
HAL Id: hal-04073365
https://hal.science/hal-04073365

Submitted on 18 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

SkiNet, A Petri Net Generation Tool for the Verification
of Skillset-based Autonomous Systems

Baptiste Pelletier, Charles Lesire, David Doose, Karen Godary-Dejean,
Charles Dramé-Maigné

To cite this version:
Baptiste Pelletier, Charles Lesire, David Doose, Karen Godary-Dejean, Charles Dramé-Maigné. Sk-
iNet, A Petri Net Generation Tool for the Verification of Skillset-based Autonomous Systems. EPTCS
2022 - Electronic Proceedings in Theoretical Computer Science, Sep 2022, Berlin, Germany. pp.120-
138, �10.4204/eptcs.371.9�. �hal-04073365�

https://hal.science/hal-04073365
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

M. Luckcuck and M. Farrell; M. Autili, L. Berardinelli,
A. Bucaioni and C. Pompilio (Eds.):
Formal Methods for Autonomous Systems and
Automated and verifiable Software sYstem DEvelopment
EPTCS 371, 2022, pp. 120–138, doi:10.4204/EPTCS.371.9

© B. Pelletier, C. Lesire, D. Doose,
K. Godary-Dejean & C. Dramé-Maigné
This work is licensed under the
Creative Commons Attribution License.

SkiNet
A Petri Net Generation Tool for the Verification of

Skillset-based Autonomous Systems

Baptiste Pelletier
ONERA/DTIS

Université de Toulouse, France
LIRMM

Univ. Montpellier, CNRS France
baptiste.pelletier@onera.fr

Charles Lesire David Doose
ONERA, DTIS

Toulouse, France
firstname.lastname@onera.fr

Karen Godary-Dejean Charles Dramé-Maigné
LIRMM, Univ. de Montpellier, CNRS

Montpellier, France
karen.godary-dejean@umontpellier.fr charles.drame-maigne@ens-paris-saclay.fr

The need for high-level autonomy and robustness of autonomous systems for missions in dynamic
and remote environment has pushed developers to come up with new software architectures. A
common architecture style is to summarize the capabilities of the robotic system into elementary
actions, called skills, on top of which a skill management layer is implemented to structure, test
and control the functional layer. However, current available verification tools only provide either
mission-specific verification or verification on a model that does not replicate the actual execution
of the system, which makes it difficult to ensure its robustness to unexpected events. To that end,
a tool, SkiNet, has been developed to transform the skill-based architecture of a system into a Petri
net modeling the state-machine behaviors of the skills and the resources they handle. The Petri net
allows the use of model-checking, such as Linear Temporal Logic (LTL) or Computational Tree
Logic (CTL), for the user to analyze and verify the model of the system.

1 Introduction

The use of autonomous systems has spread widely in the recent years, with applications in industrial au-
tomation, scientific exploration, rescue or environment monitoring missions. They are able of executing
critical tasks and missions that need a high level of dependability.

For the sake of improving the trust in the autonomy of robotic systems, different validation and
verification methods (V&V) can be used, such as formal methods, like model-checking, to verify that
user-defined properties will be guaranteed once the system is deployed. The verification of the system
behavior whatever happens requires to predict all possible system configurations, failure points and their
appropriate responses, as well as the complexity of a dynamic, sometimes unknown environment. For
a system to answer each of these challenges, hardware and software complexity must increase, which
makes the modelling and analysis processes more difficult. Using formal methods and verification tools
such as model-checking, it is possible to prove the robustness of the system throughout its design stages.

Various software control architectures have been developed with always the same objectives in mind:
making the system easier to specify, and its robustness easier to verify. Looking at the system with
a higher-level of abstraction can make the verification process easier for users with few experience in

http://dx.doi.org/10.4204/EPTCS.371.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

B. Pelletier, C. Lesire, D. Doose, K. Godary-Dejean & C. Dramé-Maigné 121

middleware and low-level architecture. But abstraction becomes quickly limited when facing dynamic
environments and complex tasks. An ideal model would then be one that is abstract enough to allow an
easy specification, while also providing great verification possibilities, which is the goal of the present
study.

The software architectures tackled in this work are skill-based architectures, also called task-based
[21, 1, 30], where the robotic system is decomposed into elementary actions. This approach usually
comes with a high-level of abstraction of the software and hardware of the system, while offering a wide
range of specification possibilities. A controller layer is then implemented, to test the architecture and
control the system. The architecture used for this work will be the Skillset formalization of Albore et al.
[1], which is composed of resources, skills and events and can model the robot as well as its environment
and operator decisions. The strength of this formalization is that a code generating tool is provided,
which will guarantee that the execution of the system will be as specified in the skillset.

The present work was conducted with the objective of improving the current verification capabilities
of the skillset architecture by using a Petri net equivalent to the skillset model. The long-term objective is
to offer an accessible model-checking tool for this architecture, to ensure that all people involved in the
design of a robotic system can understand and contribute to the verification process with their own tech-
nical knowledge. Indeed, current autonomous systems are becoming more costly and multidisciplinary,
while being used in remote and hazardous environments, where human assistance is nearly impossible.
This requires scientific inputs during the design phase from researchers requesting valuable data, field
experts that will put physical limitations to the system, and technical operators that will design the robotic
hardware and software. In order for all these participants to contribute, the verification process must be
simplified. For instance, formalisms such as Linear Temporal Logic (LTL) or Computation Tree Logic
(CTL) have important capabilities to verify the behavior of a system, but demand a solid knowledge in
the functioning of model-checking in order to use them properly.

Various formal methods are used for the purpose of property verification, and the present tool we
present in this paper, SkiNet, uses Petri nets to translate the skillset model and perform model-checking
indirectly. The end user never manipulates the Petri net nor the model-checking tools, as SkiNet performs
all these steps in the background and only provides to the user the valuable informations for the skillset
design process. This is especially useful as Petri nets modelling complex systems can become difficult
to read visually, and properties to check also become proportionally more complex.

Thus, this paper presents SkiNet and the methods it uses. Section 2 will begin by looking at the
related work tackling the verification of high-level software architectures using formal methods. Then,
section 3 will sum up the background, with the definitions of Petri nets and the skillset architecture.
Section 4 will go over the content of the generated Petri net and the generation process. Section 5 will
prove the correctness of the generated Petri net with regards to the state-machine behavior of skills and
resources. Finally, section 6 will show a few examples of model-checking done on the generated Petri
net to verify the behavior of the skillset model, before moving on to the conclusion in section 7. An
illustrating example with the Boston Dynamics Spot® robot, shown in Fig. 1, with the spot skillset, in
Fig. 2, used for generating the controller code. The SkiNet tool and instructions are available publicly for
the readers to try it out themselves: https://gitlab.com/onera-robot-skills/skinet-release.

