SL, ∂ϕ ∂n + ν 1/2 0 √ g (s • N ) = - ∂ϕ I ∂n sur Γ, (-ν 0 gM + K) s + ρν 1/2 0 √ g Γ ϕN dγ = -ρ ν 1/2 0 √ g Γ ϕ I N dγ . lim r→∞ Σ r ∂ϕ ∂n -iν 0 ϕ 2 dγ = 0. (4.1)
De même qu'au Chapitre 2 qui traite de l'acoustique, l'étude des résonances du problème (4.1) débute par celle du cas où ν 0 est remplacé d'un nombre complexe.

Le problème dissipatif

Il s'agit donc du problème suivant, où ν est un nombre complexe de partie imaginaire positive:

Trouver ϕ défini sur Ω et s ∈ C 6 tels que ∆ϕ = 0 dans Ω, ∂ϕ ∂x 3 -νϕ = 0 sur SL,

∂ϕ ∂n + ν 1/2 √ g (s • N ) = - ∂ϕ I ∂n sur Γ, (-νgM + K) s + ρν 1/2 √ g Γ ϕN dγ = -ρ ν 1/2 √ g Γ ϕ I N dγ . (4.2) 67
Nous démontrerons encore qu'il s'agit là d'un problème coercif, mais le fait qu'il soit posé dans un demi-espace et que les ondes de gravité se manifestent sous la forme d'une condition de Fourier portant sur la surface libre, en rendent l'étude plus difficile. En particulier la solution ne peut être cherchée dans H 1 (Ω), contrairement au cas de la profondeur finie, où une inégalité de Poincaré permet d'estimer u 2 H 1 (Ω) à l'aide de |u| 2 1,Ω + u 2 L 2 (SL) ; on sera donc conduit à chercher la solution dans un espace de Sobolev à poids autorisant un comportement moins décroissant au voisinage de l'infini.

Espaces fonctionnels Définition 4.1 Notons

Ω r = Ω ∩ B r , Ω r = Ω ∩ B r c S r = SL ∩ B r , S r = SL ∩ B r c ainsi que, avec ρ = x , pour Ω ⊂ R 3 W 1 0 (Ω) = u ∈ D (Ω) 1 + ρ 2 -1/2 u(x) ∈ L 2 (Ω), ∇u ∈ L 2 (Ω) 3 , (4.3) pour Ω ⊂ R 2 W 1 0 (Ω) = u ∈ D (Ω) 1 + ρ 2 -1/2 Log(2 + ρ 2 ) -1 u(x) ∈ L 2 (Ω), ∇u ∈ L 2 (Ω) 3 .
(4.4)

On montre classiquement ( [Dautray-1984]) que W 1 0 (Ω) est un espace de Hilbert pour la norme du graphe.

Notons également

W 1 0 (Ω r ) = u ∈ W 1 0 (Ω r ) u |Γ = 0 et D(Ω r ) = u ∈ W 1 0 (Ω r ) u ∈ D(B r c ) . Lemme 4.2 L'ensemble D(Ω r ) est dense dans W 1 0 (Ω r ).
Démonstration. Un changement d'échelle permet tout d'abord de se ramener au cas où

r = 1. Soit donc u ∈ W 1 0 (Ω 1 ). Notons θ une fonction de C ∞ [0, +∞[ qui vérifie 0 ≤ θ ≤ 1, θ = 1 dans (0, 1) et Supp θ ⊂ (-2, 2); posons alors χ(x) = θ( x ), χ k (x) = χ(x/k) et u k = χ k u,
on aura u k ∈ D(Ω 1 ). Dans la suite nous montrerons que u k → u dans W 1 0 (Ω 1 ).

Dans le cas tridimensionnel, on aura

(1 + ρ 2 ) -1/2 (u -u k ) 2 L 2 (Ω 1 ) = Ω 1 |1 -χ k | 2 (1 + ρ 2 ) -1 |u| 2 ,
qui tend vers 0 quand k → +∞, en vertu du théorème de convergence dominée.

On aura également

∇(u -u k ) 2 (L 2 (Ω 1 )) 2 = Ω 1 ∇u 2 |1 -χ k | 2 + Ω k \Ω 2k |u| 2 ∇χ k 2 ,
la première intégrale tend vers 0 comme précédemment ; traitons la seconde: on aura

Ω k \Ω 2k |u| 2 ∇χ k 2 = C Ω k \Ω 2k 1 + ρ 2 k 2 |u| 2 1 + ρ 2 ≤ ( 1 k 2 + 4) Ω k |u| 2 (1 + ρ 2 ) -1 ≤ C u 2 W 1 0 (Ω )
qui tend vers 0 quand k → +∞, toujours en vertu du théorème de convergence dominée.

Dans le cas bidimensionnel le choix précédent de la fonction de troncature ne permet pas de démontrer la convergence du gradient, et nous serons amenés à en changer: nous poserons Θ

(ρ) = 1 -θ(ρ) et χ k (ρ) = Θ k Log ρ pour ρ > 1, et χ k (ρ) = 1 pour ρ ≤ 1.
nous aurons Suppχ k ⊂ [e k/2 , e k ] dès que k ≥ 2. Il est facile de constater que

|χ k (ρ)| = Θ L ∞ (0,+∞) k ρ(Log ρ) 2 ≤ M ρ Log ρ puisque 1 ≤ k(Log ρ) -1 ≤ 2 pour ρ ∈ [e k/2 , e k ].
La démonstration de la convergence de (1 + ρ 2 ) -1/2 (Log(2 + ρ 2 )) -1 (u k -u) vers 0 dans L 2 (Ω 1 ) ne présente pas de difficulté particulière ; en ce qui concerne le gradient, on aura

Ω e k/2 \Ω e k |u| 2 ∇χ k 2 ≤ M Ω e k/2 \Ω e k (1 + ρ 2 )(Log(2 + ρ 2 )) 2 ρ 2 (Log ρ) 2 |u| 2 (1 + ρ 2 )(Log(2 + ρ 2 )) 2 ≤ C Ω e k/2 |u| 2 (1 + ρ 2 )(Log(2 + ρ 2 )) 2
qui tend vers 0 comme dans le cas tridimensionnel. Démonstration. Il nous suffira de montrer que

u W 1 0 (Ω r ) ≤ C |u| 1,Ω r ∀u ∈ W 1 0 (Ω r ).
Commençons par le cas bidimensionnel ; en vertu du Lemme 4.2, on pourra se contenter de démontrer l'inégalité qui précède pour des fonctions u ∈ D(Ω r ). En coordonnées cylindriques, on aura

u(x)( x Log x ) -1 2 L 2 (Ω r ) = +∞ r ρ ρ 2 |Log ρ| 2 dρ 0 -π |u(ρ, θ)| 2 dθ = 0 -π dθ +∞ r |u(ρ, θ)| 2 dρ ρ |Log ρ| 2 ≤ 4 0 -π dθ +∞ r ρ ∂u ∂ρ 2 dρ = 4 Ω r ∂u ∂ρ 2 ≤ 4 |u| 2 1,Ω r ,
en vertu de l'inégalité de Hardy (4.6) ci-dessous ; l'inégalité annoncée en découle.

Dans le cas tridimensionnel, notons S - 2 la portion de la sphère unité de cote négative ; on aura de même

u(x) x -1 2 L 2 (Ω r ) = +∞ r dρ ρ 2 S - 2 ρ 2 |u(ρ, σ)| 2 dσ = S - 2 dσ +∞ r |u(ρ, σ)| 2 dρ ≤ 4 S - 2 dσ +∞ r ρ 2 ∂u ∂ρ 2 dρ = 4 Ω r ∂u ∂ρ 2 ≤ 4 |u| 2 1,Ω r , d'après (4.5).

Lemme 4.4 (Inégalités de Hardy

) Si r est positif et v ∈ C ∞ 0 (r, +∞) alors +∞ r |v(ρ)| 2 dρ ≤ 4 +∞ r ρ 2 |v (ρ)| 2 dρ (4.5) et +∞ r |v(ρ)| 2 dρ ρ |Log ρ| 2 ≤ 4 +∞ r ρ |v (ρ)| 2 dρ (4.6) Démonstration. On aura en effet +∞ r |v(ρ)| 2 dρ = +∞ r dρ dρ |v(ρ)| 2 dρ = - +∞ r 2ρ v(ρ) v (ρ) dρ ≤ +∞ r |v(ρ)| 2 dρ 1/2 +∞ r 4ρ 2 v (ρ) 2 dρ 1/2 soit +∞ r |v(ρ)| 2 dρ 1/2 ≤ +∞ r 4ρ 2 v (ρ) 2 dρ 1/2 ou encore l'inégalité (4.5). +∞ r |v(ρ)| 2 dρ ρ |Log ρ| 2 = +∞ r d dρ 1 Log ρ |v(ρ)| 2 dρ = - +∞ r 2 Log ρ v(ρ) v (ρ) dρ ≤ +∞ r |v(ρ)| 2 dρ ρ |Log ρ| 2 1/2 +∞ r 4ρ v (ρ) 2 dρ 1/2 soit +∞ r |v(ρ)| 2 dρ ρ |Log ρ| 2 1/2 ≤ +∞ r 4ρ v (ρ) 2 dρ 1/2
ou encore l'inégalité (4.6).

Lemme 4.5 La norme

[u] Ω ρ = |u| 2 1,Ω ρ + u 2 L 2 (S ρ ) 1/2
est équivalente à celle de H 1 (Ω ρ ).

Démonstration. Puisque Ω ρ est borné, on peut utiliser l'inégalité de Poincaré-Friedrichs (Théorème B.14) :

|u| 2 1,Ω ρ + u 2 L 2 (S ρ ) ≥ |u| 2 1,Ω ρ + 1 S ρ S ρ u dγ 2 ≥ min 1, 1 S ρ u 2 H 1 (Ω ρ ) .
L'inégalité inverse est évidente.

On posera

W = u ∈ W 1 0 (Ω) u |SL ∈ L 2 (SL) (4.7) Proposition 4.6 La norme [u] W = |u| 2 1,Ω + u 2 L 2 (SL) 1/2 (4.8)
est une norme sur W, équivalente à la norme du graphe.

Démonstration.

Il nous suffira de démontrer qu'il existe C > 0, telle que

u W ≤ C [u] W .
On raisonne par l'absurde, et on admet donc l'existence de u n ∈ W telle que

u n = 1 et [u n ] < 1 n ;
il en résulte déjà que

u n|SL → 0 dans L 2 (SL). (4.9) Considérons la fonction χ ∈ C ∞ (R n ), nulle à l'extérieur de B 2r , identique à 1 sur B r , et telle que 0 ≤ χ(x) ≤ 1, ∀x ∈ R n . On aura u n = χu n + (1 -χ)u n , et par conséquent u n W 1 0 (Ω) ≤ χu n W 1 0 (Ω) + (1 -χ)u n W 1 0 (Ω) ≤ C u n H 1 (Ω 2r ) + (1 -χ)u n W 1 0 (Ω r ) (4.10)
On peut appliquer le Lemme 4.5 avec ρ = 2r, il en résulte que

u n 2 H 1 (Ω 2r ) ≤ C |u| 2 1,Ω 2r + u 2 L 2 (S 2r ) ≤ C [u n ] 2 W (4.11)
Par ailleurs, en vertu du Lemme 4.3, on aura

(1 -χ)u n f W 1 0 (Ω r ) ≤ C |(1 -χ)u n | 1,Ω r ≤ C |u n | 1,Ω r + u n L 2 (Ω 2r) ≤ C [u n ] W .
En vertu de la formule (4.10), il en résulte que u n → 0 dans W 1 0 (Ω), et d'après (4.9) que u n → 0 dans W, ce qui constitue une contradiction.

Formulation variationnelle

Nous disposons maintenant des outils nécessaires pour donner du problème (4.2) une formulation variationnelle:

Trouver X ∈ W × C 6 tel que ∀Y ∈ W × C 6 , on ait a(X, Y ) = (Y ), (4.12) avec X = ϕ s Y = ψ t a(X, Y ) = Ω ∇ϕ • ∇ψ -ν SL ϕ ψ dγ +ν 1/2 √ g Γ (s • N ) ψ dγ + Γ ϕ N • t dγ + 1 ρ { Ks • t -νg Ms • t } (Y ) = - Γ ∂ϕ I ∂n ψ dγ -ρν 1/2 √ g Γ ϕ I N • t dγ (4.13)
Théorème 4.7 Si Im ν = 0, le problème (4.12) est bien posé.

Démonstration. Nous montrerons que la forme sesquilinéaire ν -1/2 a est coercitive.

On a tout d'abord

ν -1/2 a(X, X) = ν -1/2 Ω |∇ϕ| 2 + 1 ρ (Ks • s) -ν 1/2 SL |ϕ| 2 dγ + g ρ (Ms • s) + √ g Γ (s • N ) ϕ dγ + Γ ϕ (N • s) dγ comme K et M sont symétriques, il en résulte que Im ν -1/2 a(X, X) = Im ν -1/2 Ω |∇ϕ| 2 + 1 ρ (Ks • s) -Im ν 1/2 SL |ϕ| 2 dγ + g ρ (Ms • s) Comme de plus ν -1/2 = ν 1/2 |ν| -1 , soit par conséquent Im ν -1/2 = -Im ν 1/2 |ν| -1 , il en résulte que |a(X, X)| ≥ Im ν 1/2 min(|ν| -1/2 , |ν| 1/2 ) × Ω |∇ϕ| 2 + SL |ϕ| 2 dγ + 1 ρ ((Ks • s) + g (Ms • s))
Nous avons vu que M est définie positive pour peu que toute la masse du navire ne soit pas concentrée sur un segment rectiligne, et que K est semi-définie positive ; en vertu de la proposition 4.6, il en résulte que

|a(X, X)| ≥ C ϕ 2 W + s 2 C 6 = X 2 W ×C 6 .
Le théorème de représentation de Riesz permet alors de mettre le problème (4.12) sous la forme

(I + S(ν))X = F (ϕ I , ν) dans W × C 6 , (4.14) avec (S(ν)X, Y ) W ×C 6 = (ν + 1) SL ϕ ψ dγ +ν 1/2 √ g Γ (s • N ) ψ dγ + Γ ϕ N • t dγ + 1 ρ ( Ks • t -νg Ms • t ) -s • t (4.15) et (F (ϕ I , ν), Y ) W ×C 6 = (Y ) (4.16)
Définition 4.8 Le théorème 4.7 montre que, pour Im (ν) = 0, I + S(ν) est inversible dans W × C 6 . On appelle résolvante l'opérateur

R(ν) = (I + S(ν)) -1 : W × C 6 -→ W × C 6 .
(4.17)

Réduction à un domaine borné

Comme dans le cas de l'acoustique, la principale difficulté pour l'étude de la dépendance de R(ν) vis-à-vis de ν découle du fait que la limite de R(ν)F (ϕ I , ν) n'appartient plus à W × C 6 quand ν tend vers l'axe réel positif. Nous serons donc amenés à donner de (4.2) une formulation mieux adaptée qui permette un contrôle précis du comportement asymptotique de R(ν)F (ϕ I , ν) au voisinage de l'infini ; nous réduirons ainsi le problème à un domaine borné en utilisant la méthode de couplage entre formulation variationnelle et représentation intégrale.

Comme notre objectif consiste à représenter le comportement à l'infini du potentiel, il nous suffira dans un premier temps de considérer un problème 

La solution élémentaire

Notons V = {x | x 3 < 0 } et S = {x | x 3 = 0 } .
Notre première tâche consistera à résoudre le problème (4.18) dans le cas simplifié où Ω = V, et le second membre est remplacé par une mesure de Dirac ; on résoudra donc

Trouver G ν (x, z) défini sur V tel que ∆ z G ν (x, z) = δ x dans V, ∂G ν (x, z) ∂z 3 -ν G ν (x, z) = 0 sur S. (4.19)
Notons tout de suite que l'invariance du problème par translation horizontale nous permet de choisir les axes de coordonnées de telle façon que les coordonnées horizontales de z soient nulles.

Le cas bidimensionnel

Par souci de simplicité, nous commencerons par traiter le cas bidimensionnel ; seules des modifications modestes, telle l'utilisation de la transformée de Hankel à la place de la transformée de Fourier, seront nécessaires pour traiter le cas tridimensionnel. Dans le présent paragraphe nous supposerons donc que G(x, z) est invariante dans la direction z 2 , ainsi bien entendu que la donnée δ x . Notre outil de base sera la transformation de Fourier dans la direction horizontale, dont nous rappelons ici la définition:

f (ζ, z 3 ) = 1 √ 2π +∞ -∞ e -iz 1 ζ f (z 1 , z 3 ) dz 1
Notons x le symétrique de x par rapport à S, c'est-à-dire le point de coordonnées (x 1 , -x 3 ), et remarquons que la fonction

E(x, z) = 1 2π (Log x -z -Log x -z ) (4.20)
est une solution élémentaire du Laplacien dans V :

∆ z E(x, z) = δ x .
Posons alors

H ν (x, z) = G ν (x, z) -E(x, z), (4.21) on aura ∆ z H ν (x, z) = 0 dans V, ∂H ν (x, z) ∂z 3 -νH ν (x, z) = - ∂E(x, z) ∂z 3 sur S, ∂H ν (x, z) ∂z 3 → 0 quand z 3 → -∞, (4.22) et par conséquent ∂ 2 Ĥν ∂z 2 3 -ζ 2 Ĥν = 0 pour z 3 < 0, ∂ Ĥν ∂z 3 -ν Ĥν = - ∂ Ê ∂z 3 pour z 3 = 0, ∂ Ĥν ∂z 3 → 0 quand z 3 → -∞.
(4.23)

Calculons le second membre de ce système d'équations:

∂E(x, z) ∂z 3 = 1 2π z 3 -x 3 x -z 2 - z 3 + x 3 x -z 2 et, en z 3 = 0, ∂E(x, z) ∂z 3 z 3 =0 = - 1 π x 3 (x 1 -z 1 ) 2 + x 2 3 .
Lemme 4.9 Notons F la transformation de Fourier vis-à-vis de x, pour tout a > 0, on a

F a a 2 + z 2 = π 2 e -a|ζ| .
Démonstration. Il est plus simple de démontrer que

F -1 e -a|ζ| = 2 π a a 2 + z 2 : on aura 1 √ 2π +∞ -∞ e izζ e -a|ζ| dζ = 1 √ 2π +∞ 0
e izζ e -aζ + e -izζ e -aζ dζ

= 2 π Re +∞ 0 e (iz-a)ζ dζ = 2 π Re e (iz-a)ζ iz -a +∞ 0 = 2 π Re -1 iz -a = 2 π a a 2 + z 2 .
Posons alors a = -x 3 , et choisissons les coordonnées telles que x 1 = 0, il en résulte que

∂ Ê ∂z 3 = 1 2π e x 3 |ζ| .
Il est alors aisé de résoudre les équations (4.23), on obtient

Ĥν = A(x, ζ) e z 3 |ζ| , et comme - 1 √ 2π e x 3 |ζ| = - ∂ Ê ∂z 3 = ∂ Ĥν ∂z 3 -ν Ĥν z 3 =0 = (|ζ| -ν)A(x, ζ), soit A(x, ζ) = - 1 √ 2π e x 3 |ζ| |ζ| -ν , et par conséquent Ĥν (x, ζ, z 3 ) = - 1 √ 2π e (x 3 +z 3 )|ζ| |ζ| -ν . (4.24)
Proposition 4.10 La solution élémentaire G ν de l'équation (4.18) est donnée par

G ν = H ν + E, (4.25) avec H ν (x, z) = - 1 2π +∞ -∞ e -i(x 1 -z 1 )ζ e (x 3 +z 3 )|ζ| |ζ| -ν dζ = - 1 π +∞ 0 cos ((x 1 -z 1 )ζ) e (x 3 +z 3 )ζ ζ -ν dζ.
(4.26)

Démonstration. D'après (4.24), pour x 1 = 0, on a

H ν (x, z) = - 1 2π +∞ -∞
e iz 1 ζ e (x 3 +z 3 )|ζ| |ζ| -ν dζ, la formule annoncée s'en déduit par translation de x 1 du système d'axes.

