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Relative SU(2,1)-character varieties and decomposable complex hyperbolic triangle groups

In this work, we consider relative character varieties for representations of the 3-punctured sphere group in SU(2,1). We provide necessary and sucient conditions on the peripheral conjugacy classes, for such a representation to admit a decomposition as products of special elliptic elements. We apply these results to representations of the even subgroup of triangle groups, and describe components of the associated character variety.

Introduction

Dene the group Γ = a, b, c | abc = 1 , which is isomorphic to the free group on two generators F 2 . Let G be a Lie group and C 1 , C 2 , C 3 three conjugacy classes in G. The relative character variety χ C 1 ,C 2 ,C 3 (Γ, G) is the set of characters of representations ρ : Γ → G satisfying (ρ(a), ρ(b), ρ(c)) ∈ C 1 × C 2 × C 3 . A natural question concerning this object is to understand when χ C 1 ,C 2 ,C 3 (Γ, G) is non-empty; this question is often referred to as the Horn problem. It has been solved by the work of various authors in the case of compact Lie groups such as U(n) or SU(n), see for instance [START_REF] Biswas | On the existence of unitary at connections over the punctured sphere with given local monodromy around the punctures[END_REF], [START_REF] Belkale | Eigenvalue problem and a new product in cohomology of ag varieties[END_REF], [START_REF] Ressayre | Geometric invariant theory and the generalized eigenvalue problem[END_REF]. Then, knowing that χ C 1 ,C 2 ,C 3 (Γ, G) is non-empty for a given triple C 1 , C 2 , C 3 , it is natural to try describing it: identify some connected components, give coordinates, understand its topology.

In this paper, we consider the case where G is a non-compact group of rank one, namely G = SU(2, 1), and C 1 , C 2 , C 3 are three elliptic conjugacy classes. The group SU(2, 1) acts on the complex hyperbolic plane H 2 C as a three-fold covering of its holomorphic isometry group PU(2, 1). Geometric aspects of this action enable us to describe some particular connected components of χ C 1 ,C 2 ,C 3 (Γ, SU [START_REF] Belkale | Eigenvalue problem and a new product in cohomology of ag varieties[END_REF][START_REF] Acosta | Character varieties for real forms[END_REF]). Note that the same questions can be adressed in the group PU(1, 1); they can be solved rather easily using its action on the hyperbolic plane. The situation is more complicated in PU(2, 1), because the associated space H 2 C has non-constant negative curvature.

Let A, B, C ∈ SU(2, 1) be elliptic elements with ABC = 1. We say that (A, B, C) is irreducible when the eigenspaces of A, B, C are pairwise distinct; otherwise, (A, B, C) is reducible. We borrow the following terminology from Paupert's work in [START_REF] Paupert | Elliptic triangle groups in P U (2, 1), Lagrangian triples and momentum maps[END_REF]: a reducible triple is called

• totally reducible when A, B, C are diagonalizable in the same basis (i.e. they commute). This means that their projections to PU(2, 1) have the same xed point and the same stable complex lines.

• spherical reducible when A, B, C have one common eigenvector of negative type, i.e. on which the Hermitian form is negative; see Section 2.1. This means that their projections have the same xed point in

H 2
C . • hyperbolic reducible when A, B, C have one common eigenvector of positive type. This means that their projections have one stable complex line in common.

We show in Lemma 4.3 that χ C 1 ,C 2 ,C 3 (Γ, SU(2, 1)) contains at most one class of spherical or hyperbolic reducible representations. We call the connected component containing this representation the spherical or hyperbolic reducible component of χ C 1 ,C 2 ,C 3 (Γ, SU(2, 1)). We show that representations in this component have a geometric property which we call decomposability. This property involves so-called complex reections (elliptic isometries that x pointwise a projective line, called the mirror, and rotate around it; see Section 2.2 for details).

Denition. We say that the triple (A, B, C) is decomposable if there exist

three complex reections R 1 , R 2 , R 3 such that A = R 1 R -1 2 , B = R 2 R -1 3 , C = R 3 R -1 1 .
More precisely, the triple (A, B, C) is spherical decomposable (respectively hyperbolic decomposable) when the mirrors of R 1 , R 2 , R 3 intersect pairwise inside H 2 C (respectively are pairwise disjoint in H 2 C ). We prove the following result (Theorem 4.7):

Theorem. Assume that the spherical reducible component of the relative character variety χ C 1 ,C 2 ,C 3 (Γ, SU(2, 1)) is non-empty. Then it is either a point or a compact component homeomorphic to a sphere which contains only spherical decomposable representations.

In particular, we nd some of the compact components whose existence is proved in [START_REF] Tholozan | Compact connected components in relative character varieties of punctured spheres. Épijournal de Géom. Algébr[END_REF]. Our main tool in the proof of this result is the following characterization of the decomposability property (Theorem 3.5).

Theorem. An irreducible triple (A, B, C) ∈ SU(2, 1) 3 is decomposable if and only if there exists a triple of eigenvalues

(λ A , λ B , λ C ) of (A, B, C) such that λ A λ B λ C = 1.
As a consequence, we show (Proposition 3.8) that a triple is spherical decomposable if and only if the Toledo invariant of the associated representation is zero. In fact, one can interpret the product λ A λ B λ C as a rotation number, which makes of this theorem a geometric version of a particular case of Proposition 7.8 and Lemma 8.2 in [START_REF] Burger | Surface group representations with maximal Toledo invariant[END_REF].

Among relative character varieties, the case where C 1 , C 2 , C 3 are conjugacy classes whose elements have nite order is special, and strongly related to triangle groups. Denition. Let p, q, r ∈ N ∪ {∞} such that 1/p + 1/q + 1/r < 1. We dene the triangle group:

Γ p,q,r = i 1 , i 2 , i 3 | i 2 k = (i 1 i 2 ) p = (i 2 i 3 ) q = (i 3 i 1 ) r = 1 ,
where the relation (i k i l ) s = 1 should be omitted if s = ∞, and its even subgroup

Γ (2) p,q,r = a, b, c | a p = b q = c r = abc = 1 .
We say that Γ (2) p,q,r is a (p, q, r)-group. The group Γ p,q,r acts naturally on H 2 R as the subgroup of PO(2, 1) generated by the symmetries in the sides of a geodesic triangle with angles π/p, π/q, π/r. A family of representations in PU(2, 1) is constructed in the following way: we rst embed PO(2, 1) into PU(2, 1), and then deform the representation. This amounts to considering in H 2 C a triangle of complex lines with angles π/p, π/q, π/r and sending each generator i k to a complex reection I k of order two in each of the complex lines. It is a classical fact that the space of such representations up to conjugation in PU(2, 1) is compact and connected of dimension one. It is parameterized by the angular invariant α of the triangle (a projective invariant similar to a triple ratio, see [START_REF] Pratoussevitch | Traces in complex hyperbolic triangle groups[END_REF] and Section 2.3 below). When α = π, the three vertices of the triangle lie in a copy of H 2 R , the representation restricts to PO(2, 1) and coincides with the one introduced above.

The group Γ (2) p,q,r is an index two subgroup of Γ p,q,r , as well as the orbifold fundamental group of a (π/p, π/q, π/r)-triangular pillowcase. Understanding the representations of Γ (2) p,q,r into SU(2, 1) corresponds to describing the relative character variety χ C 1 ,C 2 ,C 3 (Γ, SU(2, 1)) when C 1 , C 2 , C 3 are elliptic conjugacy classes with respective orders p, q, r.

