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Abstract

In the last decades, different numerical methods have been applied to simulate radiative transfer

in urban configurations. In cases where atmospheric air is treated as an absorbing gas, it has been

shown in many cases that the use of the Discrete Ordinate Method has been shown in many situa-

tions to provide a good compromise between calculation cost and accuracy. In this paper, several

quadrature schemes for directional integration in the DOM are compared for different urban condi-

tions and types (visible, thermal infrared) of radiation. This allows for determining which angular

quadrature scheme is the most appropriate for urban radiative transfer calculations. In conclusion,

the Fibonacci quadrature set outperforms all other quadratures in the traditional canyon simula-

tion with a transparent model. Meanwhile, the performance of Level Symmetric Odd and Hybrid

quadrature (LSO/LSH) and Equal Weight Odd (EWO) catch up with Fibonacci’s in a participative

atmosphere model.
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Nomenclature

α interpolation coefficient

βλ spectral extinction coefficient

εatm sky emissvity

εw,λ spectral emissivity of the boundary surface at wavelength λ

κλ absorption coefficient

λ wavelength

µm, ηm, ξm coordinates of discrete direction Ωm

Ω radiation direction

Ωm discrete direction
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ωm discrete direction weight factor

φm polar angle of quadrature direction m

φgolden mth golden ratio

σλ scattering coefficient

θm azimuthal angle of quadrature direction m

ζmx , ζ
m
y , ζ

m
z interpolation coefficient for the axis x,y,z

Fm mth Fibonacci number

I0λ radiative intensity of blackbody

Iλps,Ωq radiative intensity in direction Ω at wavelength λ

Iλ,p,m volume averaged radiative intensity

Iλ,S,m interface averaged radiative intensity

Iatm sky infrared radiation

Ib,w,λ the blackbody intensity evaluated at the temperature of the

surface element w

Idif diffused solar radiation intensity

Idir direct solar radiation intensity

Ienv environment infrared radiation

Iref reflected solar radiation intensity

Isw Total solar radiation intensity

n discretization number

P pΩ,Ω1q phase function

R1, R2 numbers from Low Discrepancy Sequence

Tpsq medium temperature

Tatm effective sky temperature

xSA, ySA, zSA coordinates of curve surface centroid

xtri, ytri, ztri coordinates of tirangle centroid

1. Introduction

Radiation is an important part of the heat budget in thermal simulations of urban areas. Dif-

ferent sources of radiation (direct solar flux, infrared radiation by the walls of the buildings, etc.)

together with the complex geometry encountered at the city scale have led to difficulty in calculat-

ing radiative transfer and, in most realistic cases, high costs.

Many works dedicated to radiative transfer at the building scale [1, 2, 3] use the radiosity or ray

casting methods for such calculation. These techniques provide acceptable results at a reasonable

computational cost. However, they all ignore the interactions between the participating atmosphere

(gases and aerosols can absorb and scatter radiation) and the radiation field. In some circumstances,

such as those involving polluted atmosphere, fog, rain, or high humidity, the atmosphere may exert

a significant impact on radiative transfer, as dispersed species significantly increase their ability to

absorb and emit radiative energy.

2



Numerous methods have been developed to calculate the radiative heat transfer in participating

media such as the finite volume method (FVM) [4, 5], the method of lines [6], the discrete ordinate

method (DOM) [7, 8], the P-N method [9], Monte Carlo ray tracing [10], the zone method [11], the

spectral method [12] etc. The DOM solves the Radiative Transfer Equation (RTE) in differential

form and requires various approximations to deal with the directionality of radiation transport or

the spatial variations of radiative intensities along propagation paths. Therefore, the orthogonal

schemes for selecting the various discrete directions of propagation of the radiative energy are

essential. Carlson and Lee proposed the level symmetric quadrature for the application of the

DOM in 3D geometries [13]. Until now, this quadrature set is still among the most widely used

in three-dimensional DOM calculations. However, this scheme is known to yield negative and

physically unrealistic weights at high quadrature orders.

In recent years, a number of new quadrature schemes have been developed. Comparative stud-

ies dedicated to the analysis of the performance of these quadrature schemes for radiative transfer

simulations, for example, analysis in [14, 15], have also been conducted. However, most of these

studies have focused on high-temperature combustion problems. In urban-scale radiation simula-

tion, the geometrical and directional configurations are quite different. The present paper compares

the overall performance(accuracy, flexibility in the choice of the number of directions, etc.) of

various angular quadrature schemes in a representative set of test urban configurations for radiative

transfer.

