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Abstract—The Expectation-Maximization algorithm is a very
popular approach for estimating the parameters of Gaussian
mixture models (GMMs). A known issue with GMM estimation
is its sensitivity to outliers, which can lead to poor estimation
performance depending on the dataset under consideration. A
common approach to deal with this issue is robust estimation,
which typically consists of reducing the influence of the outliers
on the estimators by weighting the impact of some samples of the
dataset considered as outliers. In an unsupervised context, it is
difficult to know which sample from the database corresponds to
a normal observation. To that extent, we propose to use within the
EM algorithm an outlier detection step that attributes an anomaly
score to each sample of the database in an unsupervised way.
A modified Bayesian Information Criterion is also introduced
to efficiently select the appropriate amount of outliers contained
in a dataset. The proposed method is tested on a benchmark
remote sensing dataset coming from the UCI Machine Learning
Repository. The experimental results show the interest of the
proposed robustification when compared to other benchmark
imputation procedures.

Index Terms—Imputation, Anomaly Detection, Gaussian Mix-
ture Model, Robust estimation, Isolation Forest, One-Class SVM

I. INTRODUCTION

Many real-world datasets have missing values, which ex-
plains why various approaches have been proposed to bypass
this potential absence of data [1]. Missing data can be due
to the data acquisition process (e.g., presence of clouds in
multispectral images) or to a change in the acquisition process
(e.g., addition of new variables). Missing Value Imputation
(MVI) is a strategy commonly adopted to solve the missing
data problem, in particular when using machine learning ap-
proaches, which generally require complete feature matrices.
The various MVI techniques that have been studied in the
literature can be grouped in two main categories, namely
statistical and machine learning based techniques [2]. This
includes the multiple imputation by chained equation (MICE)
[3] for statistical approaches and the k-nearest neighbors
(KNN) imputation [4] for machine learning based techniques.

Among these approaches, those based on the expecta-
tion–maximization (EM) algorithm [5] for Gaussian Mixture
Models (GMMs) have received a considerable amount of

attention [2]. GMMs are attractive mainly because: 1) they
are able to model the statistical properties of many datasets, 2)
they can be applied to a wide range of tasks such as clustering
and classification and 3) they naturally handle missing data.
Within the EM framework, missing data can be considered
as latent variables that can be handled in a straightforward
manner (after carefully deriving appropriate sufficient statis-
tics). However, a known issue with GMM estimation is its
sensitivity to outliers, which is illustrated in the toy example
depicted in Fig. 1, where it can be observed that a classical
GMM estimation is highly impacted by the presence of outliers
(Fig. 1(b)). To overcome this issue, a classical approach is
robust estimation. The main idea behind robust estimation is
to estimate the model parameters by weighting the importance
of outlier samples. Samples with small weights have a reduced
influence on the parameter estimates whereas larger weights
have a more important impact on the estimation. Fig. 1(c)
shows an example of robust estimation obtained using the
algorithm presented in this paper.
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Fig. 1. Toy example with 3 Gaussian clusters (500 samples): (a) GMM
estimation without outliers, (b) GMM estimation in the presence of 50 outliers
(red points) and (c) Robust GMM estimation in the presence of 50 outliers.

In an unsupervised scenario such as the one considered
in this paper, two main issues have to be considered: 1) no
labeled samples are available (i.e., representative examples of
normal and abnormal behavior are not available) and 2) it is
difficult to evaluate automatically which samples have to be
considered as outliers when estimating the GMM parameters.
This paper aims at addressing these two issues. To detect
outliers in an unsupervised way, we propose to include the
results of an unsupervised outlier detection algorithm directly
within the EM framework. This follows the idea developed



in [6], which was specifically adapted to crop monitoring based
on remote sensing. However, contrary to [6] who focused on
the isolation forest (IF) algorithm [7], this paper also considers
the one-class support vector machine (SVM) method, mainly
to have a more generic method that can be adapted to the
considered dataset. In addition, we also propose a way of
tuning the parameters of the outlier detection method used
within the EM algorithm for robust estimation. Based on a
modification of the Bayesian Information Criterion (BIC) [8],
this tuning procedure allows us to automatically choose both
the appropriate outlier detection algorithm and the amount of
samples to be considered as outliers within the EM framework.

