
HAL Id: hal-04073460
https://hal.science/hal-04073460

Submitted on 18 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Forward Backward Syndrome Computation: A Reduced
Complexity CRC Code Decoder

Titouan Gendron, Emmanuel Boutillon, Charbel Abdel Nour, David Gnaedig

To cite this version:
Titouan Gendron, Emmanuel Boutillon, Charbel Abdel Nour, David Gnaedig. Forward Backward
Syndrome Computation: A Reduced Complexity CRC Code Decoder. IEEE Communications Letters,
2023, 27 (5), pp.1267 - 1271. �10.1109/LCOMM.2023.3264162�. �hal-04073460�

https://hal.science/hal-04073460
https://hal.archives-ouvertes.fr


IEEE COMMUNICATIONS LETTERS 1

Forward Backward Syndrome Computation: A
Reduced Complexity CRC Code Decoder

Titouan Gendron, Emmanuel Boutillon, Charbel Abdel Nour and David Gnaedig

Abstract—This paper proposes a simplified method for cor-
recting a single-bit error event in a message protected by a CRC
code thanks to a new decoding method called Forward-Backward
Syndrome Computation. The two key ideas of the paper are
to show that: 1) syndrome computation can be performed in
any direction (Forward and Backward), 2) consequently, it is
possible to create a partition of the received message in a set of
disjoint syndromes, thus allowing a direct identification of the
error position. Evaluation in terms of number of 2-input binary
logic functions shows a complexity reduction by a factor of up
to 3 compared to conventional methods.

Index Terms—CRC code, error correction, single-bit error,
syndrome computation

I. INTRODUCTION

CYCLIC Redundancy Check (CRC) codes are widely used
in communication systems for their error detection capa-

bilities. However, CRC codes can also be used to correct few
errors. It is known since the sixties [1] that a single-bit error of
a CRC code can be corrected with a complexity proportional
to the code length N . Briefly speaking, the method consists of
comparing the syndrome with a pre-computed table containing
all the possible syndromes associated to a single error event.

More schemes have been introduced since [1] to decode
CRC codes. These methods can be split into code agnostic
methods (like the GRAND algorithm [2] and its numerous
variations using soft information) or code aware methods. The
latter category can be split into two sub-categories: 1) Hard
decision decoding algorithms that require a limited complexity.
They are used to correct only single-bit errors or double-bit
errors due to the exponential increase in complexity with the
number of corrected errors. Similar to [3], [4], most methods
are based on variations of the table method described in [1].
Recently, [5] proposed a “table-free method” using specific
properties of the CRC code to decode one or two errors. 2) Soft
decision decoding algorithms that can correct more than two
errors thanks to the use of soft input information at the cost
of a larger complexity, such as in [6]–[9].

This work focuses on the proposal of a code-aware hard
decoding scheme to correct a single-bit error with minimum
complexity and latency. It proposes a new decoding method
called Forward-Backward Syndrome Computation (FB-SC)
that reduces, by a factor of up to 3, the complexity of the

This work was granted by ANRT and Turboconcept, CIFRE PhD 2018.0921
Titouan Gendron and David Gnaëdig are with Turboconcept, Brest, France

(e-mail: titouan.gendron@univ-ubs.fr; david.gnaedig@turboconcept.com).
Emmanuel Boutillon is with Lab-STICC (UMR 6285, CNRS), Université

Bretagne Sud, Lorient, France (e-mail: emmanuel.boutillon@univ-ubs.fr).
C. Abdel Nour is with Lab-STICC (UMR 6285, CNRS), IMT-Atlantique,

Brest, France (e-mail: charbel.abdelnour@imt-atlantique.fr).

classical single-bit error decoder. The first key contribution
of this work is to show that syndrome computation can
be performed in any direction (Forward or Backward). The
“Forward” direction denotes the classical way to compute the
syndrome, while the “Backward” direction denotes the bit-
reversed order. Note that the proposed algorithm is completely
different from the well known BCJR algorithm, used to decode
a convolutional code and also referred to as the Forward-
Backward algorithm. The only commonality resides in the
direction of the applied processing schedule.