2. The Discrete Ordinate Method

2.1. The Radiative Transfer Equation (RTE)

The Radiative Transfer Equation is the fundamental relationship in radiative transfer in partic-

ipating media. It describes how radiative intensities (defined as the radiative energy flow per unit

area normal to the direction of the rays, unit solid angle, and unit wavelength) evolve as it prop-

agates within the medium due to the interactions between the radiation field and the propagation
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medium. It is written as follows:

Ω.∇Iλps,Ωq “ ´βλIλps,Ωq ` κλI0
λ rT psqs `

σλ
4π

ż

Ω1
P pΩ,Ω1qIλps,Ω

1
qdΩ1 (1)

where Iλps,Ωq is the spectral (at wavelength λ) radiative intensity in the direction of propa-

gation of the radiation field Ω and at a location s along a path in this direction Ω. I0
λ is the local

radiative emission given by the Planck law of blackbody intensity at the local temperature of the

medium T psq (the assumption of local thermodynamical equilibrium here is reasonable). βλ is the

spectral extinction coefficient of the medium, which is the sum of the absorption κλ and scatter-

ing σλ coefficients. P pΩ,Ω1q is the phase function that describes the scattering of some incoming

radiation represented by the intensity Iλps,Ω1q from the direction Ω1 to the new direction Ω.

In solving the boundaries of the computational domain of the RTE(walls, sky, etc), Eq. 1 is

subject to the boundary condition:

Iλpw,Ωq “ εw,λIb,w,λ `
1´ εw,λ

π

ż

~n.~Ωă0

|~n. ~Ω1|.Iw,λpΩ
1
q dΩ1 (2)

In the previous equation, εw,λ is the spectral (at wavelength λ) emissivity of the boundary sur-

face, Ib,w,λ the blackbody intensity evaluated at the temperature of the surface element w, ~n is the

normal to the surface at location w.

Because of the complexity of the urban surface, the calculation of scattering could consume too

much time. For this reason, the atmosphere scattering is excluded from this paper. From now on,

we will restrict the analysis to non-scattering media (σλ=0). In this case, the RTE is simplified into:

Ω.∇Iλps,Ωq “ ´κλIλps,Ωq ` κλI0
λ rT psqs (3)
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2.2. The Discrete Ordinate Method

The Discrete Ordinate Method is one of the most prevalent techniques used to solve the RTE

in participating media. This technique treats the RTE by using separate discretization schemes on

space (ds) and angles (Ω). For this purpose, an angular discretization of variable Ω is used. This

requires the selection of a quadrature set to evaluate numerically integrals over angles. Once this

set has been chosen, for one single discrete direction Ωm (characterized by a triplet of directional

coefficients µm, ηm, ξm), the RTE is simplified into:

Ωm.∇Iλps,Ωmq “ ´κλIλps,Ωmq ` κλI
0
λ rT psqs (4)

In the case of a Cartesian spatial mesh, as covered in this work, the previous equation becomes:

µm
BIλps,Ωmq

Bx
` ηm

BIλps,Ωmq

By
` ξm

BIλps,Ωmq

Bz
` κλIλps,Ωmq “ κλI

0
λ rT psqs (5)

where Bx, By, Bz are local path increments that characterize the mesh over which the RTE is being

solved.

The previous equation can be integrated over a single Cartesian cell (as depicted in Figure 1).

In the general case, for a given choice of the direction of propagation Ωm, the intensity at three

interfaces of the cell is known at a given step of the propagation scheme (e.g., for instance, Sleft,

Sbottom, Sfront are known as the incoming interfaces.) This provides the following discrete form:

Sλ,pδv “ µmAxpIλ,Sright,m ´ Iλ,Sleft,mq ` ηmAypIλ,Sback,m ´ Iλ,Sfront,mq

`ξmAzpIλ,Stop,m ´ Iλ,Sbottom,mq ` κλIλ,p,mδv

(6)

Where the intensities Iλ,S,m represent the interface averaged radiative intensities and we have
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Figure 1: Cartesian cell considered in the Discrete Ordinate Method

used the notations:

Ax “ ∆y ˆ∆z

Ay “ ∆xˆ∆z

Az “ ∆xˆ∆y

δv “ ∆xˆ∆y ˆ∆z

Sλ,p “ κλI
0
λ rT psqs

(7)

The intensities on the other three interfaces of the cell (Sright, Stop, Sback) can be obtained by

introducing assumptions between the radiation intensity values on these interfaces and the volume

average radiative intensity Iλ,p,m. These relationships usually take the form of linear interpolations

(where α is a coefficient that may depend on the optical size of the cell in each dimension - its

main constraint is to be between 0 and 1 although most usual values restrict its range of variation
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to between 1/2 and 1):

Iλ,p,m “ Iλ,Sleft,m ` αpIλ,Sright,m ´ Iλ,Sleft,mq

“ Iλ,Sfront,m ` αpIλ,Sback,m ´ ISλ,front,mq

“ Iλ,Sbottom,m ` αpIλ,Stop,m ´ Iλ,Sbottom,mq

(8)

Together with the previous set of relations, the following equation for the radiation intensity can

eventually be obtained (assuming the same value of α for the three directions):

Iλ,p,m “
Λx,mIλ,Sleft,m ` Λy,mIlambda,S,m ` Λz,mIλ,Sbottom,m ` Sλ,pdv

Λx,m ` Λy,m ` Λz,m ` κλδv

Λx,m “
µmAx

α

Λy,m “
ηmAy

α

Λz,m “
ξmAz

α

(9)

Then, using the linear approximations set by Eq. 8, estimates of the unknown radiative intensities

at the interface of the cell can be produced. The process is iterated over the whole mesh. The

iteration ends when the maximum difference in intensity values between two successive iterations

is reduced to a predetermined threshold.