II. ROBUST ESTIMATION OF GAUSSIAN MIXTURE MODELS
USING ANOMALY SCORES

In this section, we first recall the classical EM algorithm
for GMM with missing data. In a second step, we introduce a
strategy for robust estimation based on outlier scores computed
using the one-class SVM or IF methods. Finally, a model
selection strategy based on BIC is proposed to determine the
best outlier detection approach to be used within the EM
algorithm.

A. Standard EM algorithm for GMM with missing data

For GMM estimation, we suppose that each sample xn ∈
RM is a row of the feature matrix X = [x1, ...,xN ]T (of size
N ×M , with N the number of samples and M the number
of features) drawn from a mixture of K multivariate normal
distributions. In the presence of missing data, each sample
can have missing values for specific features. More precisely,
each sample can be decomposed into xn = (xon

n ,xmn
n ),

where xon
n and xmn

n are the vectors of observed and missing
features. More generally, the superscripts on and mn denote
the observed and missing components of the sample n and can
be used for matrices too, e.g., Σon,mn

k refers to the elements
of the matrix Σk in the rows and columns specified by on
and mn (and so on). For brevity, we will denote on = o and
mn = m in the following, but it is important to keep in mind
that these subscripts are sample-dependent. The EM algorithm
aims at maximizing the observed (or complete) log-likelihood
logLc(θ;X

o,Xm, z), or in brief logLc, defined as:

logLc =

N∑
n=1

K∑
k=1

znk log [πkN (xo
n|µk,Σk)] , (1)

where Xo is the set of all observed variables, Xm is the
set of all missing variables, N (xo

n|µk,Σk) is the marginal
multivariate Gaussian distribution of the observed sample xo

n

associated with the joint multivariate Gaussian distribution
N (xn|µk,Σk), and θ = {π1, ..., πk, µ1, ...,µk,Σ1, ...,ΣK}
contains the set of parameters to be estimated. Note that
πk denotes the a priori probability of class k, whereas µk

and Σk are the mean vector and covariance matrix of the
kth component of the GMM. The latent variables znk (to be
estimated) are introduced to define the cluster label of each
observation (i.e., znk = 1 if the sample n belongs to class
k, and znk = 0 otherwise). The EM algorithm alternates

between expectation (E-) and Maximization (M-) steps, which
are detailed below, to find a local maximum of (1).

E-step: evaluate E[logLc|θ(t),xo] (the parameters at iter-
ation t) requires to compute the following sufficient statistics:

γnk =
πkN (xo

n,µ
o
k,Σ

oo
k )∑K

j=1 πjN (xo
n,µ

o
j ,Σ

oo
j )

, (2)

µ̂m
nk = µm

k +Σmo
k (Σoo

k )−1(xo
n − µo

k), (3)
x̂m
nk = (xo

n, µ̂
m
nk), (4)

Σ̂
mm

nk = Σmm
k −Σmo

k (Σoo
k )−1Σmo

k , (5)

Σ̂nk =

(
0oo 0om

0mo Σ̂
mm

nk

)
. (6)

The terms γnk are referred to as responsibilities and corre-
spond to the probability that sample n is drawn from the kth
class. More precisely, γnk = E[zik|θ(t),xo], which is similar
to the case without missing data except that it is evaluated on
the observed data. The other terms are specific to the GMM
estimation in the presence of missing data and results from
the estimation of E

[
(xi − µk)

TΣ−1
k (xi − µk)|xo,θ(t)

]
[5].

One can note that the missing values of sample n are imputed
using the conditional expectation of the missing variables
given that xn has been generated by Gaussian #k. Similarly,
the conditional covariances of the missing values have to be
computed, leading to Σ̂nk which is filled with zeros except
for the missing components.

M-step: maximize the current expectation leads to the
following new set of parameters:

πk =

∑N
n=1 γnk
N

=
Nk

N
, (7)

µk =
1

Nk

N∑
n=1

γnkx̂n, (8)

Σk =
1

Nk

N∑
n=1

γnk

[
(x̂n − µk)(x̂n − µk)

T + Σ̂nk

]
, (9)

where one can observe that the estimate of the mean vector is
similar to the case without missing data, except that missing
values have been imputed using the expressions resulting from
the E-step, and that the estimate of the covariance matrix has
been corrected by Σ̂nk to take into account missing values.

