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Abstract: This short note improves a result of Roubens and Vincke on possibility graphs, i.e. valued
ordering relations defined on a finite set of fuzzy numbers, using possibility theory. Especially, the
Ferrers and min-max transitivity property for possibility graphs are obtained as a straightforward
consequence of an inference rule in possibilistic logic.
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Introduction

Roubens and Vincke [7] have recently studied the properties of ‘possibility
graphs’ obtained from pairwise comparisons of fuzzy intervals [2]; these com-
parisons are performed by means of an index originally proposed by Baas and
Kwakernaak [1]. This index is in agreement with possibility theory (Zadeh [9],
Dubois and Prade [3]). It is proved in [7] that possibility graphs are a
many-valued extension of interval graphs [6]. This note extends these results to
the case when the fuzzy quantities to be compared are not convex, as a simple
application of possibilistic logic [4]. The first section presents background on
possibility graphs and possibilistic logic. Section 2 presents the main result, i.e. a
new proof of the Ferrers property for possibility graphs defined on general fuzzy
quantities. Section 3 briefly discusses the case when the usual ordering on the real
line becomes fuzzy.

1. Background

Some basic notions and results are recalled here, especially possibilistic logic [4]
which is derived from studies in automated reasoning, and possibility graphs [7]
which are useful to investigate the properties of ordering relations between fuzzy
intervals.
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1.1. Possibilistic logic

A possibility measure IT on a finite Boolean algebra of proposition @ is a
mapping from B to [0, 1] such that

0)=0, mW=1 15
I(p v q) = max(II(p), I1(g)), Vp,qeR,
where 0 is the contradiction, 1 the tautology, and v the disjunction. The
set-function N defined by N(p)=1- ITi (Tp), where -1 denotes negation, is called

a necessity measure. Informally, IT (p) expresses to what extent P is possibly true
and N(p) to what extent P is certainly true. The following conventions are

adopted:
N(p)=1 ¢ M(-p)=0 means that p is true,
' O(p)=0 & N(p)=1 means that p is false,
I(p)=I(-p)=1 means total ignorance about the truth of p.

The well-known modus ponens rule extends to possibilistic logic under the
form [4] :

N(g) = min(N(p— q), N(p)), o)

where p— g means —p v 4, p and g being any Boolean propositions. It is a
consequence of (1), noticing that N(p A q) =min(N(p), N(q)), ¥p, q. Stronger
inference rules such as the resolution principle can be extended as well [4]. Note
that (2) is equivalent to

1(2g) < max(IT(p A g), (-p)). 3)

Viewing the Boolean algebra as the set of subsets of a set X, each proposition
P € B corresponds to a subset M(p) c X such that for all x € X, p is true if and
only if x € M(p). :
Let xbe a possibility distribution on X, i.e. a function X — [0, 1] with &(x) =1
for some x. A possibility measure ITon @ is generated by r through the equation
Vpe®, II(p)=max{x(x)|x e M(p)). @)
When 2 is not finite axiom (1) is extended to the union of any indexed family of
propositions, changing max into sup.
Note that generally II(p A q) <min(I1(p), II(q)) and N(pvgq)=
max(N(p), N(q)) and the equalities may not hold. The inequalities turn into
‘equalities when X is a Cartesian product X, X X,, « is of the form min(x,, 7,)
where 7; is a possibility distribution on X, i=1, 2, and for propositions piand p,

such that M(p,) = {A,} X X2, M(p2)=X, x {A,), where A; is a subset of X,
i=1, 2. Then : .

II(p, A p,) = min(I1(p,), I1(p,)),
N(pyvp;) = max(N(p,), N(p,)).

In this case x, and 7, are said to be non-interactive and x is said to be
decomposable [8, 3].
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1.2. Possibility graphs

A fuzzy interval A is a fuzzy subset of the real line defined by a membership
function p,4 that satisfies : ) .

Normality: IxeR, p,x)=1, (5)
Convexity: x<y=<z = p,(y)=min(us(x), pa(z)). (6)

In other words, any level-cut A, = {x | g (x) = a} is an .m:ﬁd..m_. and A, is not
empty for &« =1. p, can be viewed as the fuzzy set of possible values of a variable
a, i.e. a possibility distribution [3, 9]. : %

Let 2={A, B,...} be a finite set of fuzzy intervals n_o.mn._.u._u_am the ranges of
non-interactive (i.e. unrelated) variables a, &.. e A possibility graph G. on 2
is a fuzzy relation on 2 defined by the possibility measure IT(- =-):