2 Related works

To facilitate the development of autonomous systems, skill-based architectures have been designed to
decompose the system into elementary actions. An early take on the subject was done in [21], with many

https://gitlab.com/onera-robot-skills/skinet-release

122 SkiNet

new concepts emerging with an increasing demand for autonomous systems from industries [30]. The
main advantage of such architectures are their modularity, easy reconfiguration and repurposability, as
well as making robotic programming easier for end users. The skills are then composed to create more
complex tasks to achieve specific goals or missions, while using feedback from sensors and actuators
[30, 1, 36, 35, 18]. The mission design using skill-based architecture is often coupled with deliberative
functions to create autonomous systems capable of adapting to their environment or faulty behaviors,
often using model-based architectures [16, 29]. This is a growing need in domains such as underground,
underwater [23, 31, 38] or space exploration [13, 14]. However, such functions imply a precise specifi-
cation of all possible faults that can arise, for instance by designing fault-trees [12], and implementing a
proper risk-management architecture [24, 2].

In order to prepare the autonomous system for high-risk missions and guarantee a-priori its robust-
ness to the dynamic environment it will evolve in and to the faults that could arise, formal methods based
on model-checking have been developed, sometimes at a very early development stage. Formal meth-
ods are used to tackle the verification of either the mission design or the entire robotic system. Ingrand
[15] gathers the state of the art of V&V formal methods for autonomous systems. Albore [1] shows
how missions can be designed through Behavior Trees, allowing for robust mission specification and
fault management, however such method restricts the verification of the system to a specific mission.
Evans [8] proposes a Model-Based Mission Assurance approach to improve the safety and robustness
of a system in the early development stage, using Assurance models synthesis, implementing fault trees
and Bayesian nets as inputs for SysML diagrams, opening interesting perspectives for the implementa-
tion of fault management into software architecture. Nardone [27] proposes a methodology for the V&V
of satellite operational mode management specification, using mu-calculus logic. The method offers an
interesting insight on the use of mu-calculus logic for V&V. Gross [11] also uses formal specification for
the early stages of spacecraft design and attitude control system and shows the cost-reducing capabilities
of using model-checking in a large-scale project. Finally, Louis [20] designed a mission controller based
on a Fault Management System for an underwater automated vehicle. This approach, while being very
safe with regards to system integrity, also demands the inputs from experts to specify the fault model and
calibrate the controller correctly.

Petri nets [32, 26] are used in a wide range of applications such as robotics, industrial management
or video-games [33], with a wide range of tools readily available to manipulate and verify Petri nets,
such as the Tina toolbox (Time Petri net Analyzer) [4, 5], and thus indirectly verify the modeled system
or mission [18, 7, 25]. Costelha [6, 7] uses Petri nets to model and verify robotic tasks. This early
approach is very close to our goal here: a design-analysis-design approach that improves user experience
when designing the robot model before using the real robot. However, the nets were manually built,
while the present work is based on written specification synthesis. Reza [34] uses both Petri nets and
converted Fault trees into nets for verification and safety analysis for systems based on Requirements
State Machine Language (RSML). This approach is similar to the present work, with automatic synthesis
of RSML into fault trees and Petri nets. A similar approach was proposed by Yan [37] for autonomous
mission reliability modelling. Kwon [17] uses specialized colored Petri nets to model context-aware
agent-based applications. The systems are decomposed into context-independent patterns, which is an
approach also considered by Figat [9], with hierarchical Petri nets, where layered patterns are used to
describe components of multi-agent robotic systems. These approach show how much complexity can
be put into Petri nets to model a system, and how easily customizable they are to suit the modelling
need of every user and/or system. Multiple agents missions verification is also tackled by [28], and such
approaches open future perspectives on the present work for the use of skill-architecture based Petri nets
with multiple coordinating agents. Finally, Mahulea [22] proposes an automatic generation of Petri nets

B. Pelletier, C. Lesire, D. Doose, K. Godary-Dejean & C. Dramé-Maigné 123

for boolean based robot planning, with generation and verification processes also similar to the present
work, but without the skill-based architecture context.

Finally, controller synthesis using formal methods has been widely developed to close the gap be-
tween a safe model and a controller code that respects this model, while relieving the programmers
from writing their own middleware. Foughali proposes the use of GenoM3 [10], a framework to specify
robotic systems in the form of component-based timed transition systems, from which controller synthe-
sis can be performed using templates. GenoM3 uses a lower-level approach than the skillset architecture
presented in this work, but raises critical points on the usability of controller synthesis frameworks with
other existing V&V tools. Figat [9] suggests hierarchical Petri nets to decompose multi-agents systems
into functional layers. This hierarchical perspective allows for the use of ready-to-use templates to model
low-level components, so that the user can focus on modelling and verifying the higher-level architecture.
Controller synthesis is also performed using this framework, however the Petri nets are hand-written and
not synthesized from user-written specification, which can make it difficult for a non-experienced user to
manipulate. Lesire [18] creates a Skills Colored Petri net controller and synthesizes it into a ROS node to
manage the execution of the system. Unfortunately, the resources system was not yet developed, which
limited mission complexity. On top of this, Colored Petri nets are a special formalization of Petri nets,
which limits the available tools for verification.

The present work uses the same framework as [1], where skillset specifications are written by the
user, and a skill-manager layer is synthesized into a ROS node to complement with pre-built system
control functions. Our work here is to provide a verification tool for this architecture, using Petri nets.
The goal of the tool is to translate the user-written specification of the skillset into a Petri net, by using
the definition of skill-nets presented in [18], with the addition of the resources system and events. We
also removed the colored net formalism to be able to use more verification tools. Controller code can be
generated from the skillset specification, and our tool can be used for V&V purpose, during both design
and deployment phase, thus fully covering the aforementioned problematics of system development.

3 Background

3.1 Petri net

This section will sum up the definitions and notions of the generated Petri net, as defined by [32, 26],
with the addition of transition priority as presented by Balbo [3].

Definition 3.1 (Petri net). A Petri net 〈N,m0〉 is a tuple N = (P,T,F) and an initial marking m0, where:

• P and T are two non-empty, disjoint and finite sets of places and transitions, respectively.

• F ⊆ (P×T)∪ (T ×P) a set of directed arcs.

• m0 ∈M the initial distribution of tokens, called the initial marking of the net, and M = {m0,m1, ...,mn}
the set of all possible markings of N.

This definition is extended with N = (P,T,F,�), where� is the priority relation, represented by directed
arcs between transitions, with the source transition having a higher priority. This means that if two
transitions t1, t2 ∈ T are enabled, i.e. their input places have at least one token, and t1 � t2, then only t1 is
firable.

For any transition t ∈ T , the sets of its input and output nodes are •t and t• respectively. While
arcs are usually weighted in conventional Petri nets, only unitary arcs will appear in this paper, with an
explanation in section 4.

124 SkiNet

Let p ∈ P and t ∈ T be a place and a transition. The marking of a place p is noted m[p]. The firing
of an enabled transition t ∈ T , with ∀p ∈• t, m[p] ≥ 1, leads to a new marking, or reachable state, m′.
All the input places of t loose a token, i.e. ∀p ∈• t, m′[p] = m[p]−1, and all the output places gain one
token, i.e. ∀p ∈ t•, m′[p] = m[p]+1.

