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Abstract: Starting from the Fermat principle, we provide a detailed derivation of the generalized
laws of refraction and reflection for a geometry realizing a metasurface. We first solve the
Euler-Lagrange equations for a light ray propagating across the metasurface. The ray-path
equation is found analytically and the results are supported by numerical calculations. We
get generalized laws of refraction and reflection whose main features are: (i) they are relevant
in gradient-index optics and in geometrical optics, (ii) a collection of rays emerge from the
metasurface as a result of multiple reflections inside the metasurface, (iii) while deriving from
Fermat’s principle, they differ from the previously published results.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

  

y

x

0

x

y

a) b)

Fig. 1. a) Schematics of a metasurface (dashed yellow line) separating two media with
refractive indices 𝑛1 and 𝑛2. The incident light ray (plain red line) makes an angle \1
with the normal to the interface. The refracted ray (dashed red line) makes an angle
\2 with the normal to the interface. The reflected ray (dashed magneta line) makes an
angle \𝑟 with the normal to the interface. b) Geometry of the metasurface considered
in this article. The metasurface is the central layer (yellow) with refractive index 𝑛(𝑥).
Its width is Y. The dashed blue line is the ray trajectory inside the metasurface. The
angle between the ray trajectory and the normal to the interface at position 𝑦 = 0 is
\ (0) = \̄1 and at position 𝑦 = Y is \ (Y) = \̄2. Other quantities are defined in a).

Metasurfaces were introduced in optics in reference [1] as optical devices enabling a control of
light in terms of propagation [1, 2], phase [3] or polarisation [4]. The originality of metasurfaces
over conventional materials or conventional optical devices is their thickness that is small as
compared to the wavelength of light in vacuum. As a consequence, metasurfaces are thought of
as just an interface acting on the incident light. Fig.(1-a) represents a metasurface (dashed yellow
line) with an incident ray of light making the angle \1 with the normal to the interface between
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two materials of refractive index 𝑛1 and 𝑛2. Light can be reflected with the angle \𝑟 or refracted
with the angle \2. The action of the metasurface on the light trajectory is described by a function
𝜙(𝑥) called the phase shift [1]. A precise definition of this quantity is made in ref [5] in the
specific situation where the metasurface is realized by diffractive objects. A noteworthy property
of metasurfaces is that they lead to a generalization of the Snell-Descartes laws of refraction and
reflection [1,6]. The generalized Snell-Descartes laws for metasurfaces proposed in [1,6] read as:

𝑛1 sin \𝑟 − 𝑛1 sin \1 =
1
𝑘0

𝑑

𝑑𝑥
𝜙(𝑥) (1)

𝑛2 sin \2 − 𝑛1 sin \1 =
1
𝑘0

𝑑

𝑑𝑥
𝜙(𝑥) (2)

Where \1 is the angle of incidence, \2 is the angle of refraction and \𝑟 is the angle of reflection.
𝑘0 = 2𝜋/_ is the wavenumber in vacuum, _ being the wavelength of light in vacuum. We restrict
the discussion to metasurfaces invariant in one direction. Then the discussion can be limited to
the description of light trajectories in the plane of incidence. The 3D version of the generalized
Snell-Descartes laws can be found in [6]. It is worth noting that the action of a metasurface on
light propagation is described by a macroscopic quantity 𝜙(𝑥) similarly to a refractive index
that describes the propagation of light in a bulk medium. Metasurfaces can be considered as
two-dimensional counter-parts of metamaterials [7].

Ref. [1] claims to derive the generalized Snell-Descartes laws from Fermat’s principle. The
authors also claimed an experimental proof of these laws in the mid-infrared while ref [2] claimed
an experimental verification in the near-infrared. In both cases, the studied samples were made
by diffractive nanostructures. As a consequence, the physical principle at the heart of their
experimental studies does not rely on geometrical optics but on diffraction, a phenomenon that is
not captured by Fermat’s principle. In a previous article [5], we found that a phenomenological
model describing their samples does not lead to eq.(1,2). Furthermore, we found that if the
phase shift 𝜙(𝑥) is designed to be periodic, as this is the case in [1, 2], then the light distribution
is given by the grating equation. This last conclusion was strengthened in ref. [8] where a
similar conclusion was reached based on the principles of Fourier optics. This reference even
recommends avoiding the terminology "generalized Snell-Descartes Laws" when metasurfaces
of diffractive nature are considered. Consequently, our goal is not to model metasurfaces made
by diffractive nanostructures. We rather want to decide wether or not the set of equations (1,2)
can be derived from Fermat’s principle as it was stated in [1]. We think that such a proof is
necessary since the belief that eq.(1,2) derive from Fermat’s principle is widespread in the
literature [4, 9–14].

