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Complexity Results on Untangling

Red-Blue Matchings∗

Arun Kumar Das† Sandip Das† Guilherme D. da Fonseca‡ Yan Gerard§

Bastien Rivier§

Abstract

Given a matching between n red points and n blue points by line segments in the plane,
we consider the problem of obtaining a crossing-free matching through flip operations that
replace two crossing segments by two non-crossing ones. We first show that (i) it is NP-hard
to α-approximate the shortest flip sequence, for any constant α. Second, we show that when
the red points are collinear, (ii) given a matching, a flip sequence of length at most

(
n
2

)
always exists, and (iii) the number of flips in any sequence never exceeds

(
n
2

)
n+4
6 . Finally,

we present (iv) a lower bounding flip sequence with roughly 1.5
(
n
2

)
flips, which shows that

the
(
n
2

)
flips attained in the convex case are not the maximum, and (v) a convex matching

from which any flip sequence has roughly 1.5n flips. The last four results, based on novel
analyses, improve the constants of state-of-the-art bounds.

1 Introduction

We consider the problem of untangling a perfect red-blue matching drawn in the plane with
straight line segments. We are given a set of 2n points in the plane, partitioned into a set R of
n red points, and a set B of n blue points, in general position (no three collinear points, unless
they have the same color).

In combinatorial reconfiguration, a flip is an operation changing a configuration into another [8,
19]. In our case, a configuration is a set of n line segments where each point of R is matched to
exactly one point of B, i.e., a perfect straight-line red-blue matching (a matching for short), and
a flip replaces two crossing segments by two non-crossing ones (Figure 1).

The reconfiguration graph is the directed simple graph whose vertices V are the configurations,
and such that there is a directed edge from a configuration M1 to another one M2 whenever a
flip transforms M1 into M2. Note that, in our case, since a flip strictly shortens the total length
of the segments (triangle inequality in the two triangles of Figure 1), the reconfiguration graph
is acyclic [7]. Let S ⊆ V be the set of sinks, which corresponds to the crossing-free matchings.
Given two configurations u, v ∈ V, let P(u, v) be the set of directed paths from u to v. Given a
path P , let the length of P , denoted |P |, be the number of edges in P . We are interested in two
parameters of this reconfiguration graph:

d(R,B) = max
u∈V

min
v∈S

min
P∈P(u,v)

|P | and D(R,B) = max
u∈V

max
v∈S

max
P∈P(u,v)

|P | .
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‡Aix-Marseille Université and LIS, France. guilherme.fonseca@lis-lab.fr
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Figure 1: Matchings before and after a flip. Solid squares are red points and hollow circles are
blue points.

This leads to the definitions of d(n) and D(n) respectively as the maximum of d(R,B)
and D(R,B) over all sets R,B with |R| = |B| = n. An untangle sequence is a path in the
reconfiguration graph ending in S. Intuitively, d corresponds to the minimum length of an
untangle sequence in the worst case, while D corresponds to the longest untangle sequence.

We also consider a more specific version of the problem where the red points are collinear [5],
say, on the x-axis. As the flips on each half-plane defined by the x-axis are independent, we
additionally suppose all blue points to lie on the upper half-plane without loss of generality. The
matchings in this case are called red-on-a-line matchings.

Related Work. The parameters d and D have been studied in several different contexts with
similar definitions of a flip, but considering other configurations.

In 1981, an O(n3) upper bound on D(n) was stated in the context of optimizing a TSP
tour [26] (the configurations are polygons). This upper bound should be compared to the
exponential lower bound on D(n) when the flips are not restricted to crossing segments, as long
as they decrease the Euclidean length of the tour [12]. The convex case (i.e., the case where the
points are in convex position) has been studied in [23, 28].

In the non-bipartite version of the straight-line perfect matching problem, there are two
possible pairs of segments to replace a crossing pair. This additional choice yields an n2/2 upper
bound on d(n) [7].

It is also possible to relax the flip definition to all operations that replace two segments
by two others with the same four endpoints, whether they cross or not, and generalize the
configurations to multigraphs with the same degree sequence [14, 15, 19]. In this context, finding
the shortest path from a given configuration to another in the reconfiguration graph is NP-hard,
yet 1.5-approximable [3, 4, 13, 27]. If we additionally require the configurations to be connected
graphs, the same problem is NP-hard and 2.5-approximable [9].

Reconfiguration problems in the context of triangulations are widely studied [22]. A flip
consists of removing one edge and adding another one while preserving a triangulation. It is known
that Θ(n2) flips are sufficient and sometimes necessary to obtain a Delaunay triangulation [17, 20].
Determining the flip distance between two triangulations of a point set [21, 24] and between two
triangulations of a simple polygon [1] are both NP-hard.

Considering perfect matchings of an arbitrary graph (instead of the complete bipartite graph
on R,B), a flip amounts to exchanging the edges in an alternating cycle of length four. It is then
PSPACE-complete to decide whether there exists a path from a configuration to another [6].
There is, actually, a wide variety of reconfiguration contexts derived from NP-complete problems
where this same accessibility problem is PSPACE-complete [18]. Many other reconfiguration
problems are presented in [25].

Getting back to our context of straight-line red-blue matchings, the values of d and D have
been determined almost exactly in the convex case (see Table 1). Notice that the n− 1 lower
bound on d(n) carries to both the general and red-on-a-line cases [7]. It is notable that the
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Table 1: Lower and upper bounds on d(n) and D(n) for red-blue matchings.

d(n) bounds D(n) bounds
lower upper lower upper

general 3
2n− 2, Thm. 5.2∗

(
n
2

)
(n− 1), [7, 26] 3

2

(
n
2

)
− n

4 , Thm. 5.1∗
(
n
2

)
(n− 1), [7, 26]

convex 3
2n− 2, Thm. 5.2∗ 2n− 2, [5]

(
n
2

)
, [7]

(
n
2

)
, [5]

red-on-a-line n− 1, [7]
(
n
2

)
, Thm. 3.1 3

2

(
n
2

)
− n

4 , Thm. 5.1∗
(
n
2

)
n+4
6 , Thm. 4.1

∗
For even n.

upper bound on D(n) is also the best known bound on d(n) and has not been improved since
1981 [26].

As a final side note, given a red-blue point set, a crossing-free red-blue matching can be
computed in O(n log n) time [16]. The algorithm is based on semi-dynamic convex hull data
structures and does not use flips. The problem has also been considered in higher dimensions [2].

Contributions. We show in Section 2 that it is NP-hard to α-approximate the shortest
untangle sequence starting at a given matching, for any fixed α ≥ 1.

The following results are summarized in Table 1. An improved lower bound on d(n) in the
convex case is presented in Section 5.2. The remainder of the paper considers the red-on-a-line
case. In Section 3, we slightly improve the former 2

(
n
2

)
upper bound on d(n) [5], using a simpler

algorithm and a novel analysis. In Section 4, we asymptotically divide by 6 the historical(
n
2

)
(n− 1) upper bound on D(n) [7, 26], using a different potential argument.
In Section 5.1, we present a counterexample to the intuition that the longest untangle

sequence is attained in the convex case (where the number of crossings is maximal). We take
advantage of points that are not in convex position to increase the lower bound by a factor of 3

2 .
This red-on-a-line lower bound on d(n) carries over to the general case (and even to non-bipartite
perfect matchings). The conjecture that D(n) is quadratic [7] remains open, though.

2 NP-Hardness

In this section, we prove the NP-hardness of the following problem. Let d(M) denote the
minimum path length from a matching M to S, the set of crossing-free matchings, in the
reconfiguration graph.

Problem 1. Let α ≥ 1 be a constant.
Input: M , a red-blue matching with rational coordinates.
Output: An untangle sequence starting at M of length at most α times d(M).

We have the following theorem.

Theorem 2.1. Problem 1 is NP-hard for all α ≥ 1.

