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We are interested by the spectral analysis of the anisotropic discrete Maxwell operator ĤD defined on the square lattice Z Z 3 . In aim to prove that the limiting absorption principle holds we construct a conjugate operator to the Fourier series of ĤD at any not-zero real value. In addition we show that at some particular thresholds the conjugate operator is essentially self-adjoint.

Introduction

We are interested in the limiting absorption principle (LAP) for the inhomogeneous discrete Maxwell operator ĤD defined on the square lattice Z Z 3 , i.e. the limit in some usual or more abstract Besov spaces of the resolvents R(z) = ( ĤD -z) -1 when z ∈ C \ R tends to a spectral value λ of ĤD . It is equivalent and more convenient to deal with the Fourier series H D of ĤD instead of ĤD since H D is a multiplication operator on the three-dimensional real torus T 3 ≈ (R/(2πZ Z)) 3 . The operator H D is so represented by the analytically fibered self-adjoint operator T 3 x → H D (x) on an Hilbert space H D where H D (x) is a 6 × 6 real matrix. We prove that the LAP holds by using the conjugate operator technique, as developed in the greatest generality by Gerard and Nier in a first version [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF]. Actually, denoting Σ = {(λ, x) | λ ∈ σ(H D (x))} the energy-momentum set, where σ(H D (x)) denotes the spectrum of an H D (x), we have the stratification Σ = ∪ 6 j=1 Σ j where Σ i is the semi-analytical set of elements (λ, x) for which λ is an eigenvalue of multiplicity i of H D (x) so we can introduce the (finite) set T of thresholds. At this point we could simply apply [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF]Theorem 3.1] and claim that for any interval I ⊂⊂ R \ T , there exists an operator A I with domain C ∞ (T 3 ; C 6 ), essentially self-adjoint on H D , conjugated to H D , and satisfying Points (i)-(iii) of [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF]Theorem 3.1]. See Points (i)-(iv) of Theorem 3.1. However we go beyond this result. Moreover, the construction of the conjugate operator in [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF] contains an error since, in fact, the analytically fibered self-adjoint operator for which the LAP is proved is not of class C 2 (A I ). The authors of [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF] have recently corrected it in the new version [START_REF] Gérard | Mourre theory for analytically fibered operators revisited[END_REF] at the cost of losing the (strict) globality of Mourre's inequality (3) which has to be replaced be a local one as [START_REF] Gérard | Mourre theory for analytically fibered operators revisited[END_REF]. Nevertheless, following the ideas of the old version [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF] and the new version [START_REF] Gérard | Mourre theory for analytically fibered operators revisited[END_REF] we construct an explicit conjugate operator A φ to H D with the same properties than the operator A I of [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF]Theorem 3.1]. Here we prefer to use as parameter for the conjugate a numerical smooth function φ instead of an interval I so A φ is conjugated to H D at each point of φ -1 (R * ).

We prove that the LAP holds at any nonzero threshold. Consequently, H D has no other eigenvalue than 0. This result is optimal since 0 is the obvious eigenvalue of H D so there is no conjugate operator to H D at 0. Denoting by X * the finite set of points x ∈ T 3 such that σ(H D (x)) ∩ T is not reduced to the eigenvalue 0, we construct A φ as a first order symmetric differential operator with smooth coefficients outside X * and with rational singularities at points x ∈ X * such that σ(H D (x)) ∩ T ∩ φ -1 (R * ) is not void. Then, the set of thresholds admits the partition T = T sa ∪ T sm : let x * ∈ X * and λ ∈ T ∩ σ(H D (x * )), if λ ∈ T sa then the local part A x * of A φ near x * is essentially self-adjoint, and if λ ∈ T sm then A φ near x * admits a maximal monotone extension. Thus, we obtain the validity of the LAP on R * \ T sm in the same terms as [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF]Theorem 3.3]. If λ ∈ φ -1 (R * ) ∩ T sm then A φ may not have a maximal monotone extension since its singularities may come from several points of X * and since the sum of two maximal monotone operators, even with disjoint supports, is not necessarily maximal monotone. Nevertheless we prove that the LAP holds on T sm by a slight extension of [START_REF] Georgescu | Commutators, C 0 -semigroups and resolvent estimates[END_REF]Theorem 3.3].

In Part 2 we describe the operator H D and the Hilbert space H D on which it is self-adjoint. In Part 3 we state the main results of our work, notably, the existence of a conjugate operator A φ for H D at Theorem 3.1. Then, we state that the LAP holds in many situations in terms of abstract or usual Besov spaces at Corollaries 1-5. In Part 4 we describe the spectrum of H D (x), the stratification of the energymomentum set Σ; we define the thresholds and describe T . It appears that T depends mainly on the parameter β = ε × µ where ε and µ denote respectively the permittivity and the permeability. In fact outside the first quite basic case β = 0 we have to deal with many special cases for which the set T is no more obvious. In Part 5 we construct the conjugate operator A φ according to the parameter β. We prove also the main properties of A φ . In Part 6 we prove the main results (see Part 3).

All along the text we use the following notations. Let E ∈ {T 3 , R 3 } where T 3 ≈ (R/(2πZ Z)) 3 is the 3-dimensional real torus. If f is a numerical function (from R into R) we then denote by f again the mapping E x → (f (x 1 ), f (x 2 ), f (x 3 )) ∈ R 3 , so if E ⊂ E then f (E) = {f (x); x ∈ E} ⊂ R 3 and if E ⊂ R 3 then f -1 (E) = {x ∈ E; f (x) ∈ E}. In particular we set, for x ∈ E, y = sin x := (y 1 = sin x 1 , y 2 = sin x 2 , y 3 = sin x 3 ) ∈ R 3 , z = y 2 := (z 1 = y 2 1 , z 2 = y 2 2 , z 3 = y 2 3 ) ∈ R 3 . (Although the letter z will be also used as a complex energy, there is no possible confusion with the notation above.) The other notations are standard. If E ⊂ E ∈ {T 3 , R 3 } and F ∈ {R n , C n }, we denote by C ∞ c (E, F) the real space of C ∞ functions with values in F, defined on E and with compact support in E. Let T be a self-adjoint operator. We denote by σ(T ) the spectrum of T ; if E ⊂ R then 1 E (T ) operator χ [a,b) (T ) where χ J is the characteristic function of a set J ⊂ R. If X and Y are two metrics spaces B(X, Y ) is the space of bounded operators from X into Y and B(X) := B(X, X).

For n ≥ 1 the space R n (respect., C n ) is equipped with the scalar product < •, • > R n (respect., with the hermitian product < f, g > C n = n j=1 f j g j , f = (f j ) 1≤j≤n , g = (g j ) 1≤j≤n ).

Full notations are at the end of the text, Part 8.4.

The discrete Maxwell Operator

2.1. The homogeneous discrete Maxwell Operator. Let Z Z 3 = {n = (n 1 , n 2 , n 3 ); n j ∈ Z Z} the square lattice, T 3 ≈ (R/(2πZ Z)) 3 the 3-dimensional real torus, U the unitary transform between L 2 (T 3 ) and l 2 (Z Z 3 ):

(U f )(n) := f (n) ≡ (2π) -3 2 T 3 e inx f (x)dx, n ∈ Z Z 3 , so that any f ∈ L 2 (T 3 ) can be written f (x) = (U * f )(x) ≡ (2π) -3 2 n∈Z Z 3 e -inx f (n), x ∈ T 3 .
The homogeneous discrete Maxwell operator is the bounded operator H 0 on H = (L 2 (T 3 )) 6 defined by Ĥ0 = U H 0 U * , with H 0 (x) the real anti-symmetrical 6 × 6 matrix:

H 0 (x) = 0 3×3 M (y) -M (y) 0 3×3 ∈ R 6 , x ∈ T 3 ,
where y = sin x and M (y) is the real anti-symmetrical 3 × 3 matrix:

(1)

M (y) =   0 -y 3 y 2 y 3 0 -y 1 -y 2 y 1 0   , y ∈ R 3 .
The space H = L 2 (T 3 , dx; R 6 ) can be written as the hilbertian sum

H = ⊕ T 3 R 6 dx, with the scalar product (u, v) := T 3 < u(x), v(x) > R 6 dx.
We then have

H 0 = ⊕ T 3 H 0 (x)dx
which shows that H 0 is a bounded self-adjoint operator on H.

All along the article we consider that the vectorial functions u and v may be complex-valued so we denote by the same symbol H the hilbertian space

⊕ T 3 C 6 dx equipped with the hilbertian product (u, v) := T 3 < u(x), v(x) > C 6 dx = T 3 6 j=1 u j (x)v j (x)dx and with norm u := (u, u) 1 2 .
2.2. The discrete Maxwell Operator. Let ε and µ be 3 × 3 constant diagonal matrices with diagonal elements, respectively, ε 1 , ε 2 , ε 3 ∈ (0, ∞) for ε, and µ 1 , µ 2 , µ 3 ∈ (0, ∞) for µ. The inhomogeneous discrete-Maxwell operator is defined by ĤD = D Ĥ0 ,

where we set D = ε 0 3×3 0 3×3 µ .
The (unperturbed) discrete Maxwell operator is H D = U * ĤD U so we have, since D is constant,

H D = U * ( D Ĥ0 )U = DU * Ĥ0 U = DH 0 . The relation ( D-1 H D u, v) = (H 0 u, v)
shows that the operator H D is bounded and self-adjoint on the space H D = H equipped with the hilbertian product

(u, v) H D := ( D-1 u, v) = T 3 < D-1 u(x), v(x) > C 6 dx
and with norm u H D := (u, u) 

H D = ⊕ T 3 H D (x)dx,
where H D (x) is self-adjoint on C 6 equipped with the hermitian product:

< u(x), v(x) > C 6 ,D :=< D-1 u(x), v(x) > C 6 .
Since H D (x) depends only on y = sin(x) we write it H D (x) = h D (y). It is known (see [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF]) that [START_REF] Georgescu | Commutators, C 0 -semigroups and resolvent estimates[END_REF] σ(

H D ) = ∪ x∈T 3 σ(H D (x)),
which is a compact set of R.

Results

3.1.

Main Theorem. We introduce the following settings:

X 0 := {x ∈ T 3 ; z = 0}, T 3 0 = T 3 \ X 0 , X * := {x ∈ T 3 ; σ(H D (x)) ∩ T = {0}} ⊂ T 3 0 . We denote D 0 := C ∞ c (T 3 \ X * ) and R(z) := (H D -z) -1 the resolvent of H D . Theorem 3.1. Let T ⊂ T with 0 ∈ T , and φ ∈ C ∞ c (R \ T ).
Then there exists a symmetric operator A φ defined on C ∞ (T 3 ) if T = T and on D 0 if T = T , and satisfying the following properties:

(i) There exists a constant δ = δ(φ) > 0 so that we have

(3) φ(H D )[H D , iA φ ]φ(H D ) ≥ δφ 2 (H D ).
(ii) The multi-commutators ad k A φ (H D ) are bounded for all k ∈ N. (iii) The operator A φ is a first order differential operator in x whose coefficients belong to

C ∞ (T 3 ; L(C 6 )) if T = T and to C ∞ (T 3 \ X * ; L(C 6 )) if T = T , and there exists φ ∈ C ∞ c (R \ T ) so that A φ = φ(H D )A φ = A φ φ(H D ). (iv) If T sm ⊂ T then A φ is essentially self-adjoint. (v) If T = {0} then A φ has the form 3 j=0
A j where A 0 has smooth coefficients and is essentially self-adjoint, A 1 and A 2 have coefficients with rational singularities at some points of X * and, defined on the domain D 0 , admit a maximal symmetric extension; moreover, supp A 1 ∩ supp A 2 = ∅.

Remark 1.