B. Robust GMM estimation
The estimation of the mixture parameters in the M-step

is sensitive to outliers, which can be addressed with robust
estimation. Following the works conducted in [9], a robust
estimation of the mixture parameters can be obtained by
introducing weights wn associated with each sample of the
dataset (the estimation of πk is unchanged):

µk =

∑N
n=1 wnγnkx̂nk∑N

n=1 wnγnk
, (10)

Σk =

∑N
i=1 w

2
nγnk

[
(x̂n − µk)(x̂n − µk)

T + Σ̂nk

]
∑N

n=1 w
2
nγnk

, (11)



where a small (resp. large) value of wn means that the sample
n has less (resp. more) influence on the estimation of the
mean vectors and covariance matrices (note that wn are global
weights independent of k). As a consequence, one would like
to have wn close to 1 for inliers, and close to 0 for outliers. As
explained before, in the unsupervised scenario, knowing the
appropriate values for the weights wn is difficult. For instance,
the method proposed in [9] cannot be considered here since it
relies on labeled data to separate inliers and outliers. Anomaly
detection algorithms are particularly adapted to address this
problem, since they (generally) provide an outlier score for
each sample in a fully unsupervised manner. The first contribu-
tion of this work is to propose a way of injecting these outlier
scores into the EM algorithm to make it robust to the presence
of outliers. More precisely, we study two strategies allowing
the weights wn to be defined. These strategies are based on
the Isolation Forest (IF) [7] and the One-Class Support Vector
Machine (OCSVM) method [10]. Even if other approaches
could be investigated, the main objective here is to present
some insights about how to define the weights wn depending
on the outlier score provided by an outlier detection algorithm.

1) Isolation Forest: the IF algorithm [7] assumes that
outliers can be isolated more easily by an isolation tree than
normal instances. An isolation tree is a binary decision tree
constructed by randomly choosing at each node a feature and
a split value (chosen between the minimum and the maximum
of the feature). The parameters of the IF algorithm are the
number of trees, and the subsampling used to construct each
tree (they were respectively fixed to 1000 and 256 during the
experimental results conducted in this paper). The outlier score
attributed by the IF algorithm is related to the average path
length needed to isolate a given sample when using isolation
trees. The final outlier score provided by the IF algorithm to
sample xn (denoted as scoreIF(x̂n)) varies in the range [0, 1]
(higher scores correspond to outliers). We then propose the
following strategy to convert these scores into weights:

wn =
1

1 + exp [α(scoreIF(x̂n)− β)]
, (12)

where α and β are two parameters to be fixed by the user.
Note that this function of the outlier score has a sigmoidal
shape, with a unique inflection point at scoreIF = β and an
inflection speed controlled by α (for high values of α, the
function reduces to a hard thresholding operation).

2) One-Class SVM: OCSVM assumes that normal samples
are part of the same class delimited by a separating boundary
[11]. As in the classical SVM algorithm, the OCSVM ap-
proach may be used with a kernel for the decision function,
which leads to learn a non-linear separating boundary. This
paper concentrates on a radial basis function (RBF) kernel (see
[12] for detail and derivations). Two hyperparameters control
the behavior of the OCSVM algorithm with this kernel: ν,
which is an upper bound for the maximum fraction of samples
located outside the separating boundary and σ referred to
as the kernel bandwidth, which has to be adjusted for each
dataset. In this paper, we use the heuristic proposed in [13, p.

93] consisting of estimating σ as the median of the pairwise
Euclidean distances between vectors from the learning set. A
straightforward way to assign outlier scores with the OCSVM
is to use the distance to the separating hyperplane, denoted
as D(x̂n) (D(x̂n) is negative when the observation is within
the learned boundaries and positive otherwise). The following
function can then be used to convert the outlier scores to
weights:

wn =
1

1 + α× scoreOCSVM(x̂n)
, (13)

where the value of α has an impact on the speed of decrease
of the curve. In this work, we propose to define the value of
scoreOCSVM(x̂n) as follows:

scoreOCSVM(x̂n) =

{
0 if D(x̂n) ≤ 0,
D(x̂n) if D(x̂n) > 0.