The representations of Γ (2) p,q,r arising from representations of Γ p,q,r have the special property that there exists a triple of involutions [START_REF] Paupert | Involution and commutator length for complex hyperbolic isometries[END_REF] and Denition 1 in [START_REF] Will | Traces, cross-ratios and 2-generator subgroups of SU(2,1)[END_REF]. The notion of decomposability we dened above is a generalization of this property to the case where the complex reections are no longer involutions and may even have innite order. We apply our results on the reducible component of the relative character variety to representations of (p, q, r)-groups in Section 5. Our work enables us to parameterize geometrically the R-Fuchsian component of the character variety χ(Γ (2) p,q,r , SU(2, 1)) (i.e. the deformation component of the embedding

I 1 , I 2 , I 3 ∈ PU(2, 1) such that A = I 1 I 2 , B = I 2 I 3 , C = I 3 I 1 . Such triples (A, B, C) are sometimes called C-decomposable, see Section 8.2 in
Γ (2)
p,q,r → PO(2, 1) ⊂ PU(2, 1)). The results of this paper have the following consequence (Theorem 5.2):

Theorem. The R-Fuchsian component of χ(Γ (2) p,q,r , SU(2, 1)) is entirely composed of decomposable representations. Besides, it contains a unique reducible point and is topologically a sphere.

We construct explicitly this parameterization in the case of the (3, 3, 4)group. Similar computations appear in an unpublished note by Thistlethwaite [START_REF] Thistlethwaite | q,r)-triangles in H 2 C[END_REF]. In this paper, we show how this method also applies to parameterize non-R-Fuchsian components of χ(Γ (2) p,q,r , SU(2, 1)). We give an example with the [START_REF] Parker | Traces in complex hyperbolic geometry[END_REF][START_REF] Paupert | Involution and commutator length for complex hyperbolic isometries[END_REF][START_REF] Toledo | Representations of surface groups in complex hyperbolic space[END_REF]-group.

The results of this paper are part of a PhD thesis under the supervision of Antonin Guilloux and Pierre Will. We thank Arnaud Maret, Elisha Falbel and Julien Paupert for the useful discussions. We also thank the anonymous referee for his remarks and the improvements he suggested. This work is supported by the French National Research Agency in the framework of the France 2030 program (ANR-15-IDEX-0002) and by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01). [START_REF] Belkale | Eigenvalue problem and a new product in cohomology of ag varieties[END_REF] The complex hyperbolic space of dimension 2

Generalities

We start by reviewing classical notions about the complex hyperbolic space of dimension two H 2 C , highlighting the objects we will be studying next. General references are [START_REF] William | Complex hyperbolic geometry[END_REF] or [START_REF] Parker | Notes on complex hyperbolic geometry[END_REF]. Let us consider the Hermitian form of signature (2, 1) dened for any z, w in C 3 by z, w = z 1 w 1 + z 2 w 2 -z 3 w 3 . We will use the ball model for H 2 C , which is dened as the projectivization of the negative cone

V -= {z ∈ C 3 | z, z < 0}. Its boundary ∂H 2 C is the projectivization of the null cone V 0 = {z ∈ C 3 | z, z = 0}. We denote by H 2 C the union H 2 C ∪ ∂H 2
C . We say that an element of V -(respectively V + , respectively V 0 ) is of negative (respectively positive, respectively null ) type.

We will usually work in the ane chart {z 3 = 1}. This chart identies

H 2
C with the unit ball of C 2 . For an element z = (z 1 , z 2 ) in H 2 C , we shall denote by z = (z 1 , z 2 , 1) ∈ C 3 its lift to this ane chart. We say that two points are orthogonal in H 

E(α 1 , α 2 ) =   e iα 1 0 0 0 e iα 2 0 0 0 1   , with 0 ≤ α 2 ≤ α 1 < 2π.
Note that the two positive type eigenvalues may be exchanged by a conjugation in PU(2, 1), which is why we impose an order between the angles to obtain uniqueness. Clearly E(α 1 , α 2 ) is regular elliptic when 0 < α 2 < α 1 < 2π, and special elliptic otherwise. Besides, it preserves a copy of

H 2 R if and only if (α 1 , α 2 ) = (α, 2π -α) for some α ∈ [π, 2π].
Another useful tool is the Hermitian cross-ratio:

Denition 2.3. [START_REF] Koranyi | The complex cross-ratio on the Heisenberg group[END_REF] The cross-ratio of four points p 1 , p 2 , p 3 , p 4 ∈ P(C 3 ) is the quantity

X(p 1 , p 2 , p 3 , p 4 ) = p3 , p1 p4 , p2 p3 , p2 p4 , p1 . 
Clearly, X(p 1 , p 2 , p 3 , p 4 ) is well dened and PU(2, 1)-invariant.

The following classical result classies triples of points in P(C 3 ) modulo the diagonal action of PU(2, 1). See Section 2.2.5 of [START_REF] William | Complex hyperbolic geometry[END_REF].

Proposition 2.4. Let (p 1 , p 2 , p 3 ), (q 1 , q 2 , q 3 ) be triples in P(C 3 ) 3 whose lifts form two bases of C 3 . There exists an element of PU(2, 1) sending (p 1 , p 2 , p 3 ) to (q 1 , q 2 , q 3 ) if and only if there exist lifts ( p1 , p2 , p3 ), ( q1 , q2 , q3 ) ∈ (C 3 ) 3 such that

• ∀i, pi , pi = qi , qi ; • ∀i, j, | pi , pj | = | qi , qj |;
• arg( p1 , p2 p2 , p3 p3 , p1 ) = arg( q1 , q2 q2 , q3 q3 , q1 ).

Complex reections

Let us develop some notions and facts about complex lines of H 2 C that we will use later on. For more details, see Section 5.2 in [START_REF] Parker | Notes on complex hyperbolic geometry[END_REF]. Denition 2.5. We call complex line the intersection of H 2 C with P(W ), where W is a complex plane in C 3 that intersects V -. The one-dimensional subspace W ⊥ ⊂ C 3 is known as the line of polar vectors to the complex line. These vectors have positive type. We say that a polar vector c is normalized if c, c = 1.

Remark 2.6.

• A projective line in P(C 3 ) may be disjoint from H 2 C . It also has a line of polar vectors, which have negative type.

• Given two points p 1 , p 2 ∈ H 2 C , they are contained in a unique complex line, which we denote by (p 1 p 2 ).

Proposition 2.7. [START_REF] Parker | Notes on complex hyperbolic geometry[END_REF] The group PU(2, 1) acts transitively on the set of complex lines. The stabilizer of a complex line under the action of PU(2, 1) is conjugate to P(U(1, 1) × U( 1)) (compare with Theorem 2.1).

A complex line is supported by a projective line in the projective plane. We therefore have three possibilities for the relative position of two distinct complex lines: they intersect either in a point inside H 

• If C 1 and C 2 intersect inside H 2 C , the angle φ(C 1 , C 2 ) ∈ [0, π/2] between them is given by cos(φ(C 1 , C 2 )) = | c 1 , c 2 |. • If C 1 and C 2 intersect outside H 2 C , the distance l(C 1 , C 2 ) between them is given by cosh(l(C 1 , C 2 )/2) = | c 1 , c 2 |.
Proposition 2.9. Assume that p 1 , p 2 , p 3 , p 4 ∈ P(C 3 ) are pairwise non orthogonal to each other. The complex lines (p 1 p 2 ) and (p 3 p 4 ) are orthogonal if and only if we have

X(p 1 , p 2 , p 3 , p 4 ) = 1. Proof. For u, v ∈ C 3 , their box product is u v = J • u ∧ v,
where J is the matrix of the Hermitian form in the canonical basis and ∧ is the usual exterior product in C 3 . Note that u v is orthogonal to u and v for the Hermitian form •, • , and consequently u v is a vector polar to the complex line generated by u and v. We have:

p1 p2 , p3 p4 = p4 , p1 p3 , p2 -p3 , p1 p4 , p2 .
Now, the complex lines (p 1 p 2 ) and (p 3 p 4 ) are orthogonal if an only if p1 p2 , p3 p4 = 0, which is equivalent to X(p 1 , p 2 , p 3 , p 4 ) = 1.