• Since the coefficients of A φ are smooth in T 3 \ X * and, since D 0 is dense in H D , then, for u ∈ H D , the distribution A φ u belongs to the topological dual space of D 0 so, since A φ is symmetric,

A φ u ∈ H D ⇐⇒ |(u, A φ v) H D | ≤ C v ∀v ∈ D 0 . Setting u D(A φ ) := u + A φ u ∀u ∈ D 0 , the closure Āφ of A φ has domain D( Āφ ) := D 0 • D(A φ ) .
The adjoint of Āφ or of A φ is the operator

A φ * with domain D(A φ * ) = {v ∈ H D ; |(A φ u, v) H D | ≤ C u , u ∈ D(A φ )}. If supp φ ∩ T = ∅ then A φ is essen- tially self-adjoint and its self-adjoint extension has domain C ∞ (T 3 ) • D(A φ ) ⊃
H 1 (T 3 ) (with dense inclusion). • Our set T of thresholds may defer to the set of thresholds in [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF]. Anyway, T is a discrete (and finite) set. The sets T , T sa and T sm are precisely described in Part 5.7.3. • In the case T = T , the result of [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF] implies the existence of an essentially self-adjoint operator A I with smooth coefficients such that Points (i), (iii) and (iv) with A φ replaced by A I hold. But the first commutator [H D , A I ] is not a multiplication operator so Point (ii) fails, and, in fact, H D ∈ C 1,1 (A I ) (this set is defined at Point B of Corollary 1). The new version [START_REF] Gérard | Mourre theory for analytically fibered operators revisited[END_REF] of [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF] provides an essentially self-adjoint operator A I,I1 with smooth coefficients such that Points (ii)-(iv) and a local (weaker) version of Point (i) are maintained (with A φ replaced by A I,I1 ). • We give an explicite formula for A φ which is easier to read than the general formula in [START_REF] Gérard | Mourre theory for analytically fibered operators revisited[END_REF] (which is only valid in the case T = T ).

Main consequences and extensions.

The first obvious consequence of Theorem 3.1 is that the singular continuous spectrum of H D is then empty. But it is actually a consequence of the general theorem in [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF] revised in [START_REF] Gérard | Mourre theory for analytically fibered operators revisited[END_REF].

The second consequence is that we can state the LAP outside T sm ∪ {0} in the same terms as those of Gérard and Nier in the old version [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF] of their work. See also [START_REF] Mourre | Absence of singular continuous spectrum for certain self-adjoint operators[END_REF][START_REF] Perry | Spectral analysis of N-body Schrödinger operators[END_REF]. Let us consider a compact interval I ⊂ R * \ T sm , and fix φ ∈ C ∞ c (R * \ T sm ) such that φ = 1 on a neighborhood of I. We denote by A sa φ ⊂ A φ * a self-adjoint extension of A φ . We define the abstract Besov space B A by

B A = {f ∈ H; f B A := ∞ j=0 r 1/2 j 1 rj-1≤|A sa φ |≤rj f < ∞}.
Its dual space B A * is the completion of H D by the following norm

u B A * = sup j≥0 r 1/2 j 1 rj-1≤|A sa φ |<rj u .
For s > 1/2, the following inclusion relations hold :

D((1 + |A sa φ |) s ) ⊂ B A ⊂ D((1 + |A sa φ |) 1/2 ) ⊂ H D ⊂ D((1 + |A sa φ |) -1/2 ) ⊂ B A * ⊂ D((1 + |A sa φ |) -s ). We can claim Corollary 1. (LAP on R * \ T sm in abstract Besov spaces.) We have sup λ∈I, µ>0 R(λ ± iµ)f B A * ≤ C I f B A ∀f ∈ B A .
Moreover letting s > 1/2 then the limits

lim ε→±0 (1 + |A sa φ |) -s R(λ + iε)(1 + |A sa φ |) -s
exist in B(H D ) and are bounded, with uniform convergence according to λ ∈ I. The mapping

R \ T λ → R(λ ± i0) is norm continuous in B(D((1 + |A sa φ |) s , D((1 + |A sa φ |) -s ) and weakly continuous in B(B A , B A * ).
For further developments we establish also the LAP in terms of the usual Besov spaces described by Isozaki and alii [START_REF] Ando | Spectral properties of Schrödinger operators on perturbed lattices[END_REF] with the restriction to spectral values outside the thresholds. Thus, we consider the case supp φ ⊂ R \ T in Theorem 3.1. We set N = (N 1 , N 2 , N 3 ), N j = i∂/∂x j and the self-adjoint operators

|N | = √ N 2 = √ -∆, N 2 = 3 j=1 N 2 j = -∆ on T 3 ,
where ∆ denotes the Laplacian on T 3 = [-π, π] 3 with periodic boundary condition. Let D (T 3 , C) = (C ∞ (T 3 , C)) be the space of distribution on T 3 and consider D (T 3 , C 6 ) ≈ (D (T 3 , C)) 6 ≈ (D (T 3 , R)) 12 . We introduce the normed spaces

H s = {u ∈ D (T 3 , C 6 ), u s < ∞}, u s := (1 + N 2 ) s/2 u , s ∈ R, so H s is the completion of D(|N | s
), the domain of |N | s , with respect to the norm u s and we have H D = H 0 = L 2 (T 3 , C 6 ). For s ≥ 0 and u ∈ C ∞ (T 3 , C 6 ) we have (1 + |A sa φ |) s u ≤ C u s where C does not depend on u. Thus, the following inclusion relations hold :

H s ⊂ D((1 + |A sa φ |) s ) ⊂ H D ⊂ D((1 + |A sa φ |) -s
) ⊂ H -s ∀s ≥ 0. Using the sequence (r j ) j≥-1 where r -1 = 0, r j = 2 j for j ≥ 0 we define the Besov space B by

B := {f ∈ H D ; f B := ∞ j=0 r 1/2 j 1 rj-1≤|N |≤rj f < ∞}.
Its dual space B * is the completion of H by the following norm

u B * = sup j≥0 r 1/2 j 1 rj-1≤|N |<rj u .
For s > 1/2, the following inclusion relations hold :

H s ⊂ B ⊂ H 1/2 ⊂ H D ⊂ H -1/2 ⊂ B * ⊂ H -s .
Moreover, Lemma 2.8 of [START_REF] Isozaki | Inverse problems, trace formulae for discrete Schrödinger operators[END_REF] says that there is a constant C > 0 such that 

f B A ≤ C f B ∀f ∈ B, that is, B ⊂ B A ,
|(u, R(z)u) H D | ≤ C I u 2 D( Āφ ) ∀u ∈ D( Āφ ), for all z = λ + iµ with λ ∈ I, µ = 0 real. Moreover if z 1 = λ 1 + iµ 1 , z 2 = λ 2 + iµ 2
are two such numbers, and if µ 1 and µ 2 have the same sign, then

|(u, (R(z 1 ) -R(z 2 ))u) H D | ≤ C I |z 1 -z 2 | 1/2 u 2 D( Āφ ) ∀u ∈ D( Āφ ).
In particular, if u ∈ D( Āφ ) then the limits

lim ε 0 + (u, R(λ ± iε)u) H D =: (u, R(λ ± i0)u) H D
exist uniformly in λ ∈ I, and, for all λ 1 , λ 2 ∈ I, we have

(u, (R(λ 1 ± i0) -R(λ 2 ± i0))u) H D ≤ C I |λ 1 -λ 2 | 1/2 u 2 D( Āφ ) . An immediate consequence of Corollary 3 is Corollary 4. The point spectrum σ p (H D ) of H D is reduced to {0}.
Before giving the proof of Theorem 3.1, we state the results for some natural class of perturbed Hamiltonians H D V = H D + V , as done in [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF]. We will simply recall some well known results in the Mourre theory (see [START_REF] Mourre | Absence of singular continuous spectrum for certain self-adjoint operators[END_REF][START_REF] Perry | Spectral analysis of N-body Schrödinger operators[END_REF]) and refer the reader to the book [START_REF] Amrein | C 0 -Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonins[END_REF] for a complete exposition of the Mourre method. In particular a sharper version of Corollary 5 is given in [START_REF] Amrein | C 0 -Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonins[END_REF]Prop. 7.5.6].

Corollary 5. Let I ⊂ R * \ T sm be a compact interval, and fix φ ∈ C ∞ c (R * \ T sm ) such that φ = 1 on a neighborhood of I. Let V be a symmetric operator on H D so that (1) V R(i) and R(i)[V, iA φ ]R(i) are compact. (2) V ∈ C 1,1 (A φ ), i.e., R(i)(e itA φ [V, iA φ ]e -itA φ -[V, iA φ ])R(i) dt t < ∞.
Then, setting H D V := H D + V , the following results hold: (1) There exists a constant δ > 0 and a compact operator K so that,

φ(H D V )[H D V , iA φ ]φ(H D V ) ≥ δφ 2 (H D V ) + K. Consequently point spectrum σ p (H D V
) is of finite multiplicity in R * \ T sm and has no accumulation point in R * \ T sm .

(2) For each λ ∈ I \ σ p (H D V ) there exist ε > 0 and c > 0 so that, (4)

1 [λ-ε,λ+ε] (H D V )[H D V , iA φ ]1 [λ-ε,λ+ε] ≥ c1 [λ-ε,λ+ε] (H D V ).
(3) The LAP for H D V holds on I \ σ p (H D V ): the limits lim

ε→±0 (1 + |A φ |) -s R(λ ± iε)(1 + |A φ |) -s
exist and are bounded for all s > 1/2. Consequently the singular continuous spectrum of

H D V is empty. (4) If the operator (1 + |A φ |) -s V (1 + |A φ |) -s is bounded for some s > 1/2, then the wave operators s -lim t→±∞ e itH D V e itH D 1 I (H D ) =: Ω ± I
exist and are asymptotically complete:

1 c I (H D V )H D = Ω ± I H D .

First Spectral Properties

4.1. Spectrum of h D (y). We introduce the new parameters: 

β = ε × µ = (β 1 , β 2 , β 3 ) (5) α = (α 1 , α 2 , α 3 ), α 1 := (ε 2 µ 3 + ε 3 µ 2 )/
γ 2 = ε 1 ε 3 µ 1 µ 3 , γ 3 = ε 1 ε 2 µ 1 µ 2 .
(The abreviation "c.p." means "circular permutation" so we have the other values by circular permutation, ex.,

β 1 = ε 2 µ 3 -ε 3 µ 2 ).
Let us describe the spectrum of h D (y).

Lemma 4.1. We have

det(h D (y) -k) = det(εM (y)µM (y) + k 2 )
and the factorization

det(h D (y) -k) = k 2 (τ + (z) -k 2 )(τ -(z) -k 2 ), with (7) 
τ ± = Ψ 0 ± K 0 ,
where

K 0 (z) = 1 4 (β 2 1 z 2 1 -2β 1 β 2 z 1 z 2 ) + c.p., (8) 
Ψ 0 (z) = α • z := α 1 z 1 + α 2 z 2 + α 3 z 3 . (9) Proof in Appendix A. Since the characteristic polynomial det(H D (x)-λ) depends on x via the new variable z = (z 1 , z 2 , z 3 ) = sin 2 x ∈ [0, 1] 3 we set p(z; λ) = det(H D (x) -λ) = det(εM (y)µM (y) + λ 2 ). Remark 2. If z = 0 then τ + (z) = Ψ 0 (z) + K 0 (z) ≥ τ -(z) = Ψ 0 (z) -K 0 (z) > 0.
Moreover there exists C > 0 such that [START_REF] Amrein | C 0 -Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonins[END_REF][START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF]] then there exists j ∈ [ [START_REF] Amrein | C 0 -Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonins[END_REF][START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF]] such that β j β i ≤ 0 and β k β i ≥ 0 for i, k = j. If two of the β j 's vanish then β vanishes. Moreover β is replaced by -β if ε and µ are exchanged, which involves the same analysis. Hence if β = 0 then we can assume without any restriction:

τ -(z) ≥ C|z|, z ∈ [0, 1] 3 . Since β • ε = 0 and ε i > 0 for all i ∈ [
(A0):

β 1 ≥ β 2 > 0 > β 3 or β 1 > β 2 = 0 > β 3 .
The functions Ψ 0 and K 0 are homogeneous polynomials. The relation K 0 ≡ 0 is equivalent to β = 0 which is the special case where ε and µ are proportional. If one of the β i 's vanishes, so, under Asumption (A0), β 2 = 0, then K 0 (z) is polynomial. Thus, the functions R 3 z → τ ± (z) are homogeneous analytical complex functions with branch at z = 0 and at points z for which K 0 (z) = 0 if β 2 = 0 for all i, and with branch point at z = 0 only if β 2 = 0.

If z = 0 then h D (y) = 0 6×6 and all the eigenvalues vanish. Let us consider the case z = 0.