(14)

Thus, all the inliers samples have a weight equal to 1, whereas
outliers have a weight whose value decreases proportionally
to their distances to the separating boundary.

To have an easier appreciation of the two different strategies,
we provide an illustration based on the dataset used in Fig. 1,
where Fig. 2(a) displays the weights (in blue) attributed using
(12) and Fig. 2(b) using (13).
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(b) One-Class SVM

Fig. 2. Examples of weight variations (blue curve) with respect to the outlier
scores (a) IF algorithm (α = 100 and β fixed so that 10% of the samples are
considered as outliers) and (b) OCSVM algorithm (ν = 10% and α = 5).
The dataset used for this experiment was displayed in Fig. 1.

C. Model selection using a Bayesian Information Criterion

The values of the weights wn are directly related to 1) the
choice of the detection algorithm and 2) the threshold used to
separate inliers and outliers. When using the IF algorithm, a
natural threshold is β = 0.5. However, as illustrated in Fig. 2
this value of β is not always optimal. When using the OCSVM
algorithm, the choice of the threshold (ν in that case) is more
important since it directly influences the construction of the
decision boundary.

In an unsupervised scenario, a manual tuning of the param-
eters defining the weights wn can be difficult. To that extent,
we propose to use the Bayesian Information Criterion (BIC)
[14], which is a classical criterion used for model selection
[15] defined as follows:

BIC = −2 log(L) + p log(n), (15)

where L is the likelihood of a given model, p is the number
of unknown parameters and n is the number of samples used



to estimate the GMM parameters. The BIC aims at finding
a compromise between the likelihood and the number of
parameters in the model (the lower BIC, the better the model).
Indeed, while the negative log-likelihood tends to decrease
when adding parameters, having too many parameters can
result in over-fitting and very poor estimation of the GMM.
The penalization p log(n) in BIC counterbalances the effect
of this increase of the likelihood when p increases. The value
of p minimizing (15) is generally chosen for a particular
experiment.

However, the use of BIC in the presence of outliers can
be not appropriate if the best model is over-fitting the outlier
samples, which was confirmed in our experiments. To that
extent, we propose a simple modification that consists in
evaluating the BIC only using the inlier samples, which
correspond to samples with oulier scores lower than a given
threshold (i.e., defined with β when using the IF algorithm
and ν when using the OCSVM algorithm). The value of L in
(15) is then replaced by the likelihood of the inlier samples
and n by the number of these inlier samples.

III. EXPERIMENTAL RESULTS

This section evaluates the proposed method on the “Statlog
Landsat Satellite dataset”, which is a benchmark dataset from
the University of California at Irvine (UCI) database1. Each
example of this dataset corresponds to a patch associated with
a 3×3 neighborhood in a satellite image. Each pixel has been
acquired with 4 different spectral bands, which makes a total
of 36 features per sample. The training set of this database
is composed of 4435 samples labeled using 6 different land
cover classes (red soil, cotton crop, grey soil, etc.).

Missing data is a particularly important issue in remote
sensing with multispectral images, since these images are
sensitive to cloud coverage. Missing data were simulated by
removing the values of pixels randomly selected within the
dataset. When a pixel was declared as missing, all the 4
spectral bands values were removed from the corresponding
vector. The percentage of mixing pixels was set to 40% (for
conciseness, results obtained with different percentages of
missing data are not presented here since they lead to similar
conclusions). Finally, we added 10% of outlier samples to the
dataset, with values randomly chosen between the minimum
and maximum of each feature. These outlier pixels can occur
in remote sensing, and typically correspond to undetected
clouds, wrong parcel delineations or shadows [16].

For the GMM estimation algorithm, the number of compo-
nents was set to K = 6. The sigmoid parameter α was set to
α = 50 for the IF algorithm and to α = 2 for the OCSVM
algorithm. These values of α could also be adjusted using the
BIC, but were fixed here for conciseness (we observed that
the tuning of this parameter has less influence on the results).