3. Spatial differencing schemes

In this paper, we applied the hybrid interpolation scheme introduced by F. Liu, H. A. Becker,

and A. Pollard in [16]. It consists of the definition of an interpolating coefficient α that depends on

the chosen direction Ωm through the following set of relationships:

ζmx “ maxp0.5, ζm
1

x q

ζmy “ maxp0.5, ζm
1

y q

ζmz “ maxp0.5, ζm
1

z q

(10)
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where:

ζm
1

x “ 1´
a

2ˆ pb` cq ` κλ

ζm
1

y “ 1´
b

2ˆ pa` cq ` κλ

ζm
1

z “ 1´
c

2ˆ pa` bq ` κλ

(11)

with:

a “
µm
∆x

b “
ηm
∆y

c “
ξm
∆z

(12)

This scheme performs better than the upwind (α “ 1) and centered (α “ 0.5) schemes. The

only disadvantage compared to the other two methods is that it is more computationally demanding

as it requires additional calculations related to the use of the previous set of relationships to define

direction-dependent interpolating coefficients.

4. Angular quadrature schemes

Numerical quadrature formulas allow the integration of functions using a finite number of or-

dinates and their corresponding weights. According to [9, 17, 18], the constraints that generate the

relevant quadrature for directional integration are:

• The discrete ordinate Ωmpµm, ηm, ξmq must be located on the unit sphere.

µ2
m ` η

2
m ` ξ

2
m “ 1 (13)
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• The weight factors must be positive and the zeroth moment condition should be ensured:

n
ÿ

m“1

ωm “ 4π (14)

• The number of photons (also known as the first moment condition) should be preserved which

requires:

n
ÿ

m“1

ωm.~Ωm “ 0 (15)

• The diffusion condition (also referred to the second moment condition) should be satisfied

and with δ the unit tensor can be seen as:

n
ÿ

m“1

ωm.~Ω
2
m “

4π

3
δ (16)

In addition, Lee[19], Carlson [8] and Truelove [20] proposed a half-moment first condition to

calculate the unidirectional radiation flux at a wall. This condition can be expressed as:

ż

~Ω.~nă0

|~Ω.~n|dΩ “

ż

~Ω.~ną0

~Ω.~ndΩ “
ÿ

~Ω.~ną0

ωm.~Ωm “ π (17)

In a more general frame, the quadrature should also satisfy as many moments as required to

integrate accurately the phase function if the scattering of the radiant energy is non-isotropic in the

practical heat transfer applications [21].

It can be noticed that discretization with a finite number of directions is almost impossible to

satisfy the last constraint [18].

Most angular quadrature schemes were initially developed to solve problems in neutron trans-

port theory [13, 8]. In the last decades, these schemes have also been adopted [22] and extended

[21] to solve the RTE. Some quadratures were also designed to solve purely mathematical problems

(i.e. based on some geometric considerations). Parts of the existing quadratures (some of which
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are considered below) do not satisfy some of the constraints mentioned above but are still able to

provide acceptable accuracy for radiative transfer calculations.

4.1. Level symmetric quadrature sets

This quadrature is referred to as the SN method and was developed by K. D. Lathrop and B. G.

Carlson [23]. It provides directions that are symmetric with respect to a π{2 rotation inside eight

octants. If one direction vector pµ, η, ξq is chosen, then the different plus-minus signs of the other

seven combinations of the same µ, η, ξ are also elements of the quadrature set. The main formula

to evaluate the cosine values of the points on the unit sphere is:

µ2
m “ µ2

1 ` 2pm´ 1q
1´ 3µ2

1

n´ 1

m “ 1...n

(18)

The first base point µ1 can be determined by Eq. (18) together with the constraint:

n
2

ÿ

m“1

ωmµ
k
“

1

k ` 1
(19)

Basically, µ1 is chosen by selecting which moment conditions need to be contented[8, 21]. Level

symmetric quadratures can be categorized into 3 classes of quadrature:

• Level Symmetric Even quadrature (LSE): (19) in which the value of k is an even integer to

satisfy the even moment conditions. This quadrature restricts n to be lower than 22 to avoid

negative weights [15].

• Level Symmetric Odd quadrature (LSO): the value k is any positive integer. In contrast to

the LSH described below, the LSO yields negative weights when n ě 12.