Remark 2.10. We notice that a regular elliptic element A has three xed points in P(C 3 ): one inside H 2 C , and two outside. These last two are projections of vectors polar to the two orthogonal complex lines that are globally preserved by A, and on which it acts by rotations (see Remark 2.2). These two complex lines intersect in the xed point that is inside

H 2 C .
Denition 2.11. [START_REF] Pratoussevitch | Traces in complex hyperbolic triangle groups[END_REF] Let c ∈ P(C 3 ) and η ∈ S 1 . The complex reection R of rotation factor η in the complex line polar to c is the projectivization of the map R dened over C 3 by: Such an isometry R xes the point c and xes pointwise the projective line C polar to c. When C intersects H 2 C , we say that R is a complex reection in the line C; otherwise, we say that R is a complex reection in the point c. In both cases, the line C is called the mirror of R.

Complex reections in a line and a point have lifts that are respectively conjugate in U(2, 1) to the matrices

R(η) =   1 0 0 0 η 0 0 0 1   , S(η) =   η 0 0 0 η 0 0 0 1  
where η = e iθ = 1 is the rotation factor of the reection. The action of R(η) on H 2 C is given by (z 1 , z 2 ) → (z 1 , ηz 2 ). Similarly, the action of S(η) on H 2 C is given by (z 1 , z 2 ) → (ηz 1 , ηz 2 ): it xes the origin and acts by a rotation of angle θ on each complex line through this point.

Remark 2.12. Let A ∈ PU(2, 1) be a non-trivial isometry xing two distinct points p 1 , p 2 ∈ P(C 3 )\∂H 2 C . We assume their lifts to C 3 to be non orthogonal to each other.

• If the projective line (p 1 p 2 ) intersects H 2 C , then A is a complex reection in (p 1 p 2 ); • If the projective line (p 1 p 2 ) does not intersect H 2
C , then A is a complex reection in the point polar to (p 1 p 2 ).

Complex triangles and their reection group

We consider triangles formed by triples of complex lines (see Brehm [START_REF] Brehm | The shape invariant of triangles and trigonometry in two-point homogeneous spaces[END_REF] and Pratoussevitch [START_REF] Pratoussevitch | Traces in complex hyperbolic triangle groups[END_REF]). We use the conventions and notations of the latter. Denition 2.13. Let C 1 , C 2 , C 3 be three complex lines intersecting pairwise, with polar vectors c 1 , c 2 , c 3 . Let φ k be the complex angle between C k-1 and C k+1 , and

r k = cos(φ k ), s k = sin(φ k ). i) The triple (C 1 , C 2 , C 3 ) is called a (φ 1 , φ 2 , φ 3 )-triangle;
ii) The angular invariant of the complex triangle is the number

α = arg 3 k=1 c k-1 , c k+1 ,
which does not depend on the choices of c 1 , c 2 , c 3 .

Given φ 1 , φ 2 , φ 3 , the angular invariant describes the set of (φ 1 , φ 2 , φ 3 )triangles up to PU(2, 1).

Proposition 2.14. [START_REF] Pratoussevitch | Traces in complex hyperbolic triangle groups[END_REF] A (φ 1 , φ 2 , φ 3 )-triangle is determined uniquely up to holomorphic isometry by its angular invariant α. For α ∈ [0, 2π[, there exists a (φ 1 , φ 2 , φ 3 )-triangle with angular invariant α if and only if α belongs to the interval dened by cos(α) < δ(r 1 , r 2 , r 3 ), where

δ(r 1 , r 2 , r 3 ) = r 2 1 + r 2 2 + r 2 3 -1 2r 1 r 2 r 3 .
This result is a geometric version of Proposition 2.4, applied to the triple of polar vectors (c 1 , c 2 , c 3 ). The bound on cos(α) comes from the computation of the determinant of the corresponding Gram matrix (see Section 1.4.6 of [START_REF] William | Complex hyperbolic geometry[END_REF]). Remark 2.15. [START_REF] Pratoussevitch | Traces in complex hyperbolic triangle groups[END_REF] When α = π, the three vertices of the triangle lie in a copy of H 2 R . The corresponding reection group is then embedded in PO(2, 1), as described in the introduction. When cos(α) = δ(r 1 , r 2 , r 3 ), the three vertices of the triangle coincide.

We now give a normalization for a triple of complex reections.

Lemma 2.16. Let R 1 , R 2 , R 3 be three complex reections in the pairwise

distinct complex lines C 1 , C 2 , C 3 with normalized polar vectors c 1 , c 2 , c 3 that form a basis of C 3 , and rotation factors η 1 , η 2 , η 3 . For k ∈ {1, 2, 3}, denote r k = | c k-1 , c k+1 | and u = e iα/3
. Then, up to multiplying each c k by a complex number of modulus 1, we may assume that for each

k, c k-1 , c k+1 = r k e iα/3 . Besides, the lifts of R 1 , R 2 , R 3 in the basis (c 1 , c 2 , c 3 ) are R1 =   η 1 r 3 (η 1 -1)u r 2 (η 1 -1)u -1 0 1 0 0 0 1   , R2 =   1 0 0 r 3 (η 2 -1)u -1 η 2 r 1 (η 2 -1)u 0 0 1   , R3 =   1 0 0 0 1 0 r 2 (η 3 -1)u r 1 (η 3 -1)u -1 η 3   .
Proof. The proof follows directly from applying the formula of Denition 2.11 to c 1 , c 2 , c 3 .

Remark 2.17.

• From Denition 2.8, we see that if r k < 1, C k-1 and C k+1 are intersecting, and r k is equal to the cosine of the angle between them; if r k > 1, C k-1 and C k+1 are ultraparallel and r k is equal to the hyperbolic cosine of the half-distance between them.

• The matrix of the Hermitian form in the basis

(c 1 , c 2 , c 3 ) is H =   1 r 3 u r 2 u -1 r 3 u -1 1 r 1 u r 2 u r 1 u -1 1   .

Decomposing regular elliptics

We now describe the notion of decomposability in products of complex reections. Instead of PU(2, 1), we prove our results for its three-fold covering SU(2, 1). We denote by π : SU(2, 1) → PU(2, 1) the canonical projection.

Denition and characterization

In this section, we prove a simple characterization of decomposability.

Denition 3.1.

• Let A, B, C ∈ SU(2, 1) be regular elliptic elements with ABC = 1. We say that (A, B, C) is a decomposable triple if there exist three complex reections

R 1 , R 2 , R 3 such that A = R 1 R -1 2 , B = R 2 R -1 3 , C = R 3 R -1 1 . • If ρ is a representation of Γ = a, b, c | abc = 1 in SU(2, 1), we say that ρ is decomposable if (ρ(a), ρ(b), ρ(c)) is a decomposable triple. Remark 3.2.
• When clear from the context, we will identify a representation of Γ with the triple (A, B, C) = (ρ(a), ρ(b), ρ(c)).

• The decomposability property is invariant under global conjugation of the triple.