Reduction Strategy. De Berg and Khosravi [11] showed that the rectilinear planar monotone
3-SAT problem (RPM 3-SAT ) is NP-hard. The RPM 3-SAT problem is a special case of the
classic 3-SAT problem in which the clauses consist only of either all positive or all negative
literals and the layout is planar (Figure 2). We reduce RPM 3-SAT to Problem 1. The key
elements of the reduction are described next.

Given a planar embedding of an RPM 3-CNF formula Φ (Figure 2), we construct a matching
MΦ of polynomial size. The property of this matching MΦ is that its shortest untangle
sequence has a length below a certain constant if Φ is satisfiable and above α times this
constant otherwise. Figure 3 shows the matching MΦ corresponding to the formula Φ =
(x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5) ∧ (x3 ∨ x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4) from Figure 2.
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The aforesaid matching MΦ is built using two types of gadgets. The variable rectangles are
replaced by variable gadgets (Figure 4). The clause rectangles together with the corresponding
edges are replaced with padded clause gadgets. A padded clause gadget is represented in Figure 8
with plain segments. Throughout all the figures in Section 2, the dashed segments represent all
the possibly created segments after any sequence of flips.

A variable gadget is a three-segment matching with two crossings. It allows for two possible
flips, either of which produces a crossing-free matching, as shown in Figure 4. The flip generating
the topmost segment stands for false (x = 0 in Figure 4), while the flip generating the bottom
segment stands for true (x = 1).

A clause gadget is an OR gate with three inputs (Figure 9). The RPM 3-CNF clauses are
either positive or negative. We describe the gadget for a positive clause, but the gadget for a
negative clause can be defined analogously (by a vertical reflection). Three variable gadgets are
the inputs of a clause gadget. In the crossing-free matching obtained for the clause gadget, the
presence of the topmost segment (r4b7 in Figures 6, 7, 8, and 9) stands for a false output.

A padding gadget is a gadget that serves to force an arbitrarily large number k of flips if a
clause is false. It consists of a series of k non-crossing segments (the plain segments in Figure 7,
r4b7 aside). A padded clause gadget is a clause gadget coupled with a padding gadget in such a
way that the presence of the output segment triggers k extra flips (Figure 8).

Let c be the number of clauses and v be the number of variables of the formula Φ. If Φ is
satisfiable, then the shortest untangle sequence of MΦ has at most 5 flips per clause plus 1 flip
per variable. In this case, we have d(MΦ) ≤ 5c+ v. We choose the size of the padding gadget so
that a non-satisfied clause triggers k = α(5c+ v) + 1 flips. If the formula Φ is not satisfiable,
then at least one of the padding gadgets is triggered and d(MΦ) > α(5c+ v).

The Problem to Be Reduced. In RPM 3-SAT, the graph of a conjunctive normal form
(CNF) formula is the bipartite graph with the variables and clauses as vertices, and where there
is an edge between a variable and a clause if and only if the clause contains the variable. A
clause is said to be positive if it contains only positive variables; it is said to be negative if it
contains only negative variables. A CNF formula is monotone if each clause is either positive or
negative.

A rectilinear planar monotone 3-CNF (RPM 3-CNF ) formula is a monotone formula with
3-variables per clause whose graph can be drawn with the following conventions (Figure 2). (i)
The variables and the clauses are represented by axis-parallel non-overlapping closed rectangles.
(ii) The variable rectangle centroids lie on the x-axis. (iii) The positive clause rectangles are
above the x-axis, the negative ones, below. (iv) The edges connecting a variable to a clause are
vertical line segments and do not cross any other rectangle. We call such a drawing a planar
embedding of Φ.

x1 x2 x3 x4 x5 x6

x1 ∨ x2 ∨ x3 x3 ∨ x4 ∨ x5

x3 ∨ x5 ∨ x6

x2 ∨ x3 ∨ x4

Figure 2: A planar embedding of an RPM 3-CNF formula Φ.
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x1 ∨ x2 ∨ x3

x3 ∨ x5 ∨ x6

x1 x2 x3 x4 x5 x6

x2 ∨ x3 ∨ x4

x3 ∨ x4 ∨ x5

Figure 3: The matching MΦ of the formula Φ from Figure 2.

Variable Gadgets. A variable gadget is a three-segment matching built on the four endpoints
of an axis-parallel rectangle as follows (Figure 4). The two leftmost endpoints of the rectangle
are colored red, the two rightmost ones are colored blue. One of the segments of the matching is
the diagonal joining the bottom left red point to the top right blue point. We add one red point
on the vertical line splitting the rectangle in two symmetric halves, just above the diagonal, in
the inside of the rectangle. This red point is connected to the bottom right blue point. Similarly,
we add one blue point on the same vertical, just below the diagonal. This blue point is connected
to the top left red point.

We will refer to the triangle consisting of the three topmost points of a variable gadget as
the top triangle of the variable gadget.

x = 0

x = 1

x

Figure 4: A variable gadget and its two untangle sequences.

Lemma 2.2. A variable gadget is the starting matching of exactly two untangle sequences of
length 1 ending in distinct matchings.

Proof. It is straightforward to check the two possible cases.

We can therefore represent each variable x of a propositional formula by a variable gadget.
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Assigning x to a truth value amounts to choosing one of the two possible untangle sequences,
with the convention that the lower edge of the rectangle is present in the final matching if x = 1
(i.e., x is “true”), and that the upper edge of the rectangle is present if x = 0 (Figure 4).

OR Gadgets. An OR gadget consists of four three-segment matchings built on a common
point set, say {r1, r2, r′2, r3} for the red points, and {b1, b′1, b2, b3} for the blue points, as follows
(see the first matching in each of Figures 5(a), 5(b), 5(c), and 5(d), ignoring the dashed segments).
The 0∨0 matching consists of the segments r1b

′
1, r

′
2b2, r3b3, and only the first two are not crossing.

The 0 ∨ 1 matching consists of the segments r1b
′
1, r3b3, r2b2, and only the first two are crossing.

The 1 ∨ 0 matching consists of the segments r′2b2, r3b3, r1b1, and only the first two are crossing.
The 1 ∨ 1 matching consists of the segments r1b1, r2b2, r3b3, and is crossing-free. In addition to
these constraints, the point set also satisfies the following ones. The following three matchings are
crossing-free: {r1b2, r′2b3, r3b′1}, {r1b3, r2b2, r3b′1}, and {r1b1, r′2b3, r3b2}. In each of the following
two matchings, only the first two segments are crossing: {r1b3, r′2b2, r3b′1}, and {r1b′1, r3b2, r′2b3}.

Note that, in any of the four matchings of an OR gadget, there is one unused blue point and
one unused red point. If the unused blue point is b1 (respectively b′1), we say that the left input
of the OR gadget is 0 (respectively 1). Similarly, if the unused red point is r2 (respectively r′2),
we say that the right input of the OR gadget is 0 (respectively 1). To complete the similarity
with a logical gate, we also define the output of the OR gadget as 0 if the segment r1b2 is present
in all the final matchings of any untangle sequence starting at the OR gadget and as 1 if the
segment r1b2 is absent of all the same final matchings. The output is undefined otherwise. The
following lemma states that the truth table of the logical gate associated with an OR gadget is
indeed the one of an OR gate.

We will refer to the smallest of the triangles consisting of the segment r1b2 and induced by
all the other segments we have mentioned in the definition of an OR gadget as the top triangle
of the OR gadget. It is the shaded triangle in Figure 5(d).

b1

r3 b3

r2

r1 b2

b′1 r′2

b1

r3 b3

r2

r1 b2

b′1 r′2

b1

r3 b3

r2

r1 b2

b′1 r′2

b1

r3 b3

r2

r1 b2

b′1 r′2

b1

r3 b3

r2

r1 b2

b′1 r′2

(a) 0 ∨ 0 (d) 1 ∨ 1

b1

r3 b3

r2

r1 b2

b′1 r′2 b1

r3 b3

r2

r1 b2

b′1 r′2 b1

r3 b3

r2

r1 b2

b′1 r′2 b1

r3 b3

r2

r1 b2

b′1 r′2

(b) 0 ∨ 1 (c) 1 ∨ 0

Figure 5: The four matchings of an OR gadget, with their untangle sequences.