Remarque 4.11 En vertu des formules (4.20) et (4.26), la fonction de Green est symétrique:

G ν (x, z) = G ν (z, x).
On peut donner de H ν (x, z) des expressions alternatives, rendant en particulier aisée l'étude de son comportement quand z → ∞. Remarquons déjà que H ν est paire en x 1 -z 1 ; on aura

H ν = H + ν + H - ν (4.27) avec H + ν (x, z) = - 1 2π +∞ 0 e ζZ ζ -ν dζ H - ν (x, z) = - 1 2π +∞ 0 e ζZ ζ -ν dζ, où Z = (x 3 + z 3 ) + i |x 1 -z 1 | . (4.28)
Notons alors θ un angle compris entre 0 et π/2, avec tan θ > Im ν/ Re ν, on aura en vertu du théorème des résidus,

H + ν (x, z) = -ie νZ - e iθ 2π L (0) ν (θ, Z) H - ν (x, z) = - e -iθ 2π L (0) ν (-θ, Z), où L (n) ν (θ, Z) = +∞ 0 t n e te iθ Z dt te iθ -ν (4.29)
Lemme 4.12 Si la fonction f est régulière et si α > 0, alors

+∞ 0 f (t) e -tα dt = f (0) α + O(α -2 ).
Démonstration.

On aura en effet

f (t) = f (0) + t 0 f (z) dz, et par conséquent A 0 f (t) e -tα dt = f (0) A 0 e -tα dt + A 0 e -tα dt t 0 f (z) dz = f (0) α 1 -e -Aα + A 0 e -tα dt t 0 f (z) dz. Mais A 0 e -tα dt t 0 f (z) dz ≤ sup z∈(0,A) f (z) A 0 t e -tα dt = sup z∈(0,A) f (z) 1 -e -Aα α 2 - Ae -Aα α ;
si on suppose que A = α -1/2 , par exemple, il en résulte que

A 0 f (t) e -tα dt = f (0) α + O(α -2 ).
Par ailleurs, on a

+∞ A f (t) e -tα dt ≤ e -Aα/2 +∞ A f (t) e -tα/2 dt ;
le développement annoncé en découle.

De la formule (4.29) on déduit alors que H ± ν (x, z) ainsi que ses dérivées tendent vers 0 comme z -1 quand z → ∞. Proposition 4.13 Pour Im ν = 0, G ν ∈ W 1 0 (V) ∩ L 2 (S) en dehors d'un voisinage de z = x.

Démonstration. En effet il est facile de constater que cette propriété est vérifiée par E; les formules (4.21) et (4.27) permettent alors de conclure.

Le cas tridimensionnel

Nous utilisons maintenant la transformation de Hankel dans la direction horizontale, dont nous rappelons ici la définition:

φ(ρ, z 3 ) = +∞ 0 r J 0 (ρr) ϕ(r, z 3 ) dr; si f (z 1 , z 2 , z 3 ) = ϕ(r, z 3 ), avec r = (z 2 1 + z 2 2 ) 1/2 alors f (ζ 1 , ζ 2 , z 3 ) = 1 2π +∞ -∞ e -i(z 1 ζ 1 +z 2 ζ 2 ) f (z 1 , z 2 , z 3 ) dz 1 dz 2 = φ(ρ, z 3 ), avec ρ = (ζ 2 1 + ζ 2
2 ) 1/2 . Notons x le symétrique de x par rapport à S, c'est-à-dire le point de coordonnées (x 1 , x 2 , -x 3 ), et remarquons que la fonction

E(x, z) = - 1 4π 1 x -z - 1 x -z (4.30)
est une solution élémentaire du Laplacien dans V :

∆ z E(x, z) = δ x .
Si nous posons, comme en (4.21),

H ν (x, z) = G ν (x, z) -E(x, z), (4.31)
les équations (4.22) restent valables, et par conséquent

∂ 2 Hν ∂z 2 3 -ρ 2 Hν = 0 pour z 3 < 0, ∂ Hν ∂z 3 -ν Hν = - ∂ Ẽ ∂z 3 pour z 3 = 0, ∂ Hν ∂z 3 → 0 quand z 3 → -∞.
(4.32)

Calculons le second membre:

∂E(x, z) ∂z 3 = 1 4π z 3 -x 3 x -z 3 - z 3 + x 3 x -z 3 et, en z 3 = 0, ∂E(x, z) ∂z 3 z 3 =0 = - 1 2π x 3 ((x 1 -z 1 ) 2 + (x 2 -z 2 ) 2 + x 2 3 ) 3/2 .
Lemme 4.14 Notons H 0 la transformation de Hankel vis-à-vis de r, pour tout a > 0 on a

H 0 a (a 2 + r 2 ) 3/2 = e -aρ .
Démonstration. Il est plus simple de démontrer que 

H -1 0 e -aρ = a (a 2 + r 2 ) 3/2 .

On aura

mais π 0 dτ (ir cos τ -a) 2 = - a r 2 + a 2 π 0 dτ ir cos τ -a - ir r 2 + a 2 sin τ ir cos τ -a π 0 = - a i (r 2 + a 2 ) 3/2 Log i(r 2 + a 2 ) 1/2 tg τ 2 + ir -a i(r 2 + a 2 ) 1/2 tg τ 2 + a -ir) π 0 = πa (r 2 + a 2 ) 3/2 , et par conséquent H -1 0 e -aρ = a (r 2 + a 2 ) 3/2 .
Posons alors a = -x 3 , et choisissons les coordonnées telles que x 1 = x 2 = 0, il en résulte que

∂ Ẽ ∂z 3 = 1 2π e ρx 3 .
Il est alors aisé de résoudre les équations (4.32), on obtient Hν = A(x, ρ) e ρz 3 , et comme 

- 1 2π e ρx 3 = - ∂ Ẽ ∂z 3 = ∂ Hν ∂z 3 -ν Hν z 3 =0 = (ρ -ν)A(x, ρ), soit A(x, ρ) = - 1 2π e ρx 3 ρ -ν , et par conséquent Hν (x, ρ, z 3 ) = - 1 2π e ρ(x 3 +z 3 ) ρ -ν . ( 4 
G ν = H ν + E, (4.34) avec H ν (x, z) = - 1 2π +∞ 0 ρ J 0 (ρr) e ρ(x 3 +z 3 ) ρ -ν dρ , où r = (x 1 -z 1 ) 2 + (x 2 -z 2 ) 2 (4.35)
Démonstration. D'après (4.33), pour x 1 = x 2 = 0, on a

H ν (x, r, z 3 ) = - 1 2π +∞ 0 ρ J 0 (ρr) e ρ(x 3 +z 3 ) ρ -ν dρ,
la formule annoncée s'en déduit par translation de (x 1 , x 2 ) du système d'axes.

Remarque 4.16 En vertu des formules (4.30) et (4.35), la fonction de Green est symétrique:

G ν (x, z) = G ν (z, x).
On peut donner de H ν (x, z) des expressions alternatives: posons (4.36) on aura (4.37) où θ note un angle compris entre 0 et π/2, avec tan θ > Im ν/ Re ν. Il en résulte, en vertu du Lemme 4.12, que H ν (x, z) ainsi que ses dérivées tendent vers 0 comme z -2 quand z → ∞.

Z(τ ) = (x 3 + z 3 ) + ir cos τ,
H ν (x, z) = - 1 2π 2 π/2 0 dτ +∞ 0 ρ e ρZ(τ ) ρ -ν dρ + π/2 0 dτ +∞ 0 ρ e ρZ(τ ) ρ -ν dρ , = - iν π π/2 0 e νZ(τ ) dτ - e 2iθ 2π 2 π/2 0 L (1) ν (θ, Z(τ )) dτ - e -2iθ 2π 2 π/2 0 L (1) ν (-θ, Z(τ )) dτ,
Proposition 4.17

Pour Im ν = 0, G ν ∈ W 1 0 (V) ∩ L 2 (S) en dehors d'un voisinage de z = x.
Démonstration. En effet il est facile de constater que cette propriété est vérifiée par E, la formule (4.31) permet alors de conclure.

Les formules de représentation intégrale

Nous démontrons ici les formules de représentation intégrale relatives à l'hydrodynamique ; notons que cette démonstration s'applique également au cas de l'acoustique pour lequel nous nous sommes contentés d'énoncer les formules au Chapitre 2. Démonstration.

En domaine borné

ϕ(x) = Γ ϕ(z) ∂ ∂n z G ν (x, z) - ∂ϕ ∂n (z) G ν (x, z) dγ z pour x ∈ O, 0 = Γ ϕ(z) ∂ ∂n z G ν (x, z) - ∂ϕ ∂n (z) G ν (x, z) dγ z pour x ∈ Ω.
Remarquons tout d'abord, que

L ϕ(z) ∂ ∂n z G ν (x, z) - ∂ϕ ∂n (z) G ν (x, z) dγ z = 0, et par conséquent ∂O ϕ(z) ∂ ∂n z G ν (x, z) - ∂ϕ ∂n (z) G ν (x, z) dγ z = Γ ϕ(z) ∂ ∂n z G ν (x, z) - ∂ϕ ∂n (z) G ν (x, z) dγ z (4.40)
Dans le cas où x ∈ Ω, en vertu (4.40), et à l'aide de la formule de Green,

Γ ϕ(z) ∂ ∂n z G ν (x, z) - ∂ϕ ∂n (z) G ν (x, z) dγ z = O [∆ z G ν (x, z) ϕ(z) -G ν (x, z) ∆ϕ(z)] dγ z = 0.
Considérons donc le cas d'un point x ∈ O, et soit ρ 0 un nombre positif tel que

B ρ 0 (x) ⊂ O. Pour tout ρ < ρ 0 , on aura 0 = O [∆ z H ν (x, z) ϕ(z) -H ν (x, z) ∆ϕ(z)] dγ z + O\B ρ (x) [∆ z E(x, z) ϕ(x) -E(x, z) ∆ϕ(z)] dγ z = ∂O ϕ(z) ∂ ∂n z G ν (x, z) - ∂ϕ ∂n (z) G ν (x, z) dγ z + ∂B ρ (z) ϕ(z) ∂ ∂n z E(x, z) - ∂ϕ ∂n (z) E(x, z) dγ z , où n est la normale intérieure à B ρ (x). Il en résulte, d'après (4.40) Γ ϕ(z) ∂ ∂n z G ν (x, z) - ∂ϕ ∂n (z) G ν (x, z) dγ z = -ϕ(x) ∂B ρ (x) ∂E(x, z) ∂n z dγ z + ∂B ρ (x) (ϕ(x) -ϕ(z)) ∂E(x, z) ∂n z dγ z + ∂B ρ (x) ∂ϕ(z) ∂n E(x, z) dγ z .
(4.41)

Il est alors facile de constater que (4.45) où n est la normale extérieure à Ω.

lim ρ→0 ∂B ρ (x) |E(x, z)| dγ z = 0, et comme ∂B ρ (x) ∂ϕ(z) ∂n E(x, z) dγ z ≤ ∇ϕ L ∞ (B ρ 0 (x)) ∂B ρ (x) |E(x, z)| dγ z , il en résulte que lim ρ→0 ∂B ρ (x) ∂ϕ(z) ∂n E(x, z) dγ z = 0. (4.42) De même lim ρ→0 ∂Bρ(x) x -z ∂E(x, z) ∂n z dγ z = 0, et comme ∂B ρ (x) (ϕ(x) -ϕ(z)) ∂E(x, z) ∂n z dγ z ≤ ∇ϕ L ∞ (Bρ 0 (x)) ∂B ρ (x) x -z ∂E(x, z) ∂n z dγ z , il en résulte que lim ρ→0 ∂B ρ (x) (ϕ(x) -ϕ(z)) ∂E(x, z) ∂n z dγ z = 0. (4.43) Par ailleurs, comme ∆ z E(x, z) = δ x , pour ψ ∈ C ∞ 0 (O) telle que ψ |B ρ (x) = 1, on aura ∀ρ, 1 = ∆ z E(x, z), ψ(z) D (O),D(O) = E(x, z), ∆ψ(z) D (O),D(O) = O E(x, z) ∆ψ(z) = O\B ρ (x) E(x, z) ∆ψ(z) = O\B ρ (x) ∆ z E(x, z) ψ(z) + ∂B ρ (x) E(x, z) ∂ψ(z) ∂n dγ z - ∂B ρ (x) ∂E(x, z) ∂n z ψ(z) dγ z = - ∂B ρ (x) ∂E(x, z) ∂n z dγ z , soit ∂B ρ (x) ∂E(x, z) ∂n z dγ z = -1. ( 4 
ϕ(x) = Γ ϕ(z) ∂ ∂n z G ν (x, z) - ∂ϕ ∂n (z) G ν (x, z) dγ z pour x ∈ Ω, 0 = Γ ϕ(z) ∂ ∂n z G ν (x, z) - ∂ϕ ∂n (z) G ν (x, z) dγ z pour x ∈ D,
Démonstration. Notons B R la boule de rayon R, supposée assez grande pour contenir O.

Commençons par nous rapprocher de la situation précédente en définissant Φ R par

Φ R = 0 dans O, Φ R = ϕ dans Ω R , et Φ R = 0 dans Ω R .
(4.46)

La formule de représentation intégrale (4.39) appliquée à ϕ dans le domaine borné Ω R nous conduit à Nous définissons alors Θ R de la façon suivante : 

Φ R (x) = ξ(x) + ζ R (x), (4.47) avec ξ(x) = Γ ϕ(z) ∂ ∂n z G ν (x, z) - ∂ϕ ∂n (z) G ν (x, z) dγ z et ζ R (x) = S - R ϕ(z) ∂ ∂n z G ν (x, z) - ∂ϕ ∂n (z) G ν (x, z) dγ z . (4.48) Etudions la fonction ζ R , dans B - R elle vérifie ∆ζ R = 0 dans B - R ∂ζ R ∂n -νζ R = 0 sur L R (4.
Θ R = ζ R dans B - R , Θ R = ϕ -ξ dans Ω. ( 4 
(Ω R-2ε ) ∩ L 2 (S R-2ε ). Comme ϕ ∈ W et ζ R ∈ W 1 0 (B - R-ε ) ∩ L 2 (L R-ε ), il en résulte que Θ R ∈ W 1 0 (V) ∩ L 2 (S)
ϕ(x) = Γ σ(z) ∂ ∂n z G ν (x, z) -µ(z) G ν (x, z) dγ z , alors (i) ∆ϕ = 0, séparément dans Ω et O, (ii) ∂ϕ ∂n = νϕ sur S, (iii) Si V Γ est un voisinage de Γ et Ô = O \ V Γ , Ω = Ω \ V Γ , et SL = SL \ V Γ alors ϕ ∈ H 1 ( Ô), et ϕ ∈ W 1 0 ( Ω) ∩ L 2 ( SL),
Démonstration. En vertu du lemme 4.11, la formule donnant ϕ peut s'écrire sous la forme suivante:

ϕ(x) = Γ σ(z) ∂ ∂n x G ν (z, x) -µ(z)G ν (z, x) dγ z ;
des propriétés de G ν précédemment démontrées découlent alors les propriétés annoncées de ϕ, par dérivation sous le signe somme et développement asymptotique.

Le problème réduit

On a donc montré que la solution ϕ de (4.18), et par conséquent de (4.2), est justiciable de la représentation intégrale suivante:

ϕ = I Γ [ϕ, - ∂ϕ ∂n ; G ν ], (4.54) avec I Γ [ϕ, - ∂ϕ ∂n ; G ν ] (x) = Γ ϕ(z) ∂ ∂n z G ν (x, z) - ∂ϕ ∂n (z) G ν (x, z) dγ z . (4.55)
Il en résulte en particulier que, le long de toute frontière Σ entourant Γ, on a Le problème (4.59) a pour formulation variationnelle

Q λ ϕ(x) = Q λ I Γ [ϕ, - ∂ϕ ∂n ; G ν ] = Γ ϕ(z) ∂ ∂n z G λ ν (x, z) - ∂ϕ ∂n (z) G λ ν (x, z) dγ z , (4.56) avec Q λ χ = ∂χ ∂n + λχ |Σ et G λ ν (x, z) = Q λ x G ν (x, z). ( 4 
∂ϕ ∂n + ν 1/2 √ g (s • N ) = - ∂ϕ I ∂n sur Γ, (-νgM + K)s + ρν 1/2 √ g Γ ϕ N dγ = -ρν 1/2 √ g Γ ϕ I N dγ . Q λ ϕ (•) = Γ ϕ (z) ∂ ∂n z G λ ν (•, z) - ∂ϕ ∂n (z) G λ ν (•, z) dγ z sur Σ. ( 4 
Trouver u ∈ H 1 (D), tel que ∀v ∈ H 1 (D), b(u, v) = (µ + 1) (u, v) L 2 (L D ) , où b(u, v) = D ∇u • ∇ v + λ Σ u v dγ + L D u v dγ.
La forme sesquilinéaire b est coercive ; en effet

Re (b(u, u)) = D ∇u 2 + Re (λ) Σ |u| 2 dγ + L D |u| 2 dγ ≥ D ∇u 2 + 1 |L D | L D u dγ 2 ≥ C u 2 H 1 (D) ,
d'après l'inégalité de Poincaré-Friedrichs (Proposition B.14). La Proposition B.18 permet alors de conclure.