The Fermat’s principle states that the path followed by a light-ray is the one for which the
optical path length, also called action S, is extremal [15]. Assuming cartesian coordinates, the
optical path-length S is given by [16]:

S[𝑥(𝑦)] =
∫ 𝑦 𝑓

𝑦𝑖

𝑛𝑡 (𝑥, 𝑦)

√︄
1 +

[ 𝑑
𝑑𝑦

𝑥(𝑦)
]2
𝑑𝑦 (3)

Where (𝑦𝑖 , 𝑥(𝑦𝑖)) [resp. (𝑦 𝑓 , 𝑥(𝑦 𝑓 )] is the initial [resp. final] position of the light ray. 𝑛𝑡 (𝑥, 𝑦)
is a position-dependent index of refraction. The Fermat principle applies to any medium 𝑛𝑡 (𝑥, 𝑦)
but describes light propagation in the ray-optics approximation. As a consequence, it does
not describe diffraction effects. Metasurfaces made by diffractive elements were considered in
ref. [5], where it was shown that a model based on the Fraunhofer approximation does not lead to
eq.(1-2). So it is worth asking if indeed eq.(1-2) can emerge from a model based on the Fermat
principle only. In the present article, we consider such a model consistent with the assumptions
of geometrical optics:



• The metasurface is made by a material with a refractive index 𝑛(𝑥), varying smoothly
along the axis 𝑥 on a scale larger than the wavelength of the incident light.

• It is surrounded by two homogeneous and isotropic media with refractive index 𝑛1 and 𝑛2.

• The metasurface width is Y. At the end of the calculations, we make the thickness tends
towards zero Y → 0.

The corresponding metasurface is depicted in Fig.(1-b). The physics of this model is captured by
the action 𝑆 [eq.(3)] and the Fermat principle. We show in the following that it does not lead to
the generalized Snell-Descartes laws [eq.(1-2)] found by [1, 6].

2. Ray trajectories in a metasurface

In this section we solve the equation describing the propagation of light rays in a medium with a
refractive index 𝑛𝑡 (𝑥, 𝑦). The rays are parametrized by the quantity 𝑦. The dynamical variables
are the ray-coordinate 𝑥(𝑦) and its derivative 𝑥′ (𝑦) = 𝑑𝑥(𝑦)/𝑑𝑦. A ray trajectory in the plane of
incidence is the set of points (𝑦, 𝑥(𝑦)) satisfying the equation of motion eq.(4) derived from the
Fermat principle. Indeed the Fermat principle 𝛿S[𝑥(𝑦)] = 0 leads to the following equation of
motion [16, p.14] (Euler-Lagrange equation):

1√︁
1 + 𝑥′ (𝑦)2

𝑑

𝑑𝑦
[𝑛𝑡 (𝑥, 𝑦)

𝑥′ (𝑦)√︁
1 + 𝑥′ (𝑦)2

] = 𝜕

𝜕𝑥
𝑛𝑡 (𝑥, 𝑦) (4)

𝑥(0) = 𝑥1 (5)
𝑥′ (0) = tan \̄1 (6)

The eq.(5-6) are the initial conditions at 𝑦 = 0, the eq.(6) comes from the definition of the
angle \ (𝑦) such as tan \ (𝑦) = 𝑑𝑥(𝑦)/𝑑𝑦. This is the angle between the ray trajectory at position
(y,x(y)) and the horizontal axis.

First we consider a simple diopter separating two media with isotropic and homogeneous
refractive indexes 𝑛1 and 𝑛2, respectively. The refractive index 𝑛𝑡 (𝑥, 𝑦) describing this geometry
reads:

𝑛𝑡 (𝑥, 𝑦) =

������ 𝑛1 ∀𝑦 < 0

𝑛2 ∀𝑦 > 0
(7)

The resulting equations of motions are the (usual) laws of refraction and reflection [17]:

\𝑟 = \1 (8)
𝑛2 sin \2 = 𝑛1 sin \1. (9)

We now consider the metasurface geometry depicted in Fig.(1-b) with a refractive index
𝑛𝑡 (𝑥, 𝑦) that reads:

𝑛𝑡 (𝑥, 𝑦) =

���������
𝑛1 ∀𝑦 < 0

𝑛(𝑥) 𝑦 ∈ [0, Y]

𝑛2 ∀𝑦 > Y

(10)



The metasurface starts at position 𝑦 = 0 and ends at position 𝑦 = Y. It is bracketed by two
uniform and homogeneous media with refractive indexes 𝑛1 and 𝑛2 respectively.