Lemma 2.3. The output of an OR gadget is always well defined, and is 0 if and only if the two
inputs of the OR gadget are both 0. More precisely, we have the following.

1. The 0 ∨ 0 matching is the starting matching of exactly two untangle sequences, each of
length 2, and ending at the same matching containing the upper segment r1b2 (Figure 5(a)).
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2. The 0 ∨ 1 matching is the starting matching of a unique untangle sequence of length 1
ending at a matching excluding the upper segment r1b2 (Figure 5(b)).

3. The 1 ∨ 0 matching is the starting matching of a unique untangle sequence of length 1
ending at a matching excluding the upper segment r1b2 (Figure 5(c)).

4. The 1∨1 matching is already crossing free. It excludes the upper segment r1b2 (Figure 5(d)).

Proof. For each of the four x ∨ y matchings whith x, y ∈ {0, 1}, we enumerate all the possible
untangling sequences. These sequences are all shown in Figure 5. Lemma 2.3 then follows.

Clause Gadgets. A clause gadget consists of two OR gadgets, the output of the first one
being “connected” to the left input of the second one (Figure 6). More precisely, a clause gadget
is built on seven red points, say r4, r5, r6, r7, r8, r10, r11, and six blue points, say b4, b5, b6, b7, b8, b9
such that the following maps correspond to two OR gadgets (using the OR gadget previous
notations), and such that r8 lie in the inside of the top triangle of the first OR gadget and is the
only overlap between the two OR gadgets.

First OR gadget: (r4, b4, r5, b5, r6, b6, b9, r10) 7→ (r1, b1, r2, b2, r3, b3, b
′
1, r

′
2).

Second OR gadget: (r4, b6, r7, b7, r8, b8, b5, r11) 7→ (r1, b1, r2, b2, r3, b3, b
′
1, r

′
2),

with the exception that the segment r6b5 may also play the role of r1b1.
Similarly to an OR gadget, a clause gadget consists of 23 matchings, namely the x ∨ y ∨ z

matchings with x, y, z ∈ {0, 1}. We define the left, middle, and right input of a clause gadget as
the left input of the first OR gadget, the right input of the first OR gadget, and the right input
of the second OR gadget. We define the output of a clause gadget as the output of the second
OR gadget.

Note that the middle input segment, i.e., the vertical segment lying in between the two other
vertical segments (r5b5 in Figure 6), need not be evenly placed between the left input segment
and the right input segment. This feature is used to build clause gadgets with non-consecutive
variables, such as the topmost clause gadget in Figure 3.

The idea is to have a 0 ∨ 0 ∨ 0 clause gadget in MΦ for each clause in Φ. As we will see
next, in the beginning of an untangling sequence starting at MΦ, each input may be set to 1 or
may be kept as 0, changing the 0 ∨ 0 ∨ 0 clause gadget into one of the x ∨ y ∨ z matchings with
x, y, z ∈ {0, 1}.

The following lemma states that the truth table of the logical gate associated with a clause
gadget is indeed the expected one.

b4

r4

r6 b6
b5

r5

r8 b8

b7

r7b9 r10 r11

Figure 6: A clause gadget.The 0 ∨ 0 ∨ 0 matching is drawn with plain segments.

Lemma 2.4. The output of a clause gadget is always well defined, and is 0 if and only if the
three inputs of the clause gadget are all 0. More precisely, we have the following.
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1. All the untangle sequences starting at the 0 ∨ 0 ∨ 0 matching are of length 4, and they end
at the same matching containing the upper segment r4b7.

2. All the untangle sequences starting at each of the x ∨ y ∨ z matchings, where exactly one
of x, y, or z is 1, are of length 2, and they end at matchings excluding the upper segment
r4b7.

3. The unique untangle sequence starting at each of the x∨ y∨ z matchings, where exactly two
of x, y, and z are 1, is of length 1, and it ends at a matching excluding the upper segment
r4b7.

4. The 1 ∨ 1 ∨ 1 matching is already crossing free, and it excludes the upper segment r4b7.

Proof. It is a consequence of Lemmas 2 and of the fact that the OR gadgets are connected so as
to not interfere. Indeed, by construction, r8 lies in the inside of the top triangle of the first OR
gadget, and is the only overlap between the two OR gadgets. This ensures that all untangle
sequences never give rise to an extra crossing that does not already belong to one of the two OR
gadgets. In Figure 6, we have drawn with dashed line segments all the possible created segments
during any possible untangle sequence.

Padding Gadgets. Let k be a non-negative integer. A k-padding gadget triggered by the
segment s consists of two matchings built by induction as follows.

The first matching, denoted Mk, contains s (s = r4b7 in Figure 7) and is called the triggered
matching of the padding gadget (s creates a crossing). The second matching is called the
non-triggered matching, and is deduced from the triggered one by removing s (it is crossing free).

...

r4
b7

...

Figure 7: The triggered matching of a padding gadget.

If k = 0, then the triggered matching of a k-padding gadget consists of only the segment
s. If k ≥ 1, then the triggered matching of a k-padding gadget consists of Mk−1, the triggered
matching of a (k − 1)-padding gadget, to which we add one new segment crossing only the last
created segment of the only untangle sequence starting at Mk−1 (Figure 7, the dashed segments
are all the possible created segments in the unique untangle sequence).

Lemma 2.5. Let k be a non-negative integer. There is a unique untangle sequence starting at
the triggered matching of a padding gadget, and it is of length k. The non-triggered matching of
a padding gadget is already crossing free.

Proof. The definition of a k-padding gadget yields Lemma 2.5.

We complete each clause gadget with a padding gadget in order to penalize a non-satisfied
clause by an arbitrary long untangle sequence (Figure 8). Notice that a padded clause gadget
can be arbitrarily scaled and that the position of a clause rectangle is only constrained by the
planar embedding of Φ.

Matching Computation. We now describe, given a planar embedding of Φ, the construction
steps of the matching MΦ. Without loss of generality, we only specify the construction of the
positive clauses, the construction of the negative clauses being similar.
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...

b4

r4

r6 b6
b5

r5

r8 b8

b7

r7b9 r10 r11

...

Figure 8: A clause gadget connected to a padding gadget.

We need the following definitions for the description. The top vertical points of a positive
clause gadget are the topmost endpoints of the vertical segments (e.g. b14, r4, r12, b5, b7 in
Figure 9). Similarly, the bottom vertical points are the bottom endpoints of the same vertical
segments (e.g. r14, b4, b12, r5, r7 in Figure 9). Let p be a top vertical point. The horizontal
segment of p is the horizontal segment lying below p which is the closest to p. Finally, we define
the substitute point of p as the endpoint of the horizontal segment of p which is the closest to p
(e.g. r6 is the substitute point of r4 in Figure 9).

The construction steps of the matching MΦ are the following.

1. Place a clause gadget connected to a k-padding gadget in each clause rectangle, and a
variable gadget in each variable rectangle, with appropriate scaling.

2. Connect each clause gadget to its corresponding three variable gadgets with the three
vertical segments of the clause gadget aligned with the corresponding vertical edges of the
planar embedding of Φ.

3. Adjust the x-coordinates of the vertical segments of each variable gadget to have the top
vertical points and the two topmost points of the variable gadget, all in convex position
(e.g. in Figure 9, r12 is on the right of the segment r4b9).

4. Adjust the y-coordinates of the bottom vertical points in the top triangle of each variable
gadget so as to place them and the two topmost points of the variable gadget in convex
position.

5. Let p be a top vertical point which is not the highest of a variable gadget (e.g. p = r12
in Figure 9). Let p be the corresponding bottom vertical point (e.g. p = b12). Let q be
the top vertical point immediately above p (e.g. q = r4). Let q

′ be the point immediately
above p, taken among the bottom vertical points together with the two topmost points
of the variable gadget (e.g. q = b9). Adjust the x-coordinate of p̃, the substitute point
of p (e.g. p̃ = r13), so that p̃ lies in the triangle pqq (e.g. a shaded triangle in Figure 9;
segment r13b13 must not cross r4b9, but it has to cross r12b9).