Pour (µ, u) respectivement valeur et vecteur propres, on aura

D ∇u 2 + λ Σ |u| 2 dγ = µ L D |u| 2 dγ et, par conséquent Im (λ) Σ |u| 2 dγ = Im (µ) L D |u| 2 dγ.
Nous noterons V (Σ, λ) l'ensemble, dénombrable, des valeurs propres du problème intérieur associé à (4.58): Sous forme variationnelle, le problème (4.58) a pour expression

∆ψ = 0 dans D = Ω ∩ (O ∪ Ω ), ∂ψ ∂n -νψ = 0 sur L D = L ∪ SL Q λ ψ = 0 sur Σ. ( 4 
(I + S (ν))X = F (ϕ I , ν) dans H 1 (Ω ) × C 6 , (4.61) avec (S (ν)X , Y ) H 1 (Ω )×C 6 = - Ω ϕ ψ -ν SL ϕ ψ dγ +ν 1/2 √ g Γ (s • N ) ψ dγ + Γ ϕ N • t dγ + 1 ρ { Ks • t -νg Ms • t } +λ Σ ϕ ψ dγ - Σ ψ (x) Γ ϕ (z) ∂ ∂n z G λ ν (x, z) dγ z dγ x , (4.62) et (F (ϕ I , ν), Y ) H 1 (Ω )×C 6 = - Γ ∂ϕ I ∂n ψ dγ -ν 1/2 √ g Γ ϕ I N • t dγ - Σ ψ (x) Γ ∂ϕ I ∂n (z) G λ ν (x, z) dγ z dγ x .
(4.63)

Les fréquences de diffusion

Il s'agit là encore d'étendre l'étude qui précède au cas des ν de partie imaginaire négative ou nulle ; comme dans le cas de l'acoustique nous utiliserons le Théorème de Steinberg, nous sommes par conséquent conduits à prolonger analytiquement G ν . Nous en profiterons pour démontrer que si ν 0 ∈ R + , alors

G ν 0 = lim ε→0 + G ν 0 +iε , (4.64)
vérifie la condition de rayonnement.

Prolongement analytique de la solution élémentaire

Les formules (4.29) dans le cas bidimensionnel, et (4.37) en tridimensionnel, montrent clairement la dépendance analytique de H ν vis-à-vis de ν, pour Re ν > 0, du moins. Nous consacrerons donc la fin de ce paragraphe à l'étude de la condition de rayonnement.

Proposition 4.23 La fonction de Green G ν 0 vérifie la condition de rayonnement (3.65).

Démonstration.

Le cas bidimensionnel

Dans le cas où ν = ν 0 ∈ R, on a

H + ν 0 (x, z) = -ie ν 0 Z - e iθ 2π L (0) ν 0 (θ, Z) H - ν 0 (x, z) = - e -iθ 2π L (0) ν 0 (θ, Z), avec Z = (x 3 + z 3 ) + i |x 1 -z 1 | et L (n) ν 0 (θ, Z) = +∞ 0 t n e te iθ Z dt te iθ -ν 0 , soit H ν 0 (x, z) = -ie ν 0 Z - 1 π Re e iθ L (0) ν 0 (θ, Z) . (4.65)
On aura donc

∂G ν 0 (x, z) ∂ |z 1 | -iν 0 G ν 0 (x, z) = ∂E(x, z) ∂ |z 1 | -iν 0 E(x, z) + ∂H ν 0 (x, z) ∂ |z 1 | -iν 0 H ν 0 (x, z), soit 1 2 ∂G ν 0 (x, z) ∂ |z 1 | -iν 0 G ν 0 (x, z) 2 ≤ ∂E(x, z) ∂ |z 1 | -iν 0 E(x, z) 2 + ∂H ν 0 (x, z) ∂ |z 1 | -iν 0 H ν 0 (x, z) 2 .
On aura d'une part 1 2

∂E(x, z) ∂ |z 1 | -iν 0 E(x, z) 2 ≤ ∂E(x, z) ∂ |z 1 | 2 + |ν 0 | 2 |E(x, z)| 2 , avec E(x, z) = 1 4π Log 1 - 4x 3 z 3 x -z 2 et ∂E(x, z) ∂ |z 1 | = 2 |x 1 -z 1 | π x 3 z 3 x -z 2 x
-z 2 ; ces deux fonctions sont de carré intégrable par rapport à z 3 et tendent vers 0 en décroissant quand |z 1 | → ∞; il en résulte que lim

|z 1 |→∞ 0 -∞ ∂E(x, z) ∂ |z 1 | -iν 0 E(x, z) 2 dz 3 = 0. De plus, ∂H ν 0 (x, z) ∂ |z 1 | = ν 0 e ν 0 Z - 1 π Re iν 0 e 2iθ L (1) ν 0 (θ, Z) iν 0 H ν 0 (x, z) = ν 0 e ν 0 Z - 1 π iν 0 Re e iθ L (0) ν 0 (θ, Z) , soit 1 2 ∂H ν 0 (x, z) ∂ |z 1 | -iν 0 H ν 0 (x, z) 2 ≤ ν 2 0 π 2 Im e 2iθ L (1) ν 0 (θ, Z) 2 + Re e iθ L (0) ν 0 (θ, Z)
et comme e te iθ Z = e t(cos θ(x 3 +z 3 )-sin θ|x 1 -z 1 |) ≤ e t cos θ(x 3 +z 3 ) le théorème de Lebesgue permet de conclure que lim

|z 1 |→∞ +∞ 0 L (n) ν 0 (θ, Z) 2 dz 3 = 0, et par conséquent lim |z 1 |→∞ 0 -∞ ∂H ν 0 (x, z) ∂ |z 1 | -iν 0 H ν 0 (x, z) 2 dz 3 = 0.

Le cas tridimensionnel

On aura tout d'abord

H ν 0 (x, z) = - iν 0 π π/2 0 e ν 0 Z(τ ) dτ - 1 π 2 Re e 2iθ π/2 0 L (1) ν 0 (θ, Z(τ )) dτ , (4.66) avec Z(τ ) = (x 3 + z 3 ) + ir cos τ.
De même qu'en bidimensionnel

E(x, z) = - 1 4π 4x 3 z 3 x -z x -z ( x -z + x -z ) et ∂E(x, z) ∂r = r π x 3 z 3 x -z 2 + x -z x -z + x -z 2 x -z 3 x -z 3 ( x -z + x -z ) ;
ces deux fonctions étant de carré intégrable par rapport à z 3 et tendant vers 0 en décroissant plus vite que 1/r quand r → ∞; il en résulte que

lim r→∞ Σ r ∂E(x, z) ∂r -iν 0 E(x, z) 2 dz 3 = 0.
Remarquons alors que

π/2 0 cos(s cos τ ) dτ = π 2 J 0 (s), et par conséquent π/2 0 e ν 0 Z(τ ) dτ = e ν 0 (x 3 +z 3 ) π/2 0 cos(ν 0 r cos τ ) dτ + i π/2 0 sin(ν 0 r cos τ ) dτ = π 2 e ν 0 (x 3 +z 3 ) (J 0 (ν 0 r) + iS 0 (ν 0 r)) , où S 0 (s) = 2 π π/2 0 sin(s cos τ ) dτ
est la fonction de Struve d'ordre 0. Il en résulte que

∂H ν 0 (x, z) ∂r = - iν 2 0 π J 0 (ν 0 r) + iS 0 (ν 0 r) - 1 π 2 Re iν 0 e 3iθ π/2 0 cos τ L (2) ν 0 (θ, Z(τ )) dτ iν 0 H ν 0 (x, z) = ν 2 0 π (J 0 (ν 0 r) + iS 0 (ν 0 r)) - 1 π 2 iν 0 Re e 2iθ π/2 0 L (1) ν 0 (θ, Z(τ )) dτ .
Si on effectue le même raisonnement qu'en bidimensionnel, on obtient

lim r→∞ Σr ∂H ν 0 (x, z) ∂ |z 1 | -iν 0 H ν 0 (x, z) 2 dz 3 = ν 2 0 π lim r→∞ 0 -∞ dz 3 J 0 (ν 0 r) + iS 0 (ν 0 r) + iJ 0 (ν 0 r) -S 0 (ν 0 r) 2 .
Etudions donc ce dernier terme: on a

J 0 = -J 1 et S 0 = 2 π -S 1 et J 0 (s) = 2 πs 1/2 cos(s - π 4 ) + O(s -3/2 ) J 1 (s) = 2 πs 1/2 cos(s - 3π 4 ) + O(s -3/2 ) S 0 (s) = 2 πs 1/2 cos(s - 3π 4 ) + 2 πs + O(s -3/2 ) S 1 (s) = 2 π + 2 πs 1/2 cos(s - 5π 4 ) + O(s -3/2 ), et par conséquent J 0 (ν 0 r) + iS 0 (ν 0 r) + iJ 0 (ν 0 r) -S 0 (ν 0 r) = J 0 (ν 0 r) + S 1 (ν 0 r) - 2 π + i S 0 (ν 0 r) -J 1 (ν 0 r) -S 0 (ν 0 r) = - 2i πν 0 r + O(r -3/2 ).
La conclusion en découle.

Autres expressions de la fonction de Green

Les formules (4.65) et (4.66) peuvent prendre diverses autres formes mieux adaptées à leur évaluation numérique.

Cas bidimensionnel

Posons τ = e iθ et notons C la demi-droite d'angle θ issue de l'origine du plan complexe, on aura

H ν 0 (x, z) = -ie ν 0 Z - 1 π Re C e τ Z dτ τ -ν 0 . (4.67)
On peut alors déformer le contour C de telle sorte qu'il se compose de deux portions de l'axe réel séparées par un demi-cercle de rayon ε centré en ν 0 parcouru dans le sens rétrograde: ∀ε > 0,

H ν 0 (x, z) = -ie ν 0 Z - 1 π Re ]0,ν 0 -ε[∪]ν 0 +ε,+∞[ e tZ dt t -ν 0 -Re ie ν 0 Z 0 π e εe iµ Z dµ , soit H ν 0 (x, z) = -i Re e ν 0 Z -Re 1 π Pf +∞ 0 e tZ dt t -ν 0 .
On pourra donc écrire

H ν 0 (x, z) = -ie ν 0 (x 3 +z 3 ) cos ν 0 |x 1 -z 1 | - 1 π Pf +∞ 0 e t(x 3 +z 3 ) cos t |x 1 -z 1 | t -ν 0 dt. (4.68)
On peut également opérer un changement de variables dans la formule (4.67), ce qui nous conduit, avec z = -Z(t -ν 0 ), à

C e τ Z dτ τ -ν 0 = e ν 0 Z ν 0 Z-CZ e -z z dz = e ν 0 Z E 1 (ν 0 Z)
où la fonction E 1 (Z) n'est autre que l'exponentielle intégrale (voir [Abramowitz-1972]) ; il en résulte que

H ν 0 (x, z) = -ie ν 0 Z - 1 π Re e ν 0 Z E 1 (ν 0 Z) (4.69)

Cas tridimensionnel

Remarquons tout d'abord que

+∞ 0 ρ J 0 (ρr) e ρ(x 3 +z 3 ) ρ -ν dρ = ν +∞ 0 J 0 (ρr) e ρ(x 3 +z 3 ) ρ -ν dρ + +∞ 0 J 0 (ρr) e ρ(x 3 +z 3 ) dρ, = ν +∞ 0 J 0 (ρr) e ρ(x 3 +z 3 ) ρ -ν dρ + 1 (r 2 + (x 3 + z 3 ) 2 ) 1/2 , car +∞ 0 J 0 (ρr) e ρ(x 3 +z 3 ) dρ = 1 π π 0 dτ +∞ 0 e ρ(ir cos τ +(x 3 +z 3 )) dρ = - 1 π π 0 dτ ir cos τ + (x 3 + z 3 ) = 1 (r 2 + (x 3 + z 3 ) 2 ) 1/2 .
Par conséquent

H ν 0 (x, z) = - ν 0 2π +∞ 0 J 0 (ρr) e ρ(x 3 +z 3 ) ρ -ν dρ - 1 2π x -z , = - ν 0 2π 2 π/2 0 dτ +∞ 0 e ρZ(τ ) ρ -ν 0 dρ + π/2 0 dτ +∞ 0 e ρZ(τ ) ρ -ν 0 dρ - 1 2π x -z , = - 1 2π x -z - iν 0 π π/2 0 e ν 0 Z(τ ) dτ - ν 0 π 2 Re π/2 0 dτ C e ξZ(τ ) dξ ξ -ν 0 = - 1 2π x -z - iν 0 2 e ν 0 (x 3 +z 3 ) (J 0 (ν 0 r) + iS 0 (ν 0 r)) - ν 0 π 2 Re π/2 0 e ν 0 Z(τ ) E 1 (ν 0 Z(τ )) dτ ; (4.70)
finalement on obtient

G ν 0 (x, z) = - 1 4π 1 x -z + 1 x -z - iν 0 2 e ν 0 (x 3 +z 3 ) (J 0 (ν 0 r) + iS 0 (ν 0 r)) - ν 0 π 2 Re π/2 0 e ν 0 Z(τ ) E 1 (ν 0 Z(τ )) dτ .
(4.71)

Le Prolongement analytique de la résolvante

Les résultats qui suivent sont l'exacte contrepartie de ceux précédemment démontrés dans le cadre de l'acoustique ; nous nous contenterons donc d'en esquisser les démonstrations. Proposition 4.24 L'opérateur S (ν), défini selon les formules (4.61) et (4.62), est compact sur H 1 (Ω ); de plus la fonction

ν S → S (ν) : C \ R -→ L(H 1 (Ω ) × C 6 , H 1 (Ω ) × C 6 ) est holomorphe.
Démonstration. Elle est analogue à celle de la Proposition 2.14: on a en effet

S (ν)X H 1 (Ω )×C 6 ≤ sup Y ∈H 1 (Ω )×C 6 C Y H 1 (Ω )×C 6 ϕ L 2 (Ω ) ψ L 2 (Ω ) + ϕ L 2 (SL ) ψ L 2 (SL ) + s C 6 ψ L 2 (Γ) + t C 6 ϕ L 2 (Γ) + s C 6 t C 6 + ϕ L 2 (Σ) ψ L 2 (Σ) + ϕ L 2 (Γ) ψ L 2 (Σ) ≤ C ϕ L 2 (Ω ) + ϕ L 2 (SL ) + ϕ L 2 (Γ) + ϕ L 2 (Σ) + s C 6 ≤ C ϕ H 2/3 (Ω ) + s C 6 ;
la compacité de S (ν) en résulte puisque Ω est borné et C 6 de dimension finie.

Définition 4.25 Nous noterons encore R (ν) la résolvante du problème réduit, soit

R (ν) = (I + S (ν)) -1 .
Corollaire 4.26 La fonction R (ν) se prolonge à C\R -en une fonction méromorphe : ses pôles sont les valeurs de ν ∈ C \ R -pour lesquelles I + S (ν) n'est pas inversible, soit encore -1 est valeur propre de l'opérateur compact S (ν). Lemme 4.29 Les pôles de P \ V (Σ, λ) sont de partie imaginaire négative ou nulle.

Démonstration. Supposons donc qu'un pôle ν de P \ V (Σ, λ) soit de partie imaginaire positive, ce qui implique que le problème (4.58) homogène admette une solution non nulle, soit (ϕ , s ). Selon la Proposition 4.22 et puisque ν ∈ V (Σ, λ), ϕ se prolonge à Ω tout entier en ϕ telle que (ϕ, s ) soit solution de (4.2). Comme (4.2) est bien posé selon le Théorème 4.7, il en résulte que cette solution, et par conséquent (ϕ , s ) est nulle ; ceci constitue une contradiction.

Montrons maintenant que malgré la dépendance relativement à Σ et λ de la construction que nous venons de réaliser, elle fournit malgré tout le prolongement analytique de la solution R(•)F (ϕ I , •) de (4.2).

Le prolongement analytique de la solution

Définition 4.30 Rappelons que P f note l'ensemble des pôles de ν → R (ν) F (f, ν).

Lemme 4.31 Les pôles de ν → R (ν) F (f, ν) sont des pôles de ν → R (ν) de partie imaginaire négative ou nulle, soit

P f ⊂ P ∩ {ν | Im ν ≤ 0} .
Démonstration. Elle est analogue à celle du Lemme 2.22 Lemme 4.32 Les pôles de ν → R (ν) F (f, ν) sont indépendants de λ, ce sont des pôles de ν → R (ν) de partie imaginaire négative, ce qui s'exprime également sous la forme

P f ⊂ P ∩ {ν | Im ν < 0 } .
Démonstration. La démonstration est similaire à celle du Lemme 2.22.

Remarque 4.33 En fait, pour certaines classes de formes de carènes, on peut montrer qu'un ν 0 réel positif ne peut être pôle de

ν → R (ν) F (f, ν).
Il s'agit de résultats non triviaux dûs à John [John-1950], Mazj'a ainsi que Simon et Ursell [Simon-1984] ; récemment, il a été découvert une classe de formes de carènes bidimensionnelles (de type catamaran) pour lesquelles il existe bien des pôles réels de R (ν) (cf Mac Iver [Mc Iver-1996]).

Proposition 4.34 Si ν * est un pôle de ν → R (ν) qui ne soit pas valeur propre du problème (4.60),

alors ∃f ∈ H 2 loc (Ω ) telle que ν * soit un pôle de ν → R (ν)F (f, ν), soit P ∩ V (Σ, λ) c = f ∈L 2 (Γ) P f .
Démonstration.