The other key contribution of this paper is the proof that
the computation of a partial syndrome based on any set of M
consecutive positions (M being the length of the redundancy
part of a codeword) can be used to correct an error within these
positions. This work can be seen as a specific and efficient
implementation of the more general Information Set Decoding
algorithm [10]. It is motivated by the industrial demand of an
improved decoder for LTE Turbocode [11].

The rest of the paper is organized as follows. Section II
reminds the basics of a CRC code and defines the notations.
Section III introduces the proposed FB-SC decoding method.
Section IV explains how to use the FB-SC method to correct
a single error event, while section V concludes the paper.

II. CRC CODES

Let K, N and R be the information length, the codeword
length and code rate of the polynomial code, respectively.
The polynomial code is defined by the generator polyno-
mial g(x) = xM + gM−1x

M−1 + . . . g1x
1 + 1 of degree

M = N − K. The message u = (ui)i=0,1,...,K−1 of length
K is expressed as a polynomial of degree K − 1 noted
u(x) = uK−1x

K−1 + uK−1x
K−2 + . . . u1x

1 + u0x
0. The

polynomial redundancy r(x) of degree M − 1 is computed as
the remainder of the polynomial division of u(x)xM by g(x),

r(x) = u(x)xM mod g(x), (1)

where mod is the modulo operator. From r(x), the code-
word c(x) is generated1 as

c(x) = u(x)xM + r(x). (2)

By construction, c(x) is a multiple of the generator polyno-
mial g(x) and thus c(x) = 0 mod g(x). After transmission
on a Binary Symmetric Channel (BSC) with a probability of
error p, the received message is

y(x) = c(x) + e(x), (3)

1From c(x), the binary encoded message is given as
c = (uK−1, uK−2, . . . , u0, rM−1, rM−2, . . . , r0).



IEEE COMMUNICATIONS LETTERS 2

where e(x) represents the error polynomial that contains non-
zero coefficients at each error position. From (3), we get
s(x) = y(x) mod g(x) = (c(x)+e(x)) mod g(x) and thus,
using the linearity of the modulo operation,

s(x) = e(x) mod g(x). (4)

The polynomial s(x) is called the syndrome. It depends
only on the error vector e(x) and the generator polynomial
g(x) through (4). If s(x) is equal to 0, then an error-free
transmission is assumed (when the error sequence e(x) is
a codeword, an undetected error event occurs). When the
syndrome s(x) differs from zero, then e(x) is a non-null
polynomial and its value should be inferred from s(x). In
the sequel, the Hamming weight of a polynomial h(x), i.e. its
number of non-zero elements will be denoted w(h).

III. THE FB-SC CORRECTION METHOD

This section first discusses the symmetric property of the
CRC code, then explains how this symmetry can be used to
correct errors. Symmetry refers to the ability to construct a
codeword from a message u(x) either in the “Forward” form
c0(x) = u(x)xM + r0(x), or in the “Backward” form c1(x) =
r1(x)XK+u(x). Note that c1(x) is a different codeword of the
same CRC code and r1(x) can be processed from the reverse-
ordered generator polynomial with a method described next.

A. Property of symmetric encoding

Lemma 1: Let a(x) be a polynomial of degree n
and (anan−1 . . . a1a0) its associated binary representation.
Then, a polynomial a(x−1)xn is a polynomial of degree
n with a binary representation given in reversed order, i.e.
(a0a1 . . . an−1an).