3.2 Skillset architecture

This section summarizes the elements of a Skillset used for the modelling and programming of au-
tonomous systems, as defined by Albore [1], with some elements omitted as they are not used in this
paper. The Skillset can represent both hardware and software elements of the system, and their interac-
tion/execution. A tool called "robot language" generates C++ code based on the skillset specifications
that follows this execution, with part of the execution code to be filled by the user, such as skills func-
tions, exit conditions, events triggering, etc. More information on the skillset execution semantic can
be found in [1]. A skillset contains resources, resource guards and resource effects. These elements are
assembled into skillset transitions, to create events and skills. We define all the elements of a skillset in
the following section. An example skillset is given in 2, which was used for generating controller code
for the Boston Dynamics Spot® robot, a quadruped robot capable of carrying heavy payload and per-
form observation tasks, shown in Fig. 1. This example showcases the syntax of the skillset specification
language as it would be written by the user, which is significantly simpler than the underlying formal
definition, given in the following section.

Figure 1: The Spot® quadruped robot, mounted with extra payload. The controller code was generated
from a skillset which was verified a-priori with SkiNet. The skillset in Fig 2 is an extract of the actual
running skillset, available at https://gitlab.com/onera-robot-skills/skinet-release.

3.2.1 Resources

Definition 3.2 (Resources). Resources are state-machines that represent the status of an element of the
system (sensor, motorization status, mutex...). A resource r is a tuple (Sr,T r), with a set of states Sr =

https://gitlab.com/onera-robot-skills/skinet-release

B. Pelletier, C. Lesire, D. Doose, K. Godary-Dejean & C. Dramé-Maigné 125

Figure 2: Extract of the spot skillset model for the Boston Dynamics Spot® robot. Resources model
motor power state, lease mode and control mode mutex. Events are used to represent the actions of the
operator on the robot. Skills the robot can perform are init_power and safe_poweroff to start and cut
motor power respectively, and a movement skill go_to.

{Sr
0, ...,S

r
n−1}, and a set of transitions between each state T r ⊂ (Sr×Sr). A resource can only be in one

of its states at any given time during the execution of a skillset, noted state(r) ∈ Sr, with Sr
0 the initial

state.
The set of states that can lead to a state Sr

i and the set of states that can originate from Sr
i are noted

•Sr
i and Sr

i
• respectively. The transition from Sr

i to itself is a valid transition.

Definition 3.3 (Resources effects and guards). Resource effects aim to change the state of a specific
resource. An effect ε is a tuple (r,Sr

i) of a resource and its next state. The origin state of the resource
is not specified, as effects only mention the destination state. Effects can be empty and are only valid if

126 SkiNet

they contain at most one effect for each resource.
Resource guards are used to put conditions on the triggering of effects. A resource guard, or simply

guard, is a logical formula φ : {Sr,r ∈R}→ {True,False} on the states of the resources of R.

3.2.2 Skillset transitions

The skillset is then assembled by coupling guards and effects to create skillset transitions. Skillset
transitions are used in events and skills, and represent the basis of the execution of the skillset. We
also define solutions, the set of resource states that verify a resource guard.

Definition 3.4 (Skillset transitions). A skillset transition is a tuple τ = (φ ,E ,σ), formed with a guard φ ,
a set of effect E , and a state change σ . A state change is a tuple σ = (state1,state2) which changes the
state of a skill, later defined in Def 3.6. We note R(τ) the resources involved in either φ or E . A skillset
transition can be triggered if its guard is true. If triggered, its effects and state change are applied.

Definition 3.5 (Solutions). Xτ is the set of all solutions of a skillset transition τ . A solution is a set of
resource states x = {xr ∈ Sr,r ∈R(τ)} associated to a guard φ , such that φ(x) = True. x only contains
up to one state per resource. The solutions Xτ can be obtained with a boolean satisfaction problem solver
(SAT solver).

3.2.3 Skillset

Definition 3.6 (Skillset). A skillset is a tuple Σ = (R,V ,S) with:

• R is a set of resources {r1,r2, ...}.

• V is a set of events. An event is a skillset transition τν with state change σ =∅. Events represent
actions from the exterior of the system, such as from the operator or the environment, on the
resources of the skillset. They can have a guard or none.

• S is a set of skills, which are elementary actions that can be executed by the system. A skill s∈S
is a tuple s = (name, pre, inv,state,Ts), with:

– An identifier name.

– Preconditions pre = {pre1, pre2, ...} are a set of guards that must be verified to start the skill.
If they are not satisfied while attempting to start the skill, we may have failure effects ¯prei
triggered on each unsatisfied guard.

– inv = {inv1, inv2, ...} is a set of guards, called invariants, that must remain true during the
skill execution. An invariant failure results in an immediate termination of the skill and in
the application of the failure effects ¯invi.

– A set of states state: idle es, running is or terminated xs,k, with the termination mode k ∈
{ ¯pre, ¯inv,succ, f ail, int}. This notation is adapted from the colored Petri net formalism used
by Lesire et al. [18]. At the initial state of the skillset, all skills are idle.

– A set of skillset transitions Ts = {τs,start ,τs, ¯pre,i,τs, ¯inv,i,τs,succ,τs, f ail,τs,int}, with:

* Start τs,start = {pre,start,es→ is}, with guards pre = pre1∧ pre2∧ ..., start effects start
and state change es→ is. τs,start is triggered when a skill is started and all preconditions
pre are verified. The start effects are then applied and the skill goes from idle es to
running is.

B. Pelletier, C. Lesire, D. Doose, K. Godary-Dejean & C. Dramé-Maigné 127

* Precondition failures τs, ¯pre,i = {¬prei, ¯prei,es → xs, ¯pre,i} are triggered if the start of a
skill is attempted but the precondition prei is not verified, i.e. resources states do not
verify the resource guard.

* Invariant failures τs, ¯inv,i = {¬invi, ¯invi, is → xs, ¯inv,i} are triggered if the skill is running
and the invariant invi is not verified.

* Success τs,succ = {inv,succ, is→ xs,succ}, failure τs, f ail = {inv, f ail, is→ xs, f ail} and in-
terrupt τs,int = {inv, int, is→ xs,int}, are triggered when the invariants inv are still verified
and the skill execution ends with a success, failure or interrupt respectively.

More detail on the skill execution state-machine can be found in [1]. Note that multiple successes
and failures can be added, but only one interrupt is possible.

Using the spot skillset example from Fig. 2, the execution of a skill is as follows: in order to perform
the go_to skill, the preconditions canmove and ispowered must be satisfied. In that case, starting the
skill will trigger the start effects. Upon starting the skill, invariants satisfaction is checked. While the
guards is_auto and is_powered are respected, the skill is running, until the skill ends, triggering the
associated effects int, succ or f ail.

4 SkiNet Architecture

SkiNet was designed with the aim to translate the skillset of a robotic system into an equivalent Petri net
that would reproduce its behavior, in order to perform model-checking using Petri net verification tools,
and verify the behavior of the skillset indirectly. A graphical representation of SkiNet in its context
is available in Fig. 3. In this section, the translation process of a skillset Σ = (R,V ,S) into a Petri
net N = (P,T,F,�) will be explained, while section 5 will prove the correctness of the translation, and
section 6 will show the verification capabilities of the tool using the generated Petri net.