Assuming that 𝜕𝑦𝑛𝑡 (𝑥, 𝑦) = 0 inside the metasurface, we get the equation of motion for
𝑦 ∈ [0, Y]:

𝑥′′ (𝑦) = 1
𝑛(𝑥) 𝜕𝑥𝑛(𝑥)

[
1 + 𝑥′ (𝑦)2] (11)

The notations 𝜕𝑥 = 𝜕/𝜕𝑥 and 𝜕𝑦 = 𝜕/𝜕𝑦 are used as shorthand. The equation of motion
eq.(11) is exact. No approximation was performed in obtaining it. In the limit Y → 0, for
𝑦 ∈ [0, Y], the following equations

𝑥′ (𝑦) ≃ 𝜕𝑥{ln 𝑛[𝑥(𝑦)]}
���
𝑦=0

𝑦 + tan \̄1 (12)

𝑥(𝑦) ≃ 1
2
𝜕𝑥{ln 𝑛[𝑥(𝑦)]}

���
𝑦=0

𝑦2 + 𝑦 tan \̄1 + 𝑥1 (13)

are approximate solutions of the equation (11) with the appropriate boundary conditions
[eq.(5-6)]. See Supplement 1 for calculations details. Note that, in order to derive these solutions,
the paraxial approximation is not assumed. Consequently, equations eq.(12-13) are valid for any
initial angles \̄1. Furthermore, it is not assumed that 𝑛(𝑥) − 1 is a small quantity, only the first
and second derivatives of 𝑛(𝑥) should remain finite, | |𝜕𝑥𝑛(𝑥) | |∞ < ∞ and | |𝜕2

𝑥𝑛(𝑥) | |∞ < ∞.
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Fig. 2. Propagation of light rays inside a metasurface. a) Three light-rays impinging
the metasurface with the same angle of incidence. The refractive index varies linearly,
i.e. ( �̄�Y)𝑛(𝑥) = 1 + 𝜑1𝑥. The dashed black lines are the analytical results given by the
eq.(13). b) Profile of the refractive index 𝑛𝑡 (𝑥, 0) along the line 𝑦 = 0 in case a). c)
Profile of the refractive index 𝑛𝑡 (0, 𝑦) along the line 𝑥 = 0 in case a). d) Three light-rays
impinging on the metasurface with the same angle of incidence. The refractive index
varies quadratically, i.e. ( �̄�Y)𝑛(𝑥) = 1+ 𝜑2𝑥

2. The dashed black lines are the analytical
results given by the eq.(13). e) Profile of the refractive index 𝑛𝑡 (𝑥, 0) along the line
𝑦 = 0 in case d). f) Profile of the refractive index 𝑛𝑡 (0, 𝑦) along the line 𝑥 = 0 in case
d).The numerical calculations are made by assuming 𝑛1 = 𝑛2 = 1.

These solutions are compared with a numerical integration of eq.(4) for two different refractive
index profiles. In Figures (2-a) and (2-d), the ray trajectories are shown for three different
positions of impact on the metasurface (three different values of 𝑥1). The angle of incidence \1 is



the same for the three rays. Fig.(2-a) considers a metasurface with a refractive index that varies
linearly with the coordinate 𝑥, i.e. ( �̄�Y)𝑛(𝑥) = 1 + 𝜑1𝑥 with 𝜑1 = −0.4 in the numerical example
[the quantity �̄� is defined by the eq.(18)]. On the other hand, the Fig.(2-d) considers a metasurface
with a refractive index that varies quadraticaly with the coordinate 𝑥, i.e. ( �̄�Y)𝑛(𝑥) = 1 + 𝜑2𝑥

2

with 𝜑2 = −0.2 in the numerical example. In order to find the ray trajectories, we have solved
numerically the equation of motion eq.(4). The equation (4) is form-invariant by the scale
transformation {𝑥 → Y𝑥, 𝑦 → Y�̃�}. So we can freely chose Y = 1 in the numerical calculations.
We also chose �̄� = 1. Changing the value of �̄� is equivalent to changing the coefficients 𝜑1 or 𝜑2.
A numerical solution for eq.(11) requires the smoothing of the refractive index profile 𝑛𝑡 (𝑥, 𝑦)
[eq.(10)] near the metasurface boundaries. The profile of the refractive indexes along the 𝑦-axis
are shown in Fig.(2-c) and Fig.(2-f). Despite the smoothing, the profile of the refractive index
remains sharp near the metasurface boundaries. The profile of the refractive index along the
coordinate 𝑥 are shown in Fig.(2-b) for the linear case and in Fig.(2-e) for the quadratic case.
For the numerical calculations, we consider that the metasurface is surrounded by a vacuum
𝑛1 = 𝑛2 = 1. The analytical predictions eq.(13) for the ray trajectories inside the metasurface are
plotted as the black dashed lines. They superimpose accurately with the numerical calculations.
The refractive index with a linear shape acts as a prism. It leads to a negative refraction. The
refractive index with quadratic profile acts as a convergent lens. It leads to focusing since 𝜙2 < 0.
These numerical calculations confirm that eq.(12) and eq.(13) correctly describes the propagation
of a light ray inside the metasurface.