A. Choose the appropriate GMM model

In a first experiment, we analyzed the effect of changing the
threshold of the outlier detection algorithm used to attribute

1https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite)

weights with the robust GMM imputation method. When using
the IF algorithm, this consists in choosing for the parameter β
a score that separates x% of the outliers, which corresponds
to ν = x in the OCSVM algorithm. For each threshold
value in the range [1%, 18%], we computed the values of
BIC, the values of the modified BIC (computed using the
inliers samples only), and the Mean Absolute Percentage Error
defined as follows:

MAPE =
100

Nmiss

Nmiss∑
i=1

|fi − f̂i|
|fi|

, (16)

with Nmiss is the number of missing values, fi is the actual
value of the ith feature and f̂i is its imputation. The idea
behind this experiment is to evaluate the interest of using the
BIC to optimize, in an unsupervised scenario, the imputation
of the missing features by choosing an optimal threshold to
separate inliers and outliers. The results obtained using the
same dataset with missing values are summarized in Fig. 3,
which shows MAPE as a function of BIC (Fig. 3(a)) and
MAPE as a function of the modified BIC (Fig. 3(b)), obtained
by varying the threshold used within the outlier detection
algorithms.
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Fig. 3. MAPE vs BIC (a) MAP versus modified BIC (b) obtained by
varying the threshold parameters used in the robust GMM framework (i.e.,
the parameter β or ν, depending on the outlier detection algorithm). Crosses
are for the OCSVM strategy and dots are obtained using the IF strategy.

Overall, two main conclusions can be drawn based on these
experiments. First, the MAPE can be reduced by choosing
an appropriate outlier detection strategy during the GMM

https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite)


estimation (i.e., the MAPE varies approximately between 4.6%
and 5.4% depending on the outlier detection algorithm and the
percentage of outliers considered). Second, the BIC computed
using the inliers samples only (Fig. 3(b)) can be used to select
accurately an optimal imputation model since in this case, BIC
is a function of MAPE satisfying “the lower BIC, the lower
MAPE”, contrary to the standard BIC displayed in Fig. 3(a).
Finally, the two strategies proposed to attribute the outlier
weights lead to similar results, which is interesting for datasets
where a specific outlier detection method is more adapted.

B. Comparison with other imputation methods
The proposed imputation method was compared to the clas-

sical GMM imputation method, the KNN imputation method
[4] and MICE [3]. We used the scikit learn implementations
(version 0.24.2) of KNN and MICE algorithms with their
default settings, and did our own python implementation of
the EM algorithms. For the robust GMM algorithms, we
used BIC (computed with inliers) to automatically choose the
optimal outlier detection algorithm between various possible
configurations (using IF and OCSVM with different outlier
thresholds). Using the experiment setup presented below (i.e.,
40% of missing pixels and 10% of outliers added), we have
run 50 Monte Carlo simulations on the landsat dataset and
computed the MAPE for the 4 different imputation methods.
The obtained results are summarized in Fig. 4. Overall, the
proposed robust GMM imputation outperforms the other tested
methods. In particular, while the standard GMM approach is
more accurate than the KNN and MICE algorithms, using
the robust extension always leads to better and more stable
reconstructions. Using an i7-11850H processor, each MC run
took approximately 5s with the KNN and MICE methods,
whereas it took around 100s to fit a single GMM model
(various GMM have to be fitted when tuning the model hyper-
parameters with BIC). Thus, the better performances of the
EM-based approaches is obtained at the price of a higher
computational complexity.
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Fig. 4. Boxplots of 50 MC runs for the KNN, MICE, GMM and robust
GMM algorithms. The quantity of missing data is 40% and there are 10% of
outliers.

IV. CONCLUSION

This paper proposed a robust EM algorithm for GMM. This
algorithm is based on the classical EM algorithm for GMM

but uses a robust M-step for the estimation of the model
parameters. More precisely, an outlier detection algorithm
is used to attribute weights to each sample, reducing the
impact of outliers on the parameter estimates. The proposed
approach was used for data imputation, and showed interesting
performance when compared to other classical methods, such
as KNN imputation or MICE. The good imputation results
obtained with the proposed method can be improved by
carefully choosing the strategy used for the robust estimation,
i.e., by choosing the value of the threshold separating out-
liers and inliers. Another way of building robust estimation
algorithms is to consider a mixture of distributions that take
into account the presence of outliers, e.g., compound Gaussian
[17] or elliptical [18] distributions. It would be interesting to
1) compare the proposed approach with these methods and 2)
investigate the interest of the modified BIC for these methods.
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