Skillset Translation Petri net

Tina

SELT

MUSE

Verification

SkiNet

Code generation tool System

Figure 3: SkiNet is a tool used to generate a Petri net from a skillset, on which model-checking can be
performed, using tools taken from Tina [4, 5]. SkiNet acts as a layer to avoid manipulating the tools
directly. The verified skillset can then be used for controller code generation.

In this work, we use the foundations of skill Petri nets presented by Lesire et al. [18]. However,
the colored Petri net formalism used has been removed. While it allowed the net to be more expressive,
colored Petri nets don’t have the same range of verification tools as classical Petri nets, such as the Tina

128 SkiNet

toolbox [5]. The expressivity lost doing so is not relevant here, thanks to SkiNet which extracts the useful
informations from the generated Petri net without the need for the user to look at it. Moreover, colored
Petri nets only make the nets more compact, but do not reduce the size of the marking space M, so the
complexity is identical.

4.1 Places of the generated Petri net

The places of the generated Petri net are P = Pr ∪Ps, with:

• Pr = {pr
i ,0 ≤ i ≤ |Sr|,r ∈R} the resource state places, with a place pr

i for each state Sr
i ∈ Sr of

each resource r of the skillset Σ.

• Ps = {ps
e, ps

i , ps
x,k,k ∈ { ¯pre, ¯inv,succ, f ail, int},s∈S } for S ∈ Σ, the places representing the skills

execution state. This representation is inspired from the work of Lesire et al. [18] and defined as
follows:

– ps
e is the entry place. This place must be marked, i.e. m[ps

e]≥ 1 for the skill s to start.
– ps

i is the intermediate place. The start of the execution of the skill s is represented by the start
transition which will move the token from ps

e to ps
i .

– ps
x,k are the exit places. Upon skill termination, the token is moved from ps

i to the place ps
x,k

of the corresponding termination mode k.

4.2 Transitions of the generated Petri net

For each skillset transition τ = (φ ,E ,σ), a set of transitions Tτ is generated in the Petri net N. For each
solution x ∈ Xτ of φ , a transition tx ∈ Tτ is generated, if and only if:

• The input places of tx are the resource state places in x: for each xr ∈ x, we have pr
i the Petri net

place of the resource state Sr
i , and pr

i ∈ •tx. Up to one resource state place pr
i exists in •tx for each

resource, as only one state per resource exists in each solution x, cf Def. 3.5.

• The output places of tx are the destination states Sr
i of the effects ε ∈ E : for Sr

i ∈ ε,ε ∈ E , we note
pr

i the Petri net place of Sr
i , and pr

i ∈ t•x . Because there is at most one effect ε for each resource,cf
Def. 3.3, then there is only at most one resource state place pr

i for each resource.

• The input and outputs are extended with the states in σ = (state1,state2). We note ps
1 and ps

2 the
skill state places of each state in σ , and we have: ∀tx ∈ Tτ , ps

1 ∈ •tx and ps
2 ∈ t•x . If σ =∅, then no

place is added to the inputs and outputs of tx.

The generation of the transitions needs to be further complexified in order to overcome the limits of
Petri nets. Indeed, there are cases of skillset transitions τ where a resource is evaluated by the guard φ

but not present in the effects E , and vice-versa. Therefore, we need to generate the transitions according
to these issues:

• If a resource is nominal, i.e. both guarded and affected in τ , then nothing needs to be done on
Tτ . The generated transitions simply move the tokens between the states of the resource as already
specified in τ .

• If a resource is unaffected, i.e. guarded but with no effects in τ , then the corresponding state place
pr

x ∈• tx would lose a token upon firing tx, and this token would not be restituted. This would mean
that the resource could be in an empty state, which is impossible. Therefore the token must be
returned to the same state after firing tx, i.e. t•x ← t•x + pr

x.

B. Pelletier, C. Lesire, D. Doose, K. Godary-Dejean & C. Dramé-Maigné 129

• If a resource is unguarded, i.e. affected but not guarded in τ , then the corresponding destination
state place pr

y ∈ tx would receive a token, without first taking one from the state places of the
resource. This would mean that the resource could be in two states at the same time, which is
also impossible. Therefore, the token must be taken somewhere among the state places pr

i of
the resource. However, we cannot anticipate where the token is for a given marking, therefore
all possible resource state changes must be computed, given the transition exists among the valid
transitions of T r that lead to Sr

y, i.e. •Sr
y, cf Def. 3.2. We note Xr the set of the state places pr

i
corresponding to the resource states in •Sr

y, and we extend Xτ as: Xτ ← Xτ ∪Xr.

After building all the transitions, we have
⋃

τ Tτ the set of all transitions as defined previously. To
this set, we add a reset transitions set Treset , to allow for the repeatability of skills, which moves the token
from the exit places ps

x,k to the entry place ps
e, with one reset transition per exit place, i.e.:

∀s ∈S ,∃ts,reset,k ∈ Treset ,
• ts,reset,k = ps

x,k (1)

t•s,reset,k = ps
e,k ∈ { ¯pre, ¯inv,succ, f ail, int} (2)

The final set of transitions in the generated Petri net is then T = (
⋃

τ Tτ)∪Treset .
Finally, transitions of invariant failures T ¯inv =

⋃
Tτ, ¯inv have a higher priority than all other transitions,

i.e.:
∀t ¯inv ∈ T ¯inv,∀t ∈ T −T ¯inv : t ¯inv � t (3)

This allows to respect the execution semantic of the skills, and forces a skill to terminate first if its
invariant is broken before firing another transition, which could potentially "repair" the invariant.

4.3 Examples with the spot skillset model

Using the skillset model of Spot® shown in Fig 2, the generation process of two transitions, τgo_to,start

and τgo_to,sucess,is_arrived of the skill go_to, will be presented, and the results shown in Fig. 4.

• Start transition :

τgo_to,start = {φ = {(lease_status== AutoMode∧control_mode== Idle)

∧power_status== PowerOn},
E = {control_mode−> Busy},
σ = (ego_to, igo_to)}

(4)

The guard φ of this transition is the product of the preconditions canmove and ispowered, while
the effects set E contains the start effect. The set of solutions that satisfies φ contains only one
element:

Xτ = {(AutoMode, Idle,PowerOn)} (5)

The resource states in x will be used to build the input places of the start transition. Because
power_status and lease_status are unaffected, the places PowerOn and AutoMode are both
inputs and outputs, in order to restitute the tokens. The resource control_mode is nominal as it
is both guarded and affected. The transition also moves the token of the skill state places from the
idle place pgo_to

e to the running place pgo_to
i . In conclusion, only one transition is generated, shown

in Fig. 4:
Tτgo_to,start = {t_start_go_to} (6)

130 SkiNet

• Success transition :

τgo_to,success_is_arrived = {φ = {lease_status== AutoMode∧power_status== PowerOn},
E = {control_mode−> Idle},
σ = (igo_to,xgo_to,success,is_arrived)}

(7)
The guard φ is the product of the invariants, here is_auto and is_powered, and the effects set E
contains the success effect. The set of solutions that satisfies φ again contains only one element:

Xτ = {(AutoMode,PowerOn)} (8)

The resource lease_mode is again unaffected, so the state that solves φ , AutoMode, is both input
and output of the transitions. control_mode is unguarded this time, so two transitions are needed
in order to account for all possible states of the resource that can lead to Idle, which are Idle
and Busy. So one transition moves will move the token from Idle to Idle, and the other from
Idle to Busy. Finally, the token of the skill state places is moved from pgo_to

i to the exit place
pgo_to

x,success,is_arrived . The generated transition are then, as shown in Fig. 4:

Tτgo_to,success_is_arrived = {t_go_to_success_is_arrived_0,
t_go_to_success_is_arrived_1}

(9)

PowerOn AutoMode Idle Busy

e_go_to i_go_to

x_go_to_success_is_arrived
t_go_to_start

t_go_to_success_is_arrived_0

t_go_to_success_is_arrived_1

Figure 4: Start and success transitions of the skill go_to as generated by SkiNet. e_go_to, i_go_to
and x_go_to_success_is_arrived are the internal places of the skill, representing the Idle, Running
and Ended states respectively. PowerOn, AutoMode, Idle and Busy are the places representing the states
of the resources used with the skill.