I1(a = b) = sup min(u(x), us(y)). - : )
hvw
i 1] for comparing fuzzy
Index Il(a =b), introduced by Baas and Kwakernaak ﬁ | ;
intervals, measures to what extent it is possible that a u__mnmc_o a Q:.Nm__w restricted
by A) is at least as great as a variable b (fuzzily restricted by B), in the sense Jm
possibility theory [3]. Indeed it evaluates the degree IT(a =b) that z._n proposi-
tion a=b holds true, where the possibility distribution of the pair {a, b) is
min(g,, pig). It assumes that a and b are unrelated variables E_. A.u_mmn_w the fuzzy
relation defined by (7) results from applying the extension principle [8, 3] to the
usual ordering =. i
The properties of the possibility graph G.. are
(i) G is reflexive, i.e. if A =B, then IT(a = Sw _“H
ii) G is complete, i.e. max(I1(a=b), I1(b =a =1
Ammw Q” is a Ferrers graph, i.e. Va, b,c,d, min(II(a=b), [I(c =d)) <
max([I(a =d), II(c = b));
QMV G. is min-max transitive, i.e. Va,b,c, II(a=b)<max(II(a=c),
H(c = b)). “ LS s
m_ﬂ ch&a:m and Vincke {7], IT(a = b) is denoted by .:T»., B), i.e. ..:40_5:.m _r.n
names of the fuzzy intervals instead of their underlying variables. This notation is
slightly ambiguous when A =B since it does not imply a:= b. For instance
expressing the reflexivity property as u(A4, A)=1 is not mm:mﬁmm»c_.w because it
may mean only the trivial equality Ii(a=a)=1 instead o.m (i). m.onczmﬁm_?
II(a = b) = II(b = a) whenever A = B. It is interesting to consider the companion
index

N(a=b) = inf [1 - min(k(x), u(y))] = 1 - I(a <b)
x=<y :
if A= =b)<1 as soon as A is not a
for further comments. Namely, if A = B, then N(a=b) < .
real number. On the contrary, N(a =a) =1 trivially holds annmcmm a=ais m_imxm
true. This distinction is more difficult to perceive when the possibilistic index is

denoted by u(A, B). e :
?.ouﬂ:w,wm (iii) and (iv) are established by Roubens and Vincke [7]. The
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transitivity property is actually a special case of the Ferrers property, letting d = ¢
in the expression of the latter.

Lastly, letting h(A, B) be the height of the intersection of A and B obtained by
changing the inequality = into an equality in (7), it is well known that if A and B
are convex in the sense of (6), then

h(A, B) =min(Il(a>b), (b =a). (8)

2. The main result

The proof of the Ferrers graph property in [7] explicitly uses the convexity
assumption (6). This note indicates that this assumption can be disposed of, and
proposes a new, simpler proof of this property, when the fuzzy sets A, B, .. . are
defined on a general ordered space.

Let X be a set equipped with a total ordering = (= is reflexive, transitive,
antisymmetric and complete). Let £ be a set of fuzzy sets on X, where the only
assumption is that YA, € 2, A, possesses the normality property (5). Let G.. be a
possibility graph defined on €2 via (7). It is easy to check that G.. is reflexive and
complete. Moreover, the following result holds. 2 .

Theorem. A possibility graph induced from normal fuzzy sets defined on a finite
set X with an antisymmetric linear ordering has the Ferrers property.

The proof uses the following obvious lemma.

Fo.EE..h&Ag-&ah&&o&««ﬁ%%&&oav&m&ca W‘m.m.kAwm\.n:&a:Q@n
y=xbutnotx=y. Then ;
(x <tand z <y) implies (z <torx <y).

1
Proof. It is obvious. For instance if x < Lz<yandts=gz thenx<t=z<y,ie.
x<y. O

Proof of theorem. Let g, b, ¢, d be the variables fuzzily restricted by A, B, C, D,
respectively. Let p, g, r, s be propositions modeling the statements a < d, ¢ < b,
a<b and ¢ <d, respectively. From the lemma, the proposition (p A g)— (r v 5)
is always true; hence for any possibility distribution & on X*, the degree of
necessity

N((pAq)—(rvs)=1.
Hence, applying the inference rule (2) in possibilistic logic, we obtain

N(pAg)<N(rvs), VYzonX* 9)
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Now N(p A g) =min(N(p), N(g)) by definition of necessity measures, and due
to (4),
N(rvs)=1~II(r A-s)
= _inf [1—min(pa(x), ua(y), Bc(z), un(t))]

= max(N(r), N(s))

because 7 =min(u,, Us, fic, #p) is decomposable (see the end of Section 1.1).
Substituting these values in (9), noticing that N(p) =1— II(-p)=1— H(a =d),
etc., leads exactly to the Ferrers inequality. O

Corollary. G. is a min—max transitive fuzzy relation.