Theorem 4.2. (Spectrum of h D (y).) Let z ∈ [0, +∞) 3 \ {0 R 3 }. Then 0 is a double eigenvalue with eigenvectors (y 1 , y 2 , y 3 , 0, 0, 0) ≡ y ⊗ 0 C 3 and (0, 0, 0, y 1 , y 2 , y 3 ) ≡ 0 C 3 ⊗ y.
Assume β = 0. Then K 0 ≡ 0 and all the eigenvalues have multiplicity two. Moreover, the nonzero eigenvalues of h D (y) are

± τ + (z) = ± τ -(z) = ± √ ε 2 µ 3 z 1 + ε 3 µ 1 z 2 + ε 1 µ 2 z 3 .
Assume β = 0 (so (A0) holds). Then the nonzero eigenvalues of h D (y) are

• ± τ + (z), simple iff K 0 (z) = 0, • ± τ -(z), simple iff K 0 (z) = 0. • ± τ + (z) = ± τ -(z)
, double iff K 0 (z) = 0. Assume β = 0 (so (A0) holds) with β 2 = 0. Then, τ + and τ -are linear according to z:

τ + (z) = ε 2 µ 3 z 1 + ε 3 µ 1 z 2 + ε 2 µ 1 z 3 , (10) 
τ -(z) = ε 3 µ 2 z 1 + ε 3 µ 1 z 2 + ε 1 µ 2 z 3 . (11) 
(Hence we observe that:

If (z 1 , z 3 ) = 0 R 2 , then the nonzero eigenvalues of h D (y) are ± τ + (z), simple. If (z 1 , z 3 ) = 0 R 2 and z 2 = 0, then the nonzero eigenvalues of h D (y) are ± τ + (z) = ± τ -(z) = ± √ α 2 |y 2 | = ± √ ε 3 µ 1 |y 2 |, double.)
The Proof of Theorem 4.2 follows from ( 8) and ( 9).

Lemma 4.3. Let us assume β = 0 (so (A0) holds). We have

K -1 0 ({0}) := {z ∈ [0, 1] 3 ; K 0 (z) = 0} = {t(β 2 , β 1 , 0) ; 0 ≤ t ≤ 1 β 1 }.
The Proof is let to the reader. We set

λ ± = max{ τ ± (z) ; z ∈ [0, 1] 3 } ∈ (0, +∞).
The following result is a consequence of Theorem 4.2 and of relation ( 2):

Proposition 1. 1)
The operator H D admits 0 as eigenvalue of infinite order.

2) The spectrum of

H D is σ(H D ) = [-λ + , λ + ].
Proof in Appendix A.

4.2. Stratification and thresholds. Following [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF] the set of energy-momentum is

Σ = {(λ, x) | λ ∈ σ(H D (x))} ⊂ σ(H D ) × T 3 .
We have (λ, x) ∈ Σ ⇐⇒ p(z; λ) = 0. We consider the canonical projections:

P M : R × T 3 (λ, x) → x ∈ T 3 , P R : R × T 3 (λ, x) → λ ∈ R. It is clear that P R | Σ is a proper map. The spectrum σ(H D (x)) of H D (x)
is discrete and depends continuously on x. The operators H D (x) are the fibers and the space T 3 is the momentum space. The set of energy-momentum Σ admits the partition Σ = ∪ 6 i=1 Σ i , where Σ i is the semi-analytical set of elements (λ, x) for which λ is an eigenvalue of multiplicity i of H D (x). We set

X j = P M (Σ j ), j ≥ 1.
We see that Σ j = ∅ for j = 3, 4, 5, Σ 6 = {0} × X 0 so X 6 = X 0 , X j = ∅ for j = 3, 4, 5. Moroever,

Σ 1 = Σ + 1 ∪ Σ - 1 , Σ ± 1 := {(λ, x); 0 = λ 2 = τ ± (z) = τ ∓ (z)}, Σ 2 = {(λ, x); 0 = λ 2 = τ + (z) = τ -(z)}. If β = 0 then Σ 1 = ∅ and (λ, x) ∈ Σ 2 iff z = 0 and λ 2 = Ψ 0 (z). If β = 0 holds then (λ, x) ∈ Σ 1 iff K 0 (z) = 0 and λ 2 ∈ {τ + (z), τ -(z)}.
Let us define the set of thresholds, T . For a more general definition of T (which may defer from ours), see [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF]. We set

Σ * 1 := Σ * + 1 ∪ Σ * - 1 , Σ * ± 1 := {(λ, x) ∈ Σ 1 ; λ 2 = τ ± (z), ∇ x τ ± (z) = 0}, Σ * 2 := {(λ, x) ∈ Σ 2 ; λ 2 = Ψ 0 (z), and ∇ x Ψ 0 (z) is normal to X 2 at x}, then, T j := P R (Σ * j ), X * j := P M (Σ * j ), Z * j := sin 2 (X * j ), j = 1, 2.
Observing that P R (Σ 6 ) = {0}, we set the set of thresholds, T , as

T := {0} ∪ T 1 ∪ T 2 .
Let us describe T . Setting

X * = X * 1 ∪ X * 2 ,
we see that λ is a threshold iff there exists z * ∈ sin 2 (X * ) such that p(z * ; λ) = 0. Setting

T ± 1 := P R (Σ * ± 1 ), X * ± 1 := P M (Σ * ± 1 ), Z * ± 1 := sin 2 (X * ±
1 ), we have

T 1 = T + 1 ∪ T - 1 , X * 1 = X * + 1 ∪ X * - 1 , sin 2 (X * 1 ) = Z * + 1 ∪ Z * - 1 , so (12) T = T + 1 ∪ T - 1 ∪ T 2 ∪ {0}.
Obviously T is symmetric to 0 so we shall analyse H D at the positive thresholds only.

Lemma 4.4.

A) Assume β = 0. Then we have

∂ zi τ ± (z) = ∂ zi Ψ 0 (z) > 0 for all i. B) Assume β = 0 (so (A0) holds.) We set ν := 2α 3 √ β 1 β 2 - √ γ 3 (β 1 + β 2 ) |β 3 | √ γ 3 . (13) Let z ∈ [0, 1] 3 such that K 0 (z) = 0. 1) We have ∂ zi τ + (z) > 0 for i = 1, 2, 3, and ∂ zi τ -(z) > 0 for i = 1, 2. 2) a) Assume β 2 = 0 (so ν < 0). Then ∂ z3 τ -(z) > 0. b) Assume β 2 > 0. (i) If z 1 = 0 or z 2 = 0 then ∂ z3 τ -(z) > 0. (ii) The derivative ∂ z3 τ -(1, 1, z 3 ) vanishes iff z 3 = ν ∈ [0, 1], and if z 3 = ν then ∂ z3 τ -(1, 1, z 3 ) has the same sign than z 3 -ν .
Proof in Appendix A.

Remark 3. Let ν ∈ R there exist ε and µ such that ν = ν. Proof in Appendix A.

Lemma 4.4 implies that the thresholds of the analytically fibered family (H D (x), x ∈ T 3 ) come from the values x ∈ T 3 such that ∂ xi z i (x) = 0 at least for i = 1, 2, so z 1 , z 2 ∈ {0, 1}, and, in addition, we have z 3 ∈ {0, ν, 1}.

We can determine now the set T of thresholds. Setting

Z {0,1} = {0, 1} 3 , Z * {0,1} = Z {0,1} \ {0 R 3 }, X {0,1} = {x ∈ T 3 ; z ∈ Z {0,1} }, X * {0,1} = {x ∈ T 3 ; z ∈ Z * {0,1}
}, we obtain the following (remember also [START_REF] Ando | Spectral properties of Schrödinger operators on perturbed lattices[END_REF]) Lemma 4.5.

1) Case β = 0. We have

K 0 ≡ 0, X 1 = ∅, Σ 1 = ∅, X 2 = T 3 0 . Then sin 2 (X * 2 ) = Z * {0,1} , T 1 = ∅, T = {0} ∪ T 2 and T 2 ∩ R + = { Ψ 0 (z); z ∈ Z * {0,1} }.
2) Case β = 0 (so (A0) holds). We set

Z * ν = {(1, 1, ν)} ∩ [0, 1] 3 .
Then the sets X j , j = 1, 2, are not trivial (remember Lemma 4.3). We have

Z * + 1 = Z * {0,1} \ {( β2 β1 , 1, 0)}, Z * - 1 = Z * {0,1} ∪ Z * ν \ {( β2 β1 , 1, 0)} and sin 2 (X * 2 ) = {( β2 β1 , 1, 0)}, so T + 1 ∩ R + = { τ + (z), z ∈ Z * {0,1} , z = ( β 2 β 1 , 1, 0)}, T - 1 ∩ R + = { τ -(z), z ∈ Z * {0,1} ∪ Z * ν , z = ( β 2 β 1 , 1, 0)}, T 2 ∩ R + = { Ψ 0 ( β 2 β 1 , 1, 0)}.
Proof in Appendix A.

Remark 4. We have

X * + 1 ⊂ X * - 1
and the inclusion is an equality if and only if ν ∈ (0, 1). Remark 5. Let us consider the case β 2 = 0. By definition of T 2 we have

T 2 ∩ R + = { Ψ 0 (z); z = 0, ∇ x Ψ 0 (z) = 0}.
Then, the eigenvalues √ τ ± are analytic in [0, +∞) 3 \ {0 R 3 }, since the functions τ ± are linear and positive in [0, +∞) 3 \ {0 R 3 }. Hence it would be an alternative to replace T 2 by T 2 where we set

T 2 := T + 2 ∪ T - 2 , T - 2 := -T + 2 , T + 2 := { τ ± (z); z = 0, ∇ x τ ± (z) = 0} = T 2 ∩ R + .
But, thanks to Points B) 1) and 2) a) of Lemma 4.4 we obtain

T + 2 = { τ ± (z); z ∈ {0, 1} 3 , z = 0 R 3 } = T 2 ∩ R + ,
so the sets T 2 and T 2 coincide.

The conjugated operator

In this section we consider a set T ⊂ T and a function φ ∈ C ∞ c ((0, +∞) \ T ; R). We construct an adequate conjugated operator A φ to H on supp φ.

5.1. Eigenprojectors. If β = 0 then Σ 1 = ∅ and the function Ψ 0 (y 2 ) is analytic in R 3 \ {0 R 3 }. The associated orthogonal eigenprojection (14) π 2 (y) := 1 2iπ C (h D (y) -ζ) -1 dζ ∀y = 0,
where C ⊂ C is a complex contour containing Ψ 0 (z) but not 0, is then analytic in R 3 \ {0 R 3 } and has range two. Let us assume β = 0. Let us denote by π ± 1 (y) the orthogonal eigenprojection on ker(h D (y) -τ ± (z)), i.e.,

π ± 1 (y) := 1 2iπ C (h D (y) -ζ) -1 dζ ∀y ∈ sin(X 1 ),
where C is a contour containing τ ± (z) but no other eigenvalue of h D (y). Let again π 2 (y) be defined by ( 14) where now C is a contour containing both τ + (z) and τ -(z) but no other eigenvalue. Thus π 2 (y) is the orthogonal eigenprojection on ker(h D (y) -τ + (z)) + ker(h D (y) -τ -(z)), and

π 2 (y) = π + 1 (y) ⊕ π - 1 (y) ∀y ∈ sin(X 1 ).
Each π ± 1 (y) has range one and π 2 (y) has range two. Each π ± 1 is analytic at y ∈ sin(X 1 ) (as subset of R 3 ), π 2 is analytic on sin(R 3 ) \ {0 R 3 } (⊂ R 3 ), and

h D (y)π 2 (y) = τ + (z)π + 1 (y) + τ -(z)π - 1 (y) ∀y ∈ sin(X 1 ), h D (y)π 2 (y) = Ψ 0 (z)π 2 (y) ∀y ∈ sin(X 2 ). 5.2. Global tangent field to X 2 . If β 2 = 0 then the τ ± 's and π ± 1 's extend ana- lytically into R 3 \ {0 R 3 } with the relation π 2 (y) = π + 1 (y) + π - 1 (y) ∀y = 0 R 3 .
In addition, in Case (A0) (with β 2 = 0), the sum π + 1 (y) + π - 1 (y) is direct. Let us assume β 2 = 0 (with Assumption (A0)) and make a precise description of X 2 . A point x ∈ T 3 belongs to X 2 iff z = 0 and

z 3 = 0 = β 1 z 1 -β 2 z 2 .
The last relation can be written

β 1 y 2 1 = β 2 y 2 2 , y 2 ∈ [-1, 1] \ {0}.
When an nonzero eigenvalue of H D (x) (respect., of h D (y)) is not simple then the stratification method explained in [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF] involves a tangential vector field to the set X 2 (respect., to sin(X 2 )): w(x) := (sin(x 1 ) cos(x 2 ), cos(x 1 ) sin(x 2 ), 0), (respect., w(y) := (y 1 , y 2 , 0) ). We observe that |w(x)| = 0 for all x ∈ X 2 \ X * , and |w(x

)| = 0 for all x ∈ X 2 if β 2 ∈ (0, β 1 ). If β 2 = β 1 then w vanishes at all x * ∈ X * 2 since z * 1 = z * 2 = 1.
We introduce the following notations. Letting a function f :

T 3 or R 3 → C n and a vector field v(x) = (v j (x)) 1≤j≤n ∈ C n , then v • ∇ x f is the vectorial function x → n j=1 v j (x)∂ xj f (x) ∈ C n . We set also f w := w • ∇ x f, f w := w • ∇ y f.