4.4 Initial Marking

The initial marking of the net follows the initial state of the skillset. Resources are in their initial state,
so only this place has a token, i.e:

r ∈R, pr
0 = 1, pr

i 6=0 = 0 (10)

Skills are all idle at the initial state, so we have:

s ∈S , ps
e = 1, ps

i = 0,∀k, ps
x,k = 0 (11)

B. Pelletier, C. Lesire, D. Doose, K. Godary-Dejean & C. Dramé-Maigné 131

Because resources and skills states do not stack, i.e. a resource/skill cannot be twice in the same state
at the same time, only one token must be present in a place for any marking. This is called 1-safeness:

∀m ∈M,∀p ∈ P : m[p] ∈ {0,1} (12)

5 Approach Validation

In this section, the validation of the translation process presented in section 4 will be conducted, using
mathematical induction, to prove that the generated Petri net satisfies the state-machine properties of
resources and skills. First, the two properties to verify will be presented, and their validity at the initial
marking will be proven. Then, the induction for any marking will be developed, before concluding on
the validity of the properties.

5.1 Place invariants of state-machines

The resources places and skills state places must share only one token at all time. It is critical that the
generated transitions will satisfy the two following properties:

Proposition 1 (Invariants). For any marking of the net, i.e. ∀mn ∈M the following equations are satisfied:

∀r ∈R, ∑
Sr

i∈Sr
mn[pr

i] = 1 (13)

∀s ∈S , mn[ps
e]+mn[ps

i]+∑
k

mn[ps
x,k] = 1 (14)

By extension of this definition, because the set of places P of the generated Petri net is only composed
of the resources and skills places, the safeness of the net, Eq. (12), is proven if Eq. (13) and (14) are
satisfied:

Lemma 1 (Safeness). If Eq. (13) and(14) are satisfied, then the Petri net is 1-safe, i.e.:

∀m ∈M,∀p ∈ P,m[p]≤ 1 (15)

Let us begin the proof with the initial state.

Proof by induction - Initial state. At n= 0, ∀r ∈R, the state-machine of r is in the initial state state(r) =
Sr

0, the initial marking of the net is m0[pr
0] = 1, and m0[pr

i6=0] = 0. This gives ∑Sr
i∈Sr m0[pr

i] = 1 and satisfies
equation (13) for any r ∈R.

Additionally, ∀s∈S , all skills are in the idle state es, therefore m0[ps
e] = 1, m0[ps

i] = 0 and ∑k m0[ps
x,k] =

0. This gives m0[ps
e]+m0[ps

i]+∑k m0[ps
x,k] = 1 and satisfies equation (14) for any s ∈S .

Therefore, the proposition is true for the initial marking m0.

Now, let us assume that, for a marking mn, properties 1 and 2 are true. mn+1 is the state that follows
the firing of any enabled transition t ∈ T = (

⋃
τ Tτ)∪Treset . First, the reset transitions will be studied,

then the event and skill transitions.

132 SkiNet

5.2 Reset transitions

Let us prove that for any firing of a reset transition, the properties (13) and (14) are still valid in the
resulting marking.

Proof by induction - Reset transitions. If ts,reset,k ∈ Treset , a reset transition, is fired, then it will simply
transfer the token from one of the termination state place ps

x,k to ps
e, i.e. •ts,reset,k = {ps

x,k} and t•s,reset,k =
{ps

e}. Because equation (14) is true for mn, we have:

mn[ps
x,k] = 1, mn[ps

x,k′ 6=k] = 0, mn[ps
e] = 0,mn[ps

i] = 0 (16)

Therefore, firing t will yield:

mn+1[ps
e] = 1, mn+1[ps

x,k] = 0, mn+1[ps
x,k′ 6=k] = 0, mn+1[ps

i] = 0 (17)

This holds Eq. (14), and because no resource is involved in the firing of ts,reset,k, then we are sure that Eq.
(13), which is true at mn, will be true at mn+1. We conclude that reset transitions hold both propositions
as true when fired.

5.3 Event and Skill transitions

Now, let us prove that for any firing of an event or skill transition, the properties (13) and (14) are valid
in the resulting marking.

Proof by induction - Event and Skill transitions. If tx ∈ Tτ is a transition generated from a skillset transi-
tion τ = (φ ,E ,σ), then we have:

• •tx = {ps
1, pr

n, ...} the input places composed of the state place ps
1 and a unique resource state place

pr
n, corresponding to state(r) at the marking mn, for each resource r ∈R(τ).

• t•x = {ps
2, pr

n+1, ...} the output places composed of the state place ps
2 and a unique resource state

place pr
n+1 at the marking mn+1 for each r ∈R(τ).

Because Eq. (13) is true, for any r ∈ R(τ), a single token is present in r at the state place pr
n at the

marking mn, and the firing of tx transfers the token to the state place pr
n+1 at the following marking mn+1,

i.e.:

∀r ∈R(τ), mn[pr
n] = 1, mn[pr

i6=n] = 0 (18)

And firing t leads to:

∀r ∈R(τ), mn+1[pr
n+1] = 1, mn+1[pr

n] = 0, mn+1[pr
j] = 0, j 6∈ {n,n+1} (19)

Giving: ∀r ∈R, ∑Sr
i∈Sr mn+1[pr

i] = 1, so equation (13) is satisfied.

N.B.: it is possible that the input state and destination places pr
n and pr

n+1 are the same, since Sr
i ∈

Sr
i
•,∀Sr

i ∈ Sr, as defined in Def. 3.2. In that case, the firing of t will take the token from pr
n and restitute

it, so if Eq. (13) was true at mn, then it will be true at mn+1.
For Eq. (14) , because t transfers the token from ps

1 to ps
2, for any skill s ∈S , and because Eq. (14)

is true at mn, then we can directly conclude that Eq. (14) will hold upon the firing of t as both xs and ys

only contain one place among the internal places of s. Additionally, since σ =∅ for events, then no skill
state place is involved in the firing of tx, therefore Eq. (14) is automatically verified at mn+1.

Therefore, both properties (13) and (14) hold upon the firing of any t ∈ Tτ . Finally, because the set of
all transitions of the generated Petri net T is the union of the set of reset transitions Treset and the events
and skills transitions

⋃
τ Tτ , then all transitions of T will hold the proposition.

