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Abstract

For high dimensional spaces, a randomized Gram-Schmidt (RGS) algorithm is beneficial in computational
costs as well as numerical stability. We apply this dimension reduction technique by random sketching to
Krylov subspace methods, e.g. to the generalized minimal residual method (GMRES). We propose a flexible
variant of GMRES with the randomized Gram-Schmidt based Arnoldi iteration to produce a set of basis
vectors of the Krylov subspace. Even though the Krylov basis is no longer l2 orthonormal, its random
projection onto the low dimensional space shows l2 orthogonality. As a result, it is observed the numerical
stability which turns out to be independent of the dimension of the problem even in extreme scale problems.
On the other hand, as the Harmonic Ritz values are commonly used in GMRES with deflated restarting to
improve convergence, we consider another deflation strategy, for instance disregarding the singular vectors
associated with the smallest singular values. We thus introduce a new algorithm of the randomized flexible
GMRES with singular value decomposition (SVD) based deflated restarting. At the end, we carry out
numerical experiments in the context of compressible turbulent flow simulations. Our proposed approach
exhibits a quite competitive numerical behaviour to existing methods while reducing computational costs.

Keywords: Randomized Gram-Schmidt orthogonalization algorithm, Random sketching, Krylov subspace
methods, Implicit restarting with deflation
2020 MSC: 15A06, 65F10, 65F15, 65N22, 68W20

1. Introduction

The Krylov subspace methods are commonly used to solve large, sparse linear systems using iterative
methods. In particular, Saad and Schultz [1] proposed the generalized minimal residual method (GMRES)
for solving non-symmetric problems, resulting in approximate solutions within Krylov subspaces with min-
imal residual norms. This method is an improvement and generalization of the minimal residual method
(MINRES) [2]. It is often observed that the convergence of Krylov subspace methods depends on the dis-
tribution of eigenvalues, the field of values, or the pseudospectra with respect to the normality of a matrix
[3, 4]. To address this, Morgan [5] introduced GMRES with deflated restarting (GMRES-DR), which dis-
regards or deflates eigenvectors associated with the smallest eigenvalues in magnitude. For more flexible
variants and improvements of GMRES, see Giraud and Rollin [6, 7]. Simoncini’s work [8], which explores
the impact of small singular values close to zero on the convergence of restarted Krylov subspace methods,
and Park et al.’s work [9], specifically the generalized conjugate residual with inner orthogonalization method
with deflated restarting (GCRO-DR), inspired Al Daas et al. [10] to develop GMRES with modified DR
(GMRES-MDR) using a singular value decomposition (SVD) based deflation technique.
As a variant of the restarted GMRES with recycling subspaces, GCRO-DR was developed to solve se-

quences of linear systems [9]. It was noted that both GMRES-DR and GCRO-DR produce the same itera-
tions in exact arithmetic, making them algebraically equivalent. Carvalho et al. [11] presented a comparison
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of FGMRES-DR and FGCRO-DR in a flexible manner, for example, regarding variable preconditioning. It
was demonstrated that both methods are algebraically equivalent if a collinearity condition is satisfied, but
FGCRO-DR is more beneficial when solving sequences of linear systems.
For practical applications of Krylov subspace methods, it is essential to construct Krylov basis vectors. For

instance, the Arnoldi process generates a sequence of orthonormal vectors spanning the Krylov subspace
through the use of Gram-Schmidt (GS) process. Since GMRES is based on the Arnoldi iterations, it is
crucial to use a computationally stable GS process to ensure the quality of the Krylov basis. Balabanov
and Grigori [12] presented the randomized Gram-Schmidt (RGS) process, which uses dimension reduction
technique through random sketching, as a means of improving both numerical stability and computational
efficiency. This process has been applied to the development of randomized GMRES method. Recently,
Balabanov and Grigori [13] introduced a block version of the RGS algorithm, which allows for unit round-
off independence from the dominant dimension of the matrix and offers an advantage for solving large-
scale problems on low-precision arithmetic architectures. In addition, Balabanov and Grigori presented the
randomized Rayleigh-Ritz method which utilizes the improvement of the sketched Galerkin projection to
solve eigenvalue problems, along with a theoretical analysis of the method. Nakatsukasa and Tropp [14]
developed another variant of fast randomized algorithms for GMRES and Rayleigh-Ritz methods, called
sGMRES and sRR, respectively. While the works of Balabanov and Grigori are based on the full Arnoldi
process, sGMRES and sRR utilize a truncated version of the Arnoldi process, which results in asymptotically
faster computational costs but less stability in the Krylov basis vectors.
In this paper, we propose new variants of randomized GMRES algorithms. More specifically, to support

variable preconditioning, we develop a flexible version of the Arnoldi algorithm for constructing a set of
Krylov basis vectors in Krylov subspace methods, such as GMRES. By incorporating randomization, our
algorithm achieves higher efficiency, improved stability, and reduced computational complexity. Accordingly,
we introduce the randomized flexible GMRES with restart (RGS-FGMRES) and apply Morgan’s deflation
strategy [5], which includes the deflation of harmonic eigenvectors, resulting in the randomized flexible
GMRES with deflated restart (RGS-FGMRES-DR). Furthermore, motivated by singular vectors deflation
techniques [10], we introduce the randomized flexible GMRES with modified deflated restart (RGS-FGMRES-
MDR), which relies on the GCR method with inner sketched orthogonalization for SVD-based deflation.
Whereas GCRO-DR is based on l2 orthogonal projections, our method consider sketched orthogonal pro-
jections. For each of the proposed variants, we present a simplified form of minimizing the residual in the
sketched manner.
We would like to highlight that our research is the first to use random sketching for dimension reduction in

flexible GMRES. This includes both the well-known deflation of harmonic Ritz vectors and the recent defla-
tion method using singular vectors. Our proposed algorithms show improved stability and convergence, even
with reduced computational costs. Numerical examples support the benefits of our developments in solving
ill-conditioned non-symmetric linear systems arising from CFD compressible turbulent flow simulations.
This paper is organized as follows: in Section 1, we cover preliminary information. Section 2 presents

the basic concept of randomization in GMRES, as well as the algorithms for RGS flexible Arnoldi process
and RGS-FGMRES-DR, which is based on harmonic Ritz pairs. Section 3 combines it with approximate
singular vectors based deflation in RGS-FGMRES-MDR. To highlight the benefits of our method, we describe
numerical stability and computational costs in Section 4. In Section 5, we provide numerical examples to
validate our proposed algorithms. Finally, we conclude with remarks in Section 6.

1.1. Preliminary

We use standard notations for the sake of generality. We consider complex valued systems and denote a
vector (resp. a matrix) by a bold lower letter (resp. an upper letter), e.g. we denote a n length complex
vector by x ∈ Cn for n ∈ N. Let A ∈ Cn×n be a non-singular complex matrix and b ∈ Cn be a vector.
We denote the number of nonzero in A by nnz(A). We want to solve the linear system Ax = b by Krylov
subspace methods. For any vector x and matrix X, we denote ∥x∥ the l2 norm of x with l2 inner product
(·, ·), XT the transpose of X and XH the Hermitian transpose of X. A pseudo-inverse of X is denoted
by X†. κ(X) refers to the condition number of X. The identity matrix of the dimension n and the zero
rectangular matrix of i by j are denoted by In and Oi×j , respectively. For the readability of algorithms, we
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adopt matlab expression, for example, X(1 : i, 1 : j) denotes the submatrix consisting of first i rows and
first j columns of X.
Gram-Schmidt process is most commonly used for orthonormalizing a set of vectors or computing QR

factorization of a matrix. It proceeds iteratively based on the projection operators. For instance, let linearly
independent Vm = [v1,v2, . . . ,vm] and the projection operator Pu defined by

Pu(v) =
(u,v)

(u,u)
u for any u and v.

Then Gram-Schmidt process leads a set of orthogonal vectors Um = [u1, . . . ,um] where

u1 = v1 and ui = vi −
i−1∑
j=1

Puj (vi) for i = 2, . . . ,m.

Hence it can also result in an orthonormal set by normalizing each vector. For instance, we can obtain the
orthonormal Qm such that

Qm = [q1, . . . , qm] where qi = ui/ ∥ui∥ ∀i = 1, . . . ,m.

In practice, several variants of Gram-Schmidt process have been proposed and analyzed, for example
the classical Gram-Schmidt algorithm (CGS) [15], the modified Gram-Schmidt algorithm (MGS) [15, 16]
and re-orthogonalized algorithms (namely CGS2 and MGS2, respectively) [17]. The latter methods im-
prove computational orthogonality for practical implementation. Depending on the choice of Gram-Schmidt
algorithms, the projection can be defined with respect to iterations by

CGS : P (i) = In −QiQ
H
i ,

CGS2 : P (i) = (In −QiQ
H
i )(In −QiQ

H
i ),

MGS : P (i) = (In − qiq
H
i )(In − qi−1q

H
i−1) · · · (In − q1q

H
1 ),

MGS2 : P (i) = (In − qiq
H
i ) · · · (In − q1q

H
1 )(In − qiq

H
i ) · · · (In − q1q

H
1 ),

where Qi = [q1, . . . , qi] for each i ∈ {1, . . . ,m}. These projectors approximate the l2 orthogonal projector

In−QiQ
†
i onto the orthogonal complement of span(Qi). The quality of computational orthogonality depends

on the condition number of Qm.
On the other hand, the RGS algorithm [12] is based on random sketching which is a technique of dimen-

sion reduction. To be specific, it is motivated by approximating inner products of high dimension vectors
with inner products of their low dimensional random projections, so called sketch. Thus, the approximate
orthogonality depends on the random projection rather than the l2 norm sense. For more theoretical proofs
and details of RGS, we refer to [12] and the references therein.
Arnoldi iteration is required to construct an orthonormal basis of Krylov subspace in order to approximate

eigenpairs and approximate solutions of linear systems. For instance, let us consider A ∈ Cn×n and b ∈ Cn,
then the Krylov subspace Km(A, b) is defined by

Km(A, b) = span{b, Ab, A2b, . . . , Am−1b}.