We thus have (15)

f w (x) = cos(x 1 ) cos(x 2 ) f w(y).

5.3.

First cut-off functions. We consider the following metric on

T 3 ≈ (R/(2πZ Z)) 3 : d 0 (x, x * ) = |e ix -e ix * | x * , x ∈ T 3 . We denote d 0 (x, E) = inf{d 0 (x, x * ) | x * ∈ E} when E ⊂ T 3 . We consider a cut-off function ϕ 1 ∈ C ∞ (R; [0, 1]) such that supp ϕ 1 ⊂ {s ∈ R; |s| < 1} and ϕ 1 = 1 in {s; |s| < 1/2}. Let b, b 0 with 0 < b < b 0 /2 two
small parameters which will be precised later. We separate the eigenvalue 0 from R + , and, equivalently, X 0 from T 3 , with the cut-off function χ 0 (x) := ϕ 1 (|z|/b 0 ). Since supp φ ⊂ (0, ∞), we can fix b 0 sufficiently small such that:

{ τ + (z), τ -(z)} ∩ supp φ = ∅ ⇒ χ 0 (x) = 1.
In addition we set

χ x * (x) := ϕ 1 (d 0 (x, x * )/b) x * , x ∈ T 3 , χ * + (x) := (1 -χ 0 (x))Π x * ∈X * + 1 (1 -χ x * ), χ * -(x) := (1 -χ 0 (x))Π x * ∈X * - 1 (1 -χ x * ), χ * (x) := (1 -χ 0 (x))Π x * ∈X * (1 -χ x * ), so χ * vanishes in {x ∈ T 3 ; d 0 (x, X * ) < b/2} and in {x ∈ T 3 ; |z| < b 0 /2}; we have also χ * (x) = 1 if d 0 (x, X * ) > b and |z| > b 0 . It means that χ * is a smooth cut-off
function localizing in the complement of X * ∪ X 0 , and, since X * ∪ X 0 is a discrete set (and finite), we then have, for b 0 > 0 sufficiently small,

1 -χ * (x) = χ 0 (x) + x * ∈X * χ x * (x), 1 -χ * ± (x) = χ 0 (x) + x * ∈X * ± 1 χ x * (x).
5.4. The conjugated operator outside thresholds. Case β = 0. Remember that we have

π + 1 = π - 1 = π 2 which is analytic in R 3 \{0 R 3 }. We set, for u ∈ C ∞ (T 3 ), x ∈ T 3 , A out u (x) := iχ * (x)π 2 (y) ∇ x Ψ 0 (z) |∇ x Ψ 0 (z)| 2 ∇ x (χ * (x)π 2 (y)u(x)).
Case β = 0 and β 2 = 0 (with Assumption (A0)). Remember that the functions τ ± (•) are analytic in R 3 (see [START_REF] Perry | Spectral analysis of N-body Schrödinger operators[END_REF] and ( 11)) and are positive in [0, +∞) 3 \ {0 R 3 }. Thus, the eigenvalues τ ± (•) are analytic in [0, +∞)

3 \ {0 R 3 }. We set, for u ∈ C ∞ (T 3 ), x ∈ T 3 , A out u (x) := ± iχ * (x)π ± 1 (y) ∇ x τ ± (z) |∇ x τ ± (z)| 2 ∇ x (χ * (x)π ± 1 (y)u(x)).
Case β 2 = 0 (with Assumption (A0)). Firstly, we have X * + 1 ⊂ X * - 1 , but not necessarily the converse inclusion. Actually, if ν ∈ (0, 1) (remember Lemma 4.5) then the value τ -(1, 1, ν) is a threshold be not necessarily τ + (1, 1, ν), so we may have

x * ν ∈ X * - 1 \ X * + 1 . Secondly, in aim to have H D ∈ C ∞ (A out ), we need to separate X 2 ⊂ ∂X 1 from X 1 , as explained in [4]. Since X 2 = X 2 ∪ X 0 = {x ∈ T 3 ; K 0 (z) = 0} is compact then there exist two smooth cut-off functions, χ 1 and χ 2 in C ∞ (T 3 ; [0, 1]), such that supp χ 2 ⊂ {x; d 0 (x, X 2 ) ≤ 2b}, χ 2 (x) = 1 if d 0 (x, X 2 ) ≤ b, χ 1 (x) = 1 if d 0 (x, X 2 ) ≥ 3b, and supp χ 1 ⊂ {x; d 0 (x, X 2 ) ≥ 2b}. Thus supp χ 1 ∩ supp χ 2 = ∅ and χ 2 = 1 on X 2 . We then set χ 3 := 1 -χ 1 -χ 2 so supp χ 3 ⊂ {x; b ≤ d 0 (x, X 2 ) ≤ 3b}, and 
3 j=1 χ 2 j (x) > 0 ∀x ∈ T 3 .
See Figure 1. We have in addition (b being sufficiently small)

supp χ x * ⊂ supp χ 1 \ supp χ 3 ∀x * ∈ X * 1 , (16) supp χ x * ⊂ supp χ 2 \ supp χ 3 ∀x * ∈ X * 2 . (17) Figure 1. Cut-off X 0 . .X 2 * X 2 supp X 2 supp X 1 supp X 3 .X 1 * supp X 0 b 0 b X 1 χ * j (x) := χ * (x)χ j (x) j = 2, 3 χ * ± 1 (x) := χ * ± (x)χ 1 (x). (In fact, Relations (17) and (17) imply χ * 3 = (1 -χ 0 )χ 3 .) The function χ * 2 is a smooth cut-off localizing in X 2 \ X * while χ * ± 1 is a smooth cut-off localizing in X 1 \ X * ± 1 . For u ∈ C ∞ (T 3 ), x ∈ T 3 , we set, A out u (x) := ± iχ * ± 1 (x)π ± 1 (y) ∇ x τ ± (z) |∇ x τ ± (z)| 2 ∇ x (χ * ± 1 (x)π ± 1 (y)u(x)) +iχ * 2 (x)( Ψ 0 (z) w ) -1 π 2 (y) (χ * 2 (x)π 2 (y)u(x)) w + ± iχ * 3 (x)( Ψ 0 (z) w ) -1 π ± 1 (y) (χ * 3 (x)π ± 1 (y)u(x)) w .
Remark 6. The function Ψ 0 (z) w may vanish at points of X * but not of X 2 \ X * so χ * 2 (x)( Ψ 0 (z) w ) is well-defined (for b sufficiently small). For more details, see the proof of (19) below. Similarly, the function

x → |∇ x τ ± (z)| is positive in supp χ * ± 1 .
In each case we symmetrize A out by setting

A out := A out + A * out , with domain C ∞ (T 3 ). Here A *
out is the hermitian conjugate of A out . By observing that the mappings x → χ j (x)π ± 1 (y) for j = 1, 3, and x → (1 -χ 0 (x))π 2 (y) are smooth, then A out is a symmetric first order differential operator in x whose coefficients belong to C ∞ (T 3 ; L(C 6 )). It is then essentially self-adjoint on H D (see [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF]Lemma 3.10]). Since D(H D ) = H D , some possible problematic points of the Mourre Theory then become trivial (see [START_REF] Georgescu | Commutators, C 0 -semigroups and resolvent estimates[END_REF]). 5.5. "Punctual" Mourre's estimate outside thresholds. We set

H 1,out (x) := [H D , iA out ](x).
Similarly to proof of the Mourre's estimate in [START_REF] Gérard | The Mourre theory for analytically fibered operators[END_REF] we show that if the positive parameter b is sufficiently small then A out is strictly conjugated to H on I.

Case β 2 = 0 under assumption (A0). Let u ∈ C ∞ (T 3 ), we have

-iA out • H D u (x) = ± χ * ± 1 (x)π ± 1 (y) ∇ x τ ± (z) |∇ x τ ± (z)| 2 ∇ x (χ * ± 1 (x)π ± 1 (y)h D (y)u(x)) +χ * 2 (x)π 2 (y)( Ψ 0 (z) w ) -1 (χ * 2 (x)π 2 (y)h D (y)u(x)) w + ± χ * 3 (x)π ± 1 (y)( Ψ 0 (z) w ) -1 (χ * 3 (x)π ± 1 (y)h D (y)) w .
By using

(π ± 1 (y)) 2 = π ± 1 (y), π ± 1 (y)h D (y) = h D (y)π ± 1 (y), π 2 (y)h D (y) = h D (y)π 2 (y)
, we obtain the expression of [H D , iA out ] as a multiplication operator:

[H D , iA out ](x) = (iH D • A out -iA out • H D )(x) = ± (χ * ± 1 (x)) 2 ∇ x τ ± (z) |∇ x τ ± (z)| 2 π ± 1 (y)∇ x (π ± 1 (y)h D (y))π ± 1 (y) +(χ * 2 (x)) 2 ( Ψ 0 (z) w ) -1 π 2 (y)(h D (y)π 2 (y)) w π 2 (y) + ± (χ * 3 (x)) 2 ( Ψ 0 (z) w ) -1 π ± 1 (y)(h D (y)π ± 1 (y)) w π ± 1 (y).
In X 1 we have

π ± 1 (y)∇ x (h D (y)π ± 1 (y))π ± 1 (y) = ∇ x τ ± (z)π ± 1 (y), so, |∇ x √ τ ± (z)| -2 π ± 1 (y)∇ x √ τ ± (z) • ∇ x (h D (y)π ± 1 (y))π ± 1 (y) = π ± 1 (y), ± π ± 1 (y)( √ τ ± w (x)) -1 w • ∇ x (h D (y)π ± 1 (y)) = ± π ± 1 (y) = π 2 (y).
Let us make the following computations near

X 2 , precisely, in supp χ * 2 ∪ supp χ * 3 . Setting ξ(y) := h D (y)π 2 (y) -Ψ 0 (z)π 2 (y), we have π 2 (y) w(x) • ∇ x (h D (y)π 2 (y))π 2 (y) = Ψ 0 (z)(x)π 2 (y) + π 2 (y) ξ w (x)π 2 (y). Thus, 1 2 H 1,out (x) = ± (χ * ± 1 (x)) 2 π ± 1 (y) + ((χ * 2 (x)) 2 + (χ * 3 (x)) 2 )π 2 (y) +(χ * 2 (x)) 2 π 2 (y)( Ψ 0 (z)) -1 ξ w (x)π 2 (y). (18)
For x ∈ X 2 we have ξ(y) = 0, so, since w is a tangent field to sin(X 2 ), ξ w(y) = 0, ∀x ∈ X 2 .

For x ∈ X 2 we have

(19) ˜ Ψ 0 (z) w = (Ψ 0 (z)) -1/2 (α 1 z 1 + α 2 z 2 ) > 0.
In addition, since the relation

( Ψ 0 (z) w ) -1 ξ w (x) = ( ˜ Ψ 0 (z) w) -1 ξ w(y)
holds true for x ∈ X * and ˜ Ψ 0 (z) w = 0, then the function ( Ψ 0 (z) w ) -1 ξ w is defined and is smooth in the compact set supp (1 -χ 0 )χ 2 ⊂ supp χ 2 ⊂ {x ∈ T 3 ; d 0 (x, X 2 ) ≤ 2b}, and vanishes on X 2 . Hence, for b sufficiently small, we have

(20) ( Ψ 0 (z) w ) -1 ξ w (x) ∞ < 1 2 ∀x ∈ supp (1 -χ 0 )χ 2 ,
where • ∞ denotes here the usual infinite norm on matrices. From ( 18), (20), we then obtain

(21) H 1,out (x) ≥ ± (χ * ± 1 (x)) 2 π ± 1 (y) + ((χ * 2 (x)) 2 + (χ * 3 (x)) 2 )π 2 (y).
Remark 7. In the two other cases where β 2 = 0 we obtain

(22) 1 2 H 1,out (x) = (χ * (x)) 2 π 2 (y),
so the punctual Mourre's estimate becomes simply

H 1,out (x) ≥ 2(χ * (x)) 2 π 2 (y).
5.6. Smoothness. Relations ( 22) and ( 18) show that the symmetric form H 1,out defined on C ∞ (T 3 ) is a multiplication operator on H D by smooth coefficients, so is bounded and closeable. Thus, [H 1,out , iA out ] is a differential operator of order one at most. But when computing it's first order term we have to check only that H 1,out is commuting with each coefficient of the first order terms of -iA out (x). In fact, the possible problematic bracket arising from the calculation of [H 1,out , iA out ] is, in the case

β 2 = 0, [(χ * 2 (x)) 2 ( Ψ 0 (z) w ) -1 π 2 (y) ξ w (x)π 2 (y) , (χ * ± (x)) 2 ∇x √ τ ± (z) |∇x √ τ ± (z)| 2 • •π ± 1 (y)∇ x (h D (y)π ± 1 (y))π ± 1 (y)
]. But since χ 1 χ 2 = 0 then this bracket vanishes. Hence, [H 1,out , iA out ] is a multiplication operator, is bounded in H, and we have

H D ∈ C 2 (A out ). By induction we see that H D ∈ C ∞ (A out ). (See also [4].) Subcase 2-2-e x * ∈ X * + 1 . Case 3 β = 0 and x * ∈ X * 2 . Subcase 3-1) β 2 = 0. SubCase 3-2 β 2 = β 1 . SubCase 3-3 β 2 ∈ (0, β 1 ). Remark 8. In Case 2-2-c, if β 1 = β 2 then (1, 1, 0) ∈ sin 2 X * 2 so ν = 1. 5.7.2. Behaviour of the eigenvalues of H D (x) at a threshold. We set s * j = 1 -2z * j if z * j ∈ {0, 1}, j ∈ [[1, 3]], so s * j ∈ {-1, 1}
. We set also s j = s * j for j = 1, 2. In Case 1 we set V = √ • Ψ 0 • sin 2 and s 3 := s * 3 . In Case 2 with x * ∈ X * ± 

C j s j (x j -x * j )dx j )(1 + O(d 0 (x, x * ))), as x → x * , where C j > 0, j = 1, 2, 3.
In Case 2-2-c we have dV (x) = (-

2 j=1 C j (x j -x * j )dx j + C 3 (x 3 -x * 3 ) 3 dx 3 )(1 + O(d 0 (x, x * ))), (24) 
as x → x * , where C j > 0, j = 1, 2, 3.