B. Pelletier, C. Lesire, D. Doose, K. Godary-Dejean & C. Dramé-Maigné 133

5.4 Conclusion

Having proven that properties 1 and 2 are true at the initial marking m0 of the generated Petri net, and
that for any mn ∈M, the firing of any transition t ∈ T holds the properties from mn to mn+1 the marking
reached by firing t, we can conclude that, for any marking m, the proposition is true.

This means that our generated Petri net respects the state-machine properties of resources and skills
internal places, and that its behavior reflects correctly the behavior of the skillset as it would run on the
autonomous system it models. We can now use the generated Petri net to do a priori verification by
using Petri net analysis tools available in the litterature.

6 Model Verification

Now that the net generation aspect of SkiNet has been presented and validated, the possible model-
checking thanks to the net will be presented in this section. SkiNet offers a simple interface to execute
all or part of the following verification steps, without the need for the users to use the model-checking
tools directly. However, it will still display the formulas used, for transparency, but also to guide the
users if they wish to check their own properties with the same model-checking tools. The corresponding
SkiNet verification name for each step is indicated in the subsection name, between quotation marks, and
is tested on the spot skillset in Fig. 2. For reference, the computation time of the Petri net generation
and its verification take less than a minute. Adding more resources and skills increases the calculation
time, but so far no tested skillset was found to exceed a few minutes for the whole process. For flexibility
purpose, options were added to remove events or exit places (tokens are directly moved to the entry place
of skills upon firing an exit transition, and reset transitions are removed), to increase model-checking
capabilities, computational time and overall scalability.

6.1 Kripke Structure of the skillset net

In order to perform model-checking using the tools Selt (LTL) and Muse (mu-calculus, CTL) of the Tina
toolbox, we first need to convert the generated Petri net into a Kripke structure, on which temporal logic
operations can be performed. Liu [19] summarizes the Kripke structure definition, generated, and later
used as input, by the Tina toolbox. More informations and instructions can be found on the Tina toolbox
website [5].

6.2 Petri net Deadlocks - "dead"

Deadlocks are markings where no transition is fireable. In this context, it means that no actions from
skills or events can be done, and no reset transition is available. This can happen purposefully, for
instance if a resource represents the battery state of the robot, and upon entering a critical state, all skills
and events are blocked and nothing can happen anymore. However, it can also be the result of an error
in the specifications of the skillset, so it’s important to know what sequence of transitions led to the
dead marking. In the tool Selt, the predicate dead has already been implemented to check if a state is a
deadlock, therefore the LTL formula is to check for deadlocks in the net is "we never have a deadlock".
Using the temporal operator "A" (Always):

A¬dead (20)

134 SkiNet

The program will either return True if no path leads to a deadlock, False if there is one, with a counter-
example showing a sequence of transitions leading to the dead state. In the example skillset spot from
Fig. 2, no deadlock was found, as the events can be fired infinitely, so there is always an event transition
enabled.

6.3 Petri net Liveness - "live"

The non-dead transitions are searched. If a transition is never fireable, it is considered dead. Dead tran-
sitions appear almost in every case of net generation, and are due to the transition generation algorithm
presented in section 4.2, which can find solutions that will never happen.

For the generated Petri net, a transition is not dead if it can be fired at least once, which can be
checked with the formula:

∀t ∈ T : A¬t (21)

If the formula is true, then the transition is dead. SkiNet will return the list of all dead transitions when
running the "live" option. Looking at the spot skillset and the example success transition in Fig. 4,
t_go_to_success_is_arrived_1 was found to be a dead transition. This is because the resource
control_mode is never in the state Idle during the execution of the skill go_to_body. This verification
step can become quite time consuming for Petri nets with a large amount of markings, but the spot
example is ran in only a few seconds as it is very simple.

6.4 Skillset Invariants verification - "safe"

In section 5, it was verified that the transitions generated respect the resources and skills places invariants,
i.e. only one token exist at any marking in the same resource/skill places. In order to verify Eq. (13) and
(14) using LTL, the following formula can be used for resources, which verifies that the sum of tokens
among the places of the resource is always one:

∀r ∈R : A(∑
Sr

i∈Sr
pr

i = 1) (22)

And for skills:
∀s ∈S : A(ps

e + ps
i +∑

k
ps

x,k) = 1) (23)

Finally, the safeness of the net presented in Eq. (12) can also be checked using LTL, i.e. no place has
more than one token for any marking:

∀p ∈ P : A¬(p >= 2) (24)

These three LTL formulas were mostly used during the development of SkiNet to verify that the code
would generate a proper net as defined in section 4 and 5.

6.5 Skills and Skillset deadlocks - "deadskill" and "deadset"

A property specific to the skillset architecture that can be verified is whether a skill, two concurring skills,
or all the skills, are always alive or not. In other terms: is there a configuration in the skillset that can
render a skill forever unusable. Here, LTL cannot be used, as these properties need to be checked for all
paths, from any state. Therefore, mu-calculus and CTL are used with the Kripke structure, through the
Muse tool of Tina.

B. Pelletier, C. Lesire, D. Doose, K. Godary-Dejean & C. Dramé-Maigné 135

The CTL property to check whether a skill is always eventually activatable is "For all paths globally,
there is some path where finally ps

i ".

AGEF ps
i ,s ∈ S (25)

This property either returns all the states if it is true, and none if there exist a single state where it is false.
But because it returns no state, it does not provide sufficient feedback for the user. Therefore, in order to
know the specific transition sequences leading to a state that would make the skill forever unactivatable,
the property "For all paths finally, there are no paths where finally ps

i " is used, so that the Muse tool
returns exploitable counter-examples:

¬AFEF ps
i ,s ∈ S (26)

The states returned are then stored and the transition paths leading to these states can be obtained using
the Pathto tool of Tina and the Kripke structure. For now, only the first of these states is returned by
SkiNet. If the list of states is empty, then the skill can always be activated. It is possible to check for all
skills at once with the property:

¬AFEF(∑
s∈S

ps
i) (27)

In our example spot, an error was found in the skillset using these properties. SkiNet pointed out
that, when executing the go_to skill, the failure of invariants is_auto and is_powered would block all
the other skills from executing as the resource control_mode would not go back to the Idle state upon
exiting go_to, thus blocking the precondition canmove of the skills. This was fixed by adding a failure
effect control_mode -> Idle to the invariants (not shown in the Fig. 2).

7 Conclusion

The work presented in this paper aim to propose a method to verify the behavior of a software control ar-
chitecture for critical autonomous systems. A tool was developed, called SkiNet, which generates a Petri
net that models the behavior of the system as specified in the skillset model. Using the generated Petri
net, SkiNet allows the users to check their skillset model by using model-checking. Basic properties such
as Petri net deadlocks or transition liveness can be checked, as well as more skillset-specific properties
such as skill liveness/deadlocks. Because the skillset-architecture upon which this work is based on is
also a work-in-progress, future works will focus on proving the equivalence between the skillset semantic
during runtime and the generated Petri net semantic, once the former is well established. Additionally,
with always the same focus of making formal verification accessible to all actors of a robotic project,
regardless of their background, two extensions of SkiNet are under progres. SkiNet Mission will allow
users to create and verify the feasability of their missions, using Petri nets and model-checking, and Sk-
iNet Live will offer users a view of the transition firing in the Petri net, synchronized with the skillset as it
runs on the robotic system, for runtime analysis. The checking of properties during runtime is also being
considered for the latter. Among the difficulties encountered, the complexity of the state space analysis
of the generated Petri net is the biggest issue, as the addition of resources and skills to a skillset make
the Kripke structure grow exponentially, thus increasing model-checking complexity. This is especially
difficult to handle when in the iterative phase of the model definition. Petri net reduction algorithms may
be considered as future work if this issue remains or makes the tool inoperable in a realistic development
process of an autonomous system.