Then its orthonormal basis can be computed by Gram-Schmidt algorithms to give

AVm = Vm+1Hm, (1.1)

called Arnoldi identity with l2 orthogonality of Vm+1 such as V H
m+1Vm+1 = Im+1 where Hm ∈ C(m+1)×m is

the upper Hessenberg matrix. In this manner, we have also a flexible Arnoldi relation such that

AZm = Vm+1Hm, (1.2)

where Zm = [z1, . . . ,zm] is defined with variable preconditioning, for instance zj = M−1
j vj with Mj is the

preconditioner for the j-th Arnoldi iteration for j = 1, . . . ,m.
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2. Randomized GMRES

Random sketching is a technique used in numerical linear algebra to reduce the dimensionality of large data
sets. The basic idea is to represent a high-dimensional matrix or vector by a much smaller, randomized low-
rank approximation. This is achieved by multiplying the original matrix or vector with a random skteching
matrix. Random sketching can be used to speed up computations and reduce the memory requirements of
algorithms that operate on large matrices and vectors. Defining a suitable random sketching matrix is an
essential aspect of this technique.
In practice, several variants of random sketching have been proposed and analyzed, such as Gaussian

distributions, Rademacher distributions, and sub-sampled randomized Hadamard transform (SRHT). The
quality of the approximation depends on the choice of sketching matrix. For more details on theoretical
estimations and specific examples of suitable sketching matrices, we refer to literature such as [18, 19, 20].
Additionally, it is important to note that in order to ensure the effectiveness of the dimensionality re-

duction, the sketching matrix should have certain properties such as ϵ−embedding and (ϵ, δ, d) oblivious
l2−subspace embedding. The size of the sketching matrix should also be chosen accordingly. For more
details on these properties and specific examples of suitable sketching matrix sizes, we refer to literature
such as [12, 21].
Let Θ ∈ Ct×n be a sketching matrix with t ≪ n. The sketching matrix leads to the sketched product

and its induced norm, called Θ−norm or sketched norm, to approximate l2 inner product and l2 norm as
embedding of subspaces. For instance, we can define the random sketched product and the sketched norm
by

(v,w)Θ = (Θv,Θw) and ∥v∥Θ = ∥Θv∥ ,

for any v,w ∈ Cn, respectively. Then, there exists a l2−subspace embedding of subspaces of Cn into
subspaces of Ct. The quality of embedding property will follow the sketching matrix Θ. For more details of
theoretical estimations, we refer to [12]. Thus, we need to define an appropriate sketching matrix such as
Gaussian distributions, Rademacher distributions, SRHT, etc., e.g. see [18, 19, 20].

Definition 1 (ϵ−embedding). For 0 < ϵ < 1, the sketching matrix Θ is an ϵ−embedding for subspace
V ⊂ Cn if

∀x,y ∈ V, |(x,y)− (x,y)Θ| ≤ ϵ ∥x∥ ∥y∥ .

Definition 2 ((ϵ, δ, d) oblivious l2−subspace embedding). The random sketching matrix Θ is a (ϵ, δ, d)
oblivious l2−subspace embedding for V ⊂ Cn of dimension d if

probability(Θ is an ϵ embedding for V ) ≥ 1− δ.

In this paper, we refer to [12] for a reasonable choice of random sketching matrices with certain quality of
l2−subspaces embedding. For example, our Θ is given by either rescaled Rademacher distribution or partial
SRHT (P-SRHT). Furthermore, we define the size of sketching matrix for (ϵ, δ, d) oblivious l2-subspace
embeddings by

t ≥ 7.87ϵ−2(6.9d+ log(1/δ)) and t ≥ 2(ϵ2 − ϵ3/3)−1
(√

d+
√
8 log(6n/δ)

)2
log(3d/δ)

for rescaled Rademacher distribution and P-SRHT, respectively [21].
By the manner of sketching, we mainly concern Θ orthogonality to construct a set of basis of Krylov

subspace. To be specific, we present applications of randomized Gram-Schmidt with the sketching matrix
Θ, e.g. randomized flexible Arnoldi process and randomized FGMRES based on the sketched orthonormality
in the following section. Hereafter, we assume Θ is l2-subspace embedding for Krylov subspace.

Remark (l2 norm and Θ norm). For a vector v ∈ Cn, we have the following bounds.

• ∥v∥Θ = ∥Θv∥ ≤ ∥Θ∥ ∥v∥.

• ∥v∥ =
∥∥Θ†Θv

∥∥ ≤
∥∥Θ†

∥∥ ∥v∥Θ.
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• | ∥v∥ − ∥v∥Θ | ≤
√
ϵ ∥v∥ if Θ is an ϵ-embedding for V ⊂ Cn and v ∈ V .

• ∥Θ∥F ≤
√
(1 + ϵ)n with probability at least 1− δ if Θ is an (ϵ, δ/n, 1) oblivious l2-subspace embedding,

where ∥·∥F is the Frobenius norm.

We refer to [12] for more details of third and last bounds. First and second inequalities lead the norm
equivalence. To be specific, we have

1

∥Θ†∥
∥v∥ ≤ ∥v∥Θ ≤ ∥Θ∥ ∥v∥ ,

for any v. For sufficiently good Θ, e.g. full rank Θ, it implies
∥∥Θ†

∥∥ = 1/σmin (Θ) and

σmin (Θ) ∥v∥ ≤ ∥v∥Θ ≤ ∥Θ∥ ∥v∥ ,

where σmin (Θ) is the minimum singular value of Θ. Since Frobenius norm of a matrix is equivalent to l2
norm of its singular values, we can observe the bound of singular values by the last bound. Note that the
norm equivalence is independent of v but it depends on the parameters of subspace embedding.

2.1. Randomized Arnoldi iteration

Unlike other variants of Gram-Schmidt process, e.g. CGS, MGS, CGS2 and MGS2, the randomized
Gram-Schmidt process allows us to have Θ orthogonality rather than l2 orthogonality. In other words, we
will employ Θ orthogonal projector hence we define

RGS : P (i) = In −Qi(ΘQi)
†Θ,

where Qi = [q1, . . . , qi] for each i ∈ {1, . . . ,m}.
In a similar way with the classical Arnoldi iteration, the RGS variant also holds Arnoldi relation (1.1) (or

(1.2) if preconditioned). The algorithm of randomized flexible Arnoldi process is depicted as follows.

Algorithm 1: RGS flexible Arnoldi iteration

Data: matrix A ∈ Cn×n, vector v ∈ Cn, sketching matrix Θ ∈ Ct×n, number of iterations m, and
variable preconditioner Mj for j = 1, . . . ,m

Result: Vm+1 ∈ Cn×(m+1), Zm ∈ Cn×m and Hessenberg matrix Hm ∈ C(m+1)×m (optionally
Sm+1 ∈ Ct×(m+1))

1 w = v;
2 Sketch w: p = Θw;
3 q = w; s = p; h = ∥s∥; s1 = s/h; v1 = q/h; S1 = [s1]; V1 = [v1];
4 for j = 1 : m do
5 Apply preconditioner Mj onto vj : zj = apply(Mj ,vj);
6 w = Azj ;
7 Sketch w: p = Θw;
8 Solve t× j least squares problem: Hm(1 : j, j) = arg min

y∈Cj
∥Sjy − p∥;

9 q = w − VjHm(1 : j, j);
10 Sketch q: s = Θq;
11 h = ∥s∥; sj+1 = s/h; vj+1 = q/h;
12 Sj+1 = [s1, . . . , sj+1]; Vj+1 = [v1, . . . ,vj+1]; Zj = [z1, . . . ,zj ]; Hm(j + 1, j) = h;

13 end

14 (Optional: compute ∆m :=
∥∥SH

m+1Sm+1 − Im+1

∥∥
F
to check the sketched orthogonality

numerically.)

The basic concept of Algorithm 1 is sketching the basis onto the subspace of dimension t from the higher
dimension n and solving least squares problems to impose orthogonality with respect to the sketching
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matrix Θ. Theoretically, Sj is l2 orthonormal for a full rank Θ but in practice with including round-off
errors, ϵ-embedding property equipped sketching matrix will yield SH

j Sj ≈ Ij . Hence we may want to have

the sketching matrix satisfying sufficiently small ∆m =
∥∥SH

m+1Sm+1 − Im+1

∥∥
F
. For more detail of stability

analysis, we refer to [12]. Hereafter, we assume that the sketching matrix Θ has sufficiently good l2-subspace
embedding properties, which resulting κ(Q) = 1 +O(ϵ) where Q is obtained by RGS process.

By disregarding the rounding error, we can derive l2 orthonormality of Sm+1 such as SH
m+1Sm+1 = Im+1

as well as the Θ orthonormality of Vm+1 such as V H
m+1Θ

HΘVm+1 = Im+1, since Sm+1 = ΘVm+1. At the
same time, the Arnoldi identity holds.

Remark. As in Line 8 of Algorithm 1, we need to solve the least squares problem. It is equivalent to
computing (ΘVj)

†Θw in the projection P (j) of w, since we have

arg min
y∈Cj

∥Sjy − p∥ = (Sj)
†p = (ΘVj)

†Θw for j = 1, . . . ,m.