Montrons que si ν

* ∈ V (Σ, λ) est un pôle de R (ν), alors F (f, ν * ) ne peut appartenir à l'image de I + S (ν * ) pour tout f ∈ H 2 loc (Ω ). Supposons que ∀f ∈ H 2 loc (Ω ), F (f, ν * ) ∈ R(I + S (ν * )) = (N (I + S * (ν * )) ⊥ .
D'après la formule (4.62), nous avons

(S (ν)X , Y ) H 1 (Ω )×C 6 = - Ω ϕ ψ -ν * SL ϕ ψ dγ +ν * 1/2 √ g Γ s • N ψ dγ + Γ ϕ N • t dγ + 1 ρ Ks • t -ν * g Ms • t +λ Σ ϕ ψ - Σ ϕ (x) Γ ψ (y) ∂ ∂n y G λ ν * (x, y) dγ y dγ x , (4.72) Supposons maintenant que X ∈ N (I +S * (ν * )), alors ∀f ∈ H 2 loc (Ω ), (F (f, ν * ), X ) H 1 (Ω ) = 0, soit 0 = - Γ ∂f ∂n ϕ dγ -ν 1/2 * √ g Γ f N • s dγ - Σ ϕ (x) Γ ∂f ∂n (y) G λ ν (x, y) dγ y dγ x . ou encore, puisque G λ ν * (x, y) = G λ ν * (y, x), 0 = Γ ∂f ∂n (x) ϕ (x) - Σ ϕ (y) G λ ν * (x, y) dγ y dγ x ; +ν 1/2 * √ g Γ f N • s dγ.
Il en résulte que

ϕ (x) = Σ ϕ (y) G λ ν * (x, y) dγ y et 0 = N • s sur Γ. (4.73)
Mais, par ailleurs, ((I + S * (ν * )) X , Y ) H 1 (Ω )×C 6 = 0, et par conséquent, en vertu de la formule (4.72), ϕ est solution du problème suivant:

∆ϕ = 0 dans Ω , ∂ϕ ∂x 3 -ν * ϕ = 0 sur SL , ∂ϕ ∂n + λ ϕ = 0 sur Σ. ∂ϕ ∂n - ∂ ∂n Σ ϕ (y) G λ ν * (•, y) dγ y sur Γ, = 0 sur Γ (-ν * gM + K) s + ρν * 1/2 √ g Γ ϕ N dγ = 0.
Notons O l'intérieur de la carène ; la fonction La nullité de θ, et donc de ϕ , en découle puisque

θ(x) = Σ ϕ (y) G λ ν * (x,
ν * ∈ V (Σ, λ) et V (Σ, λ) = V (Σ, λ), ce qui prouve que N (I + S * (ν * )) = {0} et constitue une contradiction avec l'hypothèse. Nous avons donc démontré l'existence de f ∈ H 2 loc (Ω ) telle que F (f, ν * ) ∈ R(I + S (ν * )); par conséquent ν * est un pôle de R (ν)F (f, ν). Proposition 4.35 La fonction ν → R(ν)F (f, ν) : {ν | Im ν > 0} → H 1 loc (Ω) × C 6 se prolonge à C \ R -en
une fonction méromorphe dont les pôles coïncident avec ceux de ν → R (ν)F (f, ν), ce qui peut se traduire par l'expression suivante:

P f = P f où P f note l'ensemble des pôles de R(•)F (f, ν).

Démonstration.

Fixons λ et Σ, et posons X ν = R (ν)F (f, ν), avec X ν = (ϕ ν , s ν ); par ϕ ν nous désignerons la fonction égale à ϕ ν dans Ω et donnée par

ϕ ν (x) = Γ ϕ ν (y) ∂ ∂n y G ν (x -y) - ∂ϕ ν ∂n (y) G ν (x -y) dγ y dans Ω \ Ω . (4.74) Pour Im ν > 0 et ν ∈ V (Σ, λ), la Proposition (4.22) montre que (ϕ ν , s ν ) n'est rien d'autre que R(ν)F (f, ν); la formule (4.74) associée à l'holomorphie de la fonction G ν montre que ν → ϕ ν est holomorphe pour ν ∈ C \ (R -∪ P ). Il en résulte que (ϕ ν , s ν ) définit le prolongement analytique de R(ν)F (f, ν).
Si R (ν)F (f, ν) est holomorphe au voisinage de ν, alors la formule (4.74) montre que ϕ ν est également holomorphe, il en résulte que tout pôle du prolongement analytique de R(ν)F (f, ν) est également un pôle de R (ν)F (f, ν).

Réciproquement, si le prolongement analytique (ϕ ν , s ν ) de R(ν)F (f, ν) est holomorphe au voisinage de ν; alors comme (ϕ ν|Ω , s ν ) = R (ν)F (f, ν), ∀ν ∈ P , en vertu du principe du prolongement analytique, R (ν)F (f, ν) est holomorphe au voisinage de ν. Il en résulte que chaque pôle du prolongement analytique de R (ν)F (f, ν) est un pôle de celui de R(ν)F (f, ν).

De même qu'en acoustique, les pôles de R (ν) sont les valeurs de ν qui font de -1 une valeur propre de S (ν); ce sont donc les solutions du problème non-linéaire de valeurs propres suivant:

ν SL ϕ ψ dγ + g ρ Ms • t = Ω ∇ϕ • ∇ ψ + 1 ρ Ks • t +ν 1/2 √ g Γ (s • N ) ψ dγ + Γ ϕ N • t dγ +λ Σ ϕ ψ - Σ ψ (x) Γ ϕ (y) ∂ ∂n y G λ ν (x, y) dγ y dγ x . (4.75)
Théorème 4.36 Si Im λ > 0, alors

P ∩ {ν | Im ν > 0} = V (Σ, λ) et P ∩ {ν | Im ν ≤ 0 } = f ∈L 2 (Γ) P f .
Démonstration. Il suffit de remarquer qu'en vertu de l'hypothèse, d'après le Lemme 4.21, on a Les pôles de R (ν) de partie imaginaire négative forment l'ensemble des singularités de ν → R(ν)F (f, ν) susceptibles de se manifester pour une donnée f ou une autre ; ce sont les fréquences de résonance.

V (Σ, λ) ⊂ {ν | Im ν > 0 } .

La conclusion découle alors des

Le principe d'absorption limite

Proposition 4.37 Si ν 0 ∈ R + n'est pas un pôle de R (ν), alors la fonction R(ν 0 )F (f, ν 0 ) vérifie la condition de rayonnement sortante.

Démonstration. On a vu que

P f ⊂ P ∩ {ν | Im ν ≤ 0 } et par conséquent R(ν)F (f, ν) → R(ν 0 )F (f, ν 0 ) = (ϕ ν 0 , s ν 0 ) dans H 1 loc (Ω) × C 6 ;
compte tenu de la Proposition 4.23, la formule (4.74) permet alors de montrer que ϕ ν 0 vérifie la condition de rayonnement.

Corollaire A.3 Si V est un sous-espace fermé strict de l'espace de Hilbert H, alors il existe y unitaire dans H tel que d(y, V ) = 1.

Démonstration. Si on note z un vecteur de H n'appartenant pas à V et P la projection sur V, il suffit de poser

y = z -Pz z -Pz .
Définition A.4 L'opérateur linéaire T : H 1 -→ H 2 est dit borné si la quantité suivante, appelée alors norme de T, est finie:

T = sup x∈H 1 T x H 2 x H 1 (A.2) Lemme A.5 (i) On a également T = sup x H 1 =1 T x H 2 (A.3) (ii)
Un opérateur linéaire est continu si et seulement si il est borné.

Démonstration.

On a tout d'abord clairement T ≥ sup x =1 T x ; réciproquement si x ∈ H, on pose y = x/ x , et on aura y = 1 et T x / x = T y . Il en résulte que T ≤ sup y =1 T y .

Si T est continu en 0, alors ∀ε > 0, ∃η, x < η ⇒ T x < ε; on en déduit que T y < ε/η, ∀y vérifiant y = 1.

Réciproquement, si T est borné, alors T (x -y) ≤ T x -y , et par conséquent T est continue en y avec η = ε/ T . Définition A.6 Soit T un opérateur linéaire borné:

H 1 -→ H 2 , on appelle noyau de T : N (T ) = {x ∈ H | T x = 0 } image de T : R(T ) = {y ∈ H | ∃x ∈ H, y = T x }
Remarque A.7 Le sous-espace N (T ) est fermé en tant que image réciproque de {0} par un opérateur continu.

Définition A.8 Si E est un sous-ensemble de H, on appelle orthogonal de E et on note E ⊥ l'ensemble des éléments de H orthogonaux à tout élément de E.

Corollaire A.9 (complémentaire orthogonal) Si M est un sous-espace fermé de H, alors H = M ⊕ M ⊥ , c'est-à-dire M et M ⊥ sont des sous-espaces fermés dont l'intersection est réduite à {0} et qui ont pour somme H.

Démonstration.

Si E est un sous-ensemble de H, alors par linéarité du produit scalaire, E ⊥ est un sousespace de H. De plus il est fermé en tant que intersection des N x = {y ∈ H| (x |y ) = 0}, qui sont eux-mêmes fermés puisque noyaux des applications continues (x |• ) .

Si x ∈ M ∩ M ⊥ alors (x |x ) = 0, et par conséquent x = 0. Enfin si z ∈ H, alors d'après le Théorème A.2, on pourra écrire z = z 1 + z 2 avec z 1 = Pz ∈ M et z 2 = z -z 1 . Si y ∈ M et λ ∈ C, alors, puisque z 2 = d(z, M ), z 2 2 ≤ z -z 1 + λy = z 2 + λy 2 = z 2 2 + |λ| 2 y 2 + 2 Re (λ (y |z 2 )) et en choisissant λ = -(z 2 |y ) / y 2 , on obtient 0 ≤ - |(y |z 2 )| 2 y 2 , ce qui implique (y |z 2 ) = 0, soit z 2 ∈ M ⊥ .
Définition A.10 On appelle dual de H et on note H , l'ensemble des formes linéaires continues sur H. Il est canoniquement muni de la norme suivante qui fait de lui un espace complet:

Λ H = sup x∈H Λ, x H ,H x H . (A.4)
Corollaire A.11 (Théorème de représentation de Riesz) La formule suivante:

Λ, x = (x |y ) , (A.5)
définit une isométrie antilinéaire y → Λ : H -→ H .

Démonstration.

La formule A.5, où y est donné, définit en vertu de l'inégalité de Schwarz un élément de H tel que Λ H ≤ y H . Comme de plus

y 2 = (y |y ) = Λ, y ≤ Λ y , il en résulte que Λ = y .
Montrons réciproquement que tout élément de H est de la forme (A.5). Si Λ = 0, on prend y = 0; sinon on note M le noyau de Λ, c'est un sous-espace fermé strict de H, et par conséquent d'après le Corollaire A.9, il existe z = 0 appartenant à M

⊥ . Comme Λ, x z -Λ, z x ∈ M, ∀x ∈ H, il en résulte que Λ, x (z |z )-Λ, z (x |z ) = 0, et par conséquent (A.5) avec y = z Λ, z / z 2 .
Proposition A.12 (Riesz) Si H est un espace de Hilbert et si sa boule unité fermée B H est compacte, alors H est de dimension finie.

Démonstration.

La boule B H étant compacte, elle peut être recouverte par un ensemble fini de boules ouvertes de rayon 1/2, dont les centres seront notés x i , i = 1, k. Notons F l'espace vectoriel, de dimension finie, engendré par les x i ; nous montrerons que H = F.

Raisonnons par l'absurde et supposons le contraire, alors ∃x ∈ H\F. Comme F est fermé, car de dimension finie, ∃ε > 0, tel que B(x, ε)∩F =, et quitte à augmenter ε, B(x, 2ε)∩F = . Notons y un élément de B(x, 2ε) ∩ F et z = (x -y)/ x -y ; pour tout i on peut écrire

x = y + z x -y = y + x i x -y + (z -x i ) x -y , et comme y + x i x -y ∈ F on aura z -x i x -y > ε.
Si nous choisissons alors i, comme c'est possible par construction des x i , tel que z -x i ≤ 1/2, on en déduit que x -y > 2ε, ce qui constitue une contradiction.

Désormais T notera un opérateur linéaire borné sur H. Spectre discret de T : V(T ) = {λ ∈ C | N (S λ ) = {0} } , les éléments du spectre discret sont appelés valeurs propres, ceux de N (S λ ), vecteurs propres associés à λ.

Proposition A.14 Des vecteurs propres associés à des valeurs propres distinctes forment un système libre.

Démonstration. Raisonnons par récurrence, et admettons que les x i , i = 1, n -1 associés aux valeurs propres λ i forment un système libre. Si on admet alors que

x n = n-1 i=1 µ i x i , on aura T x n = n-1 i=1 λ i µ i x i , d'où λ n n-1 i=1 µ i x i = n-1 i=1 λ i µ i x i , soit n-1 i=1 (λ i -λ n )µ i x i = 0, ce qui implique µ i = 0, i = 1
, n -1, et par conséquent x n = 0 ; il s'agit là d'une contradiction. On a donc montré que les x i , i = 1, n forment un système libre.

A.2 Alternative de Fredholm

Définition A.15 On dit que l'opérateur T : H -→ H, est compact si T (B H ) est relativement compacte, c'est encore dire si de toute suite bornée de H on peut extraire une sous-suite dont l'image par T converge.

Remarque A.16 Notons que la somme de deux opérateurs compacts, le produit d'un opérateur compact par un scalaire non nul, le produit de deux opérateurs bornés dont l'un est compact, sont compacts.

Lemme A.17 Si T est compact et λ = 0, alors il existe C > 0 tel que

d(x, N (S λ )) ≤ C S λ x , ∀x ∈ H. Démonstration.
Commençons par remarquer qu'à condition de remplacer T par T /λ, il suffit de démontrer le Lemme pour λ = 1. On se contentera alors de noter S pour S 1 .

Raisonnons par l'absurde et supposons qu'il existe une suite

x n vérifiant d(x n , N (S)) ≥ n, avec Sx n = 1. Posons alors z n = x n -P(x n ) d(x n , N (S)
) , où P est l'opérateur de projection sur N (S) ; on aura z n = 1, et S(P)(x n ) = 0, et par conséquent

Sz n = 1 d(x n , N (S)) ≤ 1 n .
Comme z n est bornée, par compacité de T, il existe une sous suite extraite z n telle que T z n converge, soit vers z. On aura z n = (T + S)z n , par conséquent z n converge également vers z, dont il résulte que Sz = 0.

On a donc montré que z ∈ N (S), mais comme z n → z, et d(z n , N (S)) = z n = 1, on aboutit à une contradiction.

Théorème A.18 Si T est compact et λ = 0, alors (i) N (S λ ) est de dimension finie.

(ii) R(S λ ) est fermée.

Démonstration.

On remarque là aussi qu'il suffit de considérer le cas où λ = 1.

Il est tout d'abord clair que T (N (S) ∩ B H ) = N (S) ∩ B H , par conséquent N (S) ∩ B H est relativement compact dans H, et comme N (S) est fermé, on en déduit que la boule unité de N (S) est compacte. En vertu du Lemme A.12, on en déduit que N (S) est de dimension finie.

Soit maintenant x n ∈ H, supposons que la suite Sx n converge, soit vers y, nous allons construire x ∈ H tel que y = Sx, il en résultera que Sx ∈ R(S). Posons z n = x n -P(x n ), où P est comme précédemment l'opérateur de projection sur N (S). On aura z n = d(x n , N (S)), soit en vertu du Lemme A.17, z n ≤ C Sx n ; comme la suite Sx n converge, on en déduit que z n est bornée.

La compacité de T nous permet alors d'affirmer l'existence de la suite z n extraite de z n telle que T z n converge. Mais z n = (T + S)z n = T z n + Sx n ; il en résulte que z n possède une limite, soit x, et que x = T x + y, ou encore y = Sx.

Théorème A.19 Si T est compact, les seuls éléments non nuls de son spectre sont ses valeurs propres non nulles.

Démonstration.

Il est tout d'abord clair que toute valeur propre de T appartient à son spectre. Il nous suffira donc de démontrer que si λ = 0 n'est pas valeur propre, alors λ ∈ σ(T ), c'est encore dire que si S λ est injectif, alors il est surjectif et d'inverse continu.

Posons donc F n = R(S λ ) n , la suite F n est décroissante au sens large, on va montrer qu'elle est stationnaire au delà d'un certain rang. Au Théorème A.18 on a montré que chaque F n est fermé dans F n-1 pour la topologie induite ; si on admet que F n+1 F n , ∀n, alors, en vertu du Lemme A.3, il existe x n ∈ F n tel que

x n = 1 et d(x n , F n+1 ) = 1. Choisissons m < n, alors x n -x m ∈ F m et S λ (x n -x m ) ∈ F m+1 . On aura alors T x n -T x m = (λI -S λ )(x n -x m ) = -λ(x m -z m ), où z m = x n + 1 λ S λ (x n -x m )
appartient à F m+1 . On en déduit que T x n -T x m ≥ |λ| , ce qui est incompatible avec la compacité de T.

Montrons maintenant que S λ est surjective : soit y ∈ H, pour un certain N on aura

(S λ ) N y ∈ F N = F N +1 , c'est-à-dire qu'il existe x ∈ H tel que (S λ ) N y = (S λ ) N +1 x, soit (S λ ) N x -(S λ ) N -1 y ∈ N (S λ ).
Comme on a supposé que λ n'est pas valeur propre, on en déduit que (S λ ) N x = (S λ ) N -1 y, soit par récurrence S λ x = y ; la surjectivité de S λ en résulte.

Reste à montrer la continuité de (S λ ) -1 , c'est bien sûr une conséquence du théorème des homomorphismes de Banach, mais aussi plus simplement du Lemme A.17: soit y ∈ H, posons x = (S λ ) -1 y, on aura Notons enfin que σ(T )\ ] -1 n , 1 n [ est compact, puisque σ(T ) est borné ; en vertu du théorème de Bolzano-Weierstrass, il ne pourra donc contenir qu'un nombre fini de points. On en déduit que l'ensemble σ(T ) est dénombrable. Notons A un borné de H, par continuité de T * , T T * est compact ; c'est dire que de toute suite x n dans A, on peut extraire x n telle que T T * x n converge.

x = d(x, 0) = d(x, N (S λ )) ≤ C S λ x , soit (S λ ) -1 y ≤ C y .

A.3 L'opérateur adjoint

Considérons alors la suite T * x n , elle vérifie Remarque A.28 Ce théorème apporte une précision au cas (i) de l'alternative de Fredholm. 

T * (x m -x n ) 2 = (x m -x n |T T * (x m -x n ) ) ≤ x m -x n T T * (x m -x n ) ≤ C T T * (x m -x n ) ,
T z 2 = (T z |µu ) = (T (µz) |u ) = (T u |µz ) , soit T z 2 = 1 4 ((T (µz + u) |µz + u ) -(T (µz -u) |µz -u )) ≤ 1 4 α µz + u 2 + µz -u 2 ou encore T z 2 ≤ α 2 µ 2 z 2 + u 2 ≤ α z T z .
On a donc montré que T z ≤ α z , ∀z ∈ H, soit T ≤ α. Proposition A.32 Si T est auto-adjoint, on a σ(T ) ⊂ R.