Proof The ith monomial, i = 0, 1, . . . , n, of a(x), i.e. aixi,
is associated to the (n − i)th monomial of a(x−1)xn since
aix
−ixn = aix

n−i �
As c(x) is a multiple of g(x), a unique quotient q(x) exists,

such that
c(x) = q(x)g(x). (5)

By replacing x by x−1 in (5) and by multiplying both sides
of the equality by xN−1, we obtain

c(x−1)xN−1 = q(x−1)g(x−1)xN−1. (6)

The xN−1 term on the right side of (6) can be decomposed
into the product xK−1xN−K , or equivalently, xK−1xM since
M = N −K. Thus, (6) becomes

c(x−1)xN−1 = (q(x−1)xK−1)(g(x−1)xM ). (7)

From (7), we can see that the reversed-order polyno-
mial c̄(x) = c(x−1)xN−1 is a multiple of the reversed-
order polynomial ḡ(x) = g(x−1)xM . In other words, c̄ =
(c0, c1, . . . , cN−2, cN−1) is a codeword of the code generated
by the polynomial ḡ = (g0, g1, . . . , gM−1, gM ). Therefore, it
becomes possible to revisit the decoding process in a sym-
metrical way by reversing the order of all polynomials. If we
call “Forward” the natural way to compute a syndrome (the

natural bit order), the symmetrical way can then be defined as
“Backward” (the bit-reversed order).

Let us define the syndrome s̄(x) as s̄(x) = y(x−1)xN−1

mod ḡ(x). This equation gives y(x−1)xN−1 + s̄(x) = 0
mod ḡ(x) and q̄(x) exists such that

y(x−1)xN−1 + s̄(x) = q̄(x)ḡ(x). (8)

Replacing in (8) x by x−1 and multiplying both terms
by xN−1 reverts the equation to the natural order. For
example, the term y(x−1)xN−1 is switched back using
y((x−1)−1)(x−1)N−1xN−1 = y(x)). The whole equation
gives

y(x) + s̄(x−1)xN−1 = q′(x)g(x), (9)

with q′(x) = q̄(x−1)xN−1. In other words,
y(x) + s̄(x−1)xN−1 is a codeword of the code generated
by the polynomial g(x). The polynomial s̄(x−1)xN−1 is of
degree N − 1, but its K lowest degree coefficients are all
equal to zeros.

In the next section, we combine forward and backward
remainders to compute a middle remainder and associated
middle syndromes.

B. Computation of a middle syndrome

We propose a generalization of the capability of finding a
codeword by correcting errors within any adjacent subset of M
bits starting from index l and ending at index l+M − 1, with
l = 0, 1, . . . , N−M−1. More precisely, we present a method
that provides a polynomial codeword from a vector y(x)
of size N bits by only modifying the subset of coefficients
between positions l and l +M − 1

To do so, let us decompose y(x) into three vectors as follows
(see Fig. 1 and Fig. 2)

y(x) = yfl (x)xl+M + yml (x)xl + ybl (x) (10)

with yfl (x) corresponding to the polynomial constructed with
the N −M − l highest degree coefficients of y(x) (exponent
f for “Forward coefficients”, this name is justified later by
the fact that they are processed in the forward direction),
yml (x) the polynomial constructed with the M coefficients of
y(x) between xl and xl+M−1 (exponent m corresponding to
“middle coefficients”) and ybl (x) the polynomial corresponding
to the l lowest coefficients of y(x) (exponent b for “Backward
coefficients”). These vectors are defined as

yfl (x) =

N−1∑
i=l+M

yix
i−M−l,

yml (x) =

l+M−1∑
i=l

yix
i−l and ybl (x) =

l−1∑
i=0

yix
i.

(11)

We denote by rfl the partial forward remainder such that

rfl (x) = yfl (x)xM mod g(x) (12)

Multiplying both terms of (12) by xl and regrouping the
terms on the left side gives

yfl (x)xM+l + rfl (x)xl = 0 mod g(x). (13)



IEEE COMMUNICATIONS LETTERS 3

yn−1, . . . , yl+M

yfl (x)

yM+l−1, . . . , yl

yml (x)

yl−1, . . . , y0

ybl (x)

rfl (x)
forward compute

rbl (x)
backward compute

yfl (x) rfl (x) + rbl (x) ybl (x)

codeword

N −M − l M l

Fig. 1: Illustration of the FB-SC principle.