We have the following lemma.

Lemma 2.6. Let Φ be an instance of RPM 3-SAT with c clauses and v variables. Let k be
a non-negative integer, polynomial in c and v. The matching MΦ with k-padding gadgets is
computed in polynomial time in c and v.
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Proof. The number of operations in any execution of these construction steps is linear in c and
v. The coordinates of the points of MΦ are rational numbers with O(log n) bits.

...

. . . . . .

. . .. . .

x y z

b4

r4

r6 b6
b5

r5

r8 b8

b7

r7b9 r10 r11

b12

r9

r12

b13
r13

r15

r14

b14

b15

...

Figure 9: A padded clause gadget connected to x, y, z, with branching on x.

Branching. The following lemma ensures that the connection of multiple vertical segments to
a same variable gadget always triggers all the corresponding clause gadgets. We start with some
definitions.

The set consisting of the top segment of a variable gadget set to true, together with the
vertical segments crossing it, and their horizontal segment is called a branching matching (such
as drawn in Figure 10(b) with plain segments). The bottom vertical points of a branching
matching, listed from left to right, always consist of a certain number, say a, of red points
followed by a certain number, say b, of blue points. We say that such a branching matching has
parameters a, b. These matchings have the following property.

Lemma 2.7. All the untangle sequences starting at a branching matching with parameters
a, b have length 2(a + b) and end at the same crossing-free matching (e.g. the segments
r15b14, r9b15, r14b4, r4b6, r6b12, r12b13, r13b9 in Figure 10(b)).

Proof. First note that a simplified version of this result has been proven in [7]. This simplified
version amounts to forget all the horizontal segments, except the top segment of the variable
gadget (Figure 10(c)).

It is useful to start by proving this simplified version before Lemma 2.7. We do an induction
on a+ b. The base case is trivial, but it provides the possible positions of created segments in the
untangle sequences (the dashed segments in Figure 10(c)). The inductive case relies on the fact
that the points are in convex position. Indeed, after any flip, the two created segments play the
role of the initial horizontal segment because convex position ensures that any of the non-flipped
vertical segments will cross exactly one of the two created segments, and that no extra crossing
is created. The induction hypothesis then applies on both right and left submatching whose
convex hulls are now disjoint.

We now address the issue where each vertical segment is paired with its horizontal segment.
Recall that at step 5 of the construction of MΦ, we have adjusted the x-coordinate of p̃, the
substitute point of each top vertical point p, so that p̃ lies in the triangle pqq. This ensures that
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Figure 10: Three views of a branching matching.

each substitute point can play the role of its corresponding top vertical point from whenever the
corresponding horizontal segment has been flipped in an untangle sequence.

Result. The RPM 3-SAT instance being encoded in the matching MΦ, we have the property
that the shortest untangling sequence of MΦ is short if the instance Φ is satisfiable, and long
otherwise.

Lemma 2.8. We have the following case distinction.

• Φ is satisfiable if and only if there exist untangle sequences starting at MΦ which do not
trigger any padding gadget, in which case d(MΦ) is at most v + 5c.

• Φ is not satisfiable if and only if all untangle sequences starting at MΦ trigger at least one
padding gadget, in which case d(MΦ) is at least v + 7 + k where k is arbitrarily large.

Proof. It is consequence of Lemmas 2.2, 2.4, 2.5 and 2.7, as we examine the longest possible
untangle sequences of MΦ which do not trigger any padding gadget, and the shortest possible
untangle sequences of MΦ which trigger at least one padding gadget. In any case, v flips will be
performed, one per variable (Lemma 2.2).

In the case where no padding gadget is triggered, the length of the longest possible untangle
sequences starting at a clause gadget connected to three variable gadgets is 5, and is obtained
by adding 3, the length of the untangle sequences of a 0 ∨ 0 ∨ 1 matching, and 2, for the two
connections to the negative variables. Counting 5 flips per clause yields v + 5c.

If at least one padding gadget is triggered, this very padding gadget generates k flips. In
this case, the length of the shortest possible untangle sequences starting at a clause gadget
connected to three variable gadgets and which is known to trigger its padding gadget is 7, and
is obtained by adding 4, the length of the untangle sequences of a 0 ∨ 0 ∨ 0 matching, and 3, for
the three connections to the negative variables. All the other cause gadgets may be set to their
1 ∨ 1 ∨ 1 matching, adding no flip to the shortest untangle sequence, the length of which is thus
v + 7 + k.

We now prove Theorem 2.1, reducing RPM 3-SAT to Problem 1. Let Φ be an instance of
RPM 3-SAT with c clauses and v variables. We build the matching MΦ, which serves as an
instance of Problem 1, choosing k = α(v + 5c) + 1. As k is polynomial in the size of the input
(α is a constant), the computation of the matching MΦ is polynomial (Lemma 2.6).

By hypothesis, we compute an untangle sequence starting at MΦ of length ℓ at most αd(MΦ).
We decide that Φ is satisfiable if ℓ ≤ α(v + 5c), and that Φ is not satisfiable if ℓ > α(v + 5c).
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Indeed, Lemma 2.8 ensures the following. If Φ is satisfiable, then the length of the shortest
untangle sequence of MΦ is at most v + 5c. Otherwise the length of the shortest sequence is at
least v + 7 + k ≥ k = α(v + 5c) + 1. This ends the reduction, and proves Theorem 2.1.

3 Upper Bound on d(n)

In this section, we prove the following upper bound.

Theorem 3.1. In the red-on-a-line case, d(n) ≤
(
n
2

)
.

The proof consists of the analysis of the number of flips performed by the recursive algorithm
described next. This analysis is based on a novel approach called state tracking. State tracking
is in fact not specific to the red-on-a-line case, which is why Lemma 3.4 is stated and proven in
the non-bipartite setting. Lemma 3.4 is then used in the red-on-a-line case to prove Lemma 3.5,
which in turn is used to prove Theorme 3.1. Lemma 3.4 also provides an alternative proof of the
well-known Theorem 3.6 [5], which we present at the end of this section.

Throughout, we assume general position (no two blue points with the same y-coordinate).
Let the top segment of a red-on-a-line matching be the segment with the topmost blue endpoint
(Figure 11(a)).

(a)

s1s2segments
crossing s1

. . .

(b)

s1

re
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iv

e
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Figure 11: (a) A red-on-a-line matching with s1 as the top segment. (b) The matching just
before the first recursive calls of the algorithm, where s1 is free.

Algorithm. While the top segment s1 of the matching crosses another segment s2, we flip s1
and s2. If multiple segments cross s1, then we choose s2 as the top segment among the segments
crossing s1.

The previous loop stops when the top segment s1 has no crossings. At this point, we have
that s1 splits the matching into at most two non-empty submatchings, one to each side of s1.
We recursively call the algorithm on these submatchings (Figure 11(b)).

Correctness. The next two lemmas prove the correctness of the algorithm.

Lemma 3.2 ([7]). If a matching admits a partition of submatchings whose convex hulls are
all disjoint, then, any sequence of flips in one of the submatchings never affects the other
submatchings (Figure 12).

Proof. This result can be found in [7]. Its proof amounts to the observation that the flip
operation leaves the convex hull unchanged (in Figure 12, the dashed segments are the results of
possible flip sequences).

We say that a segment s is free if the matching admits a partition of submatchings whose
convex hulls are all disjoint, and one of the submatchings consists of the segment s alone. In
Figure 12, the segment s is the only free segment.

Lemma 3.3. The algorithm always makes the top segment free before recursive calls.

12



s

Figure 12: A partition of 4 submatchings whose convex hulls are all disjoint. The segment s is
the only free segment.

Proof. The algorithm repeats the flip step until the top segment is free. As any sequence of flips
is finite, this eventually happens. The recursive calls of the algorithm happen when and only
when the top segment is free.

The correctness of the algorithm follows from Lemma 3.2 and 3.3.