Hence, instead of considering the pseudo-inverse, we can derive Hm(1 : j, j) by solving the least squares
problem with some accurate and stable least squares solvers.

Without round-off errors, we have the following theorem.

Theorem 1. With high probability (almost surely), Sj is orthonormal and hence we have (Sj)
† = SH

j to
yield

Hm(1 : j, j) = SH
j p.

Proof. We shall use mathematical induction to show our claim. Let 1 ≤ j ≤ m. For j = 1, it is trivial that

∥s1∥ = 1 and argmin
y∈C

∥s1y − p∥ = sH1 p = (p, s1) ,

for the given p. Assume that the argument holds for j = i. Then we want to show it for j = i + 1 to
complete the proof by induction. Consider si+1. By the definition, we have

si+1 =
Θq

h
=

Θ(w − ViHm(1 : i, i))

h
=

Θ(w − ViS
H
i p)

h
and ∥si+1∥ = 1,

where q and w are given before in iteration j = i, and h = ∥Θq∥. After noting that Si = ΘVi, we can
rewrite it as

si+1 =
Θw − SiS

H
i p

h
=

p− SiS
H
i p

h
=

1

h

(
p−

i∑
k=1

(p, sk) sk

)
by the definition of p. For any i0 ≤ i, we can observe that

(si+1, si0) =
1

h

(
(p, si0)−

i∑
k=1

(p, sk) (sk, si0)

)
=

1

h
((p, si0)− (p, si0) (si0 , si0)) = 0

since Si is orthonormal. We thus have the orthonormal Si+1. Furthermore, it implies

(Si+1)
† = SH

i+1 and Hm(1 : i+ 1, i+ 1) = SH
i+1p.

Therefore, the induction completes the proof.

Thanks to Theorem 1, Line 8 in Algorithm 1 can be simplified and replaced by

Hm(1 : j, j) = SH
j p for j = 1, . . . ,m. (2.1)

In practice, the quality of Hm depends on the orthogonality of Sm whereas it might have some errors from
least squares solvers before. However, if the sizes of the least squares problems are small enough, the errors
from the solvers will be negligible. Therefore, the computation of Hm is just matter of choice.
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2.2. Randomized FGMRES

Using RGS flexible Arnoldi process, we can construct sets of Θ orthonormal basis vectors for Krylov
subspace methods, e.g. (F)GMRES [1, 22]. Based on l2-subspace embedding properties, the randomized
FGMRES will find the solution in the Krylov subspace with minimal residual in Θ norm sense rather in the
standard l2 norm sense over Cn. We will approximate a solution xm in the space x0 + range(Zm) by taking
into account a minimization of the sketched norm of the residual rm = b − Axm. More precisely, we have
the following minimization problem such that

minimize ∥rm∥Θ ⇔ minimize ∥r0 −AZmy∥Θ ⇔ minimize ∥r0 − Vm+1Hmy∥Θ
for some y ∈ Cm, by the Arnoldi relation. Since Vm+1 is Θ orthonormal (this argument is equivalent to that
ΘVm+1 is l2 orthonormal), we have

minimize ∥rm∥Θ ⇔ minimize ∥c−Hmy∥ ⇔ solve y∗ = arg min
y∈Cm

∥c−Hmy∥ ,

where c = V H
m+1Θ

HΘr0.

Theorem 2. In the randomized FGMRES, we have the minimal residual principle with respect to the
sketched norm to yield

(ΘAZm)HΘrm = 0.

Proof. Let xm be the solution of the minimization problem for the sketched norm of the residual rm where

xm = x0 + Zmym, for some ym ∈ Cm.

Let us define a function J(y) by J(y) = 1
2 ∥r0 −AZmy∥2Θ for y ∈ Cm. Note that

minimize ∥rm∥Θ ⇔ minimize J(y).

Then ym should satisfy that
∇J(ym) = 0.

Hence we have

∇J(ym) =(ΘAZm)HΘAZmym − (ΘAZm)HΘr0

=HH
mV H

m+1Θ
HΘVm+1Hmym − (ΘAZm)HΘr0

=HH
mHmym − (ΘAZm)HΘr0

=0,

by the flexible Arnoldi relation and Θ orthonormality of Vm+1. Since HH
mHm is non-singular, we have

ym = (HH
mHm)−1(ΘAZm)HΘr0. (2.2)

Next, we consider (ΘAZm)HΘrm. By the definition of rm and (2.2), we have

rm = b−Axm = r0 −AZm(HH
mHm)−1(ΘAZm)HΘr0.

With the Arnoldi relation and Θ orthonormality, this leads us to obtain

(ΘAZm)HΘrm =(ΘAZm)HΘr0 − (ΘAZm)HΘAZm(HH
mHm)−1(ΘAZm)HΘr0

=(ΘAZm)HΘr0 −HH
mHm(HH

mHm)−1(ΘAZm)HΘr0

=0.

While the approximate solution xm is an optimal minimizer of the residual norm in the sketched norm
sense, it is also a quasi-optimal minimizer of the l2 residual norm due to the l2-subspace embedding properties
[12].
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2.3. Randomized FGMRES-DR

The convergence of Krylov subspace methods is often related to the spectrum or pseudo-spectrum of the
matrix. If one can remove or deflate eigenvectors associated with eigenvalues close to zero, the convergence
rate will be significantly improved [5], especially if A is normal. Despite the approximate eigenvectors, the
deflating strategy performs well in enhancing Krylov methods. In practice, the deflation method combines
with restarting.
In this section, we introduce the randomized FGMRES with deflated restarting based on GMRES-DR

of Morgan [5]. To approximate eigenvectors associated with eigenvalues of the smallest magnitude, the
harmonic Ritz pairs are computed. Rayleigh-Ritz method has been commonly applied for solving eigenvalue
problems. Let us introduce the definition of the (harmonic) Ritz pairs [23]. Furthermore, we refer to [13]
for the randomized Rayleigh-Ritz method and its analysis.
Let B ∈ Cn×n and S be a m dimensional subspace of Cn. Then a Ritz pair (y, λ) ∈ Cn × C of B with

respect to S satisfies
y ∈ S and By − λy ⊥ S.

Here, we call y a Ritz vector associated with a Ritz value λ. In practice, we can define the subspace S as
the Krylov subspace Km(A, b) if B = A or AKm(A, b) if B = A−1. The latter choice gives the harmonic
Ritz pairs of A.

In a classical manner, we consider the harmonic Ritz pairs of A with respect to the subspace S =
AKm(A, b). Then we have a set of harmonic Ritz pairs R such that

R =
{
(Vmg, λ) ∈ Cn × C | HH

mHmg = λĤH
mg, g ∈ Cm

}
, (2.3)

where Vm and Hm are given by the classical Arnoldi algorithm and Ĥm = Hm(1 : m, 1 : m). Thus, to
compute the harmonic Ritz pairs, we want to solve the generalized eigenvalue problem HH

mHmg = λĤH
mg.

This problem is equivalent to the following standard eigenvalue problem(
Ĥm + h2

m+1,mĤ−H
m emeTm

)
g = λg, (2.4)

where hm+1,m = Hm(m+1,m) and em is the m-th Cartesian basis vector of Cm. We refer to [5, 6] and the
references therein for more details of the harmonic Ritz formulation.
In a similar way, we can formulate the eigenvalue problem of the harmonic Ritz pair with respect to the

sketched inner product. In other words, we consider

y ∈ S and By − µy ⊥Θ S, (2.5)

where ⊥Θ denotes the sketched orthogonal. As in the harmonic Ritz formulation for the flexible variants
[6, 11], we define B = (AZmV †

m)−1 and S = (AZmV †
m)Km(A, b) with the flexible Arnoldi relation (1.2)

by the RGS algorithm. Clearly, we have V †
m = V H

m ΘHΘ, since Vm is Θ orthonormal. After noting that
y ∈ range(AZm), we can write (2.5) as

∀u ∈ Cm, uH(ΘAZm)H(ΘVmg − µΘAZmg) = 0, (2.6)

where y = (AZmV †
m)Vmg = AZmg for some g. Using the Arnoldi relation and the Θ orthonormality of

Vm+1, we can obtain the eigenvalue problem such that

µHH
mHmg = HH

mV H
m+1Θ

HΘVmg = ĤH
mg

which yields the equivalent problem (2.4) with λ = 1/µ. Therefore, we have the same harmonic Ritz
formulation regardless of GS algorithms. As a result, we can propose the algorithm of the randomized
FGMRES-DR as follows. In the case where no deflation is employed, i.e. k = 0, this algorithm presents the
restarted randomized FGMRES.
In Algorithm 2, once we compute Θ orthonormal basis, we can obtain k harmonic Ritz pairs. We refer to

[6, Proposition 2] for the procedures of Lines 7-9. Then, we perform (m−k) RGS flexible Arnoldi iterations
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Algorithm 2: Randomized FGMRES with (deflated) restarting: RGS-FGMRES-DR (m, k)

Data: matrix A ∈ Cn×n, non-zero vector b ∈ Cn, sketching matrix Θ ∈ Ct×n, size of Krylov
subspace m, number of deflated vectors k, variable preconditioner Mj for j = 1, . . . ,m,
tolerance tol > 0, and initial vector x0 ∈ Cn

Result: approximate solution x for Ax = b
1 r0 = b−Ax0; β = ∥r0∥; c = [∥Θr0∥ , O1×m]T ; em = [O1×(m−1), 1]