For a bit-reversed order processing, we can define the partial
backward remainder r̄bl (x) from the reversed-order polynomial
ȳbl (x) = ybl (x

−1)xl multiplied by xM and the reversed-order
key ḡ(x) as

r̄bl (x) = ȳbl (x)xM mod ḡ(x). (14)

Therefore, ȳbl (x)xM+r̄bl (x) = 0 mod g(x), and thus, there
exists q̄(x) such that

ȳbl (x)xM + r̄bl (x) = q̄(x)ḡ(x). (15)

Similarly to the transformation between (8) and (9), replac-
ing x by x−1 in (15) and multiplying both terms by xM+l

gives
ybl (x) + rbl (x)xl = 0 mod g(x), (16)

where rbl (x) = r̄bl (x
−1)xM denotes the reversed-order poly-

nomial of r̄bl (x).
By adding the two terms rfl (x) and rbl (x), we can define

the middle (or generalized) remainder rml (x) as

rml (x) = rfl (x) + rbl (x) (17)

and the middle syndrome sml (x) at the level of the bit l
within the frame, as

sml (x) = yml (x) + rml (x). (18)

The corresponding process is illustrated in Fig. 1. The sum of
the polynomials in (13) and (16) verifies

yfl (x)xM+l + rml (x)xl + ybl (x) = 0 mod g(x), (19)

or equivalently, is also a codeword of the polynomial code.
Note that it can be demonstrated that, if y(x) is a codeword,

then for all l, sml (x) = 0, and also its reciprocal property, i.e.
if index l exists such that sml (x) = 0, then y(x) is a codeword.

In the following, a method to compute the middle syndrome
is presented.

C. Recursive computation of rfl (x) and rbl (x)

Following the definition of yfl (x) in (11), we can write

yfl (x) = yfl+1(x)x+ yl+M . (20)

Starting from (12), for l = K − 1 down to 0 we have

rfl (x) = (yfl+1(x)x+ yl+M )xM mod g(x) (21)

= (rfl+1(x)x+ yl+Mx
M ) mod g(x) (22)

with rfl=K(x) = 0. Note that (22) is the mathematical
expression used to compute the final redundancy r(x) = rf0 (x)
of the CRC encoding process when y(x) = u(x)xM .

The computation of r̄bl from l = 0 to K−1 can be performed
by applying a symmetrical encoding approach following

r̄bl (x) = (rbl−1(x)x+ ylx
M ) mod ḡ(x), (23)

with rbl=−1(x) = 0.
Without loss of generality, we assume that N is a multiple

of M , i.e. N = γM . If it is not the case, y(x) can be padded
with dummy null coefficients until its size matches a multiple
of M . It is then possible to partition y(x) into γ segments
of size M each, and to compute the γ middle syndromes
associated to each segment smkM (x) = rmkM (x) + ymkM (x),
with k = 0, 1, . . . , γ − 1. To do so, the partial remainders
rfkM (x) from (22) and rbkM (x) from (23) computed for
k = 0, 1, . . . , γ − 1 have to be saved periodically every
M cycles. Finally, after reordering, the middle remainder
denoted by rmkM (x) is computed (see (17)) followed by the
computation of the middle syndromes smkM (x) (see (18)), with
k = 0, 1, . . . , γ − 1.

The next section shows how to simplify the correction of a
single error event using the partitions of FB syndromes.

IV. CORRECTION OF THE SINGLE-BIT ERROR EVENT

In this section, we first present the standard method to correct a
single-bit error event and we evaluate its complexity. Then, we
show how to benefit from the set of FB syndromes associated
to the segments of y(x) to reduce the complexity of the
correction by a factor M .

A. Classical single-bit error correction method

In case of a single-bit error at position a, i.e. e(x) = xa,
then, the corresponding syndrome is s(x) = s

(1)
a (x), with

s(1)a (x) = xa mod g(x), (24)

where the superscript (1) indicates a syndrome for an error
event of Hamming weight of 1 (single-bit error) and the
subscript a indicates the position of the error.

The set of N syndromes S(1) = {s(1)i (x)}i=0,1,...,N−1 can
be precomputed to correct every single-bit error event with a
complexity in O(N). To this end, s(x) is compared to the val-
ues of S(1) until finding the value a verifying s(x) = s

(1)
a (x).