Démonstration.

Soit λ ∈ C \ R, nous pouvons écrire Démonstration. Si x i ∈ N (S λ i ) i = 1, 2, où les λ i sont des valeurs propres différentes de T, alors, puisque λ 2 est réel, en vertu de la Proposition A.32,

x S λ x ≥ |(S λ x |x )| = λ x 2 -(T x |x ) ≥ |Im λ| x 2 , puisque (T x |x ) = (x
λ 2 (x 1 |x 2 ) = (x 1 |T x 2 ) = (T x 1 |x 2 ) = λ 1 (x 1 |x 2 ) et par conséquent, (x 1 |x 2 ) = 0.
Lemme A.34 Si T est auto-adjoint, pour que λ ∈ σ(T ), il faut et il suffit qu'il existe une constante C > 0, telle que

S λ x ≥ C x , ∀x ∈ H. Démonstration.
Il est clair tout d'abord que l'inégalité est vérifiée dès que λ ∈ σ(T ).

Supposons réciproquement que l'inégalité soit vérifiée. On a vu à la Proposition A.32 que si λ ∈ R alors λ ∈ σ(T ) ; supposons donc que λ ∈ R. On aura

C x ≤ S λ x = S * λx = S * λ x
par conséquent, de même qu'à la démonstration de la Proposition A.32, S λ est inversible ; la conclusion en découle.

Lemme A.35 Si T est auto-adjoint, alors pour que λ ∈ σ(T ) il faut et il suffit qu'il existe x n ∈ H, telle que

x n = 1 et (S λ x n ) → 0.
Démonstration.

Supposons que λ ∈ σ(T ), et que (S λ x n ) → 0, avec x n = 1, alors x n = S -1 λ S λ x n → 0, par continuité de S -1
λ , ce qui est incompatible avec l'hypothèse x n = 1. Réciproquement, si λ ∈ σ(T ), le Lemme A.34 nous prouve l'existence d'une suite y n vérifiant S λ y n ≤ y n /n ; le Lemme est alors démontré en prenant x n = y n / y n .

Proposition A.36 Si T est auto-adjoint, et si on note

M = sup x =1 (T x |x) et m = inf x =1 (T x |x) , alors M et m ∈ R et (i) σ(T ) ⊂ [m, M ], et (ii) m et M ∈ σ(T ).

Démonstration.

Supposons que λ > M, et démontrons que λ ∈ σ(T ), cette même démonstration en remplaçant T par -T permet alors de prouver la première partie de la Proposition. Comme à la Proposition A.32, nous aurons

x S λ x ≥ |(S λ x |x )| = λ x 2 -(T x |x ) ≥ (λ -M ) x 2 ,
et le Lemme A.34 permet de conclure.

Montrons maintenant que M ∈ σ(T ), démonstration qui montrera également que m ∈ σ(T ), en remplaçant T par -T. Notons x n une suite majorante pour (T x |x ) , c'est-à-dire vérifiant

x n = 1 δ n → 0 avec δ n = (T x n |x n ) -M.
Afin d'utiliser le Lemme A.35, calculons (M I -T )x n 2 ; pour γ ∈ R, nous aurons

(M I -T )x n 2 = (M + γ)x n -(T + γI)x n 2 = (T + γI)x n 2 + (M + γ) 2 x n 2 -2(M + γ) Re {((T + γI)x n |x n )} .
Il est clair que ((T + γI)

x n |x n ) = M + γ + δ n ; il en résulte que lim n→∞ (M I -T )x n 2 = lim n→∞ (T + γI)x n 2 -(M + γ) 2 .
On aura par ailleurs, d'après le Lemme A.30

(T + γI)x n ≤ T + γI = sup x =1 |(T x |x ) + γ| = max {|M + γ| , |m + γ|} .
Comme |m| ≤ T , on aura M + γ ≥ m + γ > 0, dès que γ est choisi tel que γ > T , et par conséquent lim

n→∞ (M I -T )x n 2 ≤ (M + γ) 2 -(M + γ) 2 = 0.
On en déduit que M ∈ σ(T ) en vertu du Lemme A.35.

Corollaire A.37 Si T est auto-adjoint, et si σ(T ) = {0}, alors T ≡ 0. 

(i) ∞ n=1 x n converge vers x, et (ii) x 2 = ∞ n=1 x n 2 .
Démonstration.

Montrons tout d'abord que la série ∞ n=1 x n 2 converge, et posons σ k = k n=1 x n 2 , on aura

σ k = x k n=1 x n ≤ x k n=1 x n ≤ x √ σ k ,
car les x n sont orthogonaux deux à deux. On en déduit que σ k ≤ x 2 et que la série

∞ n=1 x n 2 converge.
On aura q n=p x n 2 = q n=p x n 2 , il en résulte que la série ∞ n=1 x n est de Cauchy, et par conséquent qu'elle converge. Si nous notons alors P (x) sa somme, nous aurons Démonstration.

P (x) 2 ≤ ∞ n=1 x n 2 ≤ x 2 ,
Comme T est compact, nous pouvons ordonner ses valeurs propres λ k en une suite dont les modules décroissent. Nous notons x k la projection de .11)

x sur N (S λ k ) , et T n (x) = n k=1 λ k x k . L'opérateur T n est clairement auto-adjoint, et on a dim(R(T n )) = n k=1 dim(N (S λ k )) < ∞, dont découle la compacité de T n . De plus, d'après la Proposition A.40, on a x = ∞ k=1 x k , et par continuité de T, T (x) = ∞ k=1 λ k x k = lim n→∞ T n (x). On aura même T (x) -T n (x) 2 = ∞ k=n+1 λ k x k 2 = ∞ k=n+1 |λ k | 2 x k 2 et donc T (x) -T n (x) 2 ≤ |λ n+1 | 2 ∞ k=n+1 x k 2 ≤ |λ n+1 | 2 x 2 ,
λ k = R(e k ) (A.9) λ k = min x∈W k R(x) (A.10) λ k = max x∈W ⊥ k-1 R(x) (A
λ k = max W ∈W k min x∈W R(x) (A.12) λ k = min W ∈W k-1 max x∈W ⊥ R(x) (A.13)
Démonstration.

On a de façon évidente R(e k ) = λ k .

Si x ∈ W k alors x = k i=1 α i e i , d'où il résulte R(x) = k i=1 λ i |α i | 2 k i=1 |α i | 2 ≥ λ k .
La formule (A.10) découle alors de (A.9).

Si x ∈ W

⊥ k-1 , on peut écrire x = ∞ i=k α i x i , on en déduit, comme précédemment que R(x) = i≥k λ i |α i | 2 i≥k |α i | 2 ≤ λ k .
On déduit tout d'abord de (A.10) que max

W ∈W k min x∈W R(x) ≥ λ k ; mais réciproquement si on choisit W ∈ W k , on ne peut avoir W ⊂ W k-1 et par conséquent, ∃x = 0, ∈ W ∩ W ⊥ k-1 . De (A.11) on déduit alors que λ k ≥ R(x), d'où il résulte que λ k ≥ min w∈W R(w), ∀W ∈ W k , soit λ k ≥ max W ∈W k min w∈W R(w),
et par conséquent la formule (A.12).

On opère de même, et on choisit

W ∈ W k-1 et x = 0, ∈ W ⊥ ∩ W k ; on aura en vertu de (A.10) λ k ≤ R(x); il en résulte que λ k ≤ min W ∈W k-1 max w∈W ⊥ R(w),
l'inégalité inverse découle alors de (A.11).

est un isomorphisme, et plus précisément vérifie

u V ≤ 1 α V , (B.4)
où α est la constante d'ellipticité de a.

Démonstration.

Résoudre (B.3) revient à démontrer l'existence et l'unicité de u tel que a(u, •) = dans V , c'est-à-dire que S est bijective. Démontrer (B.4) revient à montrer que S est continue, soit encore d'après le théorème des homomorphismes de Banach que c'est un isomorphisme. Nous étudierons l'application inverse:

V -→ V : u → a(u, •)
que nous montrerons être un isomorphisme.

Soit u ∈ V, en vertu du théorème de représentation de Riesz, il existe A u unique dans

V, tel que (A u |• ) = a(u, •), l'application V -→ V : (A u |• ) → A u étant une isométrie. Il nous suffira donc de montrer que l'application V A -→ V : u → A u est elle-même un isomorphisme.
Cette application est continue, en vertu de l'inégalité

A u = sup v∈V (A u |v ) v ≤ a u , où a = sup u,v∈V |a(u, v)| u v . L'ellipticité de a implique de plus α v 2 ≤ |(A v |v )| ≤ A v v , soit v ≤ 1 α A v , ∀v ∈ V. (B.5)
On a ainsi montré que A est injective, et le Lemme A.31 montre que son image est fermée.

Un raisonnement par l'absurde permet ensuite de montrer que A est surjective. Supposons que R(A) V, alors il existe u 0 ∈ V \ R(A), non nul. R(A) étant fermé, on peut y projeter u 0 , soit v 0 cette projection et w 0 = u 0 -v 0 ; w 0 est non nul et orthogonal à R(A), il en résulte que a(w 0 , w 0 ) = (A w 0 |w 0 ) = 0, ce qui conduit à une contradiction, par ellipticité de a. L'application A est donc bijective, d'inverse continu, d'après (B.5).

La formule (B.4) enfin n'est qu'une autre façon d'écrire (B.5):

u V ≤ 1 α A u V = a(u, •) V = V .

B.2 Espaces de Sobolev

Les espaces de Sobolev constituent une échelle de régularité bien adaptée aux formulations variationnelles. Leur étude constitue cependant un vaste domaine non dépourvu de difficultés techniques ; en particulier la régularité du bord peut jouer un rôle déterminant pour la plupart des résultats: régularité, densité ou compacité. Nous nous contenterons de signaler sans démonstration quelques propriétés des espaces construits à partir de L 2 , et nous choisirons les ouverts assez réguliers pour éviter les subtilités principales. Les références les plus classiques à cet égard sont [Adam-1975], [Ne cas-1967] et [Lions-1968]. On notera O un ouvert de R n dont le bord est Lipschitzien.

Définition B.3 (i) Espaces d'indice entier: on pose

H (O) = v ∈ L 2 (O) ∂ α v ∈ L 2 (O), ∀α, |α| ≤ , (B.6)
où est un entier positif. Cet espace est muni de la norme du graphe, soit

v 2 H (O) = |α|≤ ∂ α v 2 L 2 (O) (B.7) (ii) Espaces d'indice fractionnaire: on note H s (R n ) = v ∈ L 2 (R n ) (1+ ξ 2 ) s/2 v(ξ) ∈ L 2 (R n ) , (B.8)
où s est un réel positif et v note la transformée de Fourier de v. Cet espace est muni de la norme naturelle:

v 2 H s (R n ) = v 2 L 2 (R n ) + (1 + ξ 2 ) s/2 v(ξ) 2 L 2 (R n ) (B.9)
Dans le cas d'un ouvert, on pose

H s (O) = v ∈ L 2 (O) ∃ṽ ∈ H s (R n ) avec ṽ|O = v . (B.10)
On munit cet espace de la norme quotient:

v H s (O) = inf ṽ∈H s (R n ) ṽ|O =v ṽ H s (R n ) . (B.11) Remarque B.4
(i) Les espaces définis ci-dessus sont en fait des espaces de Hilbert, pour le produit scalaire naturel dérivant de celui de L 2 .

(ii) Dans ces définitions tant les dérivées que la transformation de Fourier doivent être comprises au sens des distributions ; ce n'est que dans le cas d'une régularité suffisante qu'elles peuvent l'être au sens des fonctions, les deux acceptions se correspondant alors bien entendu.

Bien d'autres espaces de cette nature peuvent être définis, et nous aurons l'occasion d'en rencontrer ultérieurement, contentons-nous pour l'instant d'introduire

H 1 (O; ∆) = v ∈ H 1 (O) ∆v ∈ L 2 (O) ,
il sera muni de la norme du graphe:

v 2 H 1 (O;∆) = v 2 H 1 (O) + ∆v 2 L 2 (O)

B.2.1 Régularité et compacité

Les espaces que nous venons de définir peuvent paraître quelque peu abstraits, le théorème de régularité suivant permet de s'en faire une image plus précise: 

B.3.1 Opérateurs du premier ordre

La formule qui précède est susceptible de prendre diverses formes, notons parmi les plus fréquemment employées: 

O E • ∇ ψ = - O div E ψ + ∂O (E, n) ψ dγ. (B.19) et O H • rot Ψ = O rot H • Ψ + ∂O H, n ∧ Ψ dγ. (B.
(O), O ∇u • ∇v + O uv = O f v , (B.25) où f ∈ L 2 (O).

B.4.2 Existence et unicité

Notre théorème de base sera le théorème de Lax-Milgram B.2 dans lequel nous poserons

V = H 1 0 (O), a(u, v) = O ∇u • ∇v + O uv et (v) = O f v .
La continuité de a et est évidente, ainsi que l'ellipticité de a. 

u ∈ H 1 0 (O), telle que ∀v ∈ H 1 0 (O), a(u , v) = (v), avec (v) = O f v - O ∇U • ∇v - O U v , (B.30)
problème tout à fait semblable à (B.25).

B.4.5 L'inégalité de Poincaré-Friedrichs

Le problème suivant est plus difficile, mais mérite d'être étudié car il est fréquent en mécanique des fluides ou en électrostatique: 

-∆u = f dans O, u = 0 sur ∂O. (B.
∃K > 0, v 2 H 1 (O) ≤ K O ∇v 2 + Γ v dγ 2 , ∀v ∈ H 1 (O). (B.33)
Démonstration. On effectue un raisonnement par l'absurde Admettons que l'inégalité annoncée soit fausse, on en déduit l'existence d'une suite dans 

H 1 (O) vérifiant v n H 1 (O) = 1, et (B.34) [v n ] ≤ 1 n , avec (B.35) [v n ] 2 = O ∇v n 2 + Γ v n dγ 2 . A l'
u ∈ H 1 0 (O), a(u, u) = O ∇u 2 = O ∇u 2 + ∂O u dγ 2 ≥ 1 K u 2 H 1 (O) B.
∆u v + O ∇u • ∇v ≤ ∆u L 2 (O) v L 2 (O) + ∇u L 2 (O) ∇v L 2 (O) ≤ 4 u H 1 (O;∆) w H 1/2 (O) .
On a donc démontré la continuité de l'application :

w → Γ ∂u ∂n w dγ ; H 1/2 (∂O) -→ R;
C'est dire que ∂u/∂n peut être considéré comme un élément de H -1/2 (Γ).

Mais, de plus, on a

∂u ∂n H -1/2 (∂O) = sup w =0 ∂O ∂u ∂n w dγ w H 1/2 (∂O) ≤ u H 1 (O;∆) v H 1 (O) w H 1/2 (∂O) ≤ C u H 1 (O;∆) ;
on en déduit que l'application: u → ∂u/∂n se prolonge en une application continue H 1 (O; ∆) dans H -1/2 (∂O).

La formule explicitant le prolongement découle alors de (B.39), par continuité. 

Proposition B.17

H 1 (O)/R = { v | v ∈ H 1 (O) } , où v = {w ∈ H 1 (O) | w -v = Cte } (B.42) L'espace H 1 (O)/R
Trouver u ∈ H 1 (O)/R tel que ∀ v ∈ H 1 (O)/R, a( u, v) = ( v
H G H -→ H J ↑ G ↑ J V -→ G V V

B.6.2 Formes hermitiennes

Dans le cas où a est hermitienne, c'est-à-dire si a(u, v) = a(v, u), afin de profiter pleinement du caractère auto-adjoint des opérateurs sous-jacents nous serons amenés à renforcer l'hypothèse d'ellipticité en supposant a positive, c'est-à-dire: Démonstration.

a(u, u) ≥ α u 2 V ,
Notons d'abord que a étant continue, hermitienne et coercitive, elle constitue un produit scalaire sur V, définissant une norme équivalente à la norme initiale.

On aura, ∀u, v ∈ V,

a(G V u, v) = (J u |J v ) H = (J v |J u ) H = a(G V v, u).
De même, ∀ũ, ṽ ∈ H, (G H ũ |ṽ ) H = (ṽ |G H ũ ) H = a(Gṽ, G ũ) = a(G ũ, Gṽ) = (ũ |G H ṽ ) H

Bases hilbertiennes

Nous noterons désormais (µ k , e k ) les éléments propres du problème (B.54). Nous avons vu à la Proposition B.18 que si V est dense dans H, alors 0 n'est pas valeur propre de G V ; V de dimension infinie est donc somme hilbertienne de sous-espaces propres tous de dimension finie, ils sont donc en nombre infini. D'autre part on sait que le seul point d'accumulation des 1/µ k est 0, il en résulte que µ k tend vers l'infini.

Proposition B.24 Les vecteurs propres de (B.54) permettent d'obtenir les caractérisations suivantes:

H = f = k≥1 α k y k f 2 H = k≥1 |α k | 2 < +∞ (B.59) V = v = k≥1 α k y k a(v, v) = k≥1 µ k |α k | 2 < +∞ (B.60) V = q = k≥1 α k (y k |• ) H q 2 V = k≥1 µ -1 k |α k | 2 < +∞ (B.61)
Démonstration.

Le théorème de représentation A.39 nous montre que tout élément f de H est de la forme On montre aisément que la norme naturelle en fait bien des espaces de Hilbert ; il est clair que

q = k≥1 α k (y k |v ) , avec α k = α k µ k et . k≥1 µ -1 k |α k | 2 = k≥1 µ k α k 2 < +∞. Réciproquement si q = k≥1 α k (y k |• ) , avec k≥1 µ -1 k |α k | 2 < +∞, alors q V = sup
[H, V ] 0 = H, [H, V ] 1 = V et que [H, V ] θ 1 ⊂ [H, V ] θ ⊂ [H, V ] θ 2 pour θ 1 > θ > θ 2 .
On peut également montrer [Lions-1968] 

Quotients de Rayleigh

Si nous appliquons à la formulation (B.55) les résultats relatifs aux quotients de Rayleigh (voir la formule (A.8)), nous sommes amenés à poser 

R V (v) = a(G V v, v) a(v, v) , soit encore R V (v) = 1 Q(v) avec Q(v) = a(v,
µ k = Q(e k ) (B.64) µ k = max v∈W k Q(v) (B.65) µ k = min v∈W ⊥ k-1 Q(v) (B.66) µ k = min W ∈W k max v∈W Q(v) (B.67) µ k = max W ∈W k-1 min v∈W ⊥ Q(v) (B.