Since by definition, tan \ (𝑦) = 𝑥′ (𝑦), the equation (12) allows to find the angle between the
ray trajectory and the horizontal axis at the position 𝑦 = Y. It is denoted \̄2 = \ (Y) and reads in
first order in Y:

\̄2 = \̄1 + cos2 \̄1𝜕𝑥{ln 𝑛[𝑥(𝑦)]}
���
𝑦=0

Y + 𝑜(Y) (14)

3. Derivation of the generalized laws of refraction and reflection - First chapter

3.1. The generalized law of refraction

In order to derive the generalization of the law of refraction for metasurfaces we are considering
in this article, we need to connect the angles on both side of the metasurface, that is to say, the
angle of incidence on the metasurface \1 and the angle of the ray refracted by the metasurface \2.
Then the derivation requires three steps:

1. Refraction at the interface 𝑦 = 0 between a medium of refractive 𝑛1 and a medium of
refractive index 𝑛[𝑥(0)].

2. Propagation of the ray of light in a medium with refractive index 𝑛(𝑥). The equations of
motion have been computed in the preceding section.

3. Refraction at the interface 𝑦 = Y between a medium with refractive index 𝑛[𝑥(Y)] and a
medium with refractive index 𝑛2.

At the interface 𝑦 = 0, the angle between the ray of light and the normal to the boundary is
the angle of incidence \ (0−) = \1. The ray is refracted inside the metasurface with an angle
\ (0+) = \̄1. These two angles are related by the (usual) law of refraction [eq.(9)]:

𝑛1 sin \1 = 𝑛[𝑥(0)] sin \̄1 (15)

Similarly, we can connect the angles on both side of the interface 𝑦 = Y. The relationship
reads:



𝑛[𝑥(Y)] sin \̄2 = 𝑛2 sin \2, (16)

with \̄2 = \ (Y−) and \2 = \ (Y+). Using the set of equations (14,15,16), the angle of incidence
\1 can be connected to the angle \2 of emergence from the metasurface, through the relation:

𝑛2 sin \2 = 𝑛1 sin \1 + Y

{
cos3 \̄1𝜕𝑥𝑛[𝑥(𝑦)]

���
𝑦=0

+ tan \̄1 sin \̄1𝜕𝑥𝑛[𝑥(𝑦)]
���
𝑦=0

}
(17)

This expression is valid up to first order in the metasurface’s width Y. It shows that, in the
limit Y → 0, the metasurface acts only perturbatively on the propagation of light, except if the
following condition is assumed:

lim
Y→0

( �̄�Y)𝑛(𝑥) = 𝜙(𝑥). (18)

Here 𝜙(𝑥) is a function of order 0 in the metasurface width Y, i.e. 𝜙(𝑥) = 𝑜(Y0), and �̄� is
a quantity whose units are the inverse of a length. 𝜙(𝑥) has no unit. The equation (18) is the
fundamental relation for metasurfaces in geometrical optics. It implies that the metasurface acts
on the light propagation. Only materials satisfying this equation lead to a modification of the law
of refraction. It means that the optical path inside the metasurface has to remain finite as the
metasurface width vanishes, i.e Y𝑛(𝑥) = 𝑜(Y0) when Y → 0. This condition does not result from
a physical principle. Indeed, the refractive index profile 𝑛(𝑥) can be engineered to realize the
desired function 𝜙(𝑥) for a fixed (but small) metasurface width Y.

The assumption eq.(18) implies the following result based on eq.(15):

\̄1 =
�̄�Y

𝜙[𝑥(0)] 𝑛1 sin \1 + 𝑜(Y) (19)

Since the refractive index of the metasurface 𝑛(𝑥) becomes very large in the limit Y → 0,
all rays of light propagate inside the metasurface very close to the normal of the interface, i.e.
\̄1 → 0.