Flip Complexity. The analysis of the number of flips performed by the algorithm stems from
the following observations. We define three possible states for a pair of segments (Figure 13).

• State X: the segments are crossing.

• State H: the segments are not crossing and their endpoints are in convex position.

• State T: the endpoints are not in convex position.

X H T

Figure 13: The three different states of pairs of segments.

In the convex case, there are no T-states and a flip increases the number of H-pairs by at
least 1 unit, and decreases the number of X-pairs as well. Hence, counting either X or H-pairs
yields the

(
n
2

)
upper bound on D(n) (this upper bound is in [5] and the alternative proof we

mentioned is made precise in Theorem 3.6). However, when the points are not in convex position,
counting H and X-pairs is fundamentally different. We will see that counting H-pairs is more
useful to prove the desired bounds.

When the points are not in convex position, a flip may decrease the number of H-pairs.
Figure 14 shows two such situations where flipping s1, s2 does not increase the number of H-pairs.
There is one H-pair involving segment s before the flip, and none after the flip. Notice that, if
we added multiple segments close to s, the number of H-pairs would actually decrease. However,
the algorithm avoids these situations by choosing to flip top segments. The full proof involves
state tracking, a novel approach to analyze flip sequences, which is described next.

State Tracking. We have
(
n
2

)
pairs of segments before and after a flip. Each pair has an

associated state. However, since two segments change in the matchings, there is no clear corre-
spondence between the state of each pair before and after the flip. State tracking establishes this
correspondence by making choices of which pair of segments in the initial matching corresponds
to which pair of segments in the resulting matching. These choices are performed deliberately to
obtain certain state transitions instead of others and prove the desired bounds.

The following notations will be used throughout the rest of this section and are summarized
in Figure 15. Let r1, r2 be two red points and b1, b2 be two blue points. Let s1, s2, s

′
1, s

′
2 be the
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(a)
s, s1: H
s, s2: X
s1, s2: X

s, s′2: T
s, s′1: X
s′1, s

′
2: H

(b)
s, s1: H
s, s2: T
s1, s2: X

s, s′1: T
s, s′2: T
s′1, s

′
2: H

Figure 14: Two cases where flipping s1, s2 does not increase the number of H-pairs. The upper
cone of s1, s

′
2 is shaded.

following four segments respectively: r1b1, r2b2, r1b2, r2b1. We consider a flip that replaces the
pair of segments s1, s2 by s′1, s

′
2. Let M denote the matching before the flip and M ′ denote the

resulting matching after the flip.

s1

s2
s′

2s′
1

r2

r1
r

b1
b2

s

b

Figure 15: Notations for a generic flip and for a variable segment s.

We order the
(
n
2

)
pairs of segments of M in a column vector. There are three types of pairs

of segments in M with respect to the flip: the unaffected pairs (involving neither s1 nor s2), the
flipping pair s1, s2, and the affected pairs (involving exactly one of s1 or s2). We choose the new
order of the

(
n
2

)
pairs of segments of M ′ in a way that satisfies the following properties with

respect to the previous vector. The unaffected pairs keep the same indices. The pair s′1, s
′
2 gets

the index of s1, s2. Next, we describe the remaining indices.
Let s be a segment of M distinct from s1 and s2. Let r and b be the red and blue endpoints

of s. Let i1 and i2 be the indices of s, s1 and s, s2, and let S1 and S2 be their respective states.
Let S′

1 and S′
2 be the respective states of s, s′1 and s, s′2. We restrict our choice to the following

two options:

• index s, s′1 with i1, and s, s′2 with i2, or

• index s, s′1 with i2, and s, s′2 with i1.

We call such a choice a tracking choice. We say that a pair of segments in M turns into a pair
in M ′ when they have the same index. We denote S → S′ to specify that the pairs of segments
with a given index go from the state S to the state S′. In the following, we use S1S2 → S′

1S
′
2 as

a shorthand notation to say that we have the two following tracking choices: either S1 → S′
1

and S2 → S′
2 or S1 → S′

2 and S2 → S′
1.

There are 32 possible such transitions S → S′. Yet, the next two lemmas ensure that some
transitions can be ruled out by tracking choices. Lemma 3.4 actually holds for any (possibly
non-bipartite) matching, while Lemma 3.5 is specific to the red-on-a-line case. Both lemmas are
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proved analyzing the tracking choices of each possible position of a segment s relatively to the
flipping pair.

Lemma 3.4. There always exists a tracking choice avoiding the H → X transition.

Proof. There clearly exists a tracking choice avoiding the H → X transition unless we have
either a transition (i) HH → XS or (ii) HS → XX, where S ∈ {X,H,T}. We show that these
two cases are not possible.

(i) HH → XS: If both the pairs s, s1 and s, s2 are H while at least one of the two pairs s, s′1
and s, s′2 is X, then the final X state implies that s crosses s1 or s2, which contradicts the two
initial H states.

(ii) HS → XX: If one of the two pairs s, s1 and s, s2 is H while both pairs s, s′1 and s, s′2
are X, then the two final X states imply that s crosses s′1 and s′2. It follows that s also crosses
s1 and s2, which is again a contradiction.

State Tracking in the Red-on-a-Line Case. Figure 16 summarizes the notations for a
generic red-on-a-line flip and an variable segment s. Figures 17, 18, 19, and 20 then provide
“maps” of essentially all the possible situations of tracking choices in the red-on-a-line case. These
figures are used to prove the next lemma.

s1

s2

s′
2

s′
1

r1 r2r

b1

b2

b

s

Figure 16: Notations used in Figures 17, 18, 19, and 20 for a generic red-on-a-line flip and an
variable segment s.

s1

s2

s′
2

s′
1

p
case 1 case 2 case 3 case 4

r1 r2r r r r

b1

b2

Figure 17: The four possible cases for the position of r.

Figures 18, 19, and 20 are generated by a brute force computation of the states S1,S2,S
′
1,S

′
2

of the four pairs s, s1, s, s2, s, s
′
1, s, s

′
2 for each position case for r (Figure 17) and for each

position case for b (in Figures 18, 19, and 20, each cell of the arrangement of lines corresponds
to a position case for b). In the following, we make sure that no case is forgotten.

We assume, without loss of generality, that r1 is on the left of r2, and that b1 is higher than
b2. Let p be the intersection between the line b1b2 and the red-point line. There are, indeed,
four possible open intervals for the position of r on the red-point line: ]−∞, p[, ]p, r1[, ]r1, r2[,
and ]r2,∞[ (Figure 17). This yields four cases, respectively. We do not explicitly describe case 4
as it is similar to case 2. Indeed, case 2 and case 4 map to each other by exchanging the labels
of r1 and r2, as well as b1 and b2. The fact that the point p is still on the left of r1 and r2 is not
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HH → HH

HT → HH

HT → TT

XT → TX

XX → XX

TT → TT

HT → HT

TH → HT

TT → TT

TT → HT

HT → TH

TT → TT
XT → TT

TX → XT

TT → XT
XX → XT

XT → XT

Figure 18: The case 1 “map” of all the possible red-on-a-line tracking choices. Tracking choices
cannot avoid the transition H → T in the shaded region.

r

HH → HH

TT → TT

HT → HH

HT → TT

HT → TH

HX → XH

XT → XT

XX → XT

HT → TH

XX → XX

TT → TT

TX → XT

HT → XH

HX → XT

TX → XT

TT → XT

HT → HT

Figure 19: The case 2 “map” of all the possible red-on-a-line tracking choices. Tracking choices
cannot avoid the transition H → T in the two shaded regions.

r

p1

XH → XH

XT → XH

XX → HT

XX → HH

HT → HT

HX → HT

HX → HX

TT → HH

XT → HH

TX → HX

TX → HH

XX → TH

XT → XT

XX → TT

XH → TH

TH → TH

Figure 20: The case 3.1 “map” of all the possible red-on-a-line tracking choices.
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a problem since we are studying incidence proprieties. Another way to see it, is to consider the
projective plane.