136 SkiNet

References
[1] Alexandre Albore, David Doose, Christophe Grand, Charles Lesire & Augustin Manecy (2021): Skill-

Based Architecture Development for Online Mission Reconfiguration and Failure Management. In: 2021
IEEE/ACM 3rd International Workshop on Robotics Software Engineering (RoSE), IEEE, pp. 47–54,
doi:10.1109/RoSE52553.2021.00015.

[2] Benjamin J. Ayton, Marlyse Reeves, Eric Timmons, Brian C. Williams & Michel D. Ingham (2020): Toward
Information-Driven and Risk-Bounded Autonomy for Adaptive Science and Exploration. American Institute
of Aeronautics and Astronautics, doi:10.2514/6.2020-4149.

[3] Gianfranco Balbo (2001): Introduction to Stochastic Petri Nets, pp. 84–155. Springer Berlin Heidelberg,
Berlin, Heidelberg, doi:10.1007/3-540-44667-2_3.

[4] B. Berthomieu, P.-O. Ribet & F. Vernadat (2004): The tool TINA – Construction of abstract state spaces
for petri nets and time petri nets. International Journal of Production Research 42, pp. 2741–2756,
doi:10.1080/00207540412331312688.

[5] Bernard Berthomieu, François Vernadat & Silvano dal Zilio (2004): The TINA toolbox Home Page - Time
Petri Net Analyzer - by LAAS/CNRS. Available at https://projects.laas.fr/tina/home.php.

[6] Hugo Costelha & Pedro Lima (2007): Modelling, analysis and execution of robotic tasks using petri nets.
In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, pp. 1449–1454,
doi:10.1109/IROS.2007.4399365.

[7] Hugo Costelha & Pedro Lima (2012): Robot task plan representation by Petri nets: modelling, identification,
analysis and execution. Autonomous Robots 33, pp. 337–360, doi:10.1007/s10514-012-9288-x.

[8] John W. Evans, Frank J. Groen, Lui Wang, Rebekah Austin, Arthur Witulski, Steven L. Cornford, Martin
Feather & Nancy Lindsey (2017): Towards a Framework for Reliability and Safety Analysis of Complex Space
Missions. In: 19th AIAA Non-Deterministic Approaches Conference, American Institute of Aeronautics and
Astronautics, p. 1099, doi:10.2514/6.2017-1099.

[9] Maksym Figat & Cezary Zieliński (2022): Parameterised robotic system meta-model expressed by Hierar-
chical Petri nets. Robotics and Autonomous Systems 150, p. 103987, doi:10.1016/j.robot.2021.103987.

[10] Mohammed Foughali, Silvano Dal Zilio & Félix Ingrand (2019): On the Semantics of the GenoM3 Frame-
work. Available at https://hal.laas.fr/hal-01992470.

[11] Kerianne H. Gross (2017): Formal specification and analysis approaches for spacecraft attitude control
requirements. In: 2017 IEEE Aerospace Conference, IEEE, pp. 1–11, doi:10.1109/AERO.2017.7943573.

[12] Adrien Hereau, Karen Godary-Dejean, Jeremie Guiochet & Didier Crestani (2021): A Fault Toler-
ant Control Architecture Based on Fault Trees for an Underwater Robot Executing Transect Missions.
In: 2021 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp. 2127–2133,
doi:10.1109/ICRA48506.2021.9561735.

[13] Michel Ingham, Robert Ragno & Brian Williams (2001): A Reactive Model-based Programming Lan-
guage for Robotic Space Explorers. Proceedings of ISAIRAS-01. Available at http://www.ai.mit.edu/
projects/ddamba/publications/RMPL.pdf.

[14] Michel D. Ingham, Robert D. Rasmussen, Matthew B. Bennett & Alex C. Moncada (2006): Generating
requirements for complex embedded systems using State Analysis. Acta Astronautica 58, pp. 648–661,
doi:10.1016/j.actaastro.2006.01.005.

[15] Felix Ingrand (2019): Recent Trends in Formal Validation and Verification of Autonomous Robots Soft-
ware. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), IEEE, pp. 321–328,
doi:10.1109/IRC.2019.00059.

[16] Félix Ingrand & Malik Ghallab (2017): Deliberation for autonomous robots: A survey. Artificial Intelligence
247, pp. 10–44, doi:10.1016/j.artint.2014.11.003.

[17] Oh Byung Kwon (2004): Modeling and generating context-aware agent-based applications with amended
colored Petri nets. Expert Systems with Applications 27, pp. 609–621, doi:10.1016/j.eswa.2004.06.008.

https://doi.org/10.1109/RoSE52553.2021.00015
https://doi.org/10.2514/6.2020-4149
https://doi.org/10.1007/3-540-44667-2_3
https://doi.org/10.1080/00207540412331312688
https://projects.laas.fr/tina/home.php
https://doi.org/10.1109/IROS.2007.4399365
https://doi.org/10.1007/s10514-012-9288-x
https://doi.org/10.2514/6.2017-1099
https://doi.org/10.1016/j.robot.2021.103987
https://hal.laas.fr/hal-01992470
https://doi.org/10.1109/AERO.2017.7943573
https://doi.org/10.1109/ICRA48506.2021.9561735
http://www.ai.mit.edu/projects/ddamba/publications/RMPL.pdf
http://www.ai.mit.edu/projects/ddamba/publications/RMPL.pdf
https://doi.org/10.1016/j.actaastro.2006.01.005
https://doi.org/10.1109/IRC.2019.00059
https://doi.org/10.1016/j.artint.2014.11.003
https://doi.org/10.1016/j.eswa.2004.06.008

B. Pelletier, C. Lesire, D. Doose, K. Godary-Dejean & C. Dramé-Maigné 137

[18] Charles Lesire & Franck Pommereau (2018): ASPiC: An Acting System Based on Skill Petri Net Composition.
In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, pp. 6952–
6958, doi:10.1109/IROS.2018.8594328.

[19] Zhifeng Liu & Zhihu Xing (2012): Characterizing Petri Nets with the Temporal Logic CTL. In: Proceedings
of 2012 National Conference on Information Technology and Computer Science, Atlantis Press, pp. 372–375,
doi:10.2991/citcs.2012.97.

[20] Silvain Louis, Karen Godary-Dejean, Lionel Lapierre, Thomas Claverie & Sébastien Villéger (2017): Formal
Method for Mission Controller Generation of a Mobile Robot, doi:10.1007/978-3-319-64107-2_48.