Proof in Appendix B.

Lemma 5.2. Consider Cases 3-2 or 3-3 (i.e., Assumption (A0) with β 2 = 0 and x * ∈ X * 2 ). We then have the following estimates. In Case 3-2, (25

) ( Ψ 0 (z) w ) = C(x 1 -x * 1 )(x 2 -x * 2 )(1 + O(d 0 (x, x * ))), and, in Case 3-3, (26) ( Ψ 0 (z) w ) = C(x 2 -x * 2 )(1 + O(d 0 (x, x * ))), for some C = 0 as x → x * .
Proof in Appendix B. 

T + sm := { Ψ 0 (z * ); x * ∈ X * 2 (= X * {0,1} ), s 1 = s 2 = s 3 = ±1},
and, in Case β = 0,

T + sm := { τ + (z * ), τ -(z * ); x * ∈ X * 1 , s 1 = s 2 = s 3 = ±1}.
In fact we have, in Case β = 0:

T + sm = {λ + = λ -}, in Case β = 0: T + sm = τ + (1, 1, 1) = λ + , τ -(1, 1, 1) = λ -, Ψ 0 ( β 2 β 1 , 1, 0) if ν ≤ 0, T + sm = τ + (1, 1, 1) = λ + , τ -(1, 1, 1), τ -(1, 1, 0), Ψ 0 ( β 2 β 1 , 1, 0) , if ν ∈ (0, 1), T + sm = τ + (1, 1, 1) = λ + , τ -(1, 1, 0) = λ -, Ψ 0 ( β 2 β 1 , 1, 0) if ν ≥ 1. Remark 9. 1) If β = 0 then λ -< λ + . Actually, thanks to Lemma 4.4, if τ -(z) = λ -then z 1 = z 2 = 1 and z 3 ∈ {0, 1}. If z 3 = 1 then K 0 (z) = 0 so λ + = τ + (z) > τ -(z) = λ -and if z 3 = 0 then λ + = τ + (1, 1, 1) > τ + (1, 1, 0) ≥ τ -(z) = λ -. 2) If β = 0 and ν ∈ (0, 1) then λ -= max{ τ -(1, 1, 1), τ -(1, 1, 0)}, and each value τ -(1, 1, 1), τ -(1, 1, 0) is a local maximum of √ • τ -• sin 2 .
5.7.4. New coordinate near an element of X * . We give an approximation of a vector proportional to ∇ x V (x) (where V is defined in Part 5.7.2) of the form ∇ x p 1 near a point x * ∈ X * j . We then give an approximation of a vector proportional to w(x) near a point x * ∈ X * 2 in Cases 3-2 and 3-3. With the notations of Lemma 5.1, in Cases 1, 2-1, 2-2-a, 2-2-b, 2-2-d, 2-2-e and 3-1, we set

p 1 (x; x * ) = 1 2 3 j=1 C j s j (x j -x * j ) 2 ;
in Case 2-2-c, we set

p 1 (x; x * ) = 1 2 2 j=1 C j (x j -x * j ) 2 - 1 4 C 3 (x 3 -x * 3 ) 4 .
Then, Relations (23) and (24) of Lemma 5.1 can be written

dV (x) = (1 + O(d 0 (x, x * )))dp 1 (x; x * ), x → x * .
5.7.5. The conjugated operator near thresholds. Let x * ∈ X * . For simplicity we then write p 1 (x; x * ) = p 1 (x). For u ∈ D 0 and x ∈ T 3 \ {x * } we set, -in Case 1 (β = 0, x * ∈ X * 2 ):

A x * u (x) := iχ x * (x)π 2 (y) ∇ x p 1 (x) ∇ x p 1 (x) • ∇ x Ψ 0 (z) ∇ x (χ x * (x)π 2 (y)u(x)),
-in Case 2 (β = 0, x * ∈ X * ± 1 ) and Case 3-1) (β = 0, β 2 = 0, x * ∈ X * 2 ):

A ± x * u (x) := iχ x * (x)π ± 1 (y) ∇ x p 1 (x) ∇ x p 1 (x) • ∇ x τ ± (z) ∇ x (χ x * (x)π ± 1 (y)u(x)),
and A x * := A + x * + A - x * , -in Cases 3-2 and 3-3 (β 2 = 0, x * ∈ X * 2 ):

A x * u (x) := iχ x * (x)π 2 (y)( Ψ 0 (z) w ) -1 (χ x * (x)π 2 (y)u(x)) w .
In each case we symmetrize A x * and A ± x * by setting

A x * := A x * + A x * * , A ± x * := A ± x * + (A ± x * ) * , where A x * * (respect., (A ±
x * ) * ) denotes the formal adjoint to A x * (respect., to A ± x * ). It is defined on D 0 too. We set

T in := (T \ T ) ∩ (0, +∞), X * ± 1,in := {x ∈ X * ± 1 ; τ ± (z) ∈ T in }, X * 2,in := {x ∈ X * 2 ; Ψ 0 (z) ∈ T in }. (We have, in Case 1, X * ± 1,in = ∅.) We set A in := x * ∈X * 2,in A x * + ± x * ∈X * ± 1,in A ± x * .
Then the operator A in with domain D 0 is symmetric, closable and densely defined on H D . We set, as quadratic forms defined on D 0 ,

H 1,x * := [H D , iA x * ], H 1,in := [H D , iA in ].
By a straight calculation as in Part 5.5 we obtain Lemma 5.3. We have for x = x * , in Cases 1 and 2:

1 2 H 1,x * (x) = (χ x * (x)) 2 π 2 (y),
and, in Cases 3-2 and 3-3,

1 2 H 1,x * (x) = (χ x * (x)) 2 π 2 (y) + (χ x * (x)) 2 π 2 (y)( Ψ 0 (z) w ) -1 ξ w (x)π 2 (y).
Lemma 5.3 shows that the quadratic forms H 1,x * and H 1,in extend continuously as bounded quadratic forms on H D which are associated with bounded self-adjoint operators, as multiplication operators by smooth real symmetric coefficients, denoted, respectively, H 1,x * and H 1,in . In addition, these coefficients (as functions of x) are commuting with π 2 (y). Then, an obvious iteration shows that

H D ∈ C ∞ (A x * ) for all x * ∈ X * . Since x = x implies supp χ x ∩ supp χ x = ∅ then H D ∈ C ∞ (A in ).
We set

A φ := A out + A in .
The argumentation to prove the property 

H D ∈ C ∞ (A out )
φ(H D )(x)H 1,φ (x)φ(H D )(x) ≥ Cφ 2 (H D )(x),
for all x ∈ T 3 , where C > 0 does not depend on x but on φ only. We consider the case β 2 = 0 (under assumption (A0)) only. The other case β 2 = 0 is more simple and omitted. As in Part 5.5 (see ( 18)) the calculation of H 1,φ yields

1 2 H 1,φ (x) = ± (χ * ± 1 (x)) 2 π ± 1 (y) + ((χ * 2 (x)) 2 + (χ * 3 (x)) 2 )π 2 (y) +(χ * 2 (x)) 2 π 2 (y)T w (x) -1 ξ w (x)π 2 (y) + ± x * ∈X * ± 1,in ∪X * - 1,in (χ x * (x)) 2 π ± 1 (y) + x * ∈X * 2,in (χ x * (x)) 2 π 2 (y) + x * ∈X * 2,in (χ x * (x)) 2 π 2 (y)( Ψ 0 (z) w ) -1 ξ w (x)π 2 (y) x ∈ X * ∪ X 0 .
Thus, as for Inequality (21), we get,

H 1,φ (x) ≥ ± (χ * ± 1 (x)) 2 π ± 1 (y) + ((χ * 2 (x)) 2 + (χ * 3 (x)) 2 )π 2 (y) + ± x * ∈X * ± 1,in ∪X * - 1,in (χ x * (x)) 2 π ± 1 (y) + x * ∈X * 2,in (χ x * (x)) 2 π 2 (y). ( 28 
)
Let us fix x ∈ supp φ(H D (x)). Thus χ 0 (x) = 1. We consider the following cases.

(1) Case d 0 (x, X * ) ≥ b. Then, x ∈ supp χ x * for any x * ∈ X * , and χ * (x) = χ * ± (x) = 1. Hence (28) becomes

H 1,φ (x) ≥ ± χ 2 1 (x)π ± 1 (y) + (χ 2 2 (x) + χ 2 3 (x))π 2 (y) = 3 j=1 χ 2 j (x)π 2 (y) ≥ δ 0 π 2 (y),
where

δ 0 := min T 3 j=1 χ 2 j > 0. Since φ(H D (x))π 2 (x) = φ(H D (x)), then (27) holds. (2) Case d 0 (x, X * ) < b. Then there exists exactly one x * ∈ X * such that x ∈ supp χ x * and x ∈ supp χ x if x ∈ X * \ {x * }. We set δ(x * ) := min {χ0=1} (1 -χ x * ) 2 + (χ x * ) 2 > 0. If x * ∈ X * 2,in ∪ X * + 1,in ∪ X * - 1,in then x ∈ sup φ(H D )(x) so (27) is trivial. We thus assume x * ∈ X * 2,in ∪ X * + 1,in ∪ X * - 1,in . (a) Case x * ∈ X * 2,in . Thus x ∈ supp χ 1 ∪ supp χ 3 and χ * 2 (x) = (1 -χ x * (x))χ 2 (x) = (1 -χ x * (x)). Hence (28) becomes H 1,φ (x) ≥ (χ * 2 (x)) 2 π 2 (y) + (χ x * (x)) 2 π 2 (y) ≥ δ(x * ). Thus (27) holds. (b) Case x * ∈ X * +
1,in (which is included in X * - 1,in and does not intersect X * 2,in ). Thus x ∈ supp χ 2 ∪ supp χ 3 and

χ * ± 1 (x) = (1 -χ x * (x))χ 1 (x) = 1 -χ x * (x). Hence (28) becomes H 1,φ (x) ≥ ± ((1 -χ x * (x)) 2 + (χ x * (x)) 2 )π ± 1 (y) = ((1 -χ x * (x)) 2 + (χ x * (x)) 2 )π 2 (y) ≥ δ(x * )π 2 (y). Thus (27) holds. (c) Case x * ∈ X * - 1,in \ X * + 1,in (which does not intersect X * 2,in ). Thus x ∈ supp χ 2 ∪ supp χ 3 and χ * - 1 (x) = (1 -χ x * (x))χ 1 (x) = 1 -χ x * (x), χ * + 1 (x) = 0 Hence (28) becomes H 1,φ (x) ≥ ± ((1 -χ x * (x)) 2 + (χ x * (x)) 2 )π - 1 (y) ≥ δ(x * )π - 1 (y). But we have also φ(H D )(x) = φ( τ -(x))π - 1 (y). Thus (27) holds.
As conclusion, ( 27) is proved with C = min(δ 0 , min X * δ(x * )). 5.9. Self-adjointness and maximal monotonicity of parts of the conjugated operator. The conjugate operator A φ with domain D 0 is a symmetric first order differential operator in x whose coefficients belong to C ∞ (T 3 \ X * ; L(C 6 )). As we already saw, A out with domain C ∞ (T 3 ) is essentially self-adjoint and a self-adjoint extension is A out = A out with domain D(A out ) = {u ∈ H D ; A out u ∈ H D }. (We may observe that D(A out ) is also the closure of C ∞ (T 3 ) under the norm u + A out u .) Let us check that for all x * ∈ X * the operator A x * (with the same domain D 0 ) is essentially self-adjoint or, at least, admits a maximal symmetric extension. 