As a consequence, up to first order in Y, the angle at the output of the metasurface is given by
the equation:

𝑛2 sin \2 = 𝑛1 sin \1 +
1
�̄�
𝜕𝑥𝜙[𝑥(𝑦)]

���
𝑦=0

+ 𝑜(Y). (20)

Eq.(20) is the generalization of the law of refraction we are seeking for up to first order in the
metasurface width. Since 𝜙(𝑥) = 𝑜(Y0), the metasurface has an action on light propagation and
the eq.(20) deviates significantly from the usual Snell-Descartes law. The quantity �̄� does not
derive from the Fermat principle. It can be freely chosen and would result from the engineering
of the quantity 𝑛(𝑥). The authors of the references [1,6] have chosen the wavenumber �̄� ≡ 𝑘0 but
the laws of geometrical optics captured by the Fermat principle do not impose this choice.

Let us also stress that more general conditions than eq.(18) could be considered, also leading
to a deviation from the usual Snell-Descartes laws. In such cases, the generalization of the
Snell-Descartes laws could depend on the metasurface’s width. For example the condition
lim
Y→0

( �̄�Y)𝑠𝑛(𝑥) = 𝜙(𝑥) with 𝑠 ≥ 1 leads to a generalization of the law of refraction eq.(17) that

varies as Y1−𝑠 with the metasurfaces’s width. We did not explore other choices than 𝑠 = 1.



Instead, although fermat’s principle does not impose this choice, we focus the discussion on the
generalizations of the Snell-Descartes laws that are independent of the width of the metasurface’s
width Ref. [1, 6] and only considered the special case 𝑠 = 1. As a consequence, depending on the
engineering of the metasurface, the generalization of the law of refraction eq.(17) can strongly
depart from the result published by [1, 6].
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Fig. 3. Generalized law of refraction for a linear function 𝜙(𝑥). a) 𝑛2 sin \2 as a
function of 𝑛1 sin \1 with 𝜙(𝑥) = 0.5𝑥. Dots are numerical results and the dashed
red line is a linear fit. b) Ray trajectories corresponding to a). The number indicates
the corresponding angles conditions. c) 𝑛2 sin \2 as a function of 𝑛1 sin \1 with
𝜙(𝑥) = −0.5𝑥. Dots are numerical results and the dashed red line is a linear fit. b)
Ray trajectories corresponding to c). The number indicates the corresponding angles
conditions.

The generalization of the law of refraction eq.(20) has been numerically checked by solving
the eq.(4) with an index profile 𝑛𝑡 (𝑥, 𝑦) modeling a metasurface [eq.(10)]. The refracted angle
\2 is computed with the help of tan \ (𝑦) = 𝑥′ (𝑦) outside the metasurface that’s to say for 𝑦 > Y.
We have plotted in the Fig.(3) the quantity 𝑛2 sin \2 as a function of the quantity 𝑛1 sin \1. In the
computation, we have chosen 𝑛1 = 1 and 𝑛2 = 2. The simulation assumes Y = 0.01 and �̄� = 1.
The generalized law of refraction has been plotted for two functions 𝜙(𝑥), namely 𝜙(𝑥) = 1+0.5𝑥
in Fig.(3-a) and 𝜙(𝑥) = 1−0.5𝑥 in Fig.(3-c). In both case the generalized law of refraction eq.(20)
is satisfied. The numerical results are the black dots in Fig.(3-a) and Fig.(3-c). They are fitted by
a linear function with two parameters 𝑎 and 𝑏 such as 𝑛2 sin \2 = 𝑎(𝑛1 sin \1) + 𝑏. In both case,
the slope is 𝑎 = 1.000 and the vertical intercept is either 𝑏 = 0.500 in the case of Fig.(3-a) or
𝑏 = −0.500 in the case of Fig.(3-c). A sample of three trajectories are plotted in Fig.(3-b) and
Fig.(3-d). They illustrate that the ray trajectories are very close to the horizontal axis inside the
metasurface because of the eq.(19). The blue numbers 1, 2 or 3 in Fig(3-b) [resp. in Fig(3-d)]
refer to condition (𝑛1 sin \1, 𝑛2 sin \2) in Fig.(3-a) [resp. Fig.(3-c)]. Comparing Fig.(3-b) and



Fig.(3-d) shows the consequence of the refractive index profile inside the metasurface on the ray
trajectories .

3.2. The generalized law of reflection

We now consider the ray of light that is reflected by the metasurface. This ray does not propagate
inside the metasurface. This is illustrated by Fig.(1-b). The angle of incidence \1 and the angle
of reflection \𝑟 are related through the eq.(8) deriving from Fermat principle [17]:

\𝑟 = \1 (21)

We conclude that the angle of reflection is still given by the usual Snell-Descartes law despite
the presence of a metasurface. This result occurs because the ray of light does not propagate
inside the metasurface. This is in strong contrast with the publication [6].