T ;
2 Initial RGS flexible Arnoldi process to get Vm+1, Zm and Hm with the starting vector r0 such that

satisfyingAZm = Vm+1Hm and V H
m+1Θ

HΘVm+1 = Im+1;
3 y∗ = arg min

y∈Cm
∥c−Hmy∥; xm = x0 + Zmy∗; x0 = xm; r0 = b−Ax0; β = ∥r0∥; ρ = c−Hmy∗;

4 while β/ ∥b∥ > tol do
5 if k > 0 then

6 h = Hm(m+ 1,m); Ĥm = Hm(1 : m, 1 : m);
7 Compute k harmonic Ritz vectors by solving the eigenvalue problem:(

Ĥm + h2Ĥ−H
m emeTm

)
gi = λigi for i = 1, . . . , k

and set Gk = [g1, . . . , gk] ∈ Cm×k;

8 Gk+1 =

[[
Gk

O1×k

]
,ρ

]
;

9 Perform QR decomposition of Gk+1: Gk+1 = Qk+1Rk+1;

10 Define Vk+1 = Vm+1Qk+1, Zk = ZmQk+1(1 : m, 1 : k) and Hk = QH
k+1HmQk+1(1 : m, 1 : k)

satisfying AZk = Vk+1Hk;

11 else
12 v1 = r0/ ∥r0∥Θ;
13 end
14 Perform (m− k) steps of RGS flexible Arnoldi process to construct Vm+1, Zm and Hm with

Vk+1, Zk and Hk such that satisfying AZm = Vm+1Hm and V H
m+1Θ

HΘVm+1 = Im+1;

15 Update c = V H
m+1Θ

HΘr0; y
∗ = arg min

y∈Cm
∥c−Hmy∥; xm = x0 + Zmy∗; x0 = xm;

r0 = b−Ax0; β = ∥r0∥; ρ = c−Hmy∗;

16 end
17 x = xm;

to construct the basis vector vi for i = k + 2, . . . ,m + 1 such that vH
i ΘHΘVk+1 = O1×(k+1) resulting Θ

orthonormal Vm+1. After the construction of the new basis, we can obtain the approximate solution as
before.

Proposition 1. Without deflation in Algorithm 2 (k = 0), we can simplify c as

c = βΘe1, where βΘ = ∥r0∥Θ.

Proof. The Θ orthonormality of Vm+1 immediately gives (v1,vi)Θ = 0,∀i = 2, . . . ,m+ 1 and so we have

c = V H
m+1Θ

HΘr0 = V H
m+1Θ

HΘv1 ∥r0∥Θ = [∥r0∥Θ , 0, . . . , 0]T = βΘe1,

with v1 = r0/ ∥r0∥Θ.

Remark. As seen in Line 8 of Algorithm 2, QR factorization is required in l2 norm sense. We can also
consider some sketching variants but it will not be beneficial since the size of Gk+1 is only (m+ 1)× (k + 1).
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Mostly, we consider k < m ≪ t. Therefore, we keep using l2 QR decomposition here. Furthermore, we note
that

V H
k+1Θ

HΘVk+1 = QH
k+1

(
V H
m+1Θ

HΘVm+1

)
Qk+1 = QH

k+1Im+1Qk+1 = Ik+1,

since Qk+1 ∈ C(m+1)×(k+1) is l2 orthonormal.

Proposition 2. With k > 0, we can rewrite c in Algorithm 2 as

c =

[
QH

k+1ρ
O(m−k)×1

]
,

after the first GMRES cycle.

Proof. Let k > 0. We consider one cycle of Algorithm 2 after the first cycle. As in the QR decomposition
of Gk+1, e.g. corresponding to Line 9, we denote the QR factorization of Gk by Gk = QkRk. Then, using
QR decomposition of Gk yields

Gk+1 = Qk+1Rk+1 =

[[
Qk

O1×k

]
, qk+1

] [
Rk u

O1×k α

]
,

where u = [QH
k , Ok×1]ρ ∈ Ck and α is given with the orthogonal projection of ρ with respect to Qk, e.g.

α =
∥∥∥(I − Q̃kQ̃

H
k

)
ρ
∥∥∥ for Q̃k =

[
Qk

Ok×1

]
.

For more details of the reformulation, we refer to [6]. From this decomposition of Gk+1, we can define Zk

and Hk in Line 10 by
Zk = Zold

m Qk and Hk = QH
k+1H

old
m Qk,

respectively, where we denote the matrices defined in the previous cycle with the letter ‘old’ in superscripts.
Also, we can derive

ρ = Qk+1

[
u
α

]
. (2.7)

On account of the approximate solution in the affine space x0+range(Zm), we note that the residual resides
in range(Vm+1). It implies that

r0 = V old
m+1ρ = Vk+1

[
u
α

]
, (2.8)

by (2.7), where V old
m+1 is given by the previous cycle, i.e. before performing further (m−k) Arnoldi iterations.

When we complete the construction of Krylov basis vectors, e.g. corresponding to Line 14, (2.8) leads us to
obtain

c = V H
m+1Θ

HΘr0 = V H
m+1Θ

HΘVk+1

[
u
α

]
.

Then Θ orthonormality implies

c =

 u
α

O(m−k)×1

 . (2.9)

Moreover, in practice, we can obtain (2.9) without computing u and α separately. For instance, using (2.7)
and l2 orthogonality of Qk+1, (2.9) can be rewritten as

c = V H
m+1Θ

HΘVk+1

(
QH

k+1Qk+1

) [ u
α

]
= V H

m+1Θ
HΘVk+1Q

H
k+1ρ,

and Θ orthonormality yields

c =

[
QH

k+1ρ
O(m−k)×1

]
. (2.10)

Therefore, we want to solve y∗ = arg min
y∈Cm

∥c−Hmy∥ with (2.10) to approximate the solution for the

current cycle.
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Remark. We note that Hk is no longer an upper Hessenberg matrix, and neither is Hm in Line 10. In
general, they are dense full matrices. But it does not matter in practice. Because Hm is the only m+ 1 by
m matrix hence the least squares solver will not degrade with respect to Hm.

3. Deflation of singular vectors

From the inspiring work of [8], Al Daas et al. have investigated the deflation based on singular vectors
associated with the smallest singular values [10]. To deflate these vectors, another variant of GMRES-DR will
be employed, for instance, GCRO-DR [9, 11]. As a result, [10] presents GMRES-MDR and its convergence
analysis. Here, we introduce the flexible variant of GMRES-MDR involving RGS.

3.1. Randomized FGMRES-MDR

First of all, we give how to approximate the right singular vectors of A based on computing Ritz pairs.
Recall the definition of Ritz pairs. We can also compute approximate singular vectors arising from

finding (y, λ) such that y ∈ S and By − λy ⊥ S,

where B = AHA and S = Km(A, b). In a similar way with (2.3) and (2.4), we can derive the standard
eigenvalue problem such that

HH
mHmg = λg for g ∈ Cm. (3.1)

We call the pair (Vmg, λ) a singular Ritz pair.
In the randomization sense, we want to compute the approximate right singular vectors of the sketched

A. That is, we consider an approximation of the singular vector of the matrix ΘA. In the flexible variant
way, taking into account B = (ΘAZmS†

m)H(ΘAZmS†
m) and S = ΘKm(A, b) = range(Sm) where Sm = ΘVm

given by RGS Arnoldi process, we can obtain the problem of the singular Ritz pairs such that finds a pair
of y ∈ S and λ satisfying

∀u ∈ Cm, uHSH
m

(
(ΘAZmS†

m)H(ΘAZmS†
m)Smg − λSmg

)
= 0, (3.2)

where y = Smg. Using the fact that Sm+1 is orthonormal and the flexible Arnoldi relation (1.2), (3.2) yields
the same eigenvalue problem (3.1), for instance

SH
m

(
(ΘAZmS†

m)H(ΘAZmS†
m)Smg − λSmg

)
=SH

m

(
SmHH

mSH
m+1Sm+1HmSH

mSmg − λSmg
)

=SH
m

(
SmHH

m (SH
m+1Sm+1)Hm(SH

mSm)g − λSmg
)

=SH
m

(
SmHH

mHmg − λSmg
)

=SH
mSmHH

mHmg − λSH
mSmg

=HH
mHmg − λg

=0.

Moreover, as in [11, 10], introducing Wm with range(Wm) = range(Sm) leads us to obtain the eigenvalue
problem with respect to B = (ΘAW †

m)H(ΘAZmW †
m) and S = range(Wm) formed by

HH
mHmg = λWH

mWmg for g ∈ Cm. (3.3)

The definition of Wm is specified in Algorithm 3. For more detail of analysis of Wm, we refer to [11, 10].
By solving eigenvalue problems (3.1) or (3.3), we can immediately define Gk. While Morgan [5] introduced

the augmented formula Gk+1 with the harmonic Ritz pairs and the residual vector, the singular Ritz pairs
are not applicable for the construction of Gk+1. To be specific, when the augmented Gk+1 is defined in
FGMRES-DR, the argument of the harmonic residual vectors such that AZmg − λVmg ∈ range(Vm+1) is
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used. However, the singular residual vectors do not reside in range(Vm+1). Hence, AZmGk in FGMRES-
MDR cannot be expressed with Vm+1 as in FGMRES-DR. As a consequence, we could not derive deflated
subspaces satisfying Arnoldi identity such that AZk = Vk+1Hk in that way of Algorithm 2. Instead, GMRES-
MDR was proposed based on GCRO-DR by Al Daas et al. [10]. In this manner but without diagonal scaling
(cf. [11]), we can propose the randomized FGMRES-MDR as following.