• Note that if (R 1 , R 2 , R 3 ) decomposes the triple (A, B, C), then so does (ωR 1 , ωR 2 , ωR 3 ), where ω is a cube root of 1. This yields three dierent decompositions in SU(2, 1); however, they become equal when we project to PU(2, 1).

p A p B p C p BA A B Figure 1: Combinatorics of the xed points p A , p B , p C , p BA .
We will describe a necessary and sucient condition for an irreducible representation to be decomposable. This condition will be expressed with a choice of preferred eigenvectors of the three regular elliptic elements. We describe this choice in the following denition. C of π(A), π(B), π(C) ∈ PU(2, 1). We say that they are in irreducible conguration when they are pairwise distinct and non orthogonal.

Remark 3.4.

• Each eigenvector of A, B, C has negative or positive type. Thus, an irreducible conguration (p A , p B , p C ) has a type ( A , B , C ) ∈ {+, -} 3 . See Section 3.2 for a geometric interpretation.

• If the triple (A, B, C) is irreducible, then for any triple ( A , B , C ) ∈ {+, -} 3 , there exists a triple (p A , p B , p C ) of type ( A , B , C ) which is in irreducible conguration. We now state our rst theorem, which gives a condition for decomposability.

Theorem 3.5. Let ρ be a representation of Γ in SU(2, 1), and let p A , p B , p C be xed points of π(A), π(B), π(C) in irreducible conguration, and such that none of p C and π(A) -1 p C lie on (p A p B ). Let λ A , λ B , λ C be the eigenvalues of A, B, C associated to lifts of p A , p B , p C . The following are equivalent:

i) The triple (A, B, C) is decomposable, and the corresponding reections

R 1 , R 2 , R 3 have respective mirrors (p A p C ), (p A p B ), (p B p C ); ii) λ A λ B λ C = 1.
Proof. The proof is rather straightforward, but we have to handle carefully lifts and projections. Let Similarly, pBA , pA = µλ A pC , pA . We now compute the Hermitian crossratio:

X(p A , p B , p C , p BA ) = pC , pA pBA , pB νλ B pBA , pB µλ A pC , pA = λ A λ B λ C .
By Proposition 2.9, we see that the projective lines (p A p B ) and (p C p BA ) are orthogonal if and only if λ A λ B λ C = 1 (see Figure 1). We now prove the Theorem. • Finally, the computations of the rst part of the proof show that

i) ⇒ ii): Since π(A)p BA = p C and A = R 1 R -1 2 , we get π(R - 1 
2 )p BA = π(R -1 1 )p C = p C . Consequently,
1 = X(p A , p B , p C , p BA ) = pA , pB pB , pC pC , pA pA , pB pB , pBA pBA , pA • | pB , pBA | 2 | pB , pC | 2 ,
which implies the third condition. 

A = R 1 R -1 2 and B = R 2 R -1 3 . Finally, C = (AB) -1 = (R 1 R -1 2 R 2 R -1 3 ) -1 = R 3 R -1
1 , which concludes the proof of this implication.

Spherical decomposable triples and Toledo invariant

The previous characterization depends on a choice of xed points p A , p B , p C . Let us describe the situation geometrically according to their position with respect to

H 2 C . 1. If p A , p B , p C are all inside H 2 C (i.e
. the triple has type (-, -, -)), then we obtain a set of complex reections whose mirrors intersect pairwise. We specify this situation by saying that (A, B, C) is a spherical decomposable triple. C , we obtain a set of complex reections whose mirrors are pairwise ultraparallel;

If

• if some mirrors do not intersect H 2 C , we obtain a decomposition that includes complex reections in points.

We specify this situation by saying that (A, B, C) is a hyperbolic decomposable triple.

If one point among p

A , p B , p C is inside H 2
C and two points are outside (i.e. the triple has type (-, +, +) up to permutation), we obtain a set of reections with two mirrors intersecting, and the third either ultraparallel to the other two or entirely outside H 2 C .

If one point among p

A , p B , p C is outside H 2
C and two points are inside (i.e. the triple has type (+, -, -) up to permutation), we obtain a set of complex reections in lines with one mirror intersecting the two others, these last two being ultraparallel.

The cases 3 and 4 are called mixed decomposable, and we regroup cases 1 and 2 under the name of pure decomposable.

We now give a characterization for spherical decomposable triples in terms of the Toledo invariant of the representation (see [START_REF] Toledo | Representations of surface groups in complex hyperbolic space[END_REF] or [START_REF] Parker | Complex hyperbolic quasi-Fuchsian groups[END_REF]). Let S be an oriented surface, and ρ : π 1 (S) → SU(2, 1) a representation. The Toledo invariant of the representation is the number

τ (ρ) = Ω f * ω (1)
where ω is the Kähler form on H 2 C , f : S → H 2 C is a ρ-equivariant smooth mapping, and Ω is a fundamental domain for the action of π 1 (S) on S. The quantity τ (ρ) does not depend on the mapping f . In our case, S will always be the three-punctured sphere, whose fundamental group is Γ dened above. Proof. We use the following classical formula for a geodesic triangle T = (p 1 , p 2 , p 3 ) in H 2 C :

1 2 T ω = arg(-p1 , p2 p2 , p3 p3 , p1 )
(see Section 7.1.4 in [START_REF] William | Complex hyperbolic geometry[END_REF]). As a consequence, computing (1) amounts to applying this formula to the oriented geodesic triangles (p A , p B , p C ) and (p A , p BA , p B ), and summing the two results (see Figure 1). This concludes the proof.

Remark 3.7. This result implies that the Toledo invariant of a spherical reducible triple is zero (see the introduction for the denition of spherical reducibility).

Proposition 3.8. An irreducible representation of Γ in SU(2, 1) is spherical decomposable if and only if its Toledo invariant is zero.

Proof. We use the notations of Theorem 3.5. Assume that p A , p B , p C ∈ H 2 C . The associated eigenvalues λ A , λ B , λ C therefore have negative type. We know by Lemma 3.6 that the Toledo invariant τ of the representation is given by τ = 2(arg(-pA , pB pB , pC pC , pA ) + arg(-pA , pBA pBA , pB pB , pA )). Now, the decomposability property guarantees the existence of a complex reection xing (p A p B ) and sending p C to p BA . Consequently, arg(-pA , pB pB , pC pC , pA ) = arg(-pA , pB pB , pBA pBA , pA ) by isometricity of the two complex triangles. Besides, we have arg(-pA , pBA pBA , pB pB , pA ) = -arg(-pA , pB pB , pBA pBA , pA ).

So τ = 0.
Conversely, if τ = 0, then X(p A , p B , p C , p BA ) = 1 (see the computation of the cross-ratio in the proof of ii) ⇒ i) of Theorem 3.5). Now, at the beginning of the proof of this same theorem, we showed that X(p A , p B , p C , p BA ) = λ A λ B λ C . Thus, we obtain λ A λ B λ C = 1 and the existence of the decomposition for this representation. 

Traces and decompositions

To construct explicit decompositions, we consider the traces of decomposable triples in SU(2, 1). Given a complex reection R ∈ SU(2, 1), we dene its rotation factor to be the rotation factor of π(R) ∈ PU(2, 1) (see Denition 2.11). Note that for any cube root of unity ω, R and ωR have the same rotation factor. Similar computations appear in [START_REF] Franco | The length of PU(2,1) relative to special elliptic isometries with xed parameter[END_REF] for other purposes.