C ∞ c (R * ) is not dense in H 1 (R).)
We set

X * sa := {x * ∈ X * ; A x * is essentially self-adjoint}, X * sm := X * \ X * sa , and 
A sa := x * ∈X * sa A x * , D(A sa ) := D 0 .
Corollary 6. 1) The operator A sa is essentially self-adjoint on H D .

2) If T sm ⊂ T then the operator A φ defined on D 0 is essentially self-adjoint on H D .

Proof. 1) The operator A sa is the finite sum of essentially self-adjoint operators A x * defined on D 0 and with disjoint supports so A sa is essentially self-adjoint too.

2) For simplicity we assume that T = T sm and we consider the case β 2 = 0 only. The operator Ā := A φ with domain

D( Ā) := {u ∈ H D ; A φ u ∈ H D } is a symmetric extension of A φ . Let us prove that it is self-adjoint. Let v ∈ D( Ā * ) so |( Āu, v) H D | ≤ C u ∀u ∈ D( Ā). Let u ∈ D( Ā). Let ϕ 1 ∈ C ∞ (T 3 \ X * sm ; [0, 1]) be such that supp ϕ 1 is a small neighbourhood of X * sa and ϕ 1 = 1 near X * sa . Setting B := ϕ 1 A φ ϕ 1 , since ∇ϕ 1 vanishes near X * then B -A φ ϕ 2 1 is bounded on H D , ϕ 2 1 u ∈ D( Ā) and we get |(Bu, v) H D | ≤ |( Ā(ϕ 2 1 u), v) H D | + C u ≤ C u .
In addition, we have B = ϕ 1 A sa ϕ 1 since Ā coincides with A sa in supp ϕ 1 , so B is essentially self-adjoint (the proof is similar to those of A sa ). Hence, Bv ∈ H D and then

ϕ 2 1 v ∈ D( Ā). Let ϕ 2 ∈ C ∞ c (T 3 \ X * ; [0, 1]). Then, ϕ 2 A φ ϕ 2 -A φ ϕ 2 2 is bounded on H D , ϕ 2 2 u ∈ D( Ā) and |(ϕ 2 Ā(ϕ 2 u), v) H D | ≤ |(A(ϕ 2 2 u), v) H D | + C u ≤ C u . Since ϕ 2 A φ ϕ 2 is
a symmetric first order differential operator with smooth coefficients it is so essentially self-adjoint and we get ϕ 2 A φ ϕ 2 v ∈ H D , and ϕ 2 2 v ∈ D( Ā). Letting ϕ 1 such that its derivatives at any order vanish on ϕ -1 1 ({1}) we can choose

ϕ 2 := 1 -ϕ 2 1 . Then v = 2 j=1 ϕ 2 j v ∈ D( Ā).
6. Proofs of the main results 6.1. Proof of Theorem 3.1. Clearly, it is not restrictive to consider that supp φ ⊂ (0, +∞) so φ ∈ C ∞ c ((0, +∞) \ T ). We then construct the operators A out , A in , A φ as above. Thanks to Lemma 5.4, the operator A φ satisfies Point (ii). Point (i) is a straight consequence of (27).

Proof of Point (iii). We consider the cases supp φ ⊂ (0, +∞) and β 2 = 0 only. We have supp A φ ⊂ X A where we set

X A := supp χ * + 1 ∪ supp χ * - 1 ∪ supp χ * 2 ∪ supp χ * 3 ∪ x * ∈X * + 1,in ∪X * - 1,in ∪X * 2,in supp χ x * .
The set K := ∪ ± τ ± (sin 2 (X A )) is then a compact subset of (0, ∞)\T . Thus there

exists φ ∈ C ∞ c ((0, ∞) \ T ) with φ = 1 in K. Thus if x ∈ supp A φ ∩ X 1 then φ(H D )(x) = ± φ( τ ± (z))π ± 1 (y) = π 2 (y), and, if x ∈ supp A φ ∩ X 2 , then φ(H D )(x) = φ( Ψ 0 (z))π 2 (y) = π 2 (y).
Hence, φ(H D )(x) = π 2 (y) on supp A φ . In addition, A φ (x) is obviously commuting with π 2 (y) for all x. It shows that Point (iii) holds. Point (iv) is Point 2) of Corollary 6. Point (v) is the consequence of Corollary 6.

6.2. Adaptation of the theory of Georgescu and alii. Notation: if Q is a bounded quadratic form on H we denote by Q • the bounded operator associated with Q. Let us consider the case T = {0} so A in may not be essentially self-adjoint. We set

X * sm1 := {x * ∈ X * sm ; A x * has default index (N + , N -= 0)}, X * sm2 := {x * ∈ X * sm ; A x * has default index (N + = 0, N -)}. We write A φ = A 0 + A 1 + A 2
where all the A j are differential operators of first order defined at least on D 0 by:

A 0 = A out , A 1 = x * ∈X * sm1 ∪X * sa A x * , A 2 = x * ∈X * sm2 A x * .
The proof of Corollary 6 shows that the operator A 0 is essentially self-adjoint.

Remark 11. We could have set more naturally A

0 = A sa + A out , A 1 = x * ∈X * sm1
and A 2 unchanged. In such a choice some coefficients of A 0 have a rational singularity on X * sa . Since the supports of the A x * , x * ∈ X * , are two-by-two disjoint then the operators ±A 0 and (-1) j A j , j = 1, 2, admit a maximal symmetric extension with deficiency index of the form (N, 0). We denote by A sm j with domain D(A sm j ) the maximal symmetric extension of A j (with domain D 0 ). Let us show that we can modify the main hypotheses (M1)-(M5) of [2, Theorem 3.3] and extend the statement of [2, Theorem 3.3] to our situation. We consider variables z ∈ ρ(H D ) and ε real with 0 < |ε| < ε 0 and m(z)ε ≥ 0. We set Proposition 3.11]. Actually we make the following observations: 

H ε := H D -iεH . (Thus H * ε = H -ε .) Then, the resolvent R ε (z) := (H ε -z) -1 is well-defined if ε 0 is sufficiently small, see [2,
• The domain D 0 of A φ is dense in H D . • Assumption [2, (M3)] becomes: (M3*): [ ±A sm 0 (respect., (-1) j A sm j ) is the generator of a C 0 -group (W (0) t ) t∈R (respect., semigroup (W (j) t ) t≥0 ) in H D .] Clearly, Condition (M3*) is satisfied. • Setting < H >:= (1 + H 2 ) 1/2 , Assumption [2, (M2)] becomes: ( M2 
lim t→0 + (-1) j t -1 {(H D u, W (j) t u) H D -(u, W (j) 
t H D u) H D } (j = 0), lim t→0 t -1 {(H D u, W (0) 
t u) H D -(u, W (0) 
t H D u) H D } (j = 0)
exist and are respectively equal to (u,

H j u) for all u ∈ H D .] Clearly, Condition (M4*) is satisfied. We have [H D , iA j ] • = H j and [H D , iA φ ] • = H := 2 j=0 H j ∈ B(H D
), and we can write

H D ∈ C 1 (A sm j ), H D ∈ C 1 ( Āφ ).
• The proofs of [2, Lemmas 3.13 and 3.14] with Conditions (M3*) and (M4*) satisfied imply the following relations:

[R ε (z), iA sm j ] • = R ε (z)(iH j + εH j )R ε (z) j = 0, 1, 2, [R ε (z), iA φ ] • = R ε (z)(iH + εH )R ε (z), dR ε (z) dε = [R ε (z), iA φ ] • -εR ε (z)H R ε (z).
In particular the map 

ε → R ε (z) ∈ B(H D ) is C 1 in norm on ]0, 1]. • Since H D and
H D ∈ C 1 (H ). • Assumption [2, (M5)] becomes: (M5*): [ for all j = 0, 1, 2, there is H j ∈ B(H D ) such that the limits lim t→0 + (-1) j t -1 {(H u, W (j) 
t u) -(u, W (j) 
t H u)} j = 0, lim t→0 t -1 {(H u, W (0) 
t u) -(u, W (0) 
t H u)} (j = 0), exist and are respectively equal to (u, H j u) for all u ∈ H D .] Thanks to [2, Remark 3.1], Condition (M5*) is satisfied since it follows from the following facts:

H D ∈ C 1 (A sm j ) with [H D , iA sm j ] • = H j , H ∈ C 1 (A sm j ) with [H , iA sm j ] • = H j , so we can write H D ∈ C 2 ( Āφ ).
Then the proof of [2, Theorem 3.3] implies the result of Corollary 3.

Conclusion

The results of this work, notably the LAP outside thresholds, is the first step to futur developments as:

• Extension of the result of Isozaki and Morioka [START_REF] Isozaki | A Rellich type theorem for discrete Schrodinger operators[END_REF] on Rellich type theorem for discrete Schrodinger operators to the case of discrete Maxwell operators. • The LAP for perturbed discrete Maxwell operator of the form ĤD = D Ĥ0 where D is not constant but depends on n ∈ Z Z 3 . • Conditions of radiation for perturbed discrete Maxwell operators. Actually, let f be in a suitable subspace of L 2 (Z Z 3 ), particularly the space of sequences with compact support. We have to characterize û± (n) for |n| large where û± := ( ĤD -λ ± i0) -1 f . • Extension of the result of Isozaki and Jensen [START_REF] Isozaki | Continuum limit for lattice Schro dinger operators[END_REF] on the continuum limit for lattice Schrödinger operators to the case of discrete Maxwell operators. • Extension of the result of Isozaki and [7] on the inverse scattering for lattice Schrödinger operators to the case of discrete Maxwell operators. We have

εM µM =   0 -ε 1 y 3 ε 1 y 2 ε 2 y 3 0 -ε 2 y 1 -ε 3 y 2 ε 3 y 1 0     0 -µ 1 y 3 µ 1 y 2 µ 2 y 3 0 -µ 2 y 1 -µ 3 y 2 µ 3 y 1 0   =   -ε 1 µ 3 y 2 2 -ε 1 µ 2 y 2 3 ε 1 µ 3 y 1 y 2 ε 1 µ 2 y 1 y 3 ε 2 µ 3 y 1 y 2 -ε 2 µ 3 y 2 1 -ε 2 µ 1 y 2 3 ε 2 µ 1 y 2 y 3 ε 3 µ 2 y 1 y 3 ε 3 µ 1 y 2 y 3 -ε 3 µ 2 y 2 1 -ε 3 µ 1 y 2 2   .
Then, for t = -λ 2 ∈ C,

det(εM µM -t) = -t 3 -t 2 {((ε 2 µ 3 + ε 3 µ 2 )y 2 1 + (ε 1 µ 3 + ε 3 µ 1 )y 2 2 + (ε 1 µ 2 + ε 2 µ 1 )y 2 3 } -t{ε 2 ε 3 µ 2 µ 3 y 4 1 + ε 1 ε 3 µ 1 µ 3 y 4 2 + ε 1 ε 2 µ 1 µ 2 y 4 3 + (ε 2 ε 3 µ 1 µ 3 + ε 1 ε 3 µ 2 µ 3 )y 2 1 y 2 2 +(ε 2 ε 3 µ 1 µ 2 + ε 1 ε 2 µ 2 µ 3 )y 2 1 y 2 3 + (ε 1 ε 3 µ 1 µ 2 + ε 1 ε 2 µ 1 µ 3 )y 2 2 y 2 3 } ≡ -t 3 -2t 2 Ψ 0 -tΦ 0 ,
where Ψ 0 (z) is defined by ( 9)

Φ 0 := ε 2 ε 3 µ 2 µ 3 z 2 1 + (ε 2 ε 3 µ 1 µ 3 + ε 1 ε 3 µ 2 µ 3 )z 1 z 2 + c.p.
. We easily observe that the following relations hold (also, +c.p.):

α 2 1 -γ 1 = 1 4 β 2 1 , (29) 
ε 1 µ 1 α 1 -α 2 α 3 = 1 4 β 2 β 3 , (30) 
α 3 β 2 + α 2 β 3 = -ε 1 µ 1 β 1 , (31) 
where γ is defined by ( 6) and β by [START_REF] Isozaki | Inverse problems, trace formulae for discrete Schrödinger operators[END_REF]. Thanks to (29), (30), (31), we compute:

Ψ 2 0 -Φ 0 = (α 1 z 1 + α 2 z 2 + α 3 z 3 ) 2 /4 -{γ 1 z 2 1 + γ 2 z 2 2 +γ 3 z 2 3 + 2ε 3 µ 3 α 3 z 1 z 2 + 2ε 1 µ 1 α 1 z 2 z 3 + 2ε 2 µ 2 α 2 z 1 z 3 }/4 = K 0 (z),
where K 0 is defined by [START_REF] Isozaki | A Rellich type theorem for discrete Schrodinger operators[END_REF]. Hence the eigenvalues of εM (y)µM (y) are 0 and

t = k 2 = Ψ 0 (z) ± K 0 (z).
Then Relation [START_REF] Isozaki | Inverse scattering at a fixed energy for Discrete Schrödinger Operators on the square lattice[END_REF] follows.