• Level Symmetric Hybrid quadrature (LSH): the value k is chosen among the sequence p0, 1, 2, 4, 6, n´

2q. It also restricts the maximum value of n to 10 to avoid negative weights.
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In this paper, the S6 of the three types of Level Symmetric quadratures described above are con-

sidered and compared. The different directions and their corresponding weights in each quadrature

set are listed in the Table 1:

Level Symmetric Even quadrature(LSE)
n Moments (k) µm Point weight

48(S6)
0 2 4 6 0.2666355 0.2766681

0.6815076 0.2469424
0.9261808

Level Symmetric Odd quadrature(LSO)
n Moments (k) µm Point weight

48(S6)
0 1 2 3 0.1838670 0.1609518

0.690514 0.3626469
0.9656013

Level Symmetric Hybrid quadrature(LSH)
n Moments (k) µm Point weight

48(S6)
0 1 2 4 0.1914858 0.1780147

0.6940220 0.3455840
0.9626351

Table 1: Table of S6 versions of quadrature LSE, LSO and LSH, with the different moment condition satisfied by the
quadrature (Eq 19), the direction vectors and the corresponding point weights

4.2. Double Cyclic Triangles quadrature schemes

In order to satisfy more moment conditions, the Double Cyclic Triangles have been proposed

to increase the number of degrees of freedom [17]. The scheme is built on the superposition of

non-degenerated and degenerated tuples of discrete ordinate in one octant. The arrangement of

the zeroth level consists of six nodal points constructed with the help of the ordinate of one base

point pµ, η, ξq. The initially generated levels assume that two of the directional cosines µ, η, ξ are

the same, which transforms the arrangement into a latitudinal triangle. If all three ordinates share

the same value, the DCT arrangement becomes a nodal point located in the center of the octant,

which is the second generated level. The degrees of freedom corresponding to the three tuples are

provided in Table 2.

The convention DCTxyzabcd has commonly been employed to designate such a quadrature

scheme. The parameters x, y, z give the number of degenerate angles per level used in this ar-
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Level of degeneration Number of points Degree of freedom
0 6 4
1 3 3
2 1 1

Table 2: Different levels of arrangement in DCT scheme

rangement, and the indices a, b, c, d indicate the moment conditions contented by the quadrature.

In this paper, we used the DCT020 schemes which contain DCT0201246 and DCT0202468. These

two DCT schemes are similar respectively to the S6 scheme presented in the Level symmetric

quadrature. The corresponding ordinates are provided in Table 3.

DCT020
µm ηm ξm Point weight

DCT0201246
0.13146076 0.13146076 0.98256609 0.16811011
0.25166076 0.68434890 0.68434890 0.35548864

DCT0202468
0.24154201 0.24154201 0.93984834 0.24375312
0.26524016 0.68177989 0.68177989 0.27984562

.

Table 3: Table of DCT020

4.3. Equal weight quadrature schemes

Based on his own LS scheme, Carlson developed an equal weight (EW) quadrature to treat

neutron transport problems [24]. The scheme in this paper differs from LS in that there is no

directional bias affecting the weights, which are:

ωm “
π

2
r
npn` 2q

8
s
´1 (20)

This scheme has been adopted to calculate radiation transfer problems [21], and its main dif-

ference from the LS scheme lies in the fact that the equal-weight scheme is not a latitude-based

calculation. The tuples of ordinate are independent of each other. The satisfaction of the different

moment conditions is controlled by a proper selection of these tuples. According to Fiveland [21],

the direction vectors can be determined by different moment conditions written as:
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ωm

npn`2q
8

ÿ

m“1

µk “
π

2

1

k ` 1
(21)

In this paper, the Equal Weight Even (EWE) and Equal Weight Odd (EWO) quadratures as

shown in Tables 4 are employed..

Equal Weight Even (EWE)
n Moments (k) µm Point weight

48(E6)

0 2 4 6 0.2561428 0.2617994
0.2663445
0.6815646
0.9320846

Equal Weight Odd (EWO)
n Moments (k) µm Point weight

48(E6)

0 1 2 3 0.2958759 0.2617994
0.0917517
0.7041241
0.9082483

Table 4: Table of E6 in the equal weight quadrature, with the different moment condition satisfied(eq 21), the direction
vectors and the corresponded point weights

4.4. Constant weights for discrete ordinate methods (CWDOM)

This quadrature set was developed by Taoufik Gassoumi and Rachid Said [25], which is an

extension of the SN method in which all the directions are given the same weights. Using the same

notations as for the SN quadrature of the previous section, the number of directions in one octant

is with this new scheme equal to npn`1q
2

. The corresponding weights, assumed to be independent of

the directions, are:

ωm “
π
2

npn`1q
2

“
π

npn` 1q
(22)
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The coordinates of the directions are then given as:

µm “ sin θm cosφz “
a

1´ ξ2
m cosφz

ηm “ sin θm sinφz “
a

1´ ξ2
m sinφz

ξm “ cos θm “ 1´
m2

npn` 1q

dφ “
π

2n

φ0 “ ´
dφ

2

φz “ φz´1 ` dφ

(23)

θ and φ are the azimuthal and polar angles in spherical coordinates. i and z vary from 1 to n. The

CWDOM quadrature is also one of the quadrature set based on the SN method and this indicates that

the scheme is symmetric to any axis and it satisfies the zeroth, first and second moment conditions

as in the LSO scheme.