B.6.3 Le problème de Dirichlet

Il ne nous reste plus qu'à traduire les résultats obtenus dans le cas d'un problème pratique tel (B.45) ; ils s'appliquent sans aucune modification si on choisit de poser De plus S -1 λ (z) est analytique par rapport au couple (λ, z) dans un voisinage de (λ 0 , z 0 ). Il suffit en effet de remarquer que puisque T (z) dépend analytiquement de z, la série de Neumann ci-dessus peut se récrire comme une double série entière suivant les puissances de (z -z 0 ) et (λ -λ 0 ). Supposons maintenant que pour un certain z 0 ∈ D, l'opérateur I -T (z 0 ) n'est pas inversible, autrement dit 1 est valeur propre de T (z 0 ). Cet opérateur étant compact, on peut choisir un cercle C centré en 1 qui ne contienne que cette valeur propre de T (z 0 ), toutes les autres étant situées à l'extérieur de C. Il s'ensuit que S λ (z 0 ) est inversible pour tout λ ∈ C. D'après ce qui précède, C étant compact, on peut trouver un voisinage de z 0 dans lequel S -1 λ (z) est analytique en (λ, z) pour tout λ ∈ C. Dans ce voisinage de z 0 , on peut alors définir Nous sommes maintenant en mesure de démontrer que l'ensemble P est soit confondu avec D, soit constitué de points isolés. Considérons en effet l'ensemble A ⊂ D formé des points limites de P : c'est dire que dans tout voisinage d'un point z 0 de A, il existe un point de P différent de z 0 . Nous avons vu que P est un fermé de D, ce qui montre que A ⊂ P. En fait A est également fermé car s'il existait un point de D \ A dont tous les voisinages rencontrent A, comme A ⊂ P, ce serait en fait un point de A. Démontrons par ailleurs que A est un ouvert. Si z 0 ∈ A, c'est la limite d'une suite non stationnaire z i ∈ P, i = 1, ∞. On aura 0 ∈ σ(I -T (z i )) et par conséquent 0 ∈ σ(I -T (z i )) = σ( B(z i )); il en résulte que le déterminant ∆(z) de B(z) s'annule aux points z i , et comme ∆(z) est analytique, en vertu du principe des zéros isolés il s'annule dans un voisinage de z 0 . On a donc démontré que 1 est valeur propre de T (z) dans un voisinage de z 0 : l'ensemble A est un ouvert. Par conséquent, A est soit vide soit confondu avec D : les points de P sont isolés dès qu'il existe z ∈ D tel que I -T (z) soit inversible.

P (z) = 1 2iπ C S -1 λ (z)
Montrons maintenant que si P = D, les points de P sont des pôles de (I -T (z)) -1 . Soit donc z 0 ∈ P; au voisinage de z 0 , 1 ∈ σ( T c (z)) = σ(T (z)) ∩ Ext(C), et par conséquent Bc (z) est inversible ; il en résulte que ( Bc (z)) -1 y est analytique, soit ( Bc ) -1 (z) = 
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 1 Figure 1.2 : couplage fluide-structure monodimensionnel

  (1.23) dont la solution n'est autre que le prolongement analytique u 0 (ω) que nous venons de construire. Remarque 1.6 Le choix que nous avons fait d'imposer à u 0 la condition d'onde sortante implique que son prolongement à des nombres d'onde complexes implique, selon (1.16) que u 0 (ω) soit exponentiellement décroissante pour |x| → ∞ quand Im ω > 0, et exponentiellement croissante quand Im ω < 0. On aurait obtenu le résultat inverse si on avait prolongé à des ω complexes la solution vérifiant la condition d'onde entrante.

Figure 2

 2 Figure 2.1 : diffraction d'une onde acoustique

  y) dγ y se prolonge à D = O ∪ Ω tout entier et coïncide avec ϕ dans Ω , puisqu'elles sont toutes deux solutions de ∆ψ + ν * ψ = 0 dans Ω , avec les mêmes conditions aux limites de Neumann et de Dirichlet sur Γ. Par conséquent, θ vérifie ∆θ + ν * θ = 0 dans D, ∂θ ∂n + λ θ = 0 sur Σ.

  Figure 3.1 : le navire immobile

Φ

  I (x, t) = Re{ϕ I (x)e -iωt } (3.47) solution du problème (3.46) en l'absence du corps (nous donnons plus loin l'expression d'un tel potentiel, voir (3.54)).

  On peut donner de ces équations une formulation adimensionnelle qui utilise comme paramètres caractéristiques pour les longueurs : une dimension L caractéristique du flotteur, pour les temps : L/g, pour les masses : ρL 3 , on obtient des équations analogues aux précédentes, d'où les quantités g et ρ ont été éliminées.

  3 ) devant satisfaire le même système que dans le cas des ondes planes (soit (3.53)). On en déduit donc comme précédemment que √ λ = ν et γ est de la forme Ae νx 3 . Quant à l'équation (3.55), elle n'est autre que l'équation de Helmholtz dont les solutions sont : les fonctions de Hankel de première et de seconde espèce, d'ordre 0. Ainsi, les solutions cylindriques de (3.50) sont de la forme : ϕ(r, x 3 ) = A H(1) 0 (νr)e νx 3 + B H(2) 0 (νr)e νx 3 .

  Définition 3.13 (Flux d'énergie moyen) On appelle flux d'énergie moyen entrant durant une période dans le domaine D la quantité 14 (Conservation de l'énergie moyenne) Le flux moyen d'énergie entrant dans un domaine fluide borné est nul, soit J ∂D = 0. (3.61) Démonstration. Le résultat découle de façon évidente de l'intégration de la relation (3.59) sur une période.

Figure 3

 3 Figure 3.2 : le flux d'énergie

  Remarque 3.16 L'intégrale dans (3.65) porte sur un cylindre semi-infini, et ϕ doit donc être 'suffisamment décroissante' lorsque x 3 → -∞ pour satisfaire cette condition. En ce sens, la condition de rayonnement contient implicitement une condition de décroissance lorsque la profondeur tend vers l'infini. En accord avec la Remarque 3.11, nous supposerons que ϕ ∈ H 1 (D R ), où D R est le domaine compris entre la carène Γ et le cylindre Σ R . Théorème 3.17 (Positivité du flux d'énergie moyen) Le flux moyen d'énergie sortant à travers S du voisinage du corps est indépendant de S. Si la solution vérifie de plus la condition de rayonnement, ce flux est positif ; plus précisément, on a J S = ρω 4ν lim R→∞ Σ R ∂ϕ ∂n 2 + ν 2 |ϕ| 2 dγ. (3.66) Démonstration.

  .69) où l'on rappelle que ν = ω 2 /g, N est la normale généralisée sur Γ (donnée par (3.16)), M et K sont respectivement les matrices d'inertie généralisée et de raideur hydrostatique du navire (données par (3.21) et (3.44)).

Lemme 4. 3

 3 La semi-norme |•| 1,Ω r est une norme sur W 1 0 (Ω r ), équivalente à la norme naturelle.

  ir cos τ -a) dρ + ρ ir cos τ -a e ρ(ir cos τ -a) τ -a) 2 ,

Soit

  O un ouvert borné dans V, son bord contient éventuellement une portion L de S; on posera Γ = ∂O \ L. Soit également ϕ solution du problème (4.18) posé dans O : Trouver ϕ défini sur O tel que ∆ϕ supposerons ϕ 'suffisamment régulière' au voisinage de ∂O. Proposition 4.18 Si la fonction ϕ est solution de (4.38) dans le domaine borné O, alors la formule de représentation intégrale suivante est valable:

  où n est la normale extérieure à O, et Ω = O c le domaine extérieur à ∂O.

  49) en vertu du Lemme (4.20) ci-dessous. De plus, dans Ω R en vertu de (4.46) et (4.47), on a ζ R = ϕ -ξ.(4.50)

  .51) Déterminons maintenant de quel problème Θ R est solution. Nous verrons au Lemme (4à étudier le comportement à l'infini de Θ R . Le Lemme 4.20 ci-dessous nous montre que ξ ∈ W 1 0

  . Par application du Théorème 4.7, où on a remplacé √ g par 0, on en déduit alors que Θ R = 0, et par conséquent Ψ R = ξ dans B - R , et ceci pour tout R; la formule annoncée en résulte. Lemme 4.20 Soient σ et µ deux fonctions définies sur le bord Γ, et ϕ la fonction définie par

  .57) Nous sommes donc conduit au problème suivant posé dans le domaine borné Ω ⊂ Ω limité par Γ, SL ⊂ SL et Σ: Trouver ϕ défini sur Ω et s ∈ C 6

. 58 )

 58 Lemme 4.21 Si D est un ouvert borné, de frontière Σ ∪ L D , et si Re λ ≥ 0, les valeurs propres µ du problème suivant sont en quantité dénombrable et convergent vers l'infini, leur partie imaginaire est de même signe que celle de λ: ∆u = 0 dans D, ∂u ∂n -µu = 0 sur L D ∂u ∂n + λu = 0 sur Σ.

Démonstration.

  La Proposition 4.22 nous prouve que I +S (ν) est inversible pour Im ν > 0 et ν ∈ V (Σ, λ), or S (ν) est compact et dépend holomorphiquement de ν d'après la Proposition 4.24 ; la conclusion découle alors du Théorème de Steinberg C.1. Définition 4.27 L'ensemble des pôles du prolongement analytique de R (ν), sera noté P . Lemme 4.28 Les valeurs propres de partie imaginaire positive de (4.60) sont des pôles de R (ν), soit V (Σ, λ) ∩ {ν | Im ν > 0 } ⊂ P . Démonstration. La proposition 4.22, (ii) nous montre que la solution de (4.58) n'est pas unique pour ν ∈ V (Σ, λ) ∩ {ν | Im ν > 0 } ; il en résulte qu'un tel ν est un pôle de R (ν).

  y) dγ y se prolonge à D = O ∪ Ω tout entier et coïncide avec ϕ dans Ω , puisqu'elles sont toutes deux solutions de ∆ψ = 0 dans Ω , avec les mêmes conditions aux limites de Neumann et de Dirichlet sur Γ. Par conséquent, si L note la portion du bord de D située à la surface libre, la fonction θ vérifie ∆θ = 0 dans D, ∂θ ∂n -ν * θ = 0 sur L ∂θ ∂n + λ θ = 0 sur Σ.

  Lemmes 4.28 et 4.31 et des Propositions 4.34 et 4.35. 

Définition A. 13

 13 On note S λ = λI -T, où λ ∈ C, et I note l'identité et on appelle Spectre de T : σ(T ) = {λ ∈ C | S λ n est pas un automorphisme de H } .

  Corollaire A.20 (Alternative de Fredholm) Si l'opérateur T est compact, et si λ = 0, alors une et une seule des deux propositions suivantes est vérifiée :(i) l'équation (λI -T )x = 0 admet une solution non nulle (ii) l'équation (λI -T )x = y admet une solution et une seule ∀y, et elle en dépend continûment.Théorème A.21 Si H est de dimension infinie et T est compact sur H, alors(i) σ(T ) ⊂ B(0, T ) (ii) 0 ∈ σ(T ) (iii) σ(T ) \ {0} est soitvide formé d'un nombre fini de points formé d'un ensemble dénombrable de points s'accumulant en 0. Remarque A.22 0 peut être valeur propre, mais pas nécessairement, même si la suite des valeurs propres a 0 pour point d'accumulation.Démonstration.Supposons que |λ| > T et choisissonsf ∈ H ; résoudre l'équation S λ = f est équivalent à résoudre Sx = x, avec Sx = (T x + f )/λ. L'application S est contractante, puisque Sx 1 -Sx 2 = 1 |λ| T x 1 -T x 2 ≤ T |λ| x 1 -x 2 ;on en déduit qu'elle admet un point fixe unique, et par conséquent que λ n'est pas valeur propre de T. Comme λ = 0, il en résulte que λ ∈ σ(T ).Supposons que 0 ∈ σ(T ), alors T est inversible. Mais en vertu de la compacite de T, T (B H ) est relativement compacte, et également fermée, en tant que image réciproque de B H par T -1 , continue. Il en résulte que T (B H ) est compacte, et par conséquent B H , par continuité de T -1 ; c'est impossible d'après le Lemme A.12.Soit maintenant λ n une suite d'éléments tous différents de σ(T ) \ {λ}, convergeant vers λ; on va montrer que nécessairement λ = 0, c'est dire que 0 est le seul point d'accumulation possible. Les λ n sont des valeurs propres de T, d'après le Théorème A.19 ; notons donc x n un vecteur propre associé à λ n et M n le sous-espace engendré par la famille {x 1 , x 2 , . . . , x n }. Les M n sont de dimension finie et par conséquent fermés, ils forment une suite strictement croissante en vertu de la Proposition A.14 ; le Lemme A.3 nous montre par conséquent qu'on peut construire une suite de vecteurs unitaires y n dans M n qui vérifie d(y n , M n-1 ) = 1. Pour n > m on auraT y n /λ n -T y m /λ m = (λ n y n -S λ n y n )/λ n -(λ m y m -S λ m y m )/λ m = y n -(y m + S λn y n /λ n -S λm y m /λ m ) = y n -z n , où z n ∈ M n-1 puisque M n estcroissante et que M n-1 = S λn (M n ). Donc T y n /λ n -T y m /λ m ≥ 1; ce qui est incompatible avec le fait pour la suite y n /λ n d'être bornée, en vertu de la compacité de T. Il en résulte que λ = 0.

  Définition A.23 Soit T un opérateur borné, la formule (T * x |y ) = (x |T y ) ∀x, y ∈ H définit un opérateur linéaire T * : H -→ H, appelé adjoint de T. Remarque A.24 L'opérateur T * ainsi défini est continu et vérifie T * = T . Proposition A.25 (Théorème de Schauder) Si T est compact, T * l'est également. Démonstration.

  puisque A est borné. Or T T * x m converge, c'est donc une suite de Cauchy, et T * x m également ; on en déduit qu'elle converge et par conséquent la compacité de T * .Lemme A.26 La fermeture de l'image de T est l'orthogonal du noyau de son adjoint :R(T ) = N (T * ) ⊥ Démonstration.Notons tout d'abord que N (T * ) ⊥ est fermé ; en effetN (T * ) ⊥ = x∈N (T * ) {z | (z |x ) = 0 } , et chacun des {z | (z |x ) = 0 } est fermé par continuité du produit scalaire. Pour montrer que R(T ) ⊂ N (T * ) ⊥ , il suffira donc de montrer que R(T ) ⊂ N (T * ) ⊥ . Soit donc y ∈ R(T ), on aura y = T x, et si f ∈ N (T * ), (y |f ) = (T x |f ) = (x |T * f ) = 0. C'est dire que y ∈ N (T * ) ⊥ . Réciproquement, soit y ∈ R(T ),nous devons montrer que y ∈ N (T * ) ⊥ . Notons y 1 la projection orthogonale de y sur R(T ), et y 2 = y -y 1 ; on aura 0 = (y 2 |T x ) = (T * y 2 |x )), ∀x ∈ H, on en déduit que y 2 ∈ N (T * ). Mais (y 2 |y ) = (y 2 |y 1 ) + y 2 2 = y 2 2 , qui n'est pas nul, car y ∈ R(T ). On en déduit que y ∈ N (T * ) ⊥ . Théorème A.27 Si T est compact H -→ H, alors (i) σ(T * ) = σ(T ), où σ(T ) note le conjugué de σ(T ). (ii) Si on suppose que λ ∈ σ(T ) -{0}, pour que l'équation S λ x = y (respectivement S * λ x = y) admette des solutions, il faut et il suffit que y ∈ N (S * λ ) ⊥ (respectivement y ∈ N (S λ ) ⊥ ).

  'abord que S * λ = λI -T * , en effet ((λI -T ) * x |y ) = (x |(λI -T )y ) = λx |y -(T * x |y ) . Admettons que λ ∈ V(T * ), nous noterons y un vecteur propre de T * associé à λ; y n'étant pas nul et appartenant à N (S * λ ) n'appartient pas à son orthogonal, et par conséquent, en vertu du Lemme A.26, y ∈ R (S λ ). On en déduit que λ ∈ σ(T ), on a donc montré que V(T * ) ⊂ σ(T ). A l'aide des Théorèmes A.19 et A.21, on en déduit que σ(T * ) ⊂ σ(T ), et comme (T * ) * = T, que σ(T * ) = σ(T ). Soit λ ∈ σ(T ) -{0}, compte tenu du Théorème A.18, le Lemme A.26 nous montre que pour que y ∈ R(S λ ) il faut et il suffit que y ∈ (N (S * λ )) ⊥ ; la seconde partie du théorème s'en déduit. A.4 Opérateurs auto-adjoints Définition A.29 On dit que T est auto-adjoint si T * = T. Lemme A.30 Si T est auto-adjoint, on a T = sup x =1 |(T x |x )| . Démonstration. Posons α = sup x =1 |(T x |x )| , on aura α ≤ T . Réciproquement, posons µ = ( T z / z ) 1/2 , et u = T z/µ. Nous aurons

  |T x ) est réel. On en déduit que S λ x ≥ |Im λ| x , (A.7) et par conséquent que S λ est injectif. Remplaçant λ par λ on en déduit également que Sλ est injectif. Mais λ = 0, et par conséquent R(S λ ) = R(S λ ) = N (S * λ ) ⊥ = N (Sλ) ⊥ , en vertu des Lemmes A.31 et A.26 et de la continuité de S λ . Il en résulte que S λ est surjectif, et par conséquent bijectif, l'inverse étant continu d'après l'inégalité (A.7). C'est dire que λ n'appartient pas au spectre. Proposition A.33 Si T est auto-adjoint, les sous-espaces propres N (S λ ) associés à des valeurs propres différentes sont orthogonaux.

Démonstration.

  Si σ(T ) = {0}, d'après la Proposition A.36, on aura m = M = 0, et comme, d'après le Lemme A.30, T = max {|M | , |m|} , on en déduit que T = 0, soit T ≡ 0.