Remark 12. From (8) we obtain the relations

K 0 (z) = 1 4 (β 1 z 1 -β 2 z 2 -β 3 z 3 ) 2 -β 2 β 3 z 2 z 3 , (32) 
K 0 (z) = 1 4 (β 3 z 3 -β 1 z 1 -β 2 z 2 ) 2 -β 1 β 2 z 1 z 2 .
7.2. Proof of Proposition 1. Similarly to (2) we have

σ(h D ) = ∪ y∈[-1,1] 3 σ(h D (y)).
In addition, since τ + and τ -are continuous with τ ± (0) = 0 and τ + ≥ τ -≥ 0 in [0, 1] 3 , then

∪ y∈[-1,1] 3 σ(h D (y)) = ∪ ± {±τ + (z); z ∈ [0, 1] 3 } = [-λ + , λ + ].
The conclusion follows.

7.3. Proof of Lemma 4.4. We set z i = β i z i (so z 1 , z 2 ≥ 0 and

z 3 ≤ 0). Remember that (4α 2 1 -β 2 1 ) = (2α 1 -β 1 )(2α 1 + β 1 ) = 4ε 3 µ 2 ε 2 µ 3 = 4γ 1 > 0. A) (Case β = 0
). This point is obvious. B) (Case β = 0.) Thanks to (32) we have

∂ ∂z 1 K 0 = 1 2 β 1 (z 1 -z 2 -z 3 ), ( 33 
) ∂ ∂z 3 K 0 = 1 2 β 3 (z 3 -z 1 -z 2 ), and (34) 
K 0 (z) ≥ 1 2 |z 1 -z 2 -z 3 |.
1) We have

K 0 ∇ z τ ± = K 0 ∇ z Ψ 0 - 1 2 ∇ z K 0 ,
so, by using (33), (34),

2 K 0 (z)∂ z1 τ ± (z) = 2 K 0 (z)(α 1 - 1 2 |β 1 |) + |β 1 | K 0 (z) ± 1 2 β 1 |z 1 -z 2 -z 3 | ≥ 2 K 0 (z)(α 1 - 1 2 |β 1 |) > 0.
Hence ∂ z1 τ ± (z) > 0. Similarly, ∂ z2 τ ± (z) > 0.

We have

2 K 0 ∂ z3 τ ± (z) = 2 K 0 α 3 ± 1 2 β 3 (z 3 -z 1 -z 2 ). Since β 3 < 0 and z 3 -z 1 -z 2 ≤ 0 then ∂ z3 τ + (z) ≥ 0. Moreover if ∂ z3 τ + (z) = 0 then K 0 (z) = 0 which is forbidden. Hence ∂ z3 τ + (z) > 0. 2)
a) (Case β 2 = 0.) Thanks to (32), we have

2 K 0 ∂ z3 τ -(z) = α 3 (z 1 -z 3 ) - 1 2 β 3 (z 3 -z 1 ) = 2 K 0 (α 3 - 1 2 β 3 ) > 0. b) (Case β 2 > 0.) (i) Assume z 1 = 0 or z 2 = 0. Then K 0 (z) = 1 2 (z 1 + z 2 -z 3 ) and 2 K 0 ∂ z3 τ -(z) = (α 3 - 1 2 |β 3 |)(z 1 + z 2 -z 3 ) > 0, so, ∂ z3 τ -(z) > 0. (ii) Assume z 1 = z 2 = 1. The functions ξ := 4K 0 (z)∂ z3 τ -(z)∂ z3 τ + (z)
and ∂ z3 τ -(z) have the same sign outside K -1 0 ({0}). We have

ξ = 4α 2 3 K 0 (z) -(∂ z3 K 0 (z)) 2 = 4α 2 3 ( 1 4 (β 1 + β 2 -z 3 ) 2 -β 1 β 2 ) - 1 4 β 2 3 (β 1 + β 2 -z 3 ) 2 = γ 3 (β 1 + β 2 -z 3 ) 2 -4α 2 3 β 1 β 2 .
Thus, if γ 3 = 0 then ξ < 0 and if γ 3 = 0 then

ξ = 0 ⇐⇒ √ γ 3 (β 1 + β 2 -β 3 z 3 ) = 2α 3 β 1 β 2 ⇐⇒ z 3 = ν.
Moreover, we have

∂ z3 ξ = 0 = -2 √ γ 3 β 3 (β 1 + β 2 -β 3 z 3 ) > 0.
The conclusion follows.

7.4. Proof of Lemma 4.5. Lemma 4.5 is a straightforward consequence of Lemma 4.4 and of the following observations. 1) Case β = 0. We have K 0 ≡ 0 so X 1 = ∅, T 1 = ∅, X 2 = T 3 \ {0}. In addition we have ∂ xi Ψ 0 = 2α i sin x i cos x i . Hence ∇ x Ψ 0 (z) vanishes iff z ∈ {0, 1} 3 . Hence, noting that τ ± = Ψ 0 , we obtain Z * 2 = Z * {0,1} and T 2 = Ψ 0 (Z * {0,1} ). 2) Case β = 0 (so (A0) holds). Thanks to Lemma 4.3 we have sin 2 (X * 1 ) ⊂ [0, 1] 3 \ {(

β 2 β 1 t, t, 0), t ∈ [0, 1]}.
For t ∈ [0, 1] we have (β 2 t/β 1 , t, 0) ∈ {0, 1} 3 \ {0 R 3 } iff t = 1 and β 2 = β 1 , or t = 1 and β 2 = 0. The characterization of sin 2 (X * 1 ) follows, then those of X * 1 and of T 1 . Let us determine X * 2 . We look for a tangent vector field to X 2 . A point x ∈ T 3 belongs to X 2 iff z = 0 and z 3 = 0 = β 1 z 1 -β 2 z 2 = 0. The last relation can be written

β 1 y 2 1 = β 2 y 2 2
, and y 2 = 0. (If y 2 = 0 then y 1 = 0 so z = 0 which is forbidden.) Then a tangent field to X 2 (respect., to sin(X 2 )) is then given by the vector field (35) w 0 (x) := (sin(x 1 ) cos(x 2 ), cos(x 1 ) sin(x 2 ), 0), (respect., w0 (y) := (y 1 , y 2 , 0)

).

Remark 13. In Case 3-1) (i.e, β 2 = 0) it is equivalent but more simple to set w 0 (x) = (0, 1, 0). However our choice in (35) is general.

We then observe that |w(x)| = 0 for all x ∈ X 2 \X * , and |w(x

)| = 0 for all x ∈ X 2 if β 2 ∈ [0, β 1 ). If β 2 = β 1 then w(x) vanishes at all x * ∈ X * 2 since z * 1 = z * 2 = 1. The determination of sin 2 (X *
2 ) follows, then those of X * 2 and of T 2 .

7.5. Proof of the statement of Remark 3.

Step 1. We prove the following assertion. Let β ∈ R 3 be a real vector and ε 1 , µ 1 , α 3 be three positive real values such that β 1 ≥ β 2 > 0 > β 3 and α 3 > |β 3 |/2. Then there exists positive values ε j , µ j , j = 2, 3, such that β = ε × µ and 2α

3 = ε 1 µ 2 + ε 1 µ 2 .
Proof. We set successively

δ ± := α 3 ± 1 2 β 3 > 0, ε 2 := δ - µ 1 > 0, µ 2 := δ + ε 1 > 0, ε 3 := ε 1 β 1 + ε 2 β 2 -β 3 > 0, µ 3 := µ 1 β 1 + µ 2 β 2 -β 3 > 0. A direct calculation provides ε × µ = β and ε 1 µ 2 + ε 2 µ 1 = 2α 3 . Step 2. Let β ∈ R 3 be such that β 1 ≥ β 2 > 0 > β 3 . Let us consider the function (|β 3 |/2, +∞) α 3 → ν(α 3 ) = ν defined by (13) and set F (r) := 2r r 2 -1 4 β 2 3 -2 for r > |β 3 |/2, ν * (β) := - ( √ β 1 - √ β 2 ) 2 |β 3 | .
Then we have

ν(α 3 ) = ν ⇐⇒ F (α 3 ) = |β 3 | √ β 1 β 2 (ν -ν * (β)).
Obviously, the function F realizes a decreasing bijection from (|β 3 |/2, +∞) into (0, +∞). Thus if ν * (β) < ν then there exists a unique value α

3 > |β 3 |/2 such that ν(α 3 ) = ν. But the condition ν * (β) < ν is easily satisfied since ν * (β) → -∞ as β 3 → 0 -if β 1 > β 2 . The conclusion follows. 8. Appendix B 8.1. Proof of Lemma 5.1. Firstly we observe that if z * j ∈ {0, 1} then z j -z * j = sin 2 x j -sin 2 x * j = sin(2x * j )(x j -x * j ) + 2 cos(2x * j )(x j -x * j ) 2 +O((x j -x * j ) 3 ) = 2s * j (x j -x * j ) 2 + O((x j -x * j ) 4 ), (36) 
and if z j ∈ {0, 1} then (37)

z j -z * j = sin(2x * j )(x j -x * j ) + O((x j -x * j ) 2 ),
with sin(2x * j ) = 0.

holds. In Case 3-2, we have z * 1 = z * 2 , cos y * 1 = 0 so cos(x j ) = -y * j (x j -x * j ) + O(x j -x * j ) 3 , j = 1, 2. Hence (25) holds. 8.3. Proof of Lemma 5.5. We fix a representation of x * ∈ T 3 in R 3 which we denote again x * . Then, the multiplication by χ x * is an isometry (non surjective) from H D into the Hilbert space L 2 D (R 3 , C 6 ) := L 2 (R 3 , C 6 ) equipped with the scalar product

(u, v) L 2 D (R 3 ;C 6 ) := R 3 < u(x), v(x) > C 6 ,D dx = R 3 < D-1 u(x), v(x) > C 6 dx.
So, we can identify A x * with an unbounded symmetric operator on L 2 (R 3 ; C 6 ), which we denote A x * again. We set x j = C j /2(x j -x * j ) where the C j 's are the positive constants of Section 5.7.4, and in (23) or in (24) of Lemma 5.1. We set also ρ = x 2 1 + x 2 2 , r = ρ 2 + x 2 3 . A-1) Let us consider Case 1 with s 1 = s 2 = 1 and s 3 = -1. Since β = 0 then we have µ = κε, with the scalar κ > 0. We have

p 1 (x) = ρ 2 -x 2
3 , and we set p 2 (x) := 2ρ x 3 , p 3 (x) :=

(x 1 ,x 2 ) ρ ∈ S 1 ≈ R/(2πZ Z).
The mapping R 2 \ {(0, 0)} (x 1 , x 2 ) → (ρ , p 3 ) ∈ R + × S 1 is the polar change of coordinates. Since p 1 + ip 2 = (ρ + ix 3 ) 2 , then the mapping (ρ

, x 3 ) → (p 1 , p 2 ) is a C ∞ -diffeomorphism from (0, ∞) × R onto O := R 2 \ (R -× {0}). Thus the mapping Φ : x = (x 1 , x 2 , x 3 ) → p = (p 1 , p 2 , p 3 ) is a C ∞ -diffeomorphism from R 2 * × R onto U := O × S 1 , with jacobian J Φ (x ) = - r 2 ρ .
We set H = L 2 (R 2 * × S 1 , C 6 ; dp) equipped with the following scalar product:

(ũ, ṽ)