In [START_REF] William | Complex hyperbolic geometry[END_REF], Goldman denes the following subset of C, called the deltoid (see Figure 2):

∆ = {2e iθ + e -2iθ , θ ∈ [-π, π]}.
We say that a point z ∈ C is inside ∆ if it is in the bounded component of C\∆. Theorem 6.2.4 in [START_REF] William | Complex hyperbolic geometry[END_REF] states that an element of SU(2, 1) is regular elliptic if and only if its trace is inside ∆, whereas the trace of a special elliptic element is on ∆.

A computation of the trace of a product of two complex reections leads to the following result, in the spirit of [START_REF] Pratoussevitch | Traces in complex hyperbolic triangle groups[END_REF]: Lemma 3.9. Let R 1 , R 2 be two complex reections in SU(2, 1) with rotation factors η 1 = e iθ 1 , η 2 = e iθ 2 . Then: i) If their mirrors intersect with angle φ,

Tr(R 1 R -1 2 ) = (2e i θ 2 -θ 1 3 + e -2i θ 2 -θ 1 3 ) -4 sin 2 (φ) sin(θ 1 /2) sin(θ 2 /2)e -i θ 2 -θ 1 6 ; (2) 
ii) If their mirrors are disjoint and at distance l from each other,

Tr(R 1 R -1 2 ) = (2e i θ 2 -θ 1 3 + e -2i θ 2 -θ 1 3 ) + 4 sinh 2 (l/2) sin(θ 1 /2) sin(θ 2 /2)e -i θ 2 -θ 1 6 . (3) 
Proof. This is a straightforward computation using the explicit matrices given in Lemma 2.16. Note that it is necessary to multiply these matrices by an inverse cube root of their determinant to obtain lifts in SU(2, 1).

A geometrical consequence of the previous formulas may be given using the curve ∆.

Proposition 3.10. Let R 1 , R 2 be two complex reections with rotation fac-

tors η 1 = e iθ 1 , η 2 = e iθ 2 . Then Tr(R 1 R -1
2 ) lies on the line tangent to ∆ at the point of parameter (θ 2 -θ 1 )/3.

Proof. Let us compute the tangent vector to ∆ at the point of parameter θ.

d dθ (2e iθ + e -2iθ ) = 2i(e iθ -e -2iθ ) = -4 sin(3θ/2)e -iθ/2 .
Therefore, the tangent line to ∆ at θ is the line {2e iθ +e -2iθ +te -iθ/2 , t ∈ R}.

The proposition follows from Lemma 3.9.

Remark 3.11. We notice that the two numbers -4 sin 2 (φ) sin(θ 1 /2) sin(θ 2 /2) and 4 sinh 2 (l/2) sin(θ 1 /2) sin(θ 2 /2) have opposite signs and therefore parameterize points that lie on the two dierent halves of the tangent line. Consequently, the fact that the mirrors of R 1 and R 2 intersect or not in H 2

C

imposes the half-tangent line on which this trace is.

Lemma 3.12. Any point inside ∆ is the intersection of exactly three lines tangent to ∆. Besides, the three angles parameterizing the three tangency points have sum 0.

Proof. In the proof of Proposition 3.10, we showed that the line tangent to ∆ at the point of parameter θ is {2e iθ + e -2iθ + te -iθ/2 , t ∈ R}. Note that this set is equal to {e iθ + se -iθ/2 , s ∈ R}; indeed,

2e iθ + e -2iθ + te -iθ/2 = e iθ + e -iθ/2 (2 cos(3θ/2) + t).
Let τ be a point inside ∆. Since τ is an elliptic trace, there exist λ, µ, ν ∈ C such that |λ| = |µ| = |ν| = 1 and λµν = 1 that satisfy τ = λ + µ + ν. Note that the sum of the arguments of λ, µ, ν is zero mod 2π. Therefore:

τ = λ+µ+ν = λ+(λν) 1/2 µ 1/2 +(λµ) 1/2 ν 1/2 = λ+λ 1/2 (ν 1/2 µ 1/2 +µ 1/2 ν 1/2 ).
Similarly, we obtain

τ = µ + µ 1/2 (ν 1/2 λ 1/2 + λ 1/2 ν 1/2 ), τ = ν + ν 1/2 (µ 1/2 λ 1/2 + λ 1/2 µ 1/2 ).
Consequently, τ lies on the three tangents with feet 2λ + λ2 , 2µ + μ2 , 2ν + ν2 , with the three angles parameterizing these points having sum 0.

Lemma 3.15. Let (A, B, C) ∈ SU(2, 1) 3 be a spherical decomposable triple, and λ A , λ B , λ C its negative type eigenvalues. Denote

θ A = arg(λ A ), θ B = arg(λ B ), θ C = arg(λ C ). For θ ∈ S 1 , call σ 1 (θ) = 2 cos(θ B ) + cos(2θ B ) -Re(Tr(B)) 2(cos((θ A + θ C )/2 -θ B ) -cos(θ + (θ A -θ C )/2)) cos(θ B /2) , σ 2 (θ) = 2 cos(θ C ) + cos(2θ C ) -Re(Tr(C)) 2(cos((θ B + θ A )/2 -θ C ) -cos(θ + (θ B -θ A )/2)) cos(θ C /2) , σ 3 (θ) = 2 cos(θ A ) + cos(2θ A ) -Re(Tr(A)) 2(cos((θ C + θ B )/2 -θ A ) -cos(θ + (θ C -θ B )/2)) cos(θ A /2) .
Let φ 1 , φ 2 , φ 3 , be the respective angles between the pairs of complex lines

((p A p B ), (p B p C )), ((p B p C ), (p A p C )), ((p A p C ), (p A p B )).
Then, there exists a unique θ ∈ S 1 such that

(σ 1 (θ), σ 2 (θ), σ 3 (θ)) = (sin 2 (φ 1 ), sin 2 (φ 2 ), sin 2 (φ 3 )),
and the three reections

(R 1 , R 2 , R 3 ) that decompose (A, B, C) have rotation angles (θ 1 , θ 2 , θ 3 ) = (θ -θ A + θ C , θ -θ B + θ A , θ -θ C + θ B ).
Proof. Let (θ 1 , θ 2 , θ 3 ) be the rotation angles of (R 1 , R 2 , R 3 ). Using Remark 3.14, we obtain

λ A = e i θ 2 -θ 1 3 , λ B = e i θ 3 -θ 2 3 , λ C = e i θ 1 -θ 3 3
. Therefore, we have

θ 2 -θ 1 3 ≡ θ A [2π], θ 3 -θ 2 3 ≡ θ B [2π], θ 1 -θ 3 3 ≡ θ C [2π].
We dene

θ = θ 1 + θ 2 + θ 3 3 .
Therefore, the three angles are expressed in terms of θ as

θ 1 ≡ θ-θ A +θ C [2π], θ 2 ≡ θ -θ B +θ A [2π], θ 3 ≡ θ -θ C +θ B [2π].
Notice that changing θ i in θ i +2π amounts to changing R i in ωR i . Now, this change should be made on the three reections at once in order to preserve the decomposition. This yields the same projective decomposition (see Remark 3.2), so we may assume without loss of information that the congruences above are in fact equalities. We obtain

Tr(A) = (2e iθ A + e -2iθ A ) -4 sin 2 (φ 3 ) sin((θ -θ A + θ C )/2) sin((θ -θ B + θ A )/2)e -i θ A 2 .
Taking the real part on both sides and solving in sin 2 (φ 3 ) gives sin 2 (φ 3 ) = σ 3 (θ). Writing the analogous formulas for the traces of B and C, then taking the real part in these equations, leads to sin 2 (φ 1 ) = σ 1 (θ), sin 2 (φ 2 ) = σ 2 (θ). Note that we could have taken the imaginary parts: this yields the same relations. The proof is now complete.