Algorithm 3: Randomized FGMRES with SVD based deflated restarting: RGS-FGMRES-MDR
(m, k)

Data: matrix A ∈ Cn×n, non-zero vector b ∈ Cn, sketching matrix Θ ∈ Ct×n, size of Krylov
subspace m, number of deflated vectors k, variable preconditioner Mj for j = 1, . . . ,m,
tolerance tol > 0, and initial vector x0 ∈ Cn

Result: approximate solution x for Ax = b
1 r0 = b−Ax0; β = ∥r0∥; c = [∥Θr0∥ , O1×m]T ;
2 Initial RGS flexible Arnoldi process to get Vm+1, Zm and Hm with the starting vector r0 such that

satisfying AZm = Vm+1Hm and V H
m+1Θ

HΘVm+1 = Im+1;
3 Solve y∗ = arg min

y∈Cm
∥c−Hmy∥;

4 xm = x0 + Zmy∗; x0 = xm; r0 = b−Ax0; β = ∥r0∥; Wm = ΘVm;
5 while β/ ∥b∥ > tol do
6 Compute k singular vectors by solving the eigenvalue problem:

HH
mHmgi = λiW

H
mWmgi for i = 1, . . . , k

and set Gk = [g1, . . . , gk] ∈ Cm×k;
7 Perform QR decomposition of HmGk: HmGk = QkRk;

8 Define Vk = Vm+1Qk and Zk = ZmGkR
−1
k satisfying AZk = Vk;

9 Define Wk = WmGkR
−1
k ;

10 Perform (m− k) steps of RGS flexible Arnoldi process to construct Vm−k+1, Zm−k and Hm−k

with the starting vector r0 with respect to the linear operator (In − VkV
H
k ΘHΘ)A such that

satisfying
(In − VkV

H
k ΘHΘ)AZm−k = Vm−k+1Hm−k with V H

m−k+1Θ
HΘVm−k+1 = Im−k+1;

11 Define Vm+1 = [Vk, Vm−k+1], Zm = [Zk, Zm−k] and Hm =

[
Ik V H

k ΘHΘAZm−k

O(m−k+1)×k Hm−k

]
yielding AZm = Vm+1Hm and V H

m+1Θ
HΘVm+1 = Im+1;

12 Define Wm = [Wk,ΘVm+1(:, k + 1 : m)];

13 Update c = V H
m+1Θ

HΘr0; y
∗ = arg min

y∈Cm
∥c−Hmy∥; xm = x0 + Zmy∗; x0 = xm;

r0 = b−Ax0; β = ∥r0∥ ;

14 end
15 x = xm;

Remark. After the harmonic Ritz values based deflation steps and (m−k) iterations of Arnoldi, Hm is not
upper Hessenberg, since Hk becomes dense in general. However, in case of singular value based deflation,
we have the upper Hessenberg matrix.

Once we compute the sketch in the Arnoldi iteration, it is not necessary to compute ΘVm+1 again. Since
we have already obtain Sm+1 in the Arnoldi process, we can use it straightforwardly. For instance, we can
define c by c = SH

m+1Θr0. Furthermore, in Algorithm 3, if we define Sk = Sm+1Qk, V
H
k ΘH can be replaced

by SH
k in Lines 10 and 11.

Theorem 3. Let Vm+1 be the matrix formed by the Krylov vectors in Algorithm 3. Then Vm+1 is Θ
orthonormal for each cycle.

Proof. For the first cycle, it is trivial since RGS Arnoldi process imposes Θ orthonormality. Let us consider
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Vm+1 after deflating. We want to show that (ΘVm+1)
HΘVm+1 = Im+1. Suppose V

old
m+1 is the Θ orthonormal

matrix from the previous cycle. Then we have

(ΘVk)
HΘVk = (ΘV old

m+1Qk)
HΘV old

m+1Qk = QH
k Im+1Qk = Ik,

by l2 orthogonality of Qk and Θ orthogonality of V old
m+1. On the other hand, RGS Arnoldi iterations give

us Θ orthonormal Vm−k+1. Hence we shall show that each column vector in Vm−k+1 is orthogonal to every
column vector in Vk.
By recalling Theorem 2, the minimal residual principle implies that

(ΘAZold
m )HΘr0 = 0,

where r0 = roldm . Since AZk = Vk, we can obtain

(ΘVk)
HΘr0 =(ΘAZk)

HΘr0

=R−H
k GH

k (ΘAZold
m )HΘr0

=0.

Thus, we have (ΘVk)
HΘvk+1 = (ΘVk)

HΘr0/ ∥r0∥Θ = 0. Before we consider other columns of Vm−k+1, we
note that for any v ∈ range

(
(In − VkV

H
k ΘHΘ)A

)
, the argument (ΘVk)

HΘv = 0 always holds. For example,
if we denote v = (In − VkV

H
k ΘHΘ)Aw for some w ∈ Cn, the sketched inner product of v and i-th column

of Vk gives (
(In − VkV

H
k ΘHΘ)Aw,vi

)
Θ
=vH

i ΘHΘ(In − VkV
H
k ΘHΘ)Aw

=vH
i ΘHΘAw − eHi V H

k ΘHΘAw

=vH
i ΘHΘAw − vH

i ΘHΘAw

=0,

where ei is the i-th standard basis of Ck for i = 1, . . . , k. Since vj for any j = k + 2, . . . ,m + 1 resides
in range

(
(In − VkV

H
k ΘHΘ)A

)
, every column in Vm−k+1 is Θ orthogonal to Vk. Consequently, Vm+1 is Θ

orthonormal.

As shown in Theorem 3, the basis vectors of the Krylov subspace are well-constructed with Θ orthonor-
mality and the flexible Arnoldi relation. Next, we present how the deflation of singular vectors of ΘA works.
Thanks to Theorem 2, we can extend theoretical results on the convergence of the restarted Krylov methods,
which addressing that the smallest singular value play an important role at restart [8], in the sketched norm
sense. Moreover, as [10, Theorem 4.1] showed the way of singular vector based deflation in the Krylov meth-
ods, we can prove the approximate theorem for deflation of singular vectors associated with the k smallest
singular values in the sketched low-dimensional space.

Theorem 4. Let x∗ be the exact solution of Ax = b. Consider the singular value decomposition of ΘA
with splitting such that

ΘA = U1Σ1V
H
1 + U2Σ2V

H
2 ,

where the diagonal of Σ2 consists of k smallest singular values of ΘA and Σ1 is the diagonal matrix containing
other singular values. Let x̂ and x̃ be an exact solution and an approximate solution of the linear system

(It − U2U
H
2 )ΘAx = (It − U2U

H
2 )Θb, (3.4)

with ∥x̂− x̃∥ ≤ η and η > 0, respectively. Then it holds that∥∥∥x∗ − (In − V2V
H
2 )x̃− V2Σ

†
2U

H
2 Θb

∥∥∥ ≤ η. (3.5)
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Proof. The proof follows the similar arguments in the proof of [10, Theorem 4.1]. Since x∗ is the solution
of the original system, x∗ is a solution of (3.4). Let x be a solution of (3.4). Then we have

ΘAx = (It − U2U
H
2 )Θb+ U2U

H
2 ΘAx = ΘAx∗ − U2U

H
2 (Θb−ΘAx).

Taking the pseudo inverse of ΘA implies that

x = x∗ − V2Σ
†
2U

H
2 (Θb−ΘAx) = x∗ + V2(V

H
2 x− Σ†

2U
H
2 Θb).

Moreover, for any u ∈ Ck, x, x∗ + V2u is a solution of (3.4), since

(It − U2U
H
2 )ΘAV2u = (It − U2U

H
2 )U2Σ2u = U2Σ2u− U2Σ2u = 0.

Thus, any solution of (3.4) can be expressed as x∗+V2u for some u ∈ Ck and hence we can write x̂ = x∗+V2û
for some û.
On the other hand, using the pseudo inverse of ΘA, we have

V2V
H
2 x∗ = V2V

H
2 (ΘA)†Θb = V2Σ

†
2U

H
2 Θb. (3.6)

With (3.6), we can decompose x∗ by

x∗ = (In − V2V
H
2 )x∗ + V2V

H
2 x∗ = (In − V2V

H
2 )x̂+ V2Σ

†
2U

H
2 Θb, (3.7)

since x̂ = x∗ + V2û and (In − V2V
H
2 )V2û = 0.

Turning back to our main argument, let us consider

x∗ − (In − V2V
H
2 )x̃− V2Σ

†
2U

H
2 Θb.

The substitution of (3.7) into this, we can obtain

x∗ − (In − V2V
H
2 )x̃− V2Σ

†
2U

H
2 Θb = (In − V2V

H
2 )(x̂− x̃),

thus we have ∥∥∥x∗ − (In − V2V
H
2 )x̃− V2Σ

†
2U

H
2 Θb

∥∥∥ =
∥∥(In − V2V

H
2 )(x̂− x̃)

∥∥ ≤ ∥x̂− x̃∥ ≤ η,

by the property of the projection.

Theorem 4 is the sketched analogue of [10, Theorem 4.1]. In Theorem 4, (3.5) describes that the error
norm in the solution x∗ of the original system corresponding to an approximated solution x̃ of the sketched
projection problem (3.4) and the correction term is bounded by the error norm in the solution of (3.4).
For more convergence analysis of (F)GCRO-DR and SVD based deflation, we refer to [8, 10, 11] and the
references therein.

Remark. After noting that Sk = ΘVk and Sm−k+1 = ΘVm−k+1, in the sketched orthogonal projection, we
have

Θ(In − VkV
H
k ΘHΘ)AZm−k = (It −ΘVkV

H
k ΘH)ΘAZm−k = (It − SkS

H
k )ΘAZm−k = Sm−k+1Hm−k

by sketching the result of Line 10 of Algorithm 3.