4. Derivation of the generalized laws of refraction and reflection - Second chap-
ter: The whole story

  a) b)

Fig. 4. a) Schematic of the propagation of light rays in a metasurface illustrating a
few possible paths that a ray of light can follow before escaping from the metasurface.
An incident light ray falls upon the metasurface with an angle of incidence \1. After
propagation inside the metasurface, it is reflected with the angle \

2𝑝
𝑟 or refracted with

the angle \
2𝑝+1
2 , with 𝑝 ∈ N. The superscript indicates the number of trips the ray

makes before leaving the metasurface. b) Same as in a) in the limit Y → 0.

The equation (20) is similar to previously published results apart from the quantity �̄� that
differs from them. On the other hand, the eq.(21) differs completely. Nevertheless none of
these two formulas are the complete story describing the propagation of a light beam across a
metasurface. Indeed, when a light beam propagates in transparent materials, at the boundary
between two transparent materials, a fraction of light is reflected and a fraction of light is refracted.
When considering the propagation of a ray of light across the metasurface depicted in fig.1-b),
one need to consider that the ray of light can be either reflected or transmitted at each of the
interfaces between the metasurface and the materials with refractive index 𝑛1 or 𝑛2. This leads to
several possible trajectories for an incident light ray as shown by the Fig.4-a). Consequently the
picture that emerges is that of a ray undergoing multiple internal reflections before leaving the
metasurface either in the materials with refractive index 𝑛1 (the ray is said to be reflected by the



metasurface) or in the materials with refractive index 𝑛2 (the ray is said to be refracted by the
metasurface). The angles of reflection or refraction depend on the whole trajectory inside the
metasurface, particularly on the total distance the ray has travelled inside the metasurface. From
geometrical optics principle, the probability for a light ray to follow a prescribed path cannot be
computed. On the other hand, one can compute all the possible angles of refraction \

𝑝

2 and all
the possible angles of reflection \

𝑝
𝑟 with 𝑝 ∈ N★, 𝑝 being the number of trips done by the ray of

light inside the metasurface.
The equation (20) assumes that the ray of light is first refracted at the boundary 𝑦 = 0,

propagates to the second boundary located at coordinate 𝑦 = Y and is finally refracted to the
medium with refractive index 𝑛2. It does one trip inside the metasurface. Now we consider a
similar process with refraction at boundary 𝑦 = 0, (2𝑝 + 1) trips inside the metasurface (that
is to say 2𝑝 internal reflections with 𝑝 ∈ N) and finally a refraction at boundary 𝑦 = Y. The
ray of light leaves the metasurface into the medium with refractive index 𝑛2. Thanks to the
symmetry properties implied by the law of reflection, (i.e. the angle of reflection equals the angle
of incidence [eq.(8)]), the angle before the ray leaves the metasurface and the coordinate of the
impact at the metasurface boundaries can be computed with the help of the set of equations (12)
and (13), respectively. They reads:

\̄
2𝑝+1
2 ≃ 𝜕𝑥{ln 𝑛[𝑥(𝑦)]}

���
𝑦=−Y

(2𝑝 + 1)Y + \̄1

𝑥2𝑝+1 ≃ 1
2
𝜕𝑥{ln 𝑛[𝑥(𝑦)]}

���
𝑦=−Y

(2𝑝 + 1)2Y2 + \̄1 (2𝑝 + 1)Y + 𝑥1

These equations assume \̄1 = 𝑜(Y) as proved previously. Inserting these equations into eq.(17)
with the condition given by eq.(18) leads to the following set of angles of refraction:

𝑛2 sin \2𝑝+1
2 = 𝑛1 sin \1 + (2𝑝 + 1) 1

�̄�
𝜕𝑥𝜙[𝑥(𝑦)]

���
𝑦=0

with 𝑝 ∈ N. (22)

The limit Y → 0 has been taken. In the first order of Y, all the coordinates of impact 𝑥2𝑝+1

collapse to the same value 𝑥2𝑝+1 = 𝑥1 +𝑂 (Y). The metasurface can be seen as an optical device
inducing an optical path 𝜙(𝑥)/�̄� from which several rays emerge. This is illustrated by the
Fig.(4-b). The case 𝑝 = 0 leads to the eq.(20).