4.5. The Tn sets

Unlike the previously discussed quadrature schemes, these schemes were introduced to treat

problems encountered in neutron transport theory. The Tn quadrature set [26] is one of the many

methods based on geometric considerations.

This scheme bisects the surface of a triangle surface with vertices p1, 0, 0q,p0, 1, 0q,p0, 0, 1q in

the first octant. The ordinate of the vertices and centers of the small triangles are projected onto

the unit sphere. The projection point of each smaller triangle center pxtri, ytri, ztriq is used as the

discrete ordinate with the relationship:

µm “
xtri

a

x2
tri ` y

2
tri ` z

2
tri

ηm “
ytri

a

x2
tri ` y

2
tri ` z

2
tri

ξm “
ztri

a

x2
tri ` y

2
tri ` z

2
tri

(24)
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The weight of each discrete direction is determined by the area of the outward spherical triangle

projected on each small triangle. The Tn quadrature scheme has the disadvantage that there is no

degree of freedom in the direction and weight factors to satisfy different moment conditions. The

Tn quadrature can only provide directions that satisfy the zeroth and second moment conditions.

The advantage is that this scheme is not limited by the number of discrete directions, which could

yield the negative weight problem in some quadratures based on neutron theory like SN.

4.6. Spherical Rings Arithmetic Progression

The Spherical Rings Arithmetic Progression(SARPN) [27] shares a similarity with the Tn sets.

Both of them are based on geometric construction. Unlike the Tn sets, the SARPN divides directly

the crown in one octant. As shown in Fig2, the crown is divided into several rings from top to

bottom. Furthermore, each ring is separated into different elements which have an equal solid

angle. The number of elements in the successive ring follows an arithmetic sequence that starts at

2 and adds 1 to each ring. The weight of each direction is the same.

The determination of discrete direction starts by calculating the centroid pxSA, ySA, zSAq of the

solid angle:

xSA “
1

V

¡

Ωm

xdV

ySA “
1

V

¡

Ωm

ydV

zSA “
1

V

¡

Ωm

zdV

(25)

Then the coordinates of direction could be determined with:

µm “
xSA

a

x2
SA ` y

2
SA ` z

2
SA

ηm “
ySA

a

x2
SA ` y

2
SA ` z

2
SA

ξm “
zSA

a

x2
SA ` y

2
SA ` z

2
SA

(26)
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Figure 2: The SARPN schema [27]

4.7. The Fibonacci sets

This distribution of points is founded on spherical Fibonacci lattices [28] [29] [30], which are

defined as:

θm “ arccosp1´
2m

Fm
q

φm “ 2πm
Fm´1

Fm

(27)

where pθm, φmq are the angular coordinates of the ith points of the quadrature in range of r1, ns
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and Fm is the mth Fibonacci number. Fm can be obtained as solution of the sequence:

F0 “ 0

F1 “ 1

Fm “ Fm´1 ` Fm´2

(28)

With increasing m, the ratio Fm
Fm´1

converges quickly toward the golden ratio φgolden. This

provides the generator:

θm “ arccosp1´
2m

n
q

φm “ 2πmφ´1
golden

(29)

Swinbank and Purser [31] improved this set by introducing an offset equal to 1
N

on the z coor-

dinate. This gives the so-called Spherical Fibonacci point sets:

θm “ arccosp1´
2m` 1

n
q

φm “ 2πmφ´1
golden

(30)

The Fibonacci quadrature satisfies only the zeroth moment condition as the weight factors of

each discrete direction are equal. It can satisfy the first moment condition with a huge number of

directions. But the higher moment condition can not be satisfied no matter how many directions

there are. Also, this scheme is not symmetric like other schemes introduced in the previous sections.

4.8. The quasi Monte Carlo (QMC) sets

Quasi-Monte Carlo methods are similar to Monte Carlo methods [32], except that instead of re-

lying on (pseudo-)random numbers to generate statistical events (location of absorption, scattering

direction, etc), Low-Discrepancy Sequence (LDS) [33] are used in QMC.

If two random numbers pRθm , Rφmq are sampled in Monte Carlo from a uniform distribution

within the interval r0, 1s, a point on the unit sphere can be defined. Its angular coordinates are given
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by the following equation:

θm “ arcsinp
a

Rθmq

φm “ 2πRφm

(31)

The same idea can be adopted for QMC by simply replacing the random numbers with elements

of a Low-Discrepancy Sequence. LDSs are constructed in such a way that they map the unit

hypercube more uniformly than random numbers and therefore converge faster than Monte Carlo

methods for the calculation of integrals over r0, 1sn. In the present work, the LDS by Halton[34]

has been chosen. Based on [35], the coordinates of the quadrature points on the unit sphere, in this

case, are given as:

µm “ 2 cosp2πR1q

b

R2 ´R2
2

ηm “ 2 sinp2πR1q

b

R2 ´R2
2

ξm “ 1´ 2R2

(32)

where R1 andR2 are two numbers from the LDS. It is noted that in QMC, the weights are equal

in all directions, as in the standard Monte Carlo techniques. This means this scheme can satisfy the

zeroth moment condition, however, it can not satisfy the higher moment condition and it is also not

symmetric to any axis.