By Theorems 3 and 4, and the above remark, we can immediately extend the convergence results obtained
in [8, 10] with respect to the sketched manner. In a similar way to the previous section, we can simplify c
for the least squares problem for the randomized FGMRES-MDR as in Propositions 1 and 2.
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Proposition 3. With k > 0, we can rewrite c in Algorithm 3 as

c = βΘek+1,

where βΘ = ∥r0∥Θ and ek+1 is the (k + 1)-th standard basis of Cm+1 after the first GMRES cycle.

Proof. After noting that vk+1 = r0/ ∥r0∥Θ, the Θ orthonormality leads us to get

c = V H
m+1Θ

HΘr0 = V H
m+1Θ

HΘvk+1 ∥r0∥Θ = βΘek+1,

where βΘ = ∥r0∥Θ and ek+1 is the (k + 1)-th standard basis of Cm+1.

While we can choose the restart parameter for its effectiveness with the adaptive strategy, we have no
clue to define the deflation parameter for the most optimal setting. Only experimentally, larger k would
contain more deflated vectors associated with eigenvalues/singular values which are clustered at the origin.
Accordingly, we can think of the adaptive choice of deflation parameter k for each cycle when k approximate
eigenvalues/singular values are sufficiently close to zero. More precisely, in [10, Algorithm 4], the authors
introduced a spectral radius criterion 0 < γ < 1 to take the maximal ki ≤ m for each i−th cycle satisfying
that

0 < |λ1| ≤ |λ2| ≤ . . . ≤ |λki
| < γ,

where λj is the approximate eigenvalues/singular values for j = 1, . . . , ki. Therefore, how much deflation
improves convergence will be controlled by the choice of γ. We give remarks that too small γ implies no
deflation, i.e. making ki = 0, and too large γ forces not to perform Arnoldi process after deflating if ki = m.
However, in this paper, we consider the fixed k for simplicity.

3.2. Usual orthonormality

We can additionally impose l2 orthogonality on the given Θ orthonormal Vm+1 by QR factorization.
Applying l2 QR decomposition to Vm+1 leads to the new l2 orthonormal V̄m+1 satisfying the Arnoldi identity.
More precisely, when we have Vm+1 = V̄m+1Um by QR factorization, we can define the new Krylov subspace
basis such that

AZm = V̄m+1H̄m with V̄ H
m+1V̄m+1 = Im+1 and H̄m = UmHm,

from the previous RGS flexible Arnoldi iteration.
Since the Krylov basis after the QR factorization procedure is l2 orthonormal, the linear operator becomes

simpler, i.e. employing l2 orthogonal projection rather than the sketched orthogonal projection. Except
for performing additional QR decomposition, the randomized FGMRES-MDR involving l2 orthogonality
consists of the same progress as Algorithm 3. This method gives some benefits in orthogonality and stability
of the construction of Krylov basis vectors. From the fact that the RGS provides well-conditioned matrices
whose columns are Krylov basis vectors, e.g. κ(Vm+1) ≈ 1, we ensure the stability of QR decomposition
for Vm+1 = V̄m+1Um. Because the algorithms of QR depend on the condition number of a matrix. It also
allows us to impose better quality of orthonormal basis vectors. It seems very similar to reorthogonalization
strategy such as CGS2 and MGS2 [17] to avoid the loss of orthogonality in Vm+1. Thus, we call the RGS
algorithm imposing l2 orthogonality the RGS2 algorithm.

Remark. This reorthogonalization is also applicable to other randomized GMRES. Hence, we can easily
implement the randomized FGMRES-DR with l2 orthogonal basis vectors. In this paper, we focus on RGS
implementations without reorthogonalization but present some numerical results of RGS2 with FGMRES-
MDR.

4. Advantages of random sketching

In this section, we describe the main benefits of our algorithms: (i) stable and (ii) efficiency. We present
the stability analysis of RGS algorithm and compare with other variants of the GS process. Additionally, we
show computational costs corresponding to Algorithms of RGS procedures, the randomized FGMRES-DR,
and the randomized FGMRES-MDR.
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4.1. Stable RGS algorithm

We recall the theoretical results from [13] regarding numerical stability bounds for RGS iterations. Let
us consider QR decomposition of a matrix W ∈ Cn×m to give W ≈ QR by the RGS algorithm with finite
precision arithmetic. According to [12, Theorem 3.2], we have the stability bound of the RGS process given
by

∥W −QR∥F ≤ Cm3/2ū ∥W∥F , (4.1)

with κ(Q) = 1 + O(ϵ), where ū denotes the unit round-off (e.g. ū = O(10−16) for IEEE double precision)
and C is a positive constant. Note that (4.1) relies on ϵ embedding property of Θ hence we assume that Θ
is l2−subspace embedding for W and Q for ϵ ≤ 1/2. As remarked in [12], although the proof for the bound
(4.1) followed with a multi-precision model, it holds in a unique precision model too. Moreover, the loss of
Θ orthogonality of Q (equivalent to l2 orthogonality of the sketched Q) is bounded by∥∥Im − (ΘQ)H(ΘQ)

∥∥
F
≤ Cm2ūκ(W ), (4.2)

for a positive constant C. Please refer to [12, Theorem 3.3] for more details of the bound (4.2).
On the other hand, we can see the rounding error analysis of CGS and MGS in [24, 25] and [26], respec-

tively. It is shown that the approximation error ∥W −QR∥F is bounded in a similar way with (4.1) involving
some low degree polynomials in m and n. While the loss of Θ orthogonality of Q in RGS is proportional to
κ(W ) in (4.2), we have the bounds of the loss of l2 orthogonality of Q given by

CGS:
∥∥Im −QHQ

∥∥ ≤ ξ1(m,n)ūκ(W )2, (4.3)

MGS:
∥∥Im −QHQ

∥∥ ≤ ξ2(m,n)ūκ(W ), (4.4)

with respect to GS process, where ξ1(m,n) and ξ2(m,n) are low degree polynomials in m and n. Thus,
we can observe that the RGS algorithm is more stable than the CGS algorithm and as stable as the MGS
algorithm.
To manage the loss of orthogonality from the presence of the round-off error, reorthogonalization is

widely used in CGS and MGS algorithms. For instance, under the assumption ξ1(m,n)ūκ(W )2 < 1 (resp.
ξ2(m,n)ūκ(W ) < 1) the loss of l2 orthogonality of Q computed by CGS2 (resp. MGS2) can be bounded
without the condition number term. For more details, we refer to [17] and the references therein. In case of
RGS2, it is easy to show that ∥∥∥Im − Q̃HQ̃

∥∥∥ ≤ ξ3(m,n)ū, (4.5)

where ξ3(m,n) is a low degree polynomials in m and n and Q̃ is computed by the RGS2 algorithm. As
seen in Section 3.2, the RGS2 algorithm combines RGS and CGS/MGS algorithms. More precisely, when
we apply the RGS2 process to W , we have Q for W = QR by RGS and Q̃ for Q = Q̃U by either CGS or
MGS. After noting that κ(Q) = 1 +O(ϵ), either (4.3) or (4.4) implies (4.5).

Remark. The numerical stability of GS algorithms can be also measured by the condition number of Q.
In infinite precision arithmetic, we have the exact orthonormal matrix Q and hence it always holds that
κ(Q) = 1. Therefore, with finite precision arithmetic, κ(Q) presents the quality of orthogonality, i.e. the
numerical stability.

In the context of the flexible Arnoldi process, W can be given as AZm. In the variants of the GMRES
method, the orthogonality of the matrix formed by Krylov vectors plays an important role in minimizing
the residual norm. Since the minimization problem is usually formulated using orthonormality constraints,
failing to maintain orthonormality can lead to non-optimal solutions or even convergence failure. In the
randomized FGMRES, Propositions 1, 2 and 3 will be no longer applicable if the loss of Θ orthogonality
exceeds a certain threshold. In such cases, we must solve a least squares problem to determine the coefficients
c, which are given by V H

m+1Θ
HΘVm+1.
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4.2. Computational costs

One of the main advantages of RGS is the reduction of computational costs in orthonormalization. It
is well known that the complexity of CGS is 2nm2 flops, and MGS has the same cost [27]. On the other
hand, when we suppose t ≪ n, we can disregard costs of the random sketching and the computations with
sketched vectors, e.g. p and s in Algorithm 1. More precisely, let Θ be chosen to give the most efficient
in sketching. Then, for instance, if the sketching is performed by SRHT, the random sketching in Lines 7
and 10, Algorithm 1 requires at most 4n log(t+ 1) flops in total for each iteration [12]. Let us consider the
computational cost of RGS corresponding to Lines 7–11 in Algorithm 1 for j-th iteration as following in
Table 1.

Corresponding line Complexity (flops)
Sketch a vector of Cn Lines 7 and 10 4n log(t+ 1)
Compute Hm(1 : j, j) Line 8 O(tj2) or 2tj

Compute q Line 9 2nj
Compute Hm(j + 1, j), vj+1 and sj+1 Line 11 n+ t2 + t

Table 1: Cost analysis in Θ orthogonalization for j-th iteration.

For sufficiently large j, the complexity of Lines 7 and 10 is dominated by Line 9, and since j ≤ m ≤ t ≪ n.
Depending on the way of computing Hm(j + 1, j), Line 8 requires different cost. For example, if we use
Householder QR or Givens QR as the least squares solver, it costs 2tj2flops or 3tj2flops, respectively.
Otherwise, using (2.1) leads us to obtain the complexity 2tjflops for Line 8. With j ≤ m ≤ t ≪ n, the cost
of Lines 8 and 11 is dominated by that of Line 9 too. Consequently, we have

total cost of RGS ≈
m∑
j=1

2nj = nm2flops.