As we have assumed the blue points to lie in the upper half-plane, these four cases split
further into sub-cases. However, no-loss-of-generality assumptions and symmetries simplify the
analysis. Without loss of generality, we first assume that the lines r1b2 and r2b1 intersect in the
upper half-plane, as it will only generate more cells to the upper part of the arrangement of
lines.

Second, we examine case 3. Let p1 be the intersection of the lines rb2 (see Figure 20) and
r2b1, and p2 be the intersection of the lines rb1 and r1b2. Case 3 decomposes into:

• case 3.1 where p1 lies in the upper half-plane and p2 in the lower,

• case 3.2 where both p1 and p2 lie in the upper half-plane,

• case 3.3 where p1 lies in the lower half-plane and p2 in the upper, and

• case 3.4 where both p1 and p2 lie in the lower half-plane.

Cases 3.1 and 3.3 are similar, while case 3.2 is just a superposition of both of them. More
precisely, when compared to case 3.4, the extra cell of the arrangement generated by case 3.1 (the
cell in the top left corner of Figure 20) corresponds to the possible tracking choices summarized
by the notation XT → XT. Similarly, the extra cell generated by case 3.3 corresponds to
TX → TX. The two extra cells generated by case 3.2 are the same as the two previous ones.
We thus assume case 3.1 (as it is easier to draw in our setting) without loss of generality. All
these assumptions made, the remaining cases now corresponds to Figures 18, 19, and 20.

The next lemma is similar to Lemma 3.4, but specific to red-on-a-line matchings. We will
use it to additionally avoid the H → T transition. To state Lemma 3.5, we define the upper cone
of two segments r3b3, r4b3 as the locus of the points that are separated from the horizontal line
r3r4 by the two lines r3b3 and r4b3 (Figure 21(a)). We also define the upper ray of a segment as
the open ray with the blue point as its origin, the segment as its direction, and going upwards
(Figure 21(b)).

(a) r3 r4

b3

(b)

Figure 21: (a) The upper cone of r3b3 and r4b3 is shaded. (b) The upper ray of the segment is
dotted.

Lemma 3.5. In the red-on-a-line case, if the blue point b of s is not in any of the two upper
cones of s1, s

′
2 and s2, s

′
1, then there always exists a tracking choice that avoids H → T for the

pairs s, s1 and s, s2 while still avoiding H → X.

Proof. First, we check that there are only two possible upper cones defined by two segments of
s1, s2, s

′
1, s

′
2. Indeed, only two pairs among them have a common blue point.

Then, we note that, for s, s1 or s, s2 to be in state H, the red point r of s cannot be between
r1 and r2, the red points of s1 and s2. Without loss of generality, we assume r to lie on the left
side of r1 and r2.

For s, s′1 or s, s′2 to be in state T, s has to cross at least one of the upper rays of s′1 or s′2.
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The only two combinations of states for {s, s1, s, s2} and {s, s′1, s, s′2} which do not leave us
the choice to avoid the H → T transition are {H,T} and {T,T}, and {H,X} and {T,X}. In
any case, b must be in the right most of the two upper cones of segments s1, s2, s

′
1, s

′
2. More

precisely, b lies in one of the three shaded regions of Figures 18 and 19. These three shaded
regions also correspond to Figure 14 where case 1 is omitted but similar. The other cases are
either not feasible geometrically, or with a possibility to make tracking choices so as to avoid
transition H → T.

Proof of Theorem 3.1. We are now ready to prove Theorem 3.1.

Proof. Let f(M) be the total number of flips performed by the algorithm on an n-segment
input matching M and let g(M) be the number of flips performed by the algorithm before the
recursive calls. Let Mr denote the matching before the recursive calls. The recursive calls take
two submatchings of Mr that we call M1 and M2, yielding the following recurrence relation.

f(M) = f(M1) + f(M2) + g(M)

Let h̄(M) be the number of X-pairs plus the number of T-pairs in a matching M , that is,
the number of pairs that are not H-pairs. Lemma 3.5 ensures that

g(M) ≤ h̄(M)− h̄(Mr) ≤ h̄(M)− h̄(M1)− h̄(M2).

Clearly, f(∅) = 0. We suppose that, for all M ′ with less than n segments, we have
f(M ′) ≤ h̄(M ′). Then by induction we get

f(M) ≤ h̄(M1) + h̄(M2) + h̄(M)− h̄(M1)− h̄(M2) = h̄(M).

Theorem 3.1 follows since h̄(M) ≤
(
n
2

)
.

State Tracking in the Convex Case. State tracking also applies to the widely studied
convex case, providing a more conceptual proof of the following theorem from [5]. Even though
we will not use this well-known result, we may as well state it. This theorem actually holds for
any straight-line non-bipartite perfect matching.

Theorem 3.6 (Theorem 5 of [5]). In the convex case, any untangle sequence is of length at
most

(
n
2

)
.

Proof. In the convex case, the T-state does not exist. Lemma 3.4 thus ensures that the number
of H-pairs increases of at least 1 unit at each flip.

4 Upper Bound on D(n)

In this section we prove the following theorem.

Theorem 4.1. In the red-on-a-line case, D(n) ≤
(
n
2

)
n+4
6 .

To prove Theorem 4.1, we define a potential function Φ that maps a red-on-a-line matching
to an integer from 0 to

(
n
2

)
n+4
3 . Since Φ decreases by at least 2 units at each flip, the theorem

follows. We first give the definitions needed to present Φ. Then, we prove four lemmas yielding
Theorem 4.1.

Let M be a red-on-a-line matching. Let r1, . . . , rn be the red points, from left to right. Let ℓ
be a line, parallel to the line of the red points and above all the points. For each k in {1, . . . , n},
we project the blue points onto ℓ, using rk as a focal point. More precisely, each blue point b
maps to a point tk(b), the intersection between the ray rkb and the line ℓ (Figure 22(a)). We also
define the function tk of a red-blue segment rb as the segment tk(rb) = rtk(b) (Figure 22(b)).
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Figure 22: (a) The projection tk for k = 3. (b) The segments t3(·). The three 3-observed crossing
3-pairs are circled.

We may abbreviate a pair of segments rib, rjb
′ as ⟨i, j⟩ when the points b and b′ can be

deduced from the underlying matching. Let k be an integer in {1, . . . , n}. We say that two
segments are k-observed crossing if the extended projection tk(·) maps them to crossing segments
(Figure 22(b)). A pair of segments ⟨i, j⟩ is a k-pair if i ≤ k ≤ j. A k-flip is then a flip of a
k-pair. We have the following lemma.

Lemma 4.2. A crossing k-pair is necessarily k-observed crossing.

Proof. Let rib, rjb
′ be a crossing k-pair. We suppose, without loss of generality, that i < j (e.g.

i = 2, k = 3, and j = 5 in Figure 22).
The fact that the k-pair rib, rjb

′ is crossing means that the four points are in convex position,
and that they appear as ri, rj , b, b

′ on their convex hull in counter-clockwise order. Since
i ≤ k ≤ j, the point rk is also on the boundary of the convex hull of the four points. Therefore,
the projection tk(·) will not change the convex-hull order and the segments ritk(b) and rjtk(b

′)
will cross.

We define Φk(M), the k-th potential of M , as the number of k-observed crossing k-pairs
(Figure 22(b)). Lemma 4.3 shows that the k-th potential Φk is at most (k − 1)(n− k) + n− 1.
Lemma 4.4 shows that Φk never increases, and decreases by at least 1 unit at each k-flip.

Lemma 4.3. The k-th potential Φk takes integer values from 0 to k(n+ 1)− k2 − 1.

Proof. The k-th potential Φk(M) is at most the number of k-pairs in M , crossing or not. There
are exactly (k − 1)(n − k) k-pairs of the form ⟨i, j⟩ with i < k < j. There are exactly k − 1
k-pairs of the form ⟨i, k⟩ with i < k. There are exactly n − k k-pairs of the form ⟨k, j⟩ with
k < j. In total, there are k(n+ 1)− k2 − 1 k-pairs in M .

Lemma 4.4. The k-th potential Φk never increases, and decreases by at least 1 unit at each
k-flip.