5. Urban radiation calculation

5.1. Introduction

Urban radiation consists of two parts, that is, solar radiation and thermal infrared radiation

because of the radiative emission by the various surfaces encountered in the problem such as walls

and grounds.
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5.1.1. Solar radiation

For a given surface, the short wave (mostly in the visible part of the spectrum) radiation pIswq

can be calculated as:

Isw “ Idir ` Idif ` Iref (33)

Idir is the solar radiation that emanates directly from the sun, and this part has the highest

radiation intensity of all three terms. The solar beam reaches the surfaces in the sunlight direction.

The ray casting method is frequently used to treat this component because it is well suited to highly

directional phenomena.

Idif refers to the fraction of the incident solar radiation that is scattered by the atmosphere. Gas

molecules, aerosol, etc. scatter a part of the incident Idir. Eventually, a fraction of this scattered

energy reaches the surfaces (walls, ground, etc).

Iref is the component related to reflections by the surfaces and this part of the energy may be

derived from all elements of the mesh(since its value depends on the reflectivities of the surfaces).

In this article, different directional quadrature schemes are used to perform the calculation and

the results are compared and analyzed. To simplify the calculations, some assumptions are made

as follows:

• We applied two different boundary conditions for the two different types of solar radiation.

A periodic boundary condition is taken to treat the vertical surfaces in the direct solar part.

If a ray with intensity Iray hits a vertical surface at coordinates pxp, yp, zpq, then the intensity

values are assumed to be the same at points p0, yp, zpq in the same direction of propagation,

as depicted in Figure 3. This method reduces the need for information on the vertical sur-

faces and simplifies the treatment of the radiative transfer problem. On the other hand, an

isotropic sky model [36] is used in the diffused part to simplify the calculation and reduce the

meteorological information requirement. The emissivity is uniform for all sky boundaries

• All surfaces in the model are Lambertian with perfect diffuse reflection. The surface albedo
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Figure 3: The periodic boundary condition

is gray and is not dependent on the wavenumber of the radiation, over each surface element.

However, different surfaces may have distinct values of albedo.

• Simulating the direct solar radiation transfer with the DOM is performed in two steps:

1: First the direct solar energy received by the surface without any reflection is calculated,

so that only the part of radiation along the sun direction is considered. The focus of this step

is to calculate the first impact of solar beams on the various boundaries (building, ground,

etc). The specific choice of a quadrature set has no influence on this step, since only a single

direction of propagation is considered. The quadrature will have an impact on the reflections

on the scene calculated in the next step.

2: Once this first calculation has been performed, it is possible to estimate the source terms

associated with the direct solar energy reaching the various surfaces and to calculate the mu-

tual reflection of the radiated beams on these surfaces. This second step is strongly dependent

on the choice of the quadrature scheme used to evaluate the various directions of propagation

of the reflected/emitted radiative intensities.
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5.1.2. Infrared radiation

The thermal infrared radiation received by a surface is due to the sky Isky and the environment

Ienv radiations. The amount of thermal infrared radiation from the sky is determined by its emis-

sivity εatm and an effective temperature Tatm [37]. The environment radiation Ienv corresponds to

the component Iref in solar radiation and accounts for radiative thermal emission by all boundary

surface elements. Detailed information about the building geometries is significantly necessary for

an accurate estimate of this component. Both parts, Isky and Ienv, are difficult to evaluate precisely

in practice because of limited knowledge about wall and ground emissivities. They are often con-

sidered as Lambertian boundary surfaces with given prescribed temperatures and gray emissivities.

In this paper, all the sky surfaces are treated as diffuse with a prescribed temperature and emis-

sivity. The bottom surfaces representing the ground are modeled also as diffuse with their own

temperature and emissivity. In the next section, the performance of the quadrature method is eval-

uated in a typical geometry representative of the urban area, namely, the canyon.

5.2. Model Presentation

In the urban radiation transfer field, it is hard to find a benchmark problem with an exact an-

alytical solution as in other fields[38, 39]. In order to evaluate the quadratures’ performances, a

canyon, which can be seen as the basic component of city configurations, is studied. The calculated

parameters including distances and heights are shown in figure 4.

The other boundary conditions for solar radiation are given in table 5,while the IR radiation is

presented in Table 6.

The incident heat fluxes on each surface were calculated in both solar and infrared regimes.