3. When the usual ordering becomes fuzzy

We might consider the same problem as above, turning the ordering on X into
a fuzzy relation R. This type of generalization makes sense for instance in
temporal reasoning, when linguistic temporal relations must be modeled (such as
‘much before’, ‘a little after’, . . .) (see Dubois and Prade [5]). More generally, R
may model concepts such as a ‘much larger than’, ‘almost equal to’, ‘very
different from’, etc. b e

The quantity IT(a = b) is extended into IT(a R b) such that

I1(a R b) = sup min(ia(x, ), Ba(®), #a(y)). o)

The corresponding degree of necessity N(a R b) is defined by
2ﬁh R &v =1 nﬁh notR .m.v = inf EN%A.:.NAH. v_v. 1= tlﬁ\ﬂv‘ l= thﬁ‘%vw. ﬁ..:.v
Xy

where relation not R has membership function 1— ug. Equations (10) and (11)
make sense for any fuzzy relation R on X,
Given two relations R and S on X, .the following result has been proved [5]:

N(a[R°S]b)=min(N(a R c), N(c S b)). (12)
where RS is the sup—min composition of fuzzy relations

Presx, Z) = sup min(pg(x, y), us(y, z)). " (13)

The proof, not recalled here for the sake of brevity (see [5]), is direct and
cannot take advantage of possibilistic logic because the property deals with fuzzy
propositions such as a R b, etc., while possibilistic logic as described in Section 1
only deals with Boolean propositions. The inequality (12) holds for any pair
(R, §) and is equivalent to

M(a R3S b)<max(II(a R c), I(c S b)), (14)
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for all R’s and §’s, where 5 is the inf-max composition of fuzzy relations obtained
by changing max into min and sup into inf in (13). The min-max transitivity
property would be attained in the case when pp.s < pipss. In fact generally the
inequality

sup min(ug(x, 2), pg(z, y)) < m_.m max(ug(x, 2'), ps(z’, y)) (15)

does not hold. However when R =S and means > on X, where = is transitive
and complete, (15) is true and means

if3z,x=2=y then Vz', x=2' orz'z=y,

In order to establish the transitivity property of the possibility graph induced by a
fuzzy relation, we need the following lemma.

Lemima. Let R be g fuzzy relation on X which is complete (i.e. Vx, Yy, Hr(x, y) =
1 or pp(y, x) = 1) and max—min Iransitive, then R is also min—max transitive, i.e.
max(pg(x, z'), ur(z’, ¥)) = pp(x, y), Vx, Vy, vz’

Proof. The max—min transitivity of R writes
#r(X, y) = min(pp(x, 2), pe(z, y)).

Let us assume that 3z', pgp(x, 2') < pgp(x, y) and Br(Z', y) < pg(x, ¥). Then
max(pg(x, z'), #r(z’, y)) <1 and due to completeness, pq(z’, xX)=up(y,z")=1;
but ue(z’, y)= min(ug(z’, x), ug(x, Y))=pr(x,y). This is a contradiction.
Hence max(up(x, 2), pp(z’, y)) = Hr(x, y). O

As a consequence, inequality (15) holds for R=S, and it is true that

MRrer < tipsr. Moreover if R is reflexive then R-R =R We have nearly proved
the following.

Proposition 2. Let R pe 4 reflexive, max-min transitive and complete fuzzy
relation on X, then the fuzzy possibility graph induced from (X, R) to a set Q of
normal fuzzy sets on X is min—max transitive. Moreover, the fuzzy possibility
graph is reflexive and complete.

H.éen.. Use (14) and the inequality BRr < Hpap justified by the lemma and the
nacm_.:w ReR=R. Then M@Rb)<I(@aR:R b). This proves the min—max
transitivity property. The other properties are obvious. [J

Conclusion

This short note has two purposes: (i) to show the usefulness of inference rules
in possibilistic logic for proving mathematical results in possibility theory;
especially the proof of the Ferrers property has been simplified and its
applicability enhanced; (ii) to indicate that possibility graph properties might
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extend to the case when it is induced by a complete fuzzy ordering relation,

instead of a crisp one. : .

In the general case, the extension of the Ferrers property might fail to hold,
however. For instance if two crisp relations R and S are defined on X, the
extended Ferrers property could read

if (aRb)and (cSd) thena[RoS]dorc [SeR]b. (16)
This property does not hold generally; for instance let X =R and

aRb & a<bh-2,

bSc & b<c—3,

aReSc & a<c—-5& aS-Re.

Equation (16) means: if (a<b—2) and (c<d - 3) then (a<d— u.u or An.A
b —5). This is wrong: for instance b=a+3, c=a + 1, d =a +5 which implies
b =c +2, so that neither a<d — 5 nor c <b — 5 hold. .

For further research is the extension of the Ferrers property to fuzzy possibility
graphs when R = § is a complete fuzzy ordering.
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