Proof. We order the projected blue points on ℓ from left to right. We then map each projected
blue point tk(b) to an element in {↙, ↓,↘}:

• tk(b) is mapped to ↙ if b is matched to a red point on the left of rk,

• tk(b) is mapped to ↓ if b is matched to rk,

• tk(b) is mapped to ↘ if b is matched to a red point on the right of rk.
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Let w = w1 . . . wn be the word on the alphabet {↙, ↓,↘} induced by the order of the projected
blue points and the map. For instance, in Figure 22 with k = 3, w =↘↙↙↘↓↘.

Let the total order of the symbols be ↙ ≺ ↓ ≺ ↘. An inversion in w is a pair wi, wj with
i < j and wj ≺ wi. The inversions in w are in bijection with the k-observed crossing k-pairs in
M . Thus, by definition, Φk(M) is the number of inversions in w. Lemma 4.4 follows from the
following two observations.

(i) Any flip which is not a k-flip swaps two ↙ or two ↘ in w, resulting in word w′ identical
to w.

(ii) Lemma 4.2 ensures that a crossing k-pair corresponds to an inversion in w. Thus, a k-flip
exchanges the two symbols of an inversion in w, resulting in word w′ with at least one inversion
less than in w.

We now define Φ(M), the potential of M , as the sum of Φk(M), for k in {1, . . . , n}. The
following lemma presents the key properties of Φ.

Lemma 4.5. The potential Φ takes integer values from 0 to
(
n
2

)
n+4
3 , and decreases by at least 2

units at each flip.

Proof. We know that Φ takes non-negative integer values by definition and, by Lemma 4.3, an
upper bound on Φ is

n∑
k=1

(
k(n+ 1)− k2 − 1

)
= (n+ 1)

n∑
k=1

k −
n∑

k=1

k2 − n

= (n+ 1)
n(n+ 1)

2
− n(n+ 1)(2n+ 1)

6
− n

=
n

6
(n2 + 3n− 4)

=

(
n

2

)
n+ 4

3
.

Finally, Lemma 4.4 ensures that Φ decreases by at least 2 units at each flip. Indeed, a flip of
a pair ⟨i, j⟩ is counted at least twice: once in Φi as an i-flip, and once in Φj as a j-flip.

Theorem 4.1 follows from Lemma 4.5.

5 Lower Bounds

In this section, we prove the following two lower bounds.

Theorem 5.1. In the red-on-a-line case, for even n, D(n) ≥ 3
2

(
n
2

)
− n

4 .

Theorem 5.2. In the convex case, for even n, d(n) ≥ 3n
2 − 2.

To prove Theorem 5.1, it suffices to present a long untangle sequence. The initial matching
of the sequence is represented in Figure 23(a). To prove Theorem 5.2, we need to show that
every untangle sequence starting at a given configuration (represented in Figure 23(b)) is long
enough. We do so by showing that every flip reduces the number of crossings by exactly one
unit.

5.1 Lower Bound on D(n)

We provide a 2m-segment red-on-a-line matching which we call an m-butterfly. There exists an
untangle sequence starting at an m-butterfly of length 3

2

(
2m
2

)
− m

2 . Next, we give the precise
definition of an m-butterfly and some of its important properties. Then, we give some intuition
of how to come up with an untangle sequence longer than the number of pairs of segments.
Finally, we prove that there exists an untangle sequence starting at an m-butterfly of length
3
2

(
2m
2

)
− m

2 with two lemmas.
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Figure 23: (a) A 3-butterfly to lower bound D(6). (b) A 5-fence to lower bound d(10).

Butterfly. For an integer m, we define an m-butterfly as the following matching with n = 2m
segments. For i from 1 to m we have red points ri = (i/(m+ 1), 0) and r′i = (−i/(m+ 1), 0) as
well as blue points bi = (i− (m+ 1), (m+ 1)− i) and b′i = ((m+ 1)− i, (m+ 1)− i). We match
ri to bi and r′i to b′i. Next, we discuss important properties of an m-butterfly.

We call a red-on-a-line convex matching an n-star if all the
(
n
2

)
pairs of segments cross. We

say that an n-star looks at a point p if the blue points are all on a common line, and if p is the
intersection of this line with the line of the red points. We also say that two red-blue point sets
R,B and R′, B′ are fully crossing if all the pairs of segments of the form {rb, r′b′} cross, where
(r, b, r′, b′) ∈ R×B×R′×B′. Two matchings are fully crossing if their underlying red-blue point
sets are fully crossing. An m-butterfly is a red-on-a-line matching consisting of two fully crossing
m-stars both looking at the same point p = (0, 0) (Figure 23(a) represents these properties but
it is not drawn to scale).

Intuition. In the following, we use the state tracking framework from Section 3 to describe
how to come up with an untangle sequence starting at an m-butterfly with more than

(
2m
2

)
flips.

We consider a sequence of tracking choices with no H → X transition (Lemma 3.4) for the long
untangle sequence we build. We take advantage of the non-convex position of the blue points to
create flip situations such as in Fig. 14(a), where an H-pair is turned into a T-pair.

For instance, let us consider an X-pair of one of the m-stars composing the m-butterfly. At
some point of the untangle sequence, we flip this X-pair, turning it into an H-pair. Later on,
we turn this H-pair into a T-pair, as in Fig. 14(a). Still later on, we turn this T-pair into an
X-pair again, similarly to the pairs involving the horizontal segment in Fig. 1. This X-pair will
be flipped again.

We manage to carry out this whole process to flip twice all the 2
(
m
2

)
pairs of the two m-stars

composing the m-butterfly while still having one flip for every other pair. In total, we reach
3
2

(
2m
2

)
− m

2 flips.

Proof of Theorem 5.1. We prove Theorem 5.1 with two lemmas, showing that there exists
an untangle sequence of length 3

2

(
2m
2

)
− m

2 , starting at an m-butterfly.

Lemma 5.3 ([7]). There exists an untangle sequence starting at any n-star of length
(
n
2

)
.

Proof. This result has been shown in [7]. We present a short proof for the sake of completeness.
Provided we number from 1 to n the red points in their convex hull counter-clockwise order,

and do the same for the blue points but clock-wise, then a red-on-a-line convex matching can
be seen as a way to draw a permutation of n elements. An inversion, then, corresponds to a
crossing. A bubble sort, thus, corresponds to an untangle sequence starting at such a matching.

The case of an n-star leads to
(
n
2

)
inversion swaps, or, in other words, flips.

Lemma 5.4. There exists an untangle sequence starting at any m-butterfly of length 3
2

(
2m
2

)
− m

2
(Figure 24 and Figure 25).
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Proof. The untangle sequence can be divided into two phases.
The first phase consists of (i)

(
m
2

)
flips applied to the m-star submatching defined by the

m leftmost red points (see Lemma 5.3, and Figure 24, steps 0 to 3), and of (ii)
(
m
2

)
more flips

applied to the m rightmost red points (Figure 24, steps 3 to 6). At this point, we have two sets
of m crossing-free segments, each set fully crossing the other.

The second phase repeats m times the following routine.

1. Flip the segments defined by the innermost red points r1 and r′1 (Figure 24 and 25, steps
6 to 7, 11 to 12, and 16 to 17). After this flip, the submatching defined by the m leftmost
red points and their matched points consists of m− 1 crossing-free segments intersected
by the segment from r′1. A similar statement holds for the submatching defined by the m
rightmost red points.

2. Untangle the submatching defined by the m leftmost red points with m− 1 flips in the
following manner (Figure 24 and 25, steps 7 to 9, 12 to 14, and 17 to 19). Flip of the two
crossing segments with the rightmost red points, say r′k and r′k+1 with k ∈ {1, . . . ,m− 1},
and repeat. Such a flip produces a segment from r′k+1 crossing the segments whose red
points are on the left of rk+1, and an other segment from r′k crossing none of segments of
the submatching. The number of crossings in the submatching decreases by 1 unit at each
flip.