We now describe the range of the rotation angles θ 1 , θ 2 , θ 3 of R 1 , R 2 , R 3 under the assumption that the conjugacy classes of A, B, C are xed. Proposition 3.16. Let C 1 , C 2 , C 3 be the conjugacy classes of a spherical decomposable triple in SU(2, 1), and θ A , θ B , θ C the arguments of the three negative type eigenvalues. Let

D C 1 ,C 2 ,C 3 = {θ ∈ S 1 | σ 1 (θ), σ 2 (θ), σ 3 (θ) ∈]0, 1]},
where σ 1 (θ), σ 2 (θ), σ 3 (θ) are as in Lemma 3.15.

Then for any spherical decomposable triple

(A, B, C) ∈ C 1 × C 2 × C 3 , there exists a unique θ ∈ D C 1 ,C 2 ,C 3 such
that the rotation angles of the decomposition are

(θ 1 , θ 2 , θ 3 ) = (θ -θ A + θ C , θ -θ B + θ A , θ -θ C + θ B ).
Conversely, for every θ ∈ D C 1 ,C 2 ,C 3 , there exists a (non-unique) decomposable triple (A, B, C) ∈ C 1 ×C 2 ×C 3 whose triple of rotation angles is the one above.

Remark 3.17. The condition σ i (θ) ∈]0, 1] comes from the fact that the quantities σ i (θ) actually represent the square sines of the angles between complex lines of the decomposition. The bound 0 is excluded because it corresponds to two complex lines being equal to each other.

Proof. The rst part follows from applying Lemma 3.15 to every decomposable triple in C 1 × C 2 × C 3 . For the converse assertion, let θ ∈ D C 1 ,C 2 ,C 3 be xed. Let (R 1 , R 2 , R 3 ) be a triple of complex reections with rotation angles (θ 1 , θ 2 , θ 3 ) = (θ -θ A + θ C , θ -θ B + θ A , θ -θ C + θ B ), and with angles between their mirrors satisfying (sin 2 (φ 1 ), sin 2 (φ 2 ), sin 2 (φ 3 )) = (σ 1 (θ), σ 2 (θ), σ 3 (θ)).

Then, the triple

(R 1 R -1 2 , R 2 R -1 3 , R 3 R - 1 
1
) is decomposable and belongs to C 1 ×C 2 ×C 3 by construction (the three traces, together with the three eigenvalues of negative type, dene elements belonging to the three classes C 1 , C 2 , C 3 ). This triple is non unique because the angular invariant α of the triangle remains undetermined, and may therefore take values in an interval. This concludes the proof.

We now rephrase and complete Proposition 3.16. We recall that given a decomposition, the number α is the angular invariant of the associated complex triangle. It belongs for each θ ∈ D C 1 ,C 2 ,C 3 to the interval

I(θ) = {α ∈ S 1 | cos(α) < δ(θ)},
where we have shortened the notation δ(r 1 (θ), r 2 (θ), r 3 (θ)) of Proposition 2.14 into δ(θ). 

S C 1 ,C 2 ,C 3 = {(θ, α) ∈ S 1 × S 1 | θ ∈ D C 1 ,C 2 ,C 3 , α ∈ I(θ)}.
Proof. First of all, one can check that the domain D C 1 ,C 2 ,C 3 is the intersection of three intervals by using the formulas of σ 1 (θ), σ 2 (θ), σ 3 (θ) and solving in θ. This implies that D C 1 ,C 2 ,C 3 is an interval. Thus, the set

S C 1 ,C 2 ,C 3 is indeed a disk.
Start with a spherical decomposable triple (A, B, C). We have a continuous map sending (A, B, C) to the triple of xed points (p A , p B , p C ) ∈ (H 2 C ) 3 . This triple and Theorem 3.5 give us continuously a unique triangle of complex lines, together with a decomposition, and thereby a pair (θ, α) ∈ S C 1 ,C 2 ,C 3 (see Proposition 3.16).

Conversely, let (θ, α) ∈ S C 1 ,C 2 ,C 3 . Then θ with Proposition 3.16 yields continuously a unique triple of angles between complex lines. Next, the value of α gives a unique (class of) triangle(s) of complex lines realizing the decomposition of a triple in

C 1 × C 2 × C 3 . Remark 3.19. The boundary of S C 1 ,C 2 ,C 3 , i.e. the circle {(θ, α) ∈ S 1 × S 1 | cos(α) = δ(θ)},
is entirely composed of reducible representations (they are decomposable with the three mirrors intersecting in a unique point). We will see later on (Lemma 4.3) that these reducible representations are in fact all conjugate.

Character varieties and parameterizations

In this section, we relate the decomposability property to the character variety of F 2 in SU(2, 1). We refer to [START_REF] Lubotzky | Varieties of representations of nitely generated groups[END_REF] for general information. See also [START_REF] Acosta | Character varieties for real forms[END_REF] for the specic case of SU(2, 1).

Reducible component of the relative character variety

Let Γ be a nitely generated group. Recall that the SL n (C)-character variety of Γ is the algebraic quotient

χ SLn(C) (Γ) = Hom(Γ, SL n (C))// SL n (C),
where the quotient is with respect to the action by conjugation of SL n (C) on Hom(Γ, SL n (C)). We dene the SU(2, 1)-character variety of F 2 as the subset of χ SL 3 (C) (F 2 ) given by:

χ SU(2,1) (F 2 ) := {χ ∈ χ SL 3 (C) (F 2 ) | ∃ρ ∈ Hom(F 2 , SU(2, 1)), χ = χ ρ }.
The following result can be found in [START_REF] Will | Traces, cross-ratios and 2-generator subgroups of SU(2,1)[END_REF] or [START_REF] Parker | Traces in complex hyperbolic geometry[END_REF]. It also follows from [START_REF] Lawton | Generators, relations and symmetries in pairs of 3 × 3 unimodular matrices[END_REF]. The following result follows from Proposition 7.8 and Lemma 8.2 in [START_REF] Burger | Surface group representations with maximal Toledo invariant[END_REF], where the Toledo invariant of a representation is interpreted in terms of rotation numbers. 

Decomposability of the spherical reducible component

We rst establish that the character of a spherical decomposable representation lies in χ sr C 1 ,C Then, if χ sr C 1 ,C 2 ,C 3 is non empty, the two following situations may occur: 

• If χ sr C 1 ,C

Triangle groups

We now describe how to obtain parameterizations of components of character varieties for (p, q, r)-groups. We recall that a (p, q, r)-group is dened for p, q, r ∈ N such that 1/p + 1/q + 1/r < 1 by

Γ (2) p,q,r = a, b, c | a p = b q = c r = abc = 1 .
An elliptic conjugacy class of order p in SU(2, 1) (i.e. all its elements have order p) is given by a choice of two p-roots of 1. Since these roots are nite in number, there is a nite number of elliptic conjugacy classes of order p. • We call R-Fuchsian component of χ(Γ (2) p,q,r ) the relative component with respect to the three SU(2, 1)-conjugacy classes C(p), C(q), C(r).

The R-Fuchsian component of χ(Γ (2) p,q,r ) is always non-empty, since it contains the R-Fuchsian representation (i.e. the embedding Γ (2) p,q,r → PO(2, 1) ⊂ PU(2, 1)). It also contains representations decomposable in products of reections of order 2 (representations of Γ p,q,r as described in the introduction). The results of this paper have the following consequence: Theorem 5.2. The R-Fuchsian component of χ(Γ (2) p,q,r ) is entirely composed of spherical decomposable representations. Besides, it is compact, homeomorphic to a sphere and contains a unique reducible point. can write Tr(A -1 B) as a function of α, θ, and see that the level sets of θ are indeed segments. Moving along a level segment of θ corresponds exactly to operating the deformation described in the proof of Lemma 4.6. 