Therefore, RGS algorithm has just half cost of CGS/MGS algorithms.
Regardless of the choice of the Gram-Schmidt process to construct Krylov basis vectors, FGMRES methods

have the same computational costs except for the orthogonalization process. In other words, the difference
in costs between our proposed algorithms and other FGMRES based on CGS/MGS occurs only in the
Arnoldi process where RGS has half cost of CGS/MGS. On the other hand, in FGMRES, other costs of
computations such as solving least squares problems for y∗, approximating the solutions and updating
residuals, are dominated by the computational cost of Arnoldi iteration excluding computations of applying
operators and preconditioners. For example, they require at most O(nm)flops whereas the Gram-Schmidt
process needs O(nm2)flops. In the same way, FGMRES-DR has similar complexity. As it is commonly
known that the complexity of finding eigendecomposition (via SVD) of a m×m matrix is m3flops, the total
cost of FGMRES-DR is either nm2flops in the randomized version or 2nm2flops in the CGS/MGS variants
for m ≪ n. It holds in the singular vectors based deflation as well. More precisely, we refer to [6] for the
computational cost of a generic cycle of FGMRES and FGMRES-DR and [10] for that of GMRES-MDR.
Therefore, the randomized FGMRES methods has half less complexity than other FGMRES methods based
on CGS/MGS. However, if we employ the RGS2 algorithm, we need to perform l2 QR decomposition on
the Krylov basis matrix, resulting in an increase in the computational cost. Hence the total cost becomes
3nm2flops. Nevertheless, it is less than the cost of other reorthogonalized methods such as CGS2 and MGS2
[17] that is 4nm2flops.

5. Numerical experiments

In this section, we present numerical experiments of our proposed algorithms to exhibit numerical per-
formance in stability as well as convergence. We have implemented the proposed algorithms in matlab
and used the matlab’s local functions, e.g. to solve least squares problem by ‘\’ and eigenvalue prob-
lems by eig(), to define preconditioners, etc. Furthermore, the rescaled Rademacher distribution has
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been employed in sketching, i.e. the sketching matrix Θ will be defined by the Rademacher distribu-
tion. All matlab codes for the following numerical examples are available at Jang’s GitHub (https:

//github.com/Yongseok7717/RandomizedGMRES).
First of all, we compare the stability of RGS for the construction of an orthogonal basis to validate our

methodology in regarding with the well-known CGS/MGS algorithms without reorthogonalization. Next, we
solve linear systems arising in compressible turbulent flows with using the randomized FGMRES methods.
We shall consider their numerical performances regarding convergence such as relative residual norms with
respect to the number of Arnoldi iterations.

5.1. Example 1: QR decomposition of an ill-conditioned matrix

Let us define a synthetic function such that

fµ(x) =
sin(10(µ+ x))

cos(100(µ− x)) + 1.1
,

where x ∈ [0, 1] and µ ∈ [0, 1]. Using this function, we consider the following matrix W defined by

Wij = fµj
(xi) for xi = iδx and µj = jδµ,

where δx = 1/n and δµ = 1/m with n = 105 and m = 250. Hence W is a matrix of n by m and this is
ill-conditioned, e.g. the condition number of W = O(1014).

We decompose the submatrices of W by QR factorization with respect to Gram-Schmidt process, e.g.
CGS, MGS and RGS algorithms. To be specific, we perform QR factorization of Wi which is a n× i matrix
extracted from the first i columns of W , resulting in Wi = W (:, 1 : i) = QiRi with respect to GS process.
We then compute condition numbers of Qi varying with i = 1, . . . , 250 and approximation errors of the QR
factorization with the quantity ∥Wi −QiRi∥ / ∥Wi∥. Note that the condition numbers close to 1 imply that
the the algorithms are numerically stable.

(a) Stability: κ(Qi) and κ(Si) (b) Approximation error: ∥Wi − QiRi∥ / ∥Wi∥

Figure 1: QR decomposition of Wi with respect to GS process varying with the number of columns.

Figure 1 illustrates numerical results of QR decomposition of W with CGS, MGS and RGS choices. In
the experiment, there are three different sizes of subspace dimension, t =200, 1000, and 5000, respectively,
for sketching. While the condition numbers κ(Qi) obtained by the CGS process increase dramatically for
iterations i ≥ 100, other orthogonal matrices Qi given by the procedures of MGS or RGS with t ≥ 1000
are numerically stable. As we noted before, according to [12], ϵ-subspace embedding property in Θ leads
to κ(Qi) = 1 + O(ϵ). Moreover, theoretically to satisfy the condition of the sketching matrix (defined
with Rademacher distribution) equipped with the (ϵ, δ, d) oblivious l2-subspace embedding such that t ≥
7.87ϵ−2(6.9d+ log(1/δ)), large t should be chosen for better stability. Hence, as shown in Figure 1a, for not
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sufficiently large t, e.g. t = 200, the subspace embedding property does not hold so that there exists a large
loss of Θ orthogonality. For t ≥ 1000, κ(Qi) by RGS is quite similar to the trend observed with MGS. On
the other hand, the approximation errors are small enough, regardless of the GS process and t. Because the
approximation errors only depend on low degree polynomials in m and n (e.g. see (4.1)), whereas the loss
of orthogonality relies on the condition number (e.g. see (4.2), (4.3) and (4.4)).

Remark. Here, we employ the Rademacher distribution for the sketching matrix. Although there are other
possible random matrices, e.g. based on Gaussian distribution, SRHT, P-SRHT, etc., significant differences
in stability or accuracy of approximation do not appear [12]. For further numerical results with W , we refer
to [12] that exhibits also a multi-precision variant of RGS.

From the numerical result of Example 1, we were convinced that the RGS algorithm provides well-
conditioned orthonormal matrices with high quality of accuracy in approximations. Thus, it allows us to
construct proper Krylov subspace basis vectors to solve (ill-conditioned) linear systems.

5.2. Example 2: NACA12

In this numerical experiment, we solve non-symmetric linear systems arising in turbulent CFD simulations
of airfoils, namely NACA airfoils. These well-known airfoils were developed by the National Advisory
Committee for Aeronautics (NACA, USA) and NACA12 is of our particular interest for the test case. For
more details, we refer to [28]. Also, please see [29] for PDEs of the turbulence model, SA-negative.

Figure 2: NACA12 mesh.

Consider a steady state CFD problem on the open bounded domain Ω ∈ Rd for d = 2. When we denote the
vector of conservative variables by ω, one can formulate the differential form of the fundamental equations of
fluid dynamics such as continuity, momentum and energy equations, using Reynolds-averaged Navier-Stokes
(RANS) modelling, as follows:

∂ω

∂t
+∇ · F = g, (5.1)

where F is the convective and diffusive fluxes and g is a source term. For convenience, we can introduce
the residual of the space operator R over Ω such that

∂ω

∂t
= −R(ω),
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then the steady state solutions can be computed by quasi-Newton’s iterations implemented with the pseudo-
transient continuation technique such that(

|Ω|
nCFL∆t

I +
∂R
∂ω

(ωj)

)
∆ω = −R(ωj), (5.2)

where ∆t is the time step, nCFL is the CFL number and ∆ω = ωj+1 − ωj for j−th Newton iteration. The
CFL number is defined by

nCFL = min

(
nmin

ξβ
, nmax

)
, ξ = max

(∥∥R(ωj)
∥∥
L2

∥R(ω0)∥L2

,

∥∥R(ωj)
∥∥
L∞

∥R(ω0)∥L∞

)
,

where nmin, nmax and β are user-defined parameters. For more details of the governing equations, we refer
to [30]. In the following Examples 2 and 3, we consider a fixed single iteration of (5.2). Moreover, using
the finite volume schemes, we shall solve the discrete problems Ax = b where A and x are the first and
second term of the left-hand side of the discretized (5.2), and b is the right-hand side of the discretized (5.2),
respectively.
In Example 2, we solve the NACA12 test case of inviscid fluid with Mach number 0.5 and flap angle

0. Using Euler equations and the first order finite volume scheme, the discretized PDE of the SA-negative
turbulence model on NACA12 with respect to the structured mesh in Figure 2 results in a non-symmetric
linear system Ax = b built by the CFD software elsA (ONERA-Safran property) based on finite volume
schemes [31]. The matrix A ∈ Rn×n for n = 81, 920, with nnz(A) = 5, 291, 223, is real, non-positive
definite, a blockwise structured sparse matrix with a symmetric pattern and not severely ill-conditioned,
e.g. κ(A) = O(106). To solve the linear system problem, we apply incomplete LU (ILU0) preconditioner
to GMRES methods. We then define the sketching matrix Θ by Rademacher distribution with t = 1, 000.
Hence, we can solve the linear system with the proposed randomized GMRES methods: Algorithm 2 with
Propositions 1 and 2, Algorithm 3 with Proposition 3.

Figure 3: Comparison between the classical GMRES and the randomized GMRES with/without deflated restarts.