Hence, the resulting codeword is obtained from y(x) by
flipping the bit at the ath position. When s(x) 6= 0 and
s(x) /∈ S(1), then at least 2 errors occurred and the decoding
process fails. Note that this method is applicable only if
all elements of S(1) are distinct. When g(x) is irreducible
over the set of polynomials with binary coefficients GF(2)[x],
this hypothesis is fulfilled for N < 2M . This method is
called the table method [3]. Recently, in [5], another algorithm
called “Table-Free Multiple Bit-Error Correction” (TFMBEC)



IEEE COMMUNICATIONS LETTERS 4

Fig. 2: Computation example of middle remainders

was proposed. However, the proposed algorithm involves data
dependent iterations and, in the worst case (especially for
a hardware implementation since constraints are set during
execution time), it has a higher complexity than the table
method (see section IV.B).

B. FB-SC correction method

Let us assume that there is only one error at position a, with

a = kaM + δa (25)

and 0 ≤ δa < M . In others words, the error belongs to the
kath segment. Then, using the same arguments as the ones
used to derive (4), the middle syndromes depend only on the
error pattern e(x). Let us focus on the middle syndrome smkaM .
Since e(x) = xa, we have efkaM (x) = 0, emkaM (x) = xδa ,
and ebkaM (x) = 0. Thus, the partial Forward and Backward
remainders linked to e(x) are both null, giving smkaM = xδa ,
i.e. a weight-1 polynomial. The value δa identifies the index
a = kaM + δa of the bit to be flipped in y(x) to ob-
tain a codeword. The following toy example illustrates the
proposed method. Let us assume M = 7, the generator
polynomial g(x) = x7 + x3 + 1 and the length K = 28
message u = (0001000111001000000101001111). Based on
the recursive equation (22), the obtained codeword c is given
as c = (00010001110010000001010011111001010). Let us
assume an error at position a = 15, the noisy received message
becomes y = (00010001110010000000010011111001010).
The index a = 15 can be decomposed following (25) such that
ka = 2 and δa = 1. Fig. 2 shows graphically the computation
of the 4 remainders (rf14, r

b
14) and (rf7 , r

b
7). From this figure,

we can deduce that rm14 = rf14 + rb14 = (0000010), and thus,
that sm14 = ym14 + rm14 = (0000000) + (0000010) = (0000010),
i.e. a weight-1 middle syndrome. Similarly, we get rm7 =
(1011101) and sm7 = (1011101), i.e. weight-5 syndromes.
The other middle syndromes for this example are sm28(x) =
(1001111), sm21(x) = (0010011) and sm0 (x) = (0001011). As
predicted, the only weight-1 syndrome is sm14, i.e. the one that
is associated with the position of the error.

C. Complexity comparison

In this section, we compare the complexities of the classical
and the proposed FB-SC methods. Both methods apply a
2-phase approach consisting of syndrome determination fol-
lowed by error mitigation.

Fig. 3: Structure of LFSR for forward syndrome computation

The recursive computation of rfl (x) is given in (22). Starting
from rfK(x) = 0, the recursion rfl (x) = (rfl+1(x)x+yl+Mx

M )
mod g(x) is performed from l = K − 1 down to 0. This
is a well known Linear Feedback Shift Register (LFSR)
structure, similar to the one represented in Fig. 3 for M = 7,
g(x) = x7 + x3 + 1. In the general case, the number of
XOR operations to perform the full recursion is given as
N(w(g) − 1), where w(g) denotes the number of non-zero
values of the generator polynomial g. For the FB-SC method,
both forward and backward recursions need to be performed,
which doubles this complexity. Moreover, N additional XOR
operations are required to compute the middle syndrome (i.e.
γ = N/M computations of (17), each requiring M XOR
operations). The overall complexity for syndrome computation
of the FB-SC method becomes 2N × (w(g) − 1) + N XOR
operations. While the FB-SC method requires a larger number
of computations for the first phase of the algorithm, its
complexity is considerably reduced when applying the second
phase of single-bit error correction.