An exotic component

We conclude this paper by giving the parameterization of a non-R-Fuchsian component of the character variety of the [START_REF] Parker | Traces in complex hyperbolic geometry[END_REF][START_REF] Paupert | Involution and commutator length for complex hyperbolic isometries[END_REF][START_REF] Toledo | Representations of surface groups in complex hyperbolic space[END_REF]-group, that is, a component containing no R-Fuchsian representation. Proof. First, we notice that the product of the three eigenvalues of negative type is equal to 1. This means that a decomposition may exist according to Theorem 3.5. Thanks to the method of Proposition 3.16, we construct explicitely a two-dimensional family of irreducible spherical decomposable representations with respect to these three conjugacy classes.

Assume rst that χ sr C 1 ,C 2 ,C 3 is non-empty, and contains decomposable triples. Let R 1 , R 2 , R 3 be three complex reections, whose rotation angles are θ 1 , θ 2 , θ 3 , such that (R 1 R -1 get D C 1 ,C 2 ,C 3 =]2π/15, 19π/30[ and (θ 1 , θ 2 , θ 3 ) = (θ + 13π/15, θ + 11π/30, θ -37π/30) for θ ∈ D C 1 ,C 2 ,C 3 . Then for each θ, we let α vary in the interval I(θ) of Theorem 3.18, and we verify that the reection group associated to these parameters (as constructed in Lemma 2.16) gives indeed rise to a representation in χ C 1 ,C 2 ,C 3 . Since the products

R 1 R -1 2 , R 2 R -1 3 , R 3 R -1
1 have the correct traces and negative type eigenvalues, we have proven that this component of

χ(Γ (2)
12,15,20 ) contains irreducible spherical decomposable representations. To conclude, using Theorem 4.7, this relative component of χ(Γ (2) 12,15,20 ) is composed of a unique spherical reducible representation, and a two dimensional family of irreducible spherical decomposable representations.

Just like in Section 5.1, we illustrate our parameterization of this component by drawing the values of Tr(A -1 B), for xed values of α (Figure 6) and xed values of θ (Figure 7). 
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 33 Let ρ be a representation of Γ in SU(2, 1), with A = ρ(a), B = ρ(b), C = ρ(c) regular elliptic elements. Take three xed points p A , p B , p C ∈ P(C 3 )\∂H 2

  p BA = π(A) -1 p C . The point p BA denes a xed point of π(BA). We start by computing the cross-ratio X(p A , p B , p C , p BA ) (see Denition 2.3). Note rst that since π(A)p BA = p C and π(B)p C = p BA , there exist complex numbers µ, ν such that Ap BA = µp C and B pC = ν pBA . On the other hand, C = (AB) -1 , and thus AB pC = λ -1 C pC . As a consequence, λ C = λ -1 C = µν. We therefore have pC , pB = B pC , B pB = νλ B pBA , pB .

  R 2 is a complex reection that xes the complex line (p A p B ) pointwise, and globally preserves the line (p C p BA ): these two lines are therefore orthogonal to each other, and thusλ A λ B λ C = 1.ii) ⇒ i): Since p C , p BA / ∈ (p A p B ), (p A , pB , pC ) and (p A , pB , pBA ) form two bases of C 3 and we may use Proposition 2.4 to show that there exists a unique isometry sending (p A , p B , p C ) to (p A , p B , p BA ). Up to scaling the lift pBA , we may assume |µ| = 1, which implies in turn |ν| = 1.• We obtain pC , pC = pBA , pBA : this is the rst condition of Proposition 2.4. • We also get | pB , pC | = | pB , pBA | and | pC , pA | = | pBA , pA |: this is the second condition.

Lemma 3 . 6 .

 36 Let ρ : Γ → SU(2, 1) be a representation with A, B, C regular elliptic. Let p A , p B , p C ∈ H 2 C be the xed points of A, B, C. Then, τ (ρ) 2 = arg(-pA , pB pB , pC pC , pA )+arg(-pA , pBA pBA , pB pB , pA ).
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 2 Figure 2: The deltoid ∆.

Theorem 3 .

 3 18. Let C 1 , C 2 , C 3 be elliptic conjugacy classes in SU(2, 1). We have a homeomorphism between the set of irreducible spherical decomposable representations in C 1 × C 2 × C 3 up to global conjugation and the open disk

Theorem 4 . 1 .

 41 A pair (A, B) ∈ SU(2, 1) 2 is uniquely determined up to diagonal conjugation by the following traces: Tr(A), Tr(B), Tr(AB), Tr(A -1 B), Tr([A, B]). Besides, Tr([A, B]) is a root of a real degree 2 polynomial whose coecients are polynomials in the rst four traces.
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 44 We call the connected component of χ C 1 ,C 2 ,C 3 containing the unique spherical (respectively hyperbolic) representation the spherical (respectively hyperbolic) reducible component of χ C 1 ,C 2 ,C 3 . We denote it χ srC 1 ,C 2 ,C 3 (respectively χ hr C 1 ,C 2 ,C3 ). Note that the reducible component may contain irreducible representations as well.
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 45 Let C 1 , C 2 , C 3 be three regular elliptic conjugacy classes. The Toledo invariant is constant over the connected components of χ C 1 ,C 2 ,C 3 .

5. 1

 1 The R-Fuchsian component Denition 5.1.• For p ∈ N, we call C(p) the SU(2, 1)-conjugacy class represented by the matrix

Figure 4 :

 4 Figure 4: Values of Tr(A -1 B) along the level curves of α.
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 5 Figure 5: Values of Tr(A -1 B) along the level curves of θ.

Proposition 5 . 6 .

 56 Consider the three SU(2, 1)-conjugacy classes C 1 , C 2 , C 3 respectively represented by the matrices Then χ sr C 1 ,C 2 ,C 3 is non-empty and equal to a connected component of the character variety χ(Γ (2) 12,15,20 ). Besides, it is compact, homeomorphic to a sphere and contains a unique reducible point. It is parameterized by (α, θ) ∈ S C 1 ,C 2 ,C 3 with D C 1 ,C 2 ,C 3 =]2π/15, 19π/30[.

Remark 5 . 7 .

 57 Relative components containing hyperbolic decomposable representations are more complicated, because the decompositions may include complex reections in points.
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 6 Figure 6: Values of Tr(A -1 B) along the level curves of α.

Figure 7 :

 7 Figure 7: Values of Tr(A -1 B) along the level curves of θ.

  

  So according to Proposition 2.4, there exists a unique isometry sending (p A , p B , p C ) to (p A , p B , p BA ). In particular, it xes p A and p B . Using Remark 2.12, we obtain that this isometry is a complex reection R 2 in (p A p B ) such that π(R 2 )p C = p BA . In particular, π(AR 2 ) xes p A . Then, since π(A)p BA = p C , π(AR 2 ) xes p C . Using Remark 2.12 again, we see that AR BA , so R -1 2 B xes p B and p C . As before, it is a complex reection in (p B p C ), and we denote it by R -13 . By construction we have

2 is a complex reection in (p

A p C ); we call it R 1 . Since π(A)p BA = p C , we have π(B)p C = p

  p A , p B , p C are all outside H 2

C (i.e. the triple has type (+, +, +)), then:

• if all the mirrors intersect H 2

  × C 2 × C 3 . Then, the character of ρ belongs toχ sr C 1 ,C 2 ,C 3 .Proof. This is a direct consequence of Theorem 3.18. Indeed, since C 1 , C 2 , C 3 are xed, our representation ρ corresponds to the data of (θ, α) in S C 1 ,C 2 ,C 3 . Now, recall that S C 1 ,C 2 ,C 3 is a disk, whose boundary is a circle composed of spherical reducible representations which are all conjugate (Remark 3.19 and Lemma 4.3). This implies that ρ may be deformed continuously into a spherical reducible representation, and thereby that the character of ρ belongs to χ sr C 1 ,C 2 ,C 3 . We now describe precisely the spherical reducible component χ sr C 1 ,C 2 ,C 3 . Theorem 4.7. Let C 1 , C 2 , C 3 be xed elliptic conjugacy classes in SU(2, 1).