3. Similarly, untangle the m rightmost red points with m− 1 more flips (Figure 24 and 25,
steps 9 to 11, 14 to 16, and 19 to 21).

Each loop decreases the number of “long” segments (i.e., segments joining one of the leftmost
red points to one of the rightmost blue points, or vice-versa) by 2. At the end of the process,
the left submatching is crossing-free; so is the right one; and the two of them do not intersect
anymore.

Summing up, the total number of flips is 2
(
m
2

)
+ 2m(m− 1) +m. Simple calculation yields

the lemma.

Theorem 5.1 follows from Lemma 5.4.

5.2 Lower Bound on d(n)

We provide a convex red-blue matching which we call an m-fence, with 2m segments and 3m− 2
crossings (Figure 23(b)). Next, we give the precise definition of an m-fence, together with some
useful terminology. Then, we prove Theorem 5.2 with three lemmas inferring that all untangle
sequences starting at an m-fence have length 3m− 2, that is, each flip reduces the number of
crossings by exactly one unit.

Fence. Let q2m+2, q2m, q2m−1, . . . , q4, q3, q1, p1, p3, p4, . . . , p2m−1, p2m, p2m+2 be 4m points
in convex position, ordered counter-clockwise, and with colors alternating every two points
(Figure 23(b)). More precisely, points pi, qi are red if i ≡ 1, 2 mod 4 and blue otherwise. We
deliberately avoid using the indices 2 and 2m+ 1 to simplify the description. The segments of
an m-fence are the piqi+3 and the qipi+3 where i is odd and varies between 1 and 2m− 1.

For 1 ≤ k ≤ m+ 1, the k-th column consists of the at most 4 points with indices 2k − 1 and
2k. We say that a convex red-blue matching with the same point set as an m-fence is a derived
m-fence if, for all k ∈ {2, . . . ,m}, for all w ∈ {p, q}, one of the following statements holds:

1. w2k−1 is matched to a point of the (k − 1)-th column, and w2k is matched to a point of
the (k + 1)-th column, or

2. w2k−1 is matched to a point of the (k + 1)-th column, and w2k is matched to a point of
the (k − 1)-th column.
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Figure 24: First part of an untangle sequence starting at a 3-butterfly of length 21 illustrating
Lemma 5.4 and its proof. Each line corresponds to a portion of the proof, with repetitions added
for clarity.
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Figure 25: Second part of an untangle sequence starting at a 3-butterfly of length 21 illustrating
Lemma 5.4 and its proof. Each line corresponds to a portion of the proof, with repetitions added
for clarity.
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Five examples of derived m-fences are presented in Figure 26. Note that an m-fence is in
particular a derived m-fence.

When statement 2 holds, the two segments cross. We call such a crossing an end crossing.
Similarly, a middle crossing is a crossing of the form {piqj , qi′pj′}, where i and i′ are of the
same column, and j and j′ are of the same column.

Proof of Theorem 5.2. To prove Theorem 5.2, we first show with two lemmas that a flip
changes a derived m-fence into another derived m-fence. Finally, we show that a flip of a derived
m-fence reduces its number of crossings by exactly one unit.
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q5 q6 q7 q8 q9 q10
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Figure 26: The beginning of an untangle sequence starting at a 5-fence. It is composed of derived
5-fences.

Lemma 5.5. A crossing in a derived m-fence is either an end crossing or a middle crossing.

Proof. The definition of a derived m-fence implies that a crossing must involve two or three
consecutive columns. If exactly three columns are involved, the same definition excludes any
crossing aside from the end crossings. If exactly two columns are involved, the definition again
excludes any crossing aside from the middle crossings.
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Lemma 5.6. A flip changes a derived m-fence into another derived m-fence.

Proof. Lemma 5.5 ensures that we only have the following two cases. (i) The flip of an end
crossing on the w0 side (w0 ∈ {p, q}) of the k0-th column only changes statement 2 of the
definition of a derived m-fence into statement 1 for k, r = k0, r0. The statements for the other
k, r are unchanged. (ii) The flip of a middle crossing simply leaves unchanged the statements for
all k, r.

Figure 26 is actually a sequence of flips starting at an m-fence and it contains essentially all
the possible cases (symmetries aside).

Lemma 5.7. A flip of a derived m-fence reduces its number of crossings by exactly one unit.

Proof. Let M be a derived m-fence. Let s1 and s2 be two crossing segments of M . Let s be
any other segment of M . Let s′1 and s′2 be the two segments replacing s1 and s2 after they have
been flipped, changing M into M ′. We show that the number of crossings between s and s1, s2
is the same as between s and s′1, s

′
2, ensuring that M ′ has exactly 1 crossing less than M .

Let us recall that, as for any convex matching, the number of crossings cannot increase [5].
The proof of this result consists of the analysis of the five possible typical convex matchings
(symmetries aside) of the three segments s1, s2, s (Figure 27). It is notable that only one of these
five matchings, the one where each endpoint of s lies in between two endpoints of s1, s2 of the
same color, corresponds to an actual decrease in the number of crossings involving s.

s1 s2
s′2s′1

s

s1 s2
s′2s′1

s

s1 s2
s′2s′1

s

s1 s2
s′2s′1

s

s1 s2
s′2s′1

s

Figure 27: The five convex positions of s with respect to the flipping pair s1, s2. This is used in
the proof of Lemma 5.7.

This crossing-destructive case cannot occur if two endpoints of s1, s2 of the same color are
adjacent on the convex hull. Thus, Lemma 5.7 holds for flips of end crossings.

If s1, s2 is a middle crossing, then, by definition of a derived m-fence, no segment s intersects
both s1 and s2. Thus, the crossing-destructive case cannot occur, and Lemma 5.7 holds for flips
of middle crossings.

Theorem 5.2 follows from Lemma 5.6 and Lemma 5.7.

6 Concluding Remarks

Untangle sequences of TSP tours have been investigated since the 80s, when a cubic upper bound
on D(n) has been discovered [26]. This bound also holds for matchings (even non-bipartite ones)
and has not been improved ever since. Except for the convex case, there are big gaps between
the lower and upper bounds, as can be seen in Table 1. Experiments on tours and matchings
have shown that, in all cases tested, the cubic upper bound is not tight and the lower bounds
seem to be asymptotically tight.

Untangle sequences have many unexpected properties which make the problem harder than
it seems at first sight. The following questions remain open.

1. If we add a new segment to a crossing-free matching, what is the maximum length of an
untangle sequence? Notice that an o(n2) bound would lead to an o(n3) bound for d(n).
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2. Is it always possible to find an untangle sequence that does not flip the same pair of
segments twice? Using a balancing argument, we can show that the number of distinct
flips in any untangle sequence is O(n8/3) [10].

3. What is the maximum number of flips involving a given point? The cubic potential provides
a quadratic bound which leads again to an O(n3) bound for D(n).

We proved the NP-hardness of computing the shortest untangle sequence for a red-blue
matching. What is the complexity of computing the shortest untangle sequence for a TSP tour,
for a red-on-a-line matching, or even for a convex instance? What about the longest untangle
sequence?

References

[1] Oswin Aichholzer, Wolfgang Mulzer, and Alexander Pilz. Flip distance between triangula-
tions of a simple polygon is NP-complete. Discrete & Computational Geometry, 54(2):368–
389, 2015.

[2] Jin Akiyama and Noga Alon. Disjoint simplices and geometric hypergraphs. In Third
international conference on Combinatorial mathematics, pages 1–3, 1989.

[3] Sergey Bereg and Hiro Ito. Transforming graphs with the same degree sequence. In
Computational Geometry and Graph Theory, pages 25–32, 2008.

[4] Sergey Bereg and Hiro Ito. Transforming graphs with the same graphic sequence. Journal
of Information Processing, 25:627–633, 2017.

[5] Ahmad Biniaz, Anil Maheshwari, and Michiel Smid. Flip distance to some plane configura-
tions. Computational Geometry, 81:12–21, 2019.

[6] Marthe Bonamy, Nicolas Bousquet, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi, Arnaud
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