The complexity of the classical method is given as the cost
to compare the N syndromes of the set S(1) with the actual
syndrome s(x) of the received codeword. This is motivated
by the fact that the comparison of two vectors of size M
(i.e. the size of the syndrome) requires M XOR operations to
sum them, then a M -entry NOR gate to test that the resulting
vector is equal to the null vector. This latter operation requires
a binary tree of M -2 OR gates followed by an NOR gate
inverter. The complexity of this method can be approximated
to N ×M required XOR and OR operations.

Applied during the second phase, the FB-SC decoder checks
if one of the middle syndromes has a Hamming weight of one.
Several ways can be used to achieve this goal. We propose
to derive an upper bound on the corresponding complexity.
In order to simplify the notations, we omit the exponent
m (denoting middle) as well as the subscript kM of the
considered middle syndrome in the following description.

Let us thus consider the received middle section y(x), the
associated remainder r(x) and syndrome s(x) = y(x) + r(x),
each of size M . If s(x) has a weight 1, then the corrected
version is equal to ĉ(x) = y(x) + s(x). For a given index
l in the range 0 to M − 1, let us define the Boolean
variable Tu(l) (subscript u for up) equals to one if the
set (sM−1, sM−2, . . . , sl+1) contains at least one value 1, 0
otherwise. Similarly, we define Td(l) (subscript d for down)
that equals 1 if the set (sl, sl−1, . . . , s0) contains at least one
value 1, 0 otherwise. By construction, Tu(l) = Tu(l + 1) OR
sl and Td(l) = Td(l− 1) OR sl. For a given index j, if the 3
following conditions 1) Tu(j + 1) = 0 (all syndrome values
between j + 1 and M − 1 are equal to 0), 2) Td(j − 1) = 0
(all syndrome values between 0 and j − 1 are equal to 0)



IEEE COMMUNICATIONS LETTERS 5

TABLE I: Complexity Comparison in Terms of 2-Input Binary
Operations Between the Classical and The FB-SC Methods.

Classical FB-SC

General case
Syndrome Nw(g)−N 2Nw(g)−N
Correction 2NM 5N
Total N(2M + w(g)− 1) N(2w(g) + 4)

LTE CRC ga(x) 61N 32N
gb(x) 53N 16N

and 3) sj = 1 are met, then s(x) is a weight-1 polynomial
and the corrected bit is obtained by flipping the bit in the jth

position. If one of these 3 conditions is not fulfilled, then the
bit should not be flipped. This operation can be implemented
by the Slice Middle Syndrome Correction (SMSC) component
given in Fig. 4.a). The serial association of M SMSC, as
shown in Fig. 4.b), gives the Middle Syndrome Correction
(MSC) components. MSC allows correcting a single-bit error
in a middle syndrome. The initial conditions are Tu(M) = 0
and Td(0) = 0. By construction, if the Hamming weight of
the syndrome is larger than 1, or equal to 0, the MSC just
leaves y(x) unchanged. The MSC is thus used γ times during
the decoding process, one for each length-M segment of the
partition. Fig. 4.c shows the correction of the middle segments
ym14 and ym7 given in the example of section IV.B.

The complexity per bit can be approximated by 5 binary
operations (one XOR and 2 OR operations for the computation
of Tu(l) and Td(l) and 2 OR for the computation of f(l) =
Tu(l + 1) OR Tu(l − 1) OR NOT(sl), leading to an overall
complexity of 5N two-inputs Boolean operations. Note that
this estimate is slightly pessimistic. In fact, due to side effects,
the first and the last SMSCs of the MSC require only 2 OR
gates instead of 4. Table I compares the complexity of the two
methods. Although one can argue about the difference in the
relative complexity between the hardware of a XOR and an OR
operation, the results are intended to provide a simple insight
on how FB-SC reduces the decoding complexity compared to
the classical method.