[21] T. Lozano-Perez (1983): Robot programming. Proceedings of the IEEE 71, pp. 821–841,
doi:10.1109/PROC.1983.12681.

[22] Cristian Mahulea & Marius Kloetzer (2018): Robot Planning Based on Boolean Specifications Using Petri
Net Models. IEEE Transactions on Automatic Control 63, pp. 2218–2225, doi:10.1109/TAC.2017.2760249.

[23] Conor Mcgann, Frederic Py, Kanna Rajan, Hans Thomas, Richard Henthorn & Rob Mcewen (2008): T-REX:
A Model-Based Architecture for AUV Control. 3rd Workshop on Planning and Plan Execution for Real-
World Systems. Available at https://www.researchgate.net/publication/242657580_T-REX_A_
model-based_architecture_for_AUV_control.

[24] Catharine L. R. McGhan, Richard M. Murray, Romain Serra, Michel D. Ingham, Masahiro Ono, Tara Estlin
& Brian C. Williams (2015): A risk-aware architecture for resilient spacecraft operations. In: 2015 IEEE
Aerospace Conference, IEEE, pp. 1–15, doi:10.1109/AERO.2015.7119035.

[25] I. Mura & A. Bondavalli (2001): Markov regenerative stochastic petri nets to model and evalu-
ate phased mission systems dependability. IEEE Transactions on Computers 50, pp. 1337–1351,
doi:10.1109/TC.2001.970572.

[26] T. Murata (1989): Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77, pp. 541–
580, doi:10.1109/5.24143.

[27] Vittoria Nardone, Antonella Santone, Massimo Tipaldi, Davide Liuzza & Luigi Glielmo (2019): Model
Checking Techniques Applied to Satellite Operational Mode Management. IEEE Systems Journal 13, pp.
1018–1029, doi:10.1109/JSYST.2018.2793665.

[28] Narcis Palomeras, Pere Ridao, Carlos Silvestre & Andres El-fakdi (2010): Multiple vehicles mission coor-
dination using Petri nets. In: 2010 IEEE International Conference on Robotics and Automation, IEEE, pp.
3531–3536, doi:10.1109/ROBOT.2010.5509552.

[29] Sunandita Patra, James Mason, Malik Ghallab, Dana Nau & Paolo Traverso (2021): Deliberative act-
ing, planning and learning with hierarchical operational models. Artificial Intelligence 299, p. 103523,
doi:10.1016/j.artint.2021.103523.

[30] Mikkel Rath Pedersen, Lazaros Nalpantidis, Rasmus Skovgaard Andersen, Casper Schou, Simon Bøgh,
Volker Krüger & Ole Madsen (2016): Robot skills for manufacturing: From concept to industrial deployment.
Robotics and Computer-Integrated Manufacturing 37, pp. 282–291, doi:10.1016/j.rcim.2015.04.002.

[31] Enrique Fernández Perdomo, Jorge Cabrera Gámez, Antonio Carlos Domínguez Brito & Daniel Hernández
Sosa (2010): Mission specification in underwater robotics. Journal of Physical Agents (JoPha) 4, pp. 25–33,
doi:10.14198/JoPha.2010.4.1.05.

[32] James L. Peterson (1977): Petri Nets. ACM Computing Surveys 9, pp. 223–252,
doi:10.1145/356698.356702.

[33] Christian Reuter, Stefan Göbel & Ralf Steinmetz (2015): Detecting structural errors in scene-based Mul-
tiplayer Games using automatically generated Petri Nets. Foundations of Digital Games, Pacific Grove,
USA.

[34] Hassan Reza, Malvika Pimple, Varun Krishna & Jared Hildle (2009): A Safety Analysis Method Using Fault
Tree Analysis and Petri Nets. In: 2009 Sixth International Conference on Information Technology: New
Generations, IEEE, pp. 1089–1094, doi:10.1109/ITNG.2009.183.

https://doi.org/10.1109/IROS.2018.8594328
https://doi.org/10.2991/citcs.2012.97
https://doi.org/10.1007/978-3-319-64107-2_48
https://doi.org/10.1109/PROC.1983.12681
https://doi.org/10.1109/TAC.2017.2760249
https://www.researchgate.net/publication/242657580_T-REX_A_model-based_architecture_for_AUV_control
https://www.researchgate.net/publication/242657580_T-REX_A_model-based_architecture_for_AUV_control
https://doi.org/10.1109/AERO.2015.7119035
https://doi.org/10.1109/TC.2001.970572
https://doi.org/10.1109/5.24143
https://doi.org/10.1109/JSYST.2018.2793665
https://doi.org/10.1109/ROBOT.2010.5509552
https://doi.org/10.1016/j.artint.2021.103523
https://doi.org/10.1016/j.rcim.2015.04.002
https://doi.org/10.14198/JoPha.2010.4.1.05
https://doi.org/10.1145/356698.356702
https://doi.org/10.1109/ITNG.2009.183

138 SkiNet

[35] Casper Schou, Rasmus Skovgaard Andersen, Dimitrios Chrysostomou, Simon Bøgh & Ole Madsen (2018):
Skill-based instruction of collaborative robots in industrial settings. Robotics and Computer-Integrated Man-
ufacturing 53, pp. 72–80, doi:10.1016/j.rcim.2018.03.008.

[36] Franz Steinmetz & Roman Weitschat (2016): Skill parametrization approaches and skill architecture for
human-robot interaction. In: 2016 IEEE International Conference on Automation Science and Engineering
(CASE), IEEE, pp. 280–285, doi:10.1109/COASE.2016.7743419.

[37] Rundong Yan, Lisa M. Jackson & Sarah J. Dunnett (2017): Automated guided vehicle mission reliability
modelling using a combined fault tree and Petri net approach. The International Journal of Advanced Man-
ufacturing Technology 92, pp. 1825–1837, doi:10.1007/s00170-017-0175-7.

[38] Enrica Zereik, Marco Bibuli, Nikola Mišković, Pere Ridao & António Pascoal (2018): Challenges and future
trends in marine robotics. Annual Reviews in Control 46, pp. 350–368, doi:10.1016/j.arcontrol.2018.10.002.

https://doi.org/10.1016/j.rcim.2018.03.008
https://doi.org/10.1109/COASE.2016.7743419
https://doi.org/10.1007/s00170-017-0175-7
https://doi.org/10.1016/j.arcontrol.2018.10.002

	1 Introduction
	2 Related works
	3 Background
	3.1 Petri net
	3.2 Skillset architecture
	3.2.1 Resources
	3.2.2 Skillset transitions
	3.2.3 Skillset

	4 SkiNet Architecture
	4.1 Places of the generated Petri net
	4.2 Transitions of the generated Petri net
	4.3 Examples with the spot skillset model
	4.4 Initial Marking

	5 Approach Validation
	5.1 Place invariants of state-machines
	5.2 Reset transitions
	5.3 Event and Skill transitions
	5.4 Conclusion

	6 Model Verification
	6.1 Kripke Structure of the skillset net
	6.2 Petri net Deadlocks - "dead"
	6.3 Petri net Liveness - "live"
	6.4 Skillset Invariants verification - "safe"
	6.5 Skills and Skillset deadlocks - "deadskill" and "deadset"

	7 Conclusion