  S λ ) sont bien entendu fermés, quant à l'orthogonalité, elle résulte de la Proposition A.33.Notons maintenant F l'espace engendré par les sommes finies d'éléments des N (S λ ) où λ ∈ V(T ). Nous poserons G = F , et nous devrons montrer que G = H.Montrons tout d'abord que G et G ⊥ sont stables par T. Soit x ∈ F, on aura x = i∈I x i , où I est fini, et par conséquent T x = i∈I λ i x i , où λ i ∈ V(T ). On en déduit que T x ∈ F, et par continuité de T, que T (G) ⊂ G. Prenons alors x ∈ G ⊥ , et y ∈ G, on aura T y ∈ G, et donc (x |T y ) = 0, soit (T x |y ) = 0 ; on en déduit que T x ∈ G ⊥ , soit T (G ⊥ ) ⊂ G ⊥ .Nous pouvons donc définir la restriction T de T à G ⊥ ; nous montrerons que T = 0, soitG ⊥ ⊂ N (T ). Soit donc µ ∈ σ(T ), µ = 0,c'est une valeur propre de T d'après le Théorème A.19, et par conséquent, il existe x = 0, x ∈ G ⊥ , tel que T x = µx . On en déduit que µ ∈ σ(T ), et que x ∈ N (S µ ) ⊂ G, et par conséquent x ∈ G ∩ G ⊥ ; il en résulte que x = 0, ce qui constitue une contradiction. On en déduit que σ(T ) = {0}, et par conséquent que T ≡ 0, d'après le Corollaire A.37. Si 0 n'est pas valeur propre de T, alors N (T ) = {0}, et par conséquent G ⊥ = {0}, soit G = H. Si 0 est valeur propre de T alors N (T ) = N (S 0 ), et par conséquent N (T ) ⊂ G, ce qui implique encore G ⊥ = {0}, et G = H. Proposition A.40 Si H = n∈N * E n , et si on note x n la projection sur E n de x ∈ H, alors

  Si u est solution du problème variationnel (B.37), où f ∈ L 2 (O) et g ∈ L 2 (∂O), alors au sens du prolongement précédent, on a ∂u/∂n |∂O = g. Démonstration. On a déjà remarqué que u vérifie ∆u = u -f, et par conséquent u ∈ H 1 (O; ∆). On pourra donc écrire O ∇u • ∇v + O uv = O (-∆u + u)v + ∂O gv dγ, , d'après (B.38), ∂u/∂n = g dans H -1/2 (∂O). B.5.3 Le problème de Neumann pur Si on tente de traiter le problème -∆u = f dans O, ∂u ∂n = g sur ∂O, (B.40) une difficulté supplémentaire se présente: le problème ne peut admettre une unique solution, en effet si u en est solution, alors u+C l'est encore quelle que soit la constante C. De plus une condition de compatibilité doit être imposée à f et g pour garantir l'existence d'une solution: d'après la formule de Green (B.21), on a nécessairement conduits à montrer que (B.40) est bien posé dans un espace de fonctions définies à une constante additive près ; à cet effet on pose

  ∂O gv dγ, ∀v ∈ v, ces définitions étant indépendantes des représentants u et v choisis. Ce problème est bien posé en vertu du Théorème de Lax-Milgram B.2, car a est elliptique sur H 1 (O)/R : on a en effet, d'après l'inégalité de Poincaré-Friedrichs (B.33) de ce paragraphe est l'étude de problèmes du type -∆u -µu = f dans O, u = 0 sur ∂O, (B.45) où µ est positif, ce qui empêche la forme bilinéaire associée d'être elliptique. Dans tout ce paragraphe nous supposerons l'ouvert O borné. Nous verrons que l'utilisation de la théorie spectrale précédemment développée conduit à des résultats de qualité comparable à celui fourni par le théorème de Lax-Milgram. La formulation variationnelle de (B.45) est la suivante: Trouver u ∈ H 1 0 (O), tel que ∀v ∈ H 1 générale Il est facile de voir que le problème qui précède entre dans le cadre suivant:Trouver u ∈ V, tel que ∀v ∈ V, a(u, v) -µ (u |v ) H = q(v), où (B.47)V et H sont deux espaces de Hilbert tels queV ⊂ c H (dans le cas du problème (B.46) on a V = H 1 0 (O) et H = L 2 (O), l'injection étant compacte en vertu du théorème de Rellich B.6) a et q sont respectivement une forme sesquilinéaire continue elliptique sur V, et une forme antilinéaire continue sur V.Cadre fonctionnelCommençons par préciser quelque peu l'étude du problème variationnelTrouver u ∈ V, tel que ∀v ∈ V, a(u, v) = (f | v) H , où f ∈ H. : f → où (•) = (f | •) H , (B.49) le théorème de Lax-Milgram B.2 nous montre que la solution u de (B.48) est de la forme u = S( ) où S est continue V -→ V. Nous poserons alors G = S • M : H -→ V, (B.50) et nous pourrons écrire a(Gf, v) = (f | v) H , ∀v ∈ V. (B.51) Notons également J l'injection canonique V -→ H, supposée compacte ; nous poserons G V = G • J : V -→ V, (B.52) et G H = J • G : H -→ H, (B.53) ces deux applications étant compactes. Le diagramme suivant résume ces définitions:

  Problèmes aux valeurs propresNous sommes maintenant en mesure d'étudier le problème homogène (B.47), soit en fait le problème variationnel de valeurs propres:Trouver µ ∈ C et u = 0 ∈ V, tel que ∀v ∈ V a(u, v) = µ (u |v ) H . (B.54) Compte tenu de (B.51) et (B.52), le problème (B.54) peut s'exprimer sous la forme u = G V (µu), soit G V u = 1 µ u, u ∈ V. (B.55)

  Les µ k sont des nombres réels strictement positifs. (ii) Les e k peuvent être choisis de sorte qu'ils forment une base orthonormale de V pour le produit scalaire a(•, •), les y k = µ 1/2 k e k formant alors une base orthonormale de H. (iii) Si V est dense dans H, alors les µ k forment une suite tendant vers l'infini. Démonstration. Le caractère réel des µ k est une conséquence de la Proposition A.32 appliquée à la formulation (B.55). De plus on a α e k 2 V ≤ a(e k , e k ) = µ k e k 2 H , d'où le caractère positif des µ k . D'après le Théorème A.39 appliqué à l'opérateur G V , V est somme directe hilbertienne de ses sous-espaces propres ; les vecteurs propres en composant les bases pouvant alors être choisis orthogonaux et normés, c'est-à-dire vérifiant a(e k , e k ) = 1. Mais on sait également que H est somme hilbertienne de ces mêmes sous-espaces propres ; comme a(e k , e m ) = µ k (e k |e m ) H , les e k forment une base de H composée de vecteurs mutuellement orthogonaux, et comme a(e k , e k ) = µ k (e k |e k ) H = (y k |y k ) H , les y k forment une base orthonormale de H.

  la série converge normalement dans H. Réciproquement, si on posef k = k i=1 α i y i , où les α k vérifient k≥1 |α k | 2 ≤ +∞, alors la suite f k vérifie f m -f k 2 H = mi≥k+1 |α i | 2 ; il en résulte que f k est de Cauchy et par conséquent converge dans H. Le même raisonnement s'applique dans V, muni du produit scalaire a(•, •) et prouve que La caractérisation annoncée découle alors simplement de la relationy k = µ 1/2 k e k . Si q ∈ V , alors q, v = a(Sq, v), ∀v ∈ V, et comme Sq ∈ V, d'après (B.60) on aura Sq = k≥1 α k y k avec k≥1 µ k α k 2 < +∞; il en résulte que a(Sq, v) = k≥1 α k a(y k , v) = k≥1 α k µ k (y k |v ) H , et par conséquent

  k |α k | 2 < +∞, ce qui montre que q ∈ V .Remarque B.25 Un prolongement naturel de ces résultats est la définition d'espaces intermédiaires entre H et V, appelés espaces d'interpolation. Pourθ ∈ [0, 1], on pose [H, V ] θ = u = k≥1 α k y k k≥1 µ θ k |α k | 2 < +∞ .

  problème de Neumann Le cas du problème de Neumann est plus instructif, soit en effet à étudier -∆u -µu = f dans O, ∂u ∂n = 0 sur ∂O, (B.74) posant µ = τ -1, on en donnera la formulation variationnelle suivante:Trouver u ∈ H 1 (O), tel que ∀v ∈ H 1 (O), , d'une façon qui a priori peut sembler un peu artificielle, mais qui a le mérite de rendre a positive elliptiqueV = H 1 (O), H = L 2 (O), τ = µ + 1 a(u, v) = O ∇u • ∇v + O uv , et q(v) = O f v.

  que par conséquent I -(S λ 0 (z 0 ) -S λ (z)) S -1 λ 0 (z 0 ) est inversible, et que son inverse s'exprime sous la forme du développement en série de Neumann:S λ (z)S -1 λ 0 (z 0 ) -1 = I -(S λ 0 (z 0 ) -S λ (z)) S -1 λ 0 (z 0 ) 0 (z 0 ) -S λ (z)) S -1 λ 0 (z 0 ) n . S λ (z) est donc inversible avec S -1 λ (z) = S -1 λ 0 (z 0 ) I -(S λ 0 (z 0 ) -S λ (z)) S -1 λ 0 (z 0 ) -1 = S -1 λ 0 (z 0 ) n≥0 (S λ 0 (z 0 ) -S λ (z)) S -1 λ 0 (z 0 ) n .

  dλ qui est le projecteur spectral associé à σ(T (z)) ∩ Int(C). Notons que la propriété d'analyticité de S -1 λ (z) nous montre que P (z) est analytique en z 0 . PosonsM (z) = R(P (z)) et M c (z) = R(I -P (z)).En particulier M (z 0 ) est le sous-espace propre associé à la valeur propre 1 de T (z 0 ) (il est de dimension finie puisqueT (z 0 ) est compact). M (z) et M c (z) sont stables par T (z) et vérifient H = M (z) ⊕ M c (z); on est donc fondé à poser T (z) = T (z) |M (z) , T c (z) = T (z) |M c (z) , et on aura T (z) = T (z)P (z) + T c (z)(I -P (z)) ainsi que σ( T (z)) = σ(T (z)) ∩ Int(C) et σ( T c (z)) = σ(T (z)) ∩ Ext(C).Définissons alorsU (z) = P (z 0 )P (z) + (I -P (z 0 ))(I -P (z)),nous aurons I -U (z) = -P (z 0 )(P (z) -P (z 0 )) + (P (z) -P (z 0 ))P (z) ≤ ( P (z 0 ) + P (z) ) P (z) -P (z 0 ) .Il résulte de l'analyticité de P (z) en z 0 que I -U (z) → 0 quand z → z 0 , et par conséquent que U (z) est inversible dans un voisinage de z 0 ; plus précisément, on auraU -1 (z) = n≥0 (I -U (z)) n ,qui est encore analytique en z 0 . Par ailleurs, il est clair queU (z)P (z) = P (z 0 )P (z) = P (z 0 )U (z) et U (z)(I-P (z)) = (I-P (z 0 ))(I-P (z)) = (I-P (z 0 ))U (z); il en résulte que U (z)M (z) ⊂ M (z 0 ) et U (z)M c (z) ⊂ M c (z 0 ); comme H = M (z) ⊕ M c (z) et que U (z) est un isomorphisme de H, on aura en fait U (z)M (z) = M (z 0 ) et U (z)M c (z) = M c (z 0 ), U (z) étant un isomorphisme de M (z) sur M (z 0 ) et de M c (z) sur M c (z 0 ).Opérons alors un changement de repère et posonsB(z) = U (z)(I -T (z))U -1 (z), ainsi que B(z) = U (z)(I -T (z))U -1 (z) et Bc (z) = U (z)(I -T c (z))U -1 (z); on aura B(z) = B(z) |M (z 0 ) , Bc (z) = B(z) |M c (z 0 ) , σ(I -T (z)) = σ(B(z)), σ(I -T (z)) = σ( B(z)) et σ(I -T c (z)) = σ( Bc (z))(en particulier, σ( B(z 0 )) = {0}). Notons que la famille des opérateurs B(z) opère sur le sous-espace fixe de dimension finie M (z 0 ) et dépend holomorphiquement de z.

  -z 0 ) n .Par ailleurs, B(z) est inversible pour z = z 0 , proche de z 0 (puisque z 0 est isolé). Comme B(z) opère sur le sous-espace de dimension finie M (z 0 ), on peut utiliser les formules de Cramer pour le calcul des déterminants qui nous fournissent les coefficients de la matrice de B-1 (z) sous forme de fractions rationnelles relativement aux coefficients de B(zoù D(z) est analytique en z 0 . Il s'ensuit queB-1 (z) = n≥-N C n (z -z 0 ) n . On aura alors (I -T (z)) -1 = U -1 (z)B -1 (z)U (z) = U -1 (z) B-1 (z)P (z 0 )U (z) + U -1 (z)( Bc ) -1 (z)(I -P (z 0 ))U (z) = U -1 (z) n≥-N C n (z -z 0 ) n P (z 0 )U (z) + U -1 (z) n≥0 C c n (z -z 0 ) n (I -P (z 0 ))U (z) = n≥-N B n (z -z 0 ) n , puisque U (z) et U -1 (z)sont analytiques au voisinage de z 0 . Corollaire C.2 Dans la situation (ii) du Théorème C.1, la solution u = u(z) de l'équation (I -T (z)) u = f ∈ H donné est une fonction méromorphe dans D. Un pôle z 0 de (I -T (z)) -1 est aussi un pôle de u(z) si f ∈ R(I -T (z 0 )). Démonstration. Le caractère méromorphe de u(z) découle évidemment du Théorème C.1. Pour la seconde assertion, montrons l'implication contraposée en supposant que pour un pôle z 0 de (I -T (z)) -1 et un certain f ∈ H, la solution u(z) ne présente pas de pôle en z 0 : elle y est donc analytique. En particulier, (I -T (z 0 )) u(z 0 ) = f, soit, en appliquant le projecteur spectral P (z 0 ) introduit plus haut, P (z 0 )f = 0. Or avec les notations précédentes, M c (z 0 ) = R(I -T (z 0 )) = R(I -P (z 0 )), et par conséquent, dire que P (z 0 )f = 0 revient à dire que f ∈ R(I -T (z 0 )), d'où la conclusion.

  B.2.2 Théorèmes de densité et de trace . . . . . . . . . . . . . . . . . B.2.3 Dualité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.3 La formule de Green . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.3.1 Opérateurs du premier ordre . . . . . . . . . . . . . . . . . . . . B.3.2 Opérateurs du second ordre . . . . . . . . . . . . . . . . . . . . B.4 Le problème de Dirichlet . . . . . . . . . . . . . . . . . . . . . . . . . . B.4.1 Formulation variationnelle . . . . . . . . . . . . . . . . . . . . . B.4.2 Existence et unicité . . . . . . . . . . . . . . . . . . . . . . . . . B.4.3 Retour au problème fort . . . . . . . . . . . . . . . . . . . . . . B.4.4 Le problème non-homogène . . . . . . . . . . . . . . . . . . . . B.4.5 L'inégalité de Poincaré-Friedrichs . . . . . . . . . . . . . . . . . B.5 Le problème de Neumann . . . . . . . . . . . . . . . . . . . . . . . . . B.5.1 Formulation variationnelle . . . . . . . . . . . . . . . . . . . . . B.5.2 Retour au problème fort . . . . . . . . . . . . . . . . . . . . . . B.5.3 Le problème de Neumann pur . . . . . . . . . . . . . . . . . . . B.6 Problèmes variationnels spectraux . . . . . . . . . . . . . . . . . . . . .

B.6.1 Formulation générale . . . . . . . . . . . . . . . . . . . . . . . . B.6.2 Formes hermitiennes . . . . . . . . . . . . . . . . . . . . . . . . B.6.3 Le problème de Dirichlet . . . . . . . . . . . . . . . . . . . . . . B.6.4 Le problème de Neumann . . . . . . . . . . . . . . . . . . . . . C Le Théorème de Steinberg Chapitre 1

  du problème couplé devient non bornée.

	Au vu des expressions (1.19), (1.20) et (1.21), il apparaît que ces résonances sont à rechercher
	parmi les zéros de α K (ω), ceux de β K (ω), et les solutions de (1.27): au voisinage de ces points,
	l'une des quantités u 0 (ω), u 1 (ω) ou y(ω) devient non bornée (noter que ces fonctions restent
	bornées lorsque ω K est voisin de 0, ce qui se vérifie aisément en remarquant que dans ce
	cas α K

  alors le problème (2.19) peut encore s'écrire

	Gu =	1 µ + τ	u,
	et l'énoncé du Lemme découle alors de la Proposition B.18.
	Lemme 2.11 (Lemme de Lions) Si les espaces U, V et W vérifient

  .48) Le choix de dS/dt dans le premier membre (et non S, ce qui pourrait sembler plus naturel) est destiné à travailler sur un couple homogène d'inconnues: Φ est le potentiel des vitesses dans le fluide et il est donc naturel de prendre dS/dt comme inconnue pour le corps flottant. Ce choix évite en fait l'apparition de coefficients complexes dans les équations du nouveau problème qui portent sur le potentiel diffracté ou de perturbation ϕ et les 6 degrés de liberté s du navire :

  Notons que le terme surfacique d'énergie potentielle n'apparaît que si la frontière de D contient une portion de la surface libre.Remarque 3.11 Si le domaine D n'est pas borné, l'existence des intégrales intervenant dans les formules (3.57) et (3.58) nécessite en particulier une certaine décroissance de Φ et ∂Φ/∂t au voisinage de l'infini. Plus précisément il nous suffira ici d'admettre que Φ et ∂Φ/∂t appartiennent à H 1 (D).

	Définition 3.10 (Flux d'énergie) On appelle flux d'énergie entrant dans le domaine
	D la quantité suivante:					
	J ∂D = ρ	∂D\SL	∂Φ ∂n	∂Φ ∂t	dγ ,	(3.58)

.57) où ρ est la densité du fluide (supposée constante). où n est la normale extérieure au domaine D considéré.

  Si la fonction ϕ est solution de l'équation (4.18) dans l'extérieur Ω du domaine borné O, alors la formule de représentation intégrale suivante est valable:

	En domaine extérieur
	Proposition 4.19

.44) La formule annoncée découle alors de (4.41), (4.42), (4.43) et (4.44).

  Lemme A.31 Si A est un opérateur borné: H -→ H, qui vérifie ∃K > 0, v H ≤ K Av H , ∀v ∈ H, (A.6) alors l'image R(A) de H par A est un sous-espace fermé de H. . On démontrera que R(A) est égal à son adhérence ; soit donc v n une suite de H telle que Av n converge, soit vers w. Nous devons montrer que w ∈ R(A); la suite Av n est de Cauchy, et également la suite v n en vertu de l'inégalité inverse (A.6), on en déduit qu'elle converge, soit vers u. Par continuité de A on aura w = Au, ce qui prouve que w ∈ R(A).

	Démonstration

  Définition A.38 On dit que H est somme directe Hilbertienne de ses sous-espaces E i , i = 1, ∞, si et seulement si (i) les E i sont fermés, deux à deux orthogonaux et (ii) l'ensemble des combinaisons linéaires finies d'éléments des E i est dense dans H.