The same calculation was also carried out with the finite volume method, which had been already

verified by a benchmark problem calculation [40]. Three comparisons have been realized by this

paper:

• Based case: The space was discretized into identical cubes with a dimension of 1 m in each

direction. All the quadratures presented in the previous sections were evaluated: LS (LSO,
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(a) Canyon (b) Longitudinal(axis Y)

(c) Transversal(axis X)

Figure 4: Model for the solar radiation calculation

Soil emissivity 0.95
Wall emissivity 0.91
Roof emissivity 0.88
Sky absorbility 1
Azimuth angle 43.8983˝

Elevation angle 62.3438˝

Sun direction (0.3218,0.3348,-0.8857)
Direct solar radiation received by horizontal surface 842.2396 W/m2

Diffused solar radiation received by horizontal surface 102.3310 W/m2

Table 5: Boundary condition for solar radiation test - Canyon geometry of Figure 4

LSE, LSH), EW (EWO, EWE), DCT, Fibonacci, QMC, CWDOM, Tn, and SARPN. The

number of directions of all quadratures was fixed at 48 except Tn and SARPN. This is because

of the principle of construction of quadratures, where Tn2 was selected here providing 32

discrete directions in the quadrature set and 40 for the quadrature SARPN. For the LS, EW,

and DCT quadratures, the LS6, EW6 and, DCT020 were chosen and these quadratures satisfy

different sets of moment conditions. The atmosphere in this case is considered a transparent

medium.

• Spatial and angular refinement case: In this part, this paper refined the spatial and angular
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Soil emissivity 0.95
Soil temperature 300K
Wall emissivity 0.91
Roof emissivity 0.88
Building temperature 285K
Sky absorbility 1
Sky temperature 273K

Table 6: Boundary condition for infrared radiation

discretization to evaluate the performance of quadrature in different kinds of mesh configu-

rations. The mesh sizes in this section were set to 2m, 1m, and 0.5m, respectively. For the

angular refinement, this paper increased the direction number from the previous case to 80

and 120. The direction numbers and quadratures used in this section are shown in Table7.

The atmosphere is also considered a transparent medium.

• Atmosphere absorption case: Based on the previous case, the atmosphere is considered to be

participative. A grey model has been applied with an absorption coefficient of 0.1m´1.

Direction number Quadrature
32 TN2
40 SARP2
48 CWDOM DCT020-1 DCT020-2 EWE6 EWO6 FIBO QMC LSE6 LSO6 LSH6
72 TN3 SARP3
80 CWDOM DCT111-1 DCT111-2 EWE8 EWO8 FIBO QMC LSE8 LSO8 LSH8
112 SARP4
120 CWDOM FIBO QMC
128 TN4

Table 7: The directions number and the quadrature correspond

6. Result analysis

6.1. Based case

6.1.1. Solar radiation

The results of solar radiation simulations with FVM and DOM of the canyon geometry are

depicted in Figure 5. These contain Idir, Idif and Iref mentioned in the section 5.1.1. The results
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given by the two methods are very similar. To determine the difference between the results, we

calculated the MAE and RMSE for all building patches. These quantities are defined in Formula

34.

(a) FVM (b) DOM:LSO6

Figure 5: Direct solar radiation received by the canyon surface, calculated by FVM and DOM(quadrature LSO6)

MAE “

řpatch number
|φDOM ´ φFVM |

patch number

RMSE “

d

řpatch number
pφDOM ´ φFVMq2

patch number
(34)

The results of MAE and RMSE for all quadratures are plotted in Figure 6. The values reported

in it only show slight differences among the various quadrature schemes. The Fibonacci quadra-

ture performs the best among these schemes in this configuration even if it does not completely

guarantee any moment condition other than the zeroth one. In the case of the QMC set, due to

the small number of directions used for the calculations, poor performances are obtained compared

with the other schemes considered. For the case of the study, 48 discrete directions are insufficient

for QMC to get relatively accurate results. For the Tn scheme, even if it has a small number of di-

rections, relatively good results are observed. At the same time, as a quadrature based on geometric

consideration, the SARPN has a higher MAE and RMSE. Concerning the quadrature sets initially

proposed in neutron transport theory, the DCT is worse than EW and LS, especially the DCT020-1.

The differences between EW and LS are rather small.
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(a) MAE (b) RMSE

Figure 6: The difference of solar energy calculated by FVM and DOM with different quadrature schemes

6.1.2. Infrared radiation

On the side of the Infrared radiation, the result of incident flux on each patch are shown in

Figure 7

(a) FVM (b) LSO6

Figure 7: The incident infrared radiation on each patch with FVM and DOM(LSO6)

Herein, in the infrared, the sky boundary is no longer a dominant source of radiation because

the temperature of the buildings and ground surfaces is higher than that of the sky. Owing to the

short distances between the two infrared radiation sources (buildings and ground), the bottom of

the walls receives more energy than other surfaces. This effect is amplified in the U-shape because

of the inter-reflections between the walls.

The errors of the different quadrature schemes are illustrated in Figure8. In this configuration,
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(a) MAE (b) RMSE

Figure 8: The difference of infrared radiation calculated by FVM and DOM with different quadrature schemes

differences up to 10W {m2 are observed for some quadratures. The RMSE of most quadratures

increases compared with the values observed in solar radiation. This increase remains at about

1W {m2 in most cases. The Fibonacci set still provides the smallest MAE, closely followed by the

DCT0201246, EWO6, LSO6, and LSH6 schemes. The CWDOM performs poorly, as QMC, which

requires obviously more discrete directions to ensure an acceptable quality of the calculations.