The optimized implementation of the TFMBEC algorithm
[5] requires first N(w(g) − 1) XOR operations for the syn-
drome computation. Then, the single-bit error correction re-
quires N iterations. For each decoding iteration, a verification
condition is performed using the Hamming weight of a length
M vector. If the result is greater than 1, then w(g) XOR
operations are performed. By approximating the verification
step to 4M gates operations, the worst case complexity is
given as N(2w(g) − 1 + 4M) gate operations. This number
is greater than both the classical and the FB-SC methods (see
Table I).

As an application example, Table I shows also the decoding
complexity for the M = 24 CRC codes used in the LTE
standard [12]. This latter specifies two CRC codes with
generator polynomials ga(x) and gb(x) that contain 14 and
6 non-zero values, respectively. The FB-SC method reduces
the complexity by a factor 2 for ga(x) and 3 for gb(x).

V. CONCLUSION

The paper presents a simplified method called FB-SC to detect
and correct all single-bit error of a CRC code. The principle

Fig. 4: Example of architecture for the correction of the 1 bit
flip-error event

is to simplify the error detection and correction of a single-
bit error by computing a partition of middle syndromes. In
our future work, we will extend the FB-SC method to correct
two-error patterns. Preliminary results confirm the appeal of
the proposed method.

REFERENCES

[1] W. W. Peterson and D. T. Brown, “Cyclic Codes for Error Detection,”
Proceedings of the IRE, vol. 49, no. 1, pp. 228–235, 1961.

[2] K. R. Duffy, J. Li, and M. Médard, “Capacity-Achieving Guessing
Random Additive Noise Decoding,” IEEE Transactions on Information
Theory, vol. 65, no. 7, pp. 4023–4040, 2019.

[3] A. Habibizad Navin, S. H. Es-hagi, M. D. Yam, M. Hajiagapour, and
M. Mirnia, “Data-oriented architecture for double and single bits error
correction using Cycle Redundancy Code,” in Int. Conf. On Computer
Design and Applications, vol. 4, 2010, pp. V4–549–V4–552.

[4] S. Shukla and N. Bergmann, “Single bit error correction implementation
in CRC-16 on FPGA,” in Proceedings. 2004 IEEE International Con-
ference on Field- Programmable Technology (IEEE Cat. No.04EX921),
2004, pp. 319–322.

[5] V. Boussard, S. Coulombe, F.-X. Coudoux, and P. Corlay, “Table-Free
Multiple Bit-Error Correction Using the CRC Syndrome,” IEEE Access,
vol. 8, pp. 102 357–102 372, 2020.

[6] E. Tsimbalo, X. Fafoutis, and R. J. Piechocki, “Crc error correction in
iot applications,” IEEE Transactions on Industrial Informatics, vol. 13,
no. 1, pp. 361–369, 2017.

[7] T. Tonnellier, C. Leroux, B. Le Gal, B. Gadat, C. Jego, and N. Van
Wambeke, “Lowering the Error Floor of Turbo Codes With CRC
Verification,” IEEE Wireless Commun. Lett., vol. 5, no. 4, pp. 404–407,
Aug 2016.

[8] M. Fossorier and S. Lin, “Soft decision decoding of Linear Block Codes
based on Ordered Statistics,” in Proceedings of 1994 IEEE International
Symposium on Information Theory, 1994, pp. 395–.

[9] E. Tsimbalo, X. Fafoutis, and R. Piechocki, “Fix it, don’t bin it! - CRC
error correction in Bluetooth Low Energy,” in 2015 IEEE 2nd World
Forum on Internet of Things (WF-IoT), 2015, pp. 286–290.

[10] E. Prange, “The use of Information Sets in decoding Cyclic Codes,” IRE
Transactions on Information Theory, vol. 8, no. 5, pp. 5–9, 1962.

[11] T. Gendron, E. Boutillon, C. Abdel Nour, and D. Gnaedig, “Revisiting
augmented decoding techniques for LTE Turbo Codes,” in 2021 11th
International Symposium on Topics in Coding (ISTC), 2021, pp. 1–5.

[12] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio
Resource Control (RRC),” 3rd Generation Partnership Project (3GPP),
Technical Specification (TS) 36.331, 04 2017, version 14.2.2.