Similarly, a set of rays are reflected by the metasurface [see Fig.(4) for an illustration]. They
perform 2𝑝 trips, 𝑝 ∈ N, before leaving the metasurface into the medium with refractive index
𝑛1. The angles of reflection are given by:

𝑛1 sin \2𝑝
𝑟 = 𝑛1 sin \1 + 2𝑝

1
�̄�
𝜕𝑥𝜙[𝑥(𝑦)]

���
𝑦=0

with 𝑝 ∈ N (23)

The case 𝑝 = 0 obviously leads to the eq.(21). We recall that the only assumption is Y → 0.
As a consequence the eq.(22-23) are valid for any value of the incident angle \1 and for any
refractive index profile satisfying the relation ( �̄�Y)𝑛(𝑥) = 𝜙(𝑥).

5. Conclusion

We have studied in details the propagation of optical rays through a metasurface. The derivation
is performed in the framework of geometrical optics and is based on Fermat’s principle. We have
found that the relation (18) is required otherwise the metasurface only slightly affects the ray
light propagation. This relation states that the optical path length should remain finite despite
the vanishing of the metasurface width. The condition (18) leads to a generalization of the laws



of refraction and reflection that differ from the usual Snell-Descartes laws. The main result is
that a collection of rays should emerge from the metasurface. The set of angles of refraction
and reflection are given by the eq.(22) and eq.(23) respectively. These equations differ from the
results published in [1,6] proving that the Fermat principle cannot be invoked for their derivation.

In the article [5], we have studied the case where the metasurface is made by a collection
of scatterers and consider a microscopic model based on diffraction and interferences. Such a
model, close to the experimental realizations, does not lead to the generalized Snell-Descartes
laws either. Our conclusion was strengthened by the recent study [8] where a similar conclusion
was reached for diffractive metasurfaces with a sawtooth phase-profile. As a consequence, we
conclude that eq.(1,2) given in [1, 6] are not compatible with the theoretical framework given
either by Fermat’s principle or by Fourier optics.

6. Backmatter

Acknowledgments. We thank G. Demésy from Fresnel Institute (Marseille-France) for fruitful discussions
during the elaboration of this paper. For the purpose of Open Access, a CC-BY public copyright licence has
been applied by the authors to the present document and will be applied to all subsequent versions up to the
Author Accepted Manuscript arising from this submission.

Disclosures. The authors declare no conflicts of interest.

Data Availability Statement. Data underlying the results presented in this paper are not publicly available
at this time but may be obtained from the authors upon reasonable request.

Supplemental document. See Supplement 1 for supporting content.

References
1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase

discontinuities: Generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
2. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic

nanoantennas,” Science 335, 427–427 (2012).
3. S. Chen, Z. Li, Y. Zhang, H. Cheng, and J. Tian, “Phase manipulation of electromagnetic waves with metasurfaces

and its applications in nanophotonics,” Adv. Opt. Mater. 6, 1800104 (2018).
4. H.-T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Reports on Prog. Phys. 79,

076401 (2016).
5. E. Rousseau and D. Felbacq, “Concept of a generalized law of refraction: A phenomenological model,” ACS

Photonics 7, 1649–1654 (2020).
6. F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light

by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
7. C. Caloz and K. Achouri, Electromagnetic Metasurfaces: Theory and Applications (John Wiley & Sons, 2021).
8. M. Schake, “Examining and explaining the “generalized laws of reflection and refraction” at metasurface gratings,” J.

Opt. Soc. Am. A 39, 1352–1359 (2022).
9. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
10. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from

plasmonic to dielectric metasurfaces,” Optica 4, 139 (2017).
11. M. A. Remnev and V. V. Klimov, “Metasurfaces: a new look at maxwell's equations and new ways to control light,”

Physics-Uspekhi 61, 157–190 (2018).
12. S. S. Bukhari, J. Vardaxoglou, and W. Whittow, “A metasurfaces review: Definitions and applications,” Appl. Sci. 9,

2727 (2019).
13. J. Hu, S. Bandyopadhyay, Y. hui Liu, and L. yang Shao, “A review on metasurface: From principle to smart

metadevices,” Front. Phys. 8 (2021).
14. R. Caputo and A. Ferraro, “Metasurfaces: Theoretical basis and application overview,” in Hybrid Flatland

Metastructures, (AIP Publishing, 2021), pp. 1–20.
15. R. P. Feynman, A. R. Hibbs, and D. F. Styer, Quantum mechanics and path integrals: Emended edition (Dover

Publications, 2005).
16. D. D. Holm, Geometric Mechanics: Part I: Dynamics and Symmetry (World Scientific Publishing Company, 2008).
17. A. J. de Witte, “Equivalence of huygens' principle and fermat's principle in ray geometry,” Am. J. Phys. 27, 293–301

(1959).