2 ,C 3 . Lemma 4.6. Let C 1 , C 2 , C 3 be xed elliptic conjugacy classes in SU(2, 1). Let ρ : F 2 → SU(2, 1) be an irreducible spherical decomposable representation, with (ρ(a), ρ(b), ρ(ab) -1 ) ∈ C 1

  2 ,C 3 does not contain an irreducible representation, then it is equal to a point; If χ sr C 1 ,C 2 ,C 3 contains an irreducible representation, then it is a compact component of χ C 1 ,C 2 ,C 3 homeomorphic to a sphere which only contains decomposable representations. Proof. The rst point is a rephrasing of Lemma 4.3. For the second point, let (A, B, C) ∈ χ sr C 1 ,C 2 ,C 3 be an irreducible triple. Let us show that (A, B, C) is decomposable. By Remark 3.7, we know that the Toledo invariant of the spherical reducible representation belonging to the component is zero. Now, Proposition 4.5 states that the Toledo invariant is constant over each connected component of the relative character variety, and thereby over χ sr C 1 ,C 2 ,C 3 . Thus, we obtain that (A, B, C) has null Toledo invariant, so is decomposable by Proposition 3.8. Moreover, χ sr C 1 ,C 2 ,C 3 is homeomorphic to the closure of the disk S C 1 ,C 2 ,C 3 of Theorem 3.18, whose boundary is contracted into a point. Indeed, we know by Remark 3.19 that this boundary is entirely composed of reducible representations; since they are all conjugate by Lemma 4.3, their characters are all identied in χ sr C 1 ,C 2 ,C 3 . Therefore, χ sr C 1 ,C 2 ,C 3 is a sphere; in particular, it is compact. Note (Remark 3.19) that the reducible representation is decomposable as well.

•

R(z) = z + (η -1) z, c c, c c.

, R 2 R -1

, R 3 R -1 1 ) ∈ C 1 × C 2 × C 3 .We use Proposition 3.16 to obtain the range of the parameters of this reection group: we

2 ), then there are exactly three lines through it that are tangent to ∆, so three possible values for (θ 2 -θ 1 )/3, see Figure 3. We now interpret this result in terms of conjugacy classes in SU(2, 1). Corollary 3.13. Let A ∈ SU(2, 1) be a regular elliptic element, and λ -its eigenvalue of negative type. Then, Tr(A) lies on a tangent line to ∆ whose foot is the point 2λ -+ λ -2 -.

Proof. Assume, up to conjugation in SU(2, 1), that A xes the origin. There exist two complex reections R 1 , R 2 with rotation factors η 1 = e iθ 1 , η 2 = e iθ 2 such that A = R 1 R -1 2 (their mirrors are the two stable complex lines of A). Consequently, we have λ -= e i θ 2 -θ 1

3

. We conclude thanks to the formula in Lemma 3.9 and Proposition 3.10. Remark 3.14.

• We showed that if

• The trace T of an element in SU(2, 1) is enough to compute its eigenvalues; however, determining its conjugacy class amounts to choosing which one is of negative type. Consider the three tangent lines meeting in T . Corollary 3.13 tells us that choosing the conjugacy class is equivalent to choosing one tangent line among the three.

Parameterization of the set of spherical decomposable triples

We can now describe more precisely the triples (R 1 , R 2 , R 3 ) that decompose a given spherical decomposable triple (A, B, C).

Consequently, when Tr(A), Tr(B), Tr(AB) are xed, the complex number Tr(A -1 B) parameterizes two possible pairs in SU(2, 1) 2 : one corresponding to the value of Tr([A, B]), and thereby to the pair (A, B), the other to Tr([A, B]), and thereby to the pair

In [START_REF] Paupert | Elliptic triangle groups in P U (2, 1), Lagrangian triples and momentum maps[END_REF], the set of triples of elliptic conjugacy classes C 1 , C 2 , C 3 for which χ C 1 ,C 2 ,C 3 contains a reducible representation is completely described. The following result shows that χ C 1 ,C 2 ,C 3 contains at most one character of a spherical (respectively hyperbolic) reducible representation. We recall that the notions of spherical and hyperbolic reducibility are dened in the introduction.

Lemma 4.3. Let C 1 , C 2 , C 3 be three regular elliptic conjugacy classes. Let

Proof. Let us deal with the spherical reducible case. We may assume that A 1 , B 1 , A 2 , B 2 are in block diagonal form:

It follows that

It is a classical fact that this implies that the pairs (A 1 , B 1 ) and (A 2 , B 2 ) are conjugate in SL 2 (C). Now, this in turn implies that they are conjugate in SU(2) (see for example Lemma 3.6 in [START_REF] Acosta | Character varieties for real forms[END_REF]). As a consequence, the pairs (A 1 , B 1 ) and (A 2 , B 2 ) are conjugate in SU(2, 1).

The proof of the hyperbolic reducible case is similar.

Proposition 5.3. Let m = min(p, q, r). Then

Proof. By Theorem 5.2, any triple (A, B, C) ∈ C(p) × C(q) × C(r) is spherical decomposable. Let θ 1 , θ 2 , θ 3 be the angles of the complex reections realizing a decomposition. The three eigenvalues of negative type are equal to 1, so by Proposition 3.16, we have

Since Tr(A) = 1 + 2 cos(2π/p), Tr(B) = 1 + 2 cos(2π/q), Tr(C) = 1 + 2 cos(2π/r), the formulas of Lemma 3.15 yield

Therefore if m = min(p, q, r), then again by Proposition 3.16, D C(p),C(q),C(r) = ]2π/m, 2π -2π/m[. This concludes the proof.

Remark 5.4. Any representation in this component can be obtained as a deformation of a representation decomposable in products of reections of order 2. Indeed, such a representation corresponds to θ = π, and α xed. So any representation corresponding to the same α is obtained by deforming θ.

As an example, let us consider the R-Fuchsian component for the (3, 3, 4)group. The proof is a straightforward application of Theorem 5.2 and Proposition 5.3.

Corollary 5.5. The R-Fuchsian component of χ(Γ (2) 3,3,4 ) is entirely composed of spherical decomposable representations. Besides, it is compact, homeomorphic to a sphere and contains a unique reducible point. It is parameterized by 4 and5 is the set of possible values of Tr(A -1 B) for representations in the R-Fuchsian component of χ(Γ (2) 3,3,4 ). This trace is computed using the explicit formulas for a reection group given in Lemma 2.16. These pictures illustrate the parameterization of this component by the pair (α, θ). We obtain the curves in Figure 4 by xing α, and those in Figure 5 by xing θ. Recall that each value of Tr(A -1 B) corresponds to two distinct representations (see Theorem 4.1). The unique reducible point of this component is the one that appears as a singular point on the curve. The horizontal axis corresponds to θ = π, i.e. to decompositions in products of involutions. Using the matrices of Lemma 2.16, one

The region depicted in Figures