Despite the disadvantage in the number of directions, the Tn2 quadrature still provides relatively

good results. Despite a decline in RMSE, the SARPN schema still provides a relatively higher

MAE. The insufficient direction number could be the reason.

This analysis of the based case confirms that the Fibonacci scheme is the most relevant choice

among the studied configurations. It produces the smallest errors in all three cases of canyon

calculations, even if it only obeys the zeroth moment condition. The DCT (DCT0201246) and

LS schemes (LSO6, LSH6) are also acceptable choices in this simulation. Compared with the

Fibonacci scheme, these sets have a huge advantage that both are symmetric around the axis. This

property is vital for the DOM to treat the specular reflections because the reflected directions are

naturally contained in the quadrature scheme. However, due to the negative weight problem, the

number of discretization is limited which may create problems if a higher order of quadrature is

required.
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6.2. Spatial and angular refinement case

(a) MAE of solar radiation (b) RMSE of solar radiation

(c) MAE of infrared radiation (d) RMSE of infrared radiation

Figure 9: The results with spatial and angular refinements

The results of MAE and RMSE for both solar and infrared radiation can be found in the Figure

9 and analyzed in a manner of angular and spatial variation.

The influence of mesh refinement on both solar and infrared radiation is relatively small. The

maximum error decrease is limited to 1W {m2. The result suggests that mesh refinement could

barely optimize the MOD result in a canyon case. This conclusion favors the urban simulation with

DOM because it does not need a refined mesh for good accuracy, which could largely reduce the
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time consumption.

The angular refinement generates a greater influence on results. The rise of directions numbers

reduces the difference between the DOM and FVM results. For quadratures CWDOM, QMC, DCT-

1, TN and SARPN, the increase in discretization number can greatly improve their performances

in the calculation of all types of radiations. The convergence of the Fibonacci quadrature stays

at a very small quantity with a direction number beyond 48 in the calculation. This means the

need for the directional discretization to obtain an accurate result by Fibonacci quadrature in this

configuration could be much less than 48, leading to a big advantage for the Fibonacci quadrature

in the manner of simulation time-saving.

Overall, it could be found that despite the improvement by spatial refinement with a fixed di-

rection number, the increasing of angular discretization number is more efficient to reduce the

difference, in particular to the CWDOM, QMC, DCT-1, TN and SARPN quadratures. The Fi-

bonacci quadrature appears to slightly outperform other quadratures in this application, given that

relative differences are lower when compared to other methods with increasing angular and spatial

refinement. For the LS and EW quadrature, the results from odd and hybrid schemes are better than

the even’s.

6.3. Atmosphere absorption case

In this case, an atmosphere absorption coefficient 0.1m´1 is applied with the same configu-

ration used in the Spatial and angular refinement case. Because solar radiation has been already

absorbed during the passing through the atmosphere, the amount of absorption of solar radiation in

the urban area could be very small. For this reason, only the infrared absorption was included in

the calculation. The result is shown in Figure 10. The MAE curve does not change too much from

the transparent case (Fig 9c). Most of the errors increase slightly with the absorption involved.

The schemes of LSO, LSH, and EWO have a better MAE result than Fibonacci’s with the same

angular discretization. Only with 100 directions, the Fibonacci scheme could regain the title. For

the RMSE result, most of schemes remain at a low level, except the QMC and CWDOM schemes.

In conclusion, the LSO,LSH, and EWO schemes surpass the Fibonacci scheme in an atmosphere
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(a) MAE (b) RMSE

Figure 10: The difference of infrared radiation calculated by FVM and DOM with an absorption atmosphere model

absorption case, but the disparity stays tiny. It should be noted that if the scattering is considered,

this gap could increase as the schemes which satisfy more rigorous moment conditions are likely

required to more accurately integrate the phase function.

7. Conclusion

This paper introduces, compares, and analyzes several quadrature schemes handling angular

discretization in urban configurations. The main objective is to find a quadrature set providing

accurate results with the smallest computational burden. Based on these results described in the

paper, the Fibonacci quadrature set seems to be the best choice among the ones considered in the

transparent case, since it provides accurate results even at very low orders, even if it does not satisfy

most of the moment conditions. Besides, the best choice switches to LSO, LSH, and EWO while

the atmosphere absorption is considered, but the Fibonacci scheme is also a good choicthe e in

this case. In the aspect of quadrature structure, the Fibonacci scheme is more flex ible in direction

choice, and it can keep a good accuracy with a relatively small direction number. For LSO, LSH,

and EWO, the choices of direction numbers are few, but they can deal with the specular reflection

because of their symmetric structure.
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However, it is noticed that the quadrature scheme used to treat the angular dependency of ra-

diative intensities is not the only important factor to be considered in accurate radiative transfer

calculations at the city scale: spatial discretization, accurate treatments of gaseous / particles scat-

tering, appropriate treatment of boundary conditions, etc., and it also has a significant impact on the

outcome of the simulations. Some of these additional possible sources of errors include the current

review as a continuation of the current work. At the same time, this paper used the FVM result to

compare, a more precise simulation or measure result will be recommended in future study.
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