A detailed derivation of the generalized
Snell-Descartes laws from the Fermat principle:
Supplemental document

Abstract: This file contains the calculations to derive the trajectory of a ray of light 𝑥(𝑦) in
a metasurface with refractive index 𝑛(𝑥) as well as its derivative 𝑥′ (𝑦) = 𝑑𝑥(𝑦)/𝑑𝑦. They are
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© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

A. Derivation of the equation (12)

This appendix aims at finding the eq.(12) in the primary article, that’s to say at solving the
equation

𝑥′′ (𝑦) = 1
𝑛(𝑥) 𝜕𝑥𝑛(𝑥)

[
1 + 𝑥′ (𝑦)2] (24)

As an ansatz, we propose the following solution valid for all 𝑦 ∈ [0, Y], in the limit where
Y → 0:

𝑥′ (𝑦) = tan
[

1
𝑛[𝑥(𝑦)] 𝜕𝑥𝑛[𝑥(𝑦)]𝑦 + 𝑐1

]
(25)

Where 𝑐1 is a constant to be determined.
Injecting this solution in the eq.(24), we get:

𝑥′′ (𝑦) − 1
𝑛(𝑥) 𝜕𝑥𝑛(𝑥)

[
1 + 𝑥′ (𝑦)2] = 𝑦𝜕2

𝑥 ln{𝑛[𝑥(𝑦)]}𝑥′ (𝑦)

We now perform the following assumption:

• The quantities 𝜕𝑥𝑛(𝑥) and 𝜕2
𝑥𝑛(𝑥) do not diverge in the range 𝑦 ∈ [0, Y]. This assumption

assumes smooth variations of the refractive index profile inside the metasurface.

Consequently from this assumption, we deduce the following results:

• The quantity 𝜕𝑥 ln[𝑛(𝑥)] = 1
𝑛(𝑥 ) 𝜕𝑥𝑛(𝑥) is bounded in the range 𝑦 ∈ [0, Y]. As a

consequence, for 𝑦 ∈ [0, Y], | |𝑥′ (𝑦) | |∞ = | | tan
[

1
𝑛[𝑥 (𝑦) ] 𝜕𝑥𝑛[𝑥(𝑦)]𝑦 + 𝑐1

]
| |∞ < ∞

• The quantity 𝜕2
𝑥 ln{𝑛[𝑥(𝑦)]} is bounded and we denote by M its supremum value 𝑀 =

sup𝑦∈[0, Y ]{|𝜕2
𝑥 ln{𝑛[𝑥(𝑦)]]}

As a consequence, we get the following inequality:

| |𝑦𝜕2
𝑥 ln{𝑛[𝑥(𝑦)]}𝑥′ (𝑦) | |∞ ≤ Y𝑀 | |𝑥′ (𝑦) | |∞ (26)

We have chosen the supremum norm | | • | |∞ as the norm for functions. In the limit Y → 0, we
find that

| |𝑦𝜕2
𝑥 ln{𝑛[𝑥(𝑦)]}𝑥′ (𝑦) | |∞ −−−−→

Y→0
0

https://opg.optica.org/library/license_v2.cfm#VOR-OA


Eq.(25) is a solution of the equation (24) for metasurfaces, i.e. for geometries assuming Y → 0.
Note that this equation does not assume that 𝜕𝑥 ln{𝑛[𝑥(𝑦)]} is a small quantity. It only assumes
that it is finite. Also it does not assume the paraxial approximation |𝑥′ (𝑦) | ≪ 1. In the range
𝑦 ∈ [0, Y], we can expand 𝜕𝑥 ln{𝑛[𝑥(𝑦)]} in series as well as the eq.(25) up to first order in 𝑦

around 𝑦 = 0. Restricting to first order, we get

𝑥′ (𝑦) = 𝜕𝑥{ln 𝑛[𝑥(𝑦)]}
���
𝑦=0

𝑦 + tan \̄1 + 𝑜(Y)

This is the eq.(12) in the article with the appropriate boundary conditions.

B. Derivation of the equation (13)

The light-ray position 𝑥(𝑦) as a function of the parameter 𝑦 ∈ [0, Y] can be obtained by integrating
the eq.(12) since 𝑦 remains small. The solution reads:

𝑥(𝑦) = 1
2
𝜕𝑥{ln 𝑛[𝑥(𝑦)]}

���
𝑦=0

𝑦2 + tan \̄1𝑦 + 𝑥1 + 𝑜(Y2)

The solution is valid for metasurfaces assuming that 𝑦 ∈ [0, Y] with Y → 0. We do not make
any assumptions on the value of the refractive index 𝑛(𝑥) or on the value of the initial angle \̄1.