	On notera	
	H =	E i .
	i∈N *	
	Théorème A.39 Si T est auto-adjoint compact : H -→ H, alors H est somme directe
	Hilbertienne des sous-espaces propres attachés à chacune de ses valeurs propres :
	λ∈V(T )	

N (S λ ).

  dont découle la continuité de P. Mais comme P (x) = x dès que x ∈ E n , il en résulte que P n'est autre que l'identité sur l'espace des combinaisons linéaires finies des éléments des E n , et par continuité sur son adhérence H tout entière. Le Théorème A.39 et la Proposition A.40 nous montrent donc qu'on peut construire une base Hilbertienne (orthonormale) {e n | n ∈ N * } de H, formée de vecteurs propres de l'opérateur auto-adjoint compact T. Pour tout élément x ∈ H, on aura x = où les λ n sont les valeurs propres respectivement associées aux e n .

	La formule finale s'obtient par passage à la limite à partir de l'identité k n=1 x n n=1 x n k 2 .	2 =
	Remarque A.41 n∈N De plus les e n diagonalisent T selon l'expression	
	T x =	
	n∈N Corollaire A.42 Si T est auto-adjoint compact, c'est la limite d'une suite d'opérateurs
	auto-adjoints compacts de rangs finis.	

* (x |e n ) e n et x 2 = n∈N * |(x |e n )| 2 . * λ n (x |e n ) e n ,

  toujours d'après la Proposition A.40. On en déduit que T -T n ≤ |λ n+1 | , qui tend vers 0.A.4.1 Quotients de RayleighDans ce paragraphe nous supposerons que T est non seulement auto-adjoint compact, mais encore positif, c'est-à-dire que (T x |x )) ≥ 0, ∀x ∈ H; une caractérisation très commode des valeurs propres est alors accessible. Notons que ces valeurs propres sont des réels vérifiant (Tx k |x k ) = λ k x k 2 ,et sont par conséquent positives. Proposition A.44 Supposons que les valeurs propres λ k de T sont rangées dans l'ordre décroissant et sont associées aux vecteurs propres e k , notons W k le sous-espace engendré par les e i , i = 1, k et W k l'ensemble des sous-espaces de dimension k de V. Alors les éléments propres (λ k , e k ) de T admettent les caractérisations suivantes:

	Définition A.43 On appelle quotient de Rayleigh la quantité suivante:	
	R(x) =	(T x |x ) x 2 .	(A.8)

  Théorème B.5 (Théorème d'inclusion de Sobolev) Si O est un ouvert de R nLes fonctions composant les espaces de Sobolev n'étant pas nécessairement régulières, il est fréquemment utile de les approcher par des fonctions plus régulières. La démonstration de la formule de Green par exemple se réalise en deux temps: on commence par la démontrer pour des fonctions indéfiniment dérivables, puis on montre par densité et continuité qu'elle reste valable pour les fonctions de H 1 . Théorème B.8 (Théorème de densité) Si O est un ouvert à frontière Lipschitzienne, alors D(O) est dense dans H s (O), ∀s ≥ 0, où D(O) est l'ensemble des traces sur O des fonctions indéfiniment dérivables à support compact sur R n . H s (O). Les problèmes aux limites nous conduisent naturellement à étudier les espaces formés des traces des fonctions composant les espaces de Sobolev précédemment définis. Théorème B.11 (Théorème de trace) Pour s > 1/2, et si O est assez régulier (plus précisément de classe C k,1 , k ≥ max(0, s -1)), c'est-à-dire k-Lipschitzienne ainsi que sa dérivée première) alors l'application γ 0 définie sur D(O), qui à une fonction régulière définie sur O fait correspondre sa trace sur ∂O se prolonge de façon unique en une application continue surjectiveγ 0 : H s (O) → H s-1/2 (∂O).où n i est la ième composante de la normale n, extérieure à O. Bien entendu, il faut indiquer sous quelles conditions de régularité de la frontière ∂O, et des fonctions u et v s'applique la formule de Green ; en fait il suffit que les diverses intégrales existent, ainsi que les traces de u et v. Plus précisément il suffit d'imposer

	B.3 La formule de Green			
	C'est la généralisation à plusieurs dimensions de la formule bien connue d'intégration
	Définition B.9 On note D(O) l'ensemble des fonctions à support compact dans l'ouvert O, et on pose par parties: b a u v = -b a uv + [uv] b a
	H s 0 (O) = D(O) H s (O) , Sous sa forme la plus simple, elle s'écrit:			(B.14)
	(adhérence de D(O) dans H s (O)), cet espace étant muni de la topologie induite par H s (O). O ∂u ∂x i v = -O u ∂v ∂O ∂x i + uv n i dγ,
	à bord Lipschitzien, alors l'inclusion suivante est valable (algébriquement et topologique-ment): Proposition B.10 Pour s ≤ 1/2 on a H s 0 (O) = (B.15)
	On a de plus	H s (O) ⊂ → N (γ 0 ) = H 1 C k c (O), ∀s > k + 0 (O) ∩ H s (O).	n 2	,	(B.12)
	où C k Corollaire B.12 Pour s > 3/2, et O assez régulière, l'application γ 1 qui à une fonction c est l'espace des traces sur O des fonctions k fois dérivables sur R n muni de la de D(O) fait correspondre la trace de sa dérivée normale sur ∂O se prolonge de façon topologie de la convergence uniforme sur tout compact des dérivées jusqu'à l'ordre k. unique en une application continue surjective
	Théorème B.6 (Rellich) Si O est un ouvert de R n à bord Lipschitzien, borné, alors γ 1 : H s (O) → H s-3/2 (∂O), (B.16) l'injection suivante est compacte: H s (O) ⊂ c si on note γ = (γ 0 , γ 1 ), on a H t (O) ∀s > t. (B.13) N (γ) = H 2 0 (O) ∩ H s (O)
	Remarque B.7 Notons par exemple qu'en dimension un, le Théorème d'inclusion de Sobolev affirme que les fonctions de H s (O) sont continues pour s > 1/2, dérivables B.2.3 Dualité
	pour s > 3/2, . . . On définit également des espaces de Sobolev d'indice négatif par dualité.
	Définition B.13 Pour s ≥ 0, on pose B.2.2 Théorèmes de densité et de trace H -s (O) = (H s 0 (O)) ,	(B.17)
	c'est un espace de distributions que l'on munit de la norme du dual fort:
		f H -s (O) = sup v∈H s 0 (O) v =0	f, v v H s (O)	.		(B.18)

u, v ∈ H 1 (O), O ∈ C 1,1 .

  Nous allons utiliser une fonction auxiliaire v (dite fonction-test) et la formule de Green (B.21) pour abaisser l'ordre de dérivation de u. Si nous choisissons v ∈ H 1 (O) et si nous supposons que u ∈ H 2 (O), nous aurons:

	B.4 Le problème de Dirichlet			
	Traitons tout d'abord le problème de Dirichlet homogène:
		-∆u + u = f dans O, u = 0 sur ∂O.			(B.24)
	B.4.1 Formulation variationnelle			
	O	-∆u v =	O	∇u • ∇v -	∂O	∂u ∂n	v dγ,
	et, par conséquent,						
								20)
	B.3.2 Opérateurs du second ordre			
						∂O	∂ϕ ∂n	ψ dγ.	(B.21)
	Si, par contre, on remplace ψ par div H, on aboutit à	
								(B.23)

Si, dans (B.19)

, on remplace E par grad ϕ, on obtient

O ∇ϕ • ∇ ψ = -O ∆ϕ ψ + O E, ∇ div H = -O div E div H + ∂O (E, n) div H dγ, (B.22) et de même, en remplaçant dans (B.20), H par rot Φ, O rot Φ • rot Ψ = O rot rot Φ, Ψ + ∂O rot Φ, n ∧ Ψ dγ. O f v = O ∇u • ∇v + O uv -∂O ∂u ∂n v dγ;

il reste que la condition de Dirichlet homogène n'a pas été prise en compte, elle doit donc subsister comme une contrainte supplémentaire imposée à u. On aboutit ainsi au problème, dit variationnel, suivant: Trouver u nulle sur ∂O, telle que ∀v nulle sur ∂O, O ∇u • ∇v + O uv = O f v . Cette formulation manque de précision, on doit en particulier choisir l'espace où doit être cherchée u pour envisager la démonstration d'un théorème d'existence et d'unicité, de sorte que les conditions relatives aux traces aient un sens. Compte tenu de la formulation que nous venons d'obtenir et du théorème de trace B.11 nous choisirons de chercher u ∈ H 1 0 (O), et d'y faire varier v. On aboutit ainsi au problème Trouver u ∈ H 1 0 (O), telle que ∀v ∈ H 1 0

  .4.3 Retour au problème fort La question qui subsiste est celle du lien entre les problèmes (B.24) et (B.25). Il est tout à fait clair que si u est solution de (B.24) elle l'est de (B.25) ; réciproquement si u est solution du problème variationnel (B.25), alors pour v ∈ D(O) on a

	-∆u + u -f , v D (O),D(O) = 0,	
	soit		
	-∆u + u = f dans D (O).	(B.26)
	D'autre part u ∈ H 1 0 (O) peut, en vertu du théorème B.11, s'interpréter comme signi-fiant u |∂O = 0, au sens précis suivant:
	γ 0 (u) = 0.		(B.27)
	u = 0	sur ∂O,	(B.29)
	soit encore, sous forme variationnelle		
	Trouver		

Le théorème de Lax-Milgram nous assure alors que le problème (B.25) est bien posé, c'est-à-dire que sa solution existe, est unique et dépend continûment de la donnée, puisque

V ≤ f L 2 (O) .

B

On a donc montré que u est solution du problème fort (B.24), en un sens quelque peu généralisé.

B.4.4 Le problème non-homogène

Nous n'avons traité que du cas d'une trace nulle, supposons qu'il n'en n'est plus ainsi:

-∆u + u = f dans O u = g sur ∂O. (B.28) Si u ∈ H 1 (O),

alors en vertu du théorème de trace (B.11), u |∂O ∈ H 1/2 (∂O); réciproquement, si on suppose que g ∈ H 1/2 (∂O), d'après ce même théorème de trace, il existe U ∈ H 1 (O), telle que U |∂O = g, U est appelé relèvement de g dans H 1 (O). Comme u est solution de (B.28) il en résulte que u = u -U est solution de -∆u + u = f + ∆U -U dans O

  aide du Théorème de compacitéde Rellich B.6, et d'après (B.34), on peut extraire de v n une sous-suite, encore notée v n qui converge, soit vers v dans L 2 (O).En vertu de (B.35), la suite ∇v n est de Cauchy dans L 2 (O); il en est de même de v n d'après l'item qui précède, et par conséquent v n est de Cauchy dans H 1 (O), elle y converge donc vers v. D'après (B.35), la fonction v vérifie ∇v = 0, c'est donc une constante, mais également Γ v dγ = 0, par continuité de la trace H 1 (O) -→ L 2 (Γ). On en déduit que v = 0, ce qui constitue une contradiction avec(B.33). B.15 Dans le théorème qui précède, le terme Γ v dγ peut être remplacé par de nombreux autres, par exemple ∆ v où ∆ est un ouvert de mesure non nulle inclus dans O. L'essentiel est la continuité de ce terme vis-à-vis de la topologie de H 1 (O) et le fait que [v] reste une norme.

	Remarque Démontrons maintenant l'ellipticité de la forme bilinéaire (B.32): on aura en effet pour

  5 Le problème de Neumann Si on choisit, dans un premier temps de considérer uniquement des fonctions test dans D(O), comme dans le cas du problème de Dirichlet, on montre aisément que u vérifie (B.26). L'interprétation de la condition de Neumann est plus difficile, elle nécessite de faire appel à l'espace H 1 (O; ∆). Choisissons tout d'abord u ∈ H 2 (O), w ∈ H 1/2 (∂O) et notons v un relèvement de w dans H 1 (O) qui vérifie v H 1 (O) ≤ 2 w H 1/2 (∂O) .

	Démonstration.						
	D'après la formule de Green,			
				O	∆uv = -	O	∇u • ∇v +	∂O	∂u ∂n	v dγ ;	(B.39)
	par conséquent,							
		∂O	∂u ∂n	w dγ ≤			
	On peut étudier selon la même méthode le problème de Neumann
					-∆u + u = f dans O, ∂u ∂n = g sur ∂O.	(B.36)
	B.5.1 Formulation variationnelle	
									gv dγ.	(B.37)
									∂O
	Le théorème de Lax-Milgram s'applique alors, faisant de (B.37) un problème bien posé.
	B.5.2 Retour au problème fort	
	Lemme B.16						
	(i) L'application u ∈ D(O) → ∂u/∂n |∂O se prolonge en une application continue:
	H 1 (O; ∆) -→ H -1/2 (∂O).			
	(ii) Ce prolongement est défini par la formule:	
	∂u ∂n	, v						

Si on suppose que g ∈ L 2 (∂O), on obtient

Trouver u ∈ H 1 (O) tel que ∀v ∈ H 1 (O) O ∇u • ∇v + O uv = O f v + H -1/2 (∂O),H 1/2 (∂O) = O ∆u v + O ∇u • ∇v ∀v ∈ H 1 (O).

(B.38) O

  ∀v ∈ V. (B.58) Remarque B.21 Une notion plus forte que celle d'ellipticité est souvent utile, celle de coercitivité: on dit que a est coercitive s'il existe θ ∈] -π, π] et α ∈ R, tels que Re e iθ a(u, u) ≥ α u 2 V .Cette condition implique évidemment l'ellipticité et signifie que, de plus, a(u, u) prend ses valeurs dans un cône du plan complexe dont l'angle est inférieur à π. La condition (B.56) peut être considérée comme une forme de l'hypothèse de coercitivité pour une forme hermitienne.

Proposition B.22 Si a est une forme hermitienne coercitive, les opérateurs

G V et G H sont auto-adjoints, respectivement pour les produits scalaires a(•, •) et (• |• ) H .

  que cette construction est intrinsèque, au sens où les espaces d'interpolation ne dépendent pas de la forme hermitienne coercitive a ayant servi à leur détermination. Dans le cas où H = L 2 (Ω) et V = H m (Ω), il s'agit là d'une façon de définir les espaces de Hilbert d'indice non entier, on montre en effet que L 2 (Ω), H m (Ω) θ = H mθ (Ω).

  Proposition B.26 Supposons que les valeurs propres µ k de (B.54) sont rangées dans l'ordre croissant et sont associées aux vecteurs propres y k , notons W k le sous-espace de V engendré par les y i , i = 1, k et W k l'ensemble des sous-espaces de dimension k de V. Alors les éléments propres (µ k , e k ) de (B.54) admettent les caractérisations suivantes:

	v) H v 2	(B.63)

  68)Démonstration. Il s'agit simplement d'appliquer les résultats de la proposition A.44 en notant que les valeurs propres λ k de G V sont les inverses de celles µ k de (B.54), et que de même R V est l'inverse de Q.Dans le cas particulier des formes hermitiennes positives, on peut préciser le résultat de la Proposition B.20 relative à l'alternative de Fredholm, c'est-à-dire à la résolution du problème (B.47).Remarque B.28 Ce résultat constitue une généralisation duThéorème de Lax-Milgram, au sens où la forme sesquilinéaire a(u, v) -µ (u |v ) H est positive elliptique s'il existe α > 0 tel que alors qu'en fait nous avons montré que (B.47) est bien posé dès que µ ∈ V(G V ). Ce résultat est beaucoup plus précis car les valeurs autorisées de µ ne sont pas confinées à un disque comme pourrait le laisser penser le Théorème de Lax-Milgram. Mais de plus, en vertu de (B.66), le problème (B.47) est bien posé dès que

	µ ≤ inf v∈V	a(v, v) v 2 H	-α	v 2 V H v 2	,	(B.72)
	µ < µ 1 = min v∈V	a(v, v) H v 2	,	(B.73)
	Alternative de Fredholm					

ce qui constitue une amélioration de la formule (B.72).

Remarque 2.30 Selon la Remarque 2.23, on aura en fait P f ⊂ {ν | Im ν < 0 } , ce qui prouve que les réels positifs ne sont pas de pôles de R (ν), et parconséquent que la Proposition précédente est en fait valable pour tous les ν 0 ∈ R + .

il en résulte que x n est de Cauchy, et par conséquent converge vers un élément de F, soit Pz, avec d = Pz -z .

Si y note un autre élément de F réalisant le minimum de y -z , le raisonnement précédent montre que la suite x, y, x, y, . . . converge ; l'unicité en découle. où O désigne un ouvert de R n et ∂O sa frontière, peut être effectuée de diverses façons: méthode de Perron [Gilbarg-1977], théorie du potentiel [Kellog-1967] 

(i) Les valeurs propres µ n de (B.54) sont en quantité dénombrable, ne peuvent s'accumuler qu'à l'infini et sont situées à l'extérieur d'un disque de rayon strictement positif.

(ii) Les sous-espaces propres associés aux valeurs finies de µ n sont de dimension finie.

(iii) Si V est dense dans H, alors 0 n'est pas valeur propre de G V , c'est-à-dire µ = ∞ n'est pas valeur propre de (B.54). 

Alternative de Fredholm

Revenons à la résolution du problème (B.47), il peut être mis sous la forme u = G V (µu) + Sq, soit 

où y est un élément quelconque de S i .

Démonstration. Si u ∈ V, on a vu à la Proposition B.24 que u = k≥1 α k y k avec k≥1 µ k |α k | 2 < +∞. Le fait pour u d'être solution de (B.47) implique alors (µ i -µ)α i = q(y i ), ∀i ≥ 1.

Si µ = µ i , ∀i ≥ 1, alors on en déduit la valeur de α i ∀i, et par conséquent l'expression (B.69).

Si par contre µ est l'une des valeurs propres de (B.54) alors d'après le Théorème A.27, le problème (B.57) équivalent à (B.47), admet des solutions si et seulement si a(Sq, y) = 0 ∀y ∈ S i , soit q(y) = 0 ∀y ∈ S i . 

De plus il est clair que la formule

Appendix C Le Théorème de Steinberg

Le résultat suivant, dû à Steinberg [Steinberg-1968], montre quelles sont les propriétés de l'inverse d'une famille analytique d'opérateurs de Fredholm (perturbation compacte de l'identité). Il généralise en fait une propriété bien connue pour une fonction analytique f dans un ouvert du plan complexe: si cette fonction n'est pas identiquement nulle, son inverse est méromorphe, ses pôles étant les zéros de f.