Figure 3 shows the relative residual norm ∥rm∥ / ∥b∥ with respect to iteration numbers of each Arnoldi
process in GMRES. This numerical result illustrates that the randomized GMRES has the same convergence
as the classical GMRES which employing either CGS or MGS. And we can observe that for a choice of 20
vectors to be deflated, both deflation schemes enhance the performance, for example almost twice better
than the restart GMRES without deflation.
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Remark. As stated before, RGS is beneficial in not only computational costs but also robust stability.
However, in Example 2, the matrix A is not so ill-conditioned hence it is not clear to see the advantage of
randomized variants in stability as well as convergence, e.g. see Figure 3. Indeed, if a set of basis vectors for
the Krylov subspace is well-defined and stable, there is no impact on the convergence analysis of GMRES.
Thus, regardless of types of GS, if the basis matrix has a good condition number, e.g. κ(Vm) ≈ 1, the
convergence rate will be the same.

For both variants of deflation subspaces, increasing the number of deflated vectors k slightly improves
the convergence in Figure 4. Despite no general recommendation for the choice of k, if the number of
deflation vectors closes to the restart parameter m, the deflated restarting strategies mostly show the best
performance (e.g. see also [6]).

Figure 4: Convergence of RGS-GMRES-DR and MDR with respect to the number of deflated vectors.

Obviously, increasing m improves the convergence of GMRES as it is commonly known that a large restart
parameter yields better information in the GMRES residual polynomial, e.g. please see [32]. However, too
large restarts may deteriorate the performance and we may also encounter practical issues such as memory
requirements so that it is necessary to introduce effective parameter values, for instance, the adaptive
strategy [32]. Meanwhile, finding the optimal k is still ambiguous with the goal of minimizing the number of
iterations until satisfying the convergence criteria. The key of deflation behind is how much we can disregard
eigenvectors/singular vectors associated with eigenvalues/singular values close to the origin. As a result,
the deflated Krylov subspaces will have better spectral properties to enhance the convergence of the Krylov
subspace methods. Nevertheless, the theoretical analysis of choosing k will be required.

When we solved the example of NACA12, we could not observe significant differences between CGS and
RGS in terms of convergence because of the moderate condition number of A. The deflation strategies
certainly enhanced the convergent rates. In the next example, we consider similar turbulent models but
resulting in ill-conditioned linear systems.

5.3. Example 3: LS89

In this example, we shall solve a steady subsonic flow of a compressible turbulent model (SA-negative).
As displayed in Figure 5, we consider LS89 [33, 34] test case with the following unstructured mesh. The
LS89 test case is one of the challenging turbine test cases which is frequently used to benchmark CFD tools.
After discretizing the model problem (5.2), e.g. using a second order finite volume scheme on RANS

equations, we solve the linear problem of the ill-conditioned system. The corresponding matrix A has
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Figure 5: LS89 unstructured mesh.

extremely large condition number such as O(1014) with n = 115, 368 and nnz(A) = 6, 015, 042. Due to the
difficulty of solving the linear system, the choice of solvers is of importance. In our test case, we employ
inner-outer GMRES with restricted additive Schwarz (RAS) preconditioning for inner iterations. More
precisely, we want to use the RAS preconditioned GMRES as the outer preconditioner. We then solve
the linear system with our proposed GMRES methods varying with the Gram-Schmidt process, deflation
strategy, etc. As before, we define the sketching matrix Θ of the Rademacher distribution with t = 1, 000.

We compare the randomized GMRES methods with the classical variants, e.g. using CGS for orthogonal
basis vectors. We set the fixed inner iteration minner = 15, outer restart mouter = 40 and the number
of deflated vectors k = 15 if deflated restarts are applied. In RAS preconditioners for inner GMRES, we
consider 6 overlapping and 12 subdivisions for the coarse level. Before solving the linear system, we consider
the stability of GS algorithms in the flexible Arnoldi process.
Figure 6 illustrates condition numbers of Krylov basis matrices and the approximate errors in flexible

Arnoldi iterations, e.g. ∥AZi − Vi+1Hi∥ / ∥AZi∥, with respect to GS process. The condition numbers
and the approximate errors represent the stability of orthogonal basis matrices and the quality of Arnoldi
identity, respectively. As in the previous example, RGS leads to significantly better stability than CGS, e.g.
see Figure 6a. Furthermore, while κ(Vi) ≈ 10 for i ≥ 70 in MGS, the condition numbers of the orthogonal
basis matrices by RGS stay at 1 + O(ϵ). We can also observe that RGS results more accurate Arnoldi
relation satisfying (4.1) than other GSs in Figure 6b. Due to this instability of Krylov basis matrices from
CGS/MGS, FGMRES could degrade numerically.
Next, we solve the linear system of the test case LS89 with respect to GS process and deflation strategy.

Figure 7 displays relative residual norms with respect to (outer) iterations. After each cycle of outer FGM-
RES, we compute a loss of orthogonality of basis vectors. For example, we evaluate the loss of orthogonality
by ∥∥Im+1 − V H

m+1Vm+1

∥∥ and
∥∥Im+1 − SH

m+1Sm+1

∥∥
given by the CGS and RGS algorithms, respectively. Moreover, if deflated restarts are exploited, we addition-
ally determine the loss of orthogonality on the deflated space Vk+1 or Sk+1 (resp. Vk or Sk) in FGMRES-DR
(resp. FGMRES-MDR).
While we dealt with the moderately conditioned matrix in the NACA12 example, we need to solve the ill-

conditioned system so that poor performance might occur in CGS variants. To be specific, even though the
CGS-FGMRES and RGS-FGMRES show similar convergence rates, Figure 7 illustrates that the (harmonic
Ritz based) deflation involved with CGS deteriorates the performance. Indeed, to introduce the compact
form of c, e.g. (2.9) and (2.10), sufficient orthogonality of basis vectors of Krylov subspaces is required
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(a) κ(Vi) (b) Loss of Arnoldi identity

Figure 6: Stability of Arnoldi iterations with respect to GS process varying with the number of columns.

as noted in [7] hence it failed in this test case with the CGS algorithm. As shown in Table 2, the loss
of orthogonality in the CGS algorithm is always bigger than that in the RGS algorithm. Hence, we can
observe that while the convergence of the deflation of harmonic eigenvectors with CGS algorithm stagnates,
RGS-FGMRES-DR improves the performance. In cases of SVD based deflation, we have similar convergence
rates between CGS and RGS process but the convergence with the CGS algorithm slightly deteriorated after
4th cycle of restarts. Therefore, RGS-FGMRES-MDR presented the best numerical performance.

Remark. The orthogonality of the Krylov basis vectors plays an important role in the variants of GMRES.
Principally, the GMRES methods find approximate solutions to minimize residual norms along with orthog-
onal directions. Also, the simplified form of c, e.g. in Propositions 1- 3, is derived by the orthogonality.
More precisely, the compact form of c in GMRES relies on the orthogonality between the first vector and
other vectors, e.g. v1 ⊥ vj , ∀j = 2, . . . ,m + 1. In the same way, the compact form for GMRES-MDR
requires the orthogonality between (k+1)-th vector and other vectors. However, in case of GMRES-DR, we
need more orthogonality such that

vi ⊥ vj , ∀i = 1, . . . , k + 1, j = 1, . . . ,m+ 1 and i ̸= j.

Therefore, in practice, the numerical performance of GMRES-DR with the compact form is much more
sensitive to the loss of orthogonality than those of GMRES and GMRES-MDR.
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Figure 7: Convergence rates in solving LS89: FGMRES(mouter,minner,k) with the RAS preconditioning.

# cycle
Loss of orthogonality in CGS

No deflation DR MDR
Vm+1 Vk+1 Vm+1 Vk Vm+1

1st cycle 4.3e-13 - 4.3e-13 - 4.3e-13
2nd cycle 2.3e-13 3.3e-13 1.1e-12 1.3e-13 3.6e-12
3rd cycle 2.8e-13 1.0e-12 2.0e-12 2.3e-13 2.4e-12
4th cycle 4.0e-13 1.6e-12 4.3e-12 5.0e-13 7.4e-12
5th cycle 1.8e-13 3.8e-12 2.7e-11 7.9e-13 1.0e-11
6th cycle - 1.9e-11 3.7e-11 1.1e-12 8.8e-12
7th cycle - 3.4e-11 6.6e-11 1.5e-12 1.1e-11

# cycle
Loss of orthogonality in RGS

No deflation DR MDR
Sm+1 Sk+1 Sm+1 Sk Sm+1

1st cycle 5.8e-15 - 5.3e-15 - 5.1e-15
2nd cycle 5.0e-15 2.2e-15 1.0e-14 2.2e-15 6.7e-13
3rd cycle 5.6e-15 3.5e-15 1.0e-14 2.0e-14 3.7e-13
4th cycle 5.6e-15 3.5e-15 1.1e-14 4.1e-14 4.1e-13
5th cycle 5.7e-15 4.3e-15 1.1e-14 4.9e-14 8.1e-13
6th cycle - 4.0e-15 1.1e-14 6.9e-14 6.5e-13
7th cycle - 4.0e-15 1.1e-14 7.2e-14 3.0e-13

Table 2: Loss of orthogonality for each cycle.

6. Conclusion

We have presented new FGMRES methods based on a randomized Gram-Schmidt algorithm that has a
beneficial effect on computational costs. Compared to other existing Gram-Schmidt processes, it requires
half the computational complexity and has comparable stability. We have also introduced two ways of
deflated restarting for faster convergence. By removing the spectrum clustered near the origin or small
singular values, the randomized GMRES becomes more robust and efficient. Numerical experiments have
shown that the randomized FGMRES with deflated restarts had the best performance due to the stable set
of basis vectors. Furthermore, we have introduced reorthogonalized RGS (RGS2) to impose l2 orthogonality
and avoid loss of orthogonality. While the numerical examples of RGS2 are not given in this paper, we plan
to present more details on its benefits in future studies.
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