H := R 2 ×S 1 < ũ(p), ṽ(p) > C 6 ,D dp. For ũ ∈ H, p ∈ U, we set (38) u(x) = |J Φ (x )| 1/2 ũ(p), x = Φ -1 (p) ∈ R 3 , so the transform T : L 2 (R 3 , C 6 ) u → ũ ∈ H
is a bijective isometry. Setting π(p) = π 2 (x) and χ(p) = χ x * (x), the partial derivatives ∂ j p1 χ, j ≥ 0, are bounded in R 2 * × S 1 since χ = 1 near p(x * ) = 0 and the function |∇ x p 1 | on supp ∇χ x * is smooth and bounded by below by a positive constant. For example if j = 1, we have sup

x∈B(R 3 ) |∂ j p1 χ(p(x))| = sup r 2 ≤d0(x,x * )≤r |∂ j p1 χ(p(x))| ≤ C.
The projector π is continuous but admits a singular of first order at p = 0. Observing that ∇p 1 (x)∇u(x)

|∇p 1 | 2 = ∂u ∂p 1 ,
and denoting by "+ sym." the terms of symmetrization of A x * , we have, for u

, v ∈ C ∞ c ((R 2 \ {(x * 1 , x * 2 )} × R), (A x * u, v) H D = R 3 iχ x * (x) < π 2 (y) ∇p 1 (x)∇(χ x * (x)π 2 (y)u(x)) |∇p 1 (x)| 2 , v(x) > C 6 ,D dx + sym. = R 2 ×S 1 i < ∂(πũ) ∂p 1 , χ2 (p)π(p)ṽ(p) > C 6 ,D dp + sym. = R 2 ×S 1 i < ∂( χπũ) ∂p 1 , χπṽ > C 6 ,D dp ≡ ( Ãx * ũ, ṽ) H .
The projection π has range two. Since β = 0, we have, for z = 0, a basis of the eigenspace ker(H D (x) -Ψ 0 (z)) of the form (ϕ 1 (p), ϕ 2 (p) = ϕ 1 (p)) T , with ϕ 1 = (q, i √ κq) and q(p) T ∈ ker(i √ κεM (y) -Ψ 0 (z)I 3 ), where x = x(p), I 3 denotes the identity matrix of size 3, and M (y) is the 3 × 3 matrix defined at (1). Moreover we can choose q(p) such that x → q(p(x)) is analytic in the support of χ x * at least, and with < ε -1 q(p), q(p) > We then have

C 3 = 1/2, so (ϕ 1 (p), ϕ 2 (p)) is orthonormal in C 6 equipped with <, > C 6 ,D . We thus have < ϕ i (p), ϕ j (p) > C 6 ,D = δ i,j , i, j ∈ {1, 2}, but also < ∂ p ϕ 1 , ϕ 2 > C 6 ,D = < ε -1 ∂ p q, q > C 3 + < µ -1 ∂ p (i √ κq), -i √ κq > C 3 = < ε -1 ∂ p q, q > C 3 + < iε -1 ∂ p q, -iq > C 3 = 0. Similarly, < ϕ 1 , ∂ p ϕ 2 > C 6 ,
( Ãx * ũ, ṽ) H = i 2 j=1 R 2 ×S 1 ∂ ∂p 1 ( χ ξj (ũ)) χ ξj (ṽ)dp. Let us set D( Ãx * ) = {ũ ∈ H; χ2 ∂ p1 ξj (ũ) ∈ L 2 (R 2 × S 1 , C; dp), j = 1, 2}.
Let us show that D( Ã * x * ) = D( Ãx * ). Let ṽ ∈ D( Ã * x * ), so we have:

(40) |( Ãx * ũ, ṽ) H | ≤ C ũ H , ∀ũ ∈ D( Ãx * ), that is, | 2 j=1 R 2 ×S 1 ∂ ξj (ũ) ∂p 1 χ2 (p) ξj (ṽ)dp| ≤ C ũ H , ∀ũ ∈ D( Ãx * ).
We fix j ∈ {1, 2} and choose ũ(p) = f (p 1 )g(p 2 , p 3 )ϕ j (p) in the above estimate with arbitrary f ∈ H 1 (R; C; dp 1 ) and g ∈ L 2 (R × S 1 ; C;

dp 2 dp 3 ). Then ũ H ≤ C f H 1 (C) g L 2 (R×S 1 ) so we have | R 2 ×S 1 ∂f (p 1 ) ∂p 1 g(p 2 , p 3 ) χ2 (p) ξj (ṽ)dp| ≤ C f H 1 (R) g L 2 (R×S 1 ) , ∀f ∈ H 1 (R; dp 1 ), g ∈ L 2 (R × S 1 , dp 2 dp 3 ).
It shows that

K(p 1 ) := R×S 1 χ2 (p) ξj (ṽ)g(p 2 , p 3 )dp 2 dp 3 ∈ H 1 (R; C; dp 1 ) with ∂ ∂p 1 K(p 1 ) L 2 (R) ≤ C g L 2 (R×S 1
) . Thus, ṽ ∈ D( Ãx * ) and so Ãx * is self-adjoint. Consequently, A x * with domain T -1 (D( Ãx * )) is a self-adjoint operator.

But we have

Case 1 with the general situation s 1 s 2 s 3 = -1 is similar. Cases 2-1 and 2-2-a and 2-2-b and 2-2-d and 2-2-d and 2-2-e, with s 1 s 2 s 3 = -1, are similar, except that the projection π (= π + 1 (y) or = π - 1 (y)) has range one, which simplifies the proof.

Case 3-1 with s 1 s 2 s 3 = -1. We set π ± 1 A x * π ± 1 =: A ± so A x * = ± A ± with D(A ± ) = D 0 . We prove that A ± is essentially self-adjoint on H D . We set Thus k ± (x) is defined for x x * and x = x * , extends as a positive lipschitzian function near x * . We then consider the same transforms than in Case 1 with H± replacing H so we have 3 )e 1/t -1 2 t 2 , t > 0.

(A ± u ± , v ± ) H D = i R 2 ×S 1
Since F > 0, F (+∞) = -∞ and F (0 + ) = +∞, then the equation is uniquely solvable by some t 0 > 0 so we obtain x 3 = ± √ t 0 ∈ R * . Hence Φ ± is bijective. We let the lector to check that Φ ± is an homeomorphism from

R 2 * × R ± * into R × R 2 * . Hence, Φ ± is a C ∞ -diffeomorphism from R 2 * × R ± * into R × R 2 *
We set the Hilbert spaces H± = L 2 (R 2 * × R ± * , C 6 ; dp) equipped with the scalar product (ũ ± , ṽ± ) H± := , χπṽ > C 6 ,D dp ≡ ( Ãx * ũ, ṽ) H .

The projection π has range one so this case is similar to case 2-1, so A x * is essentially self-adjoint.

A-2) Let us treat Case 1 with s 1 = s 2 = -1 (and s 3 = -1). We observe that

p 1 (x) = 3 j=1 (x j ) 2 ≥ 0.
(where we set x j = C j /2(x j -x * j )). We use the spherical coordinates: x = ρω with ρ = x 2 1 + x 2 2 + x 2 3 > 0, ω = ρ -1 x ∈ S 2 , so we have p 1 = ρ 2 and choose two other coordinates, p 2 , p 3 , on the sphere S 2 . We then follow the above method (Case 1 with s 1 = s 2 = 1 = -s 3 ) with similar notations, notably, with the same couple (ϕ 1 , ϕ 2 ) and coordinates ξj (defined by (39)) j = 1, 2. The mapping Φ : x = (x 1 , x 2 , x 3 ) → p = (p 1 , p 2 , p 3 ) is a C ∞ -diffeomorphism from R 3 * onto R + * × S 2 . The jacobian of Φ has the form

J Φ (x ) = j(p 2 , p 3 ) √ p 1 ,
where j is a positive smooth function on S 2 . We set H = L 2 (R + * × S 2 , C 6 ; dp) equipped with the following scalar product:

(ũ, ṽ) H := R + * ×S 2 < ũ(p), ṽ(p) > C 6 ,D dp.

For ũ ∈ H, p ∈ U, we consider the transformation defined by (38) between u and ũ so it is a bijective isometry (up to a positive constant multiplicative factor) between L 2 (R 3 , C 6 ) and H which we denote T again. Setting π(p) = π 2 (y), we have χ ∈ C ∞ c (R + * ×S 2 ) and χ = 1 near p(x * ) = 0. We thus have, for u, v ∈ C ∞ c (R + * ×S 2 , C 6 ),

(A x * u, v) H D = 2 j=1 R + * ×S 2 i χ ∂( χ ξj (ũ))
∂p 1 ξj (ṽ)dp ≡ ( Ãx * ũ, ṽ) H .

The above formula defines the symmetric operator Ãx * on H with domain C ∞ c (R + * × S 2 ). Thus, Ãx * extends to the operator with the same formula defined on In fact an integration by parts shows that D(( Ãx * ) * ) contains H 1 . Then, let ṽ ∈ D(( Ãx * ) * ) so (40) holds. As in Case 1 with Π 3 k=1 s k = -1, let j ∈ {1, 2} and where χ(q) := χ x * (x), π(q) := π 2 (y). Hence, as in Case 3-3, A x * has default index N -= 0) and admits a maximal symmetric extension.

1

  and in Case 3-1 we set V = √ • τ ± • sin 2 and -in Cases 2-1 and 2-2-d and 2-2-e, and 3-1 we set s 3 := s * 3 ; -in Case 2-2-a we set s 3 := 1; -in Case 2-2-b we set s 3 := sgn(z * 3 -ν)s * 3 ; -in Case 2-2-c we set s 3 := 0. Lemma 5.1. In Cases 1 and 2-1 and 2-2-a and 2-2-b and 2-2-d and 2-2-e and 3
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 73 Partition of the set of thresholds. With the notations (the s j 's notably) of Part 5.7.2 we set T sa := T \ (T sm ∪ {0}), T sm := T + sm ∪ -T + sm , where, in Case β = 0,

Lemma 5 . 5 .

 55 Remembering the notations of Section 5.7.2 we then claim: A) Cases 1 and 2-1 and 2-2-a and 2-2-b and 3-1. If {s 1 , s 2 , s 3 } = {-1, 1}, then A x * is essentially self-adjoint on H D . Otherwise, i.e., if all the s j 's have the same sign, then A x * admits a maximal symmetric extension on H D . B) Case 2-2-c. The operator A x * is essentially self-adjoint on H D . C) Cases 3-2 and 3-3 (so we have (A0) with β 2 ∈ (0, β 1 ], x * ∈ X * 2 , |y * 2 | = 1). The operator A x * admits a maximal symmetric extension on H D . Proof in Appendix B. Remark 10. When A x * is essentially self-adjoint then the set D 0 is not dense in the domain of the self-adjoint extension A x * of A x * . (The simple reason is that

  *): [ a bounded open set J ⊂ R is given and there are numbers a > 0, b ≥ 0, such that H ≥ (a1 J (H D ) -b1 R\J ) < H D > as forms on H D .] Thus, for all bounded open set J ⊂⊂ (0, +∞), Condition (M2*) is satisfied (by choosing φ such that φ = 1 on J, and with b = 0), thanks to Mourre's Inequality (27). • Assumption [2, (M4)] becomes: (M4*): [ There is H j ∈ B(H D ) such that the limits

7. Appendix A 7 . 1 .

 71 Proof of Lemma 4.1. We have D Ĥ0 (x) -λ = -λ εM -µM -λ . Thus, det( D Ĥ0 (x) -λ) = det(λ 2 + εM (y)µM (y)) =: p(z; λ).

  D = 0. Hence we have π(p)ũ(p) = ξ1 (ũ)(p)ϕ 1 (p) + ξ2 (ũ)(p)ϕ 2 (p), where we set (39) ξj (ũ)(p) :=< ũ(p), ϕ j (p) > C 6 ,D .

2 .

 2 k ± (x) := |∇ x p 1 (x)| |∇ x p 1 (x) • ∇ x τ ± (z)| 1/Thanks to Lemma 5.1 we havek ± (x) = 1 + O(d 0 (x, x * )).

< ∂ ∂p 1 ( 3 . 2 3 , x 2 = p 2 e 1 2x 2 3 so x 3

 132233 χũ ± ), χṽ ± > C 6 ,D dp ≡ ( ñ ũ± , ṽ± ) H , where we set ñ := i χ • ∂ ∂p1 • χ, and ũ± (p) := |∇ x p 1 (x)||J Φ (x )| -1/2 k± (p)u(x) x = Φ -1 (p) ∈ R 3 ,and k± (p) := k ± (x), π± 1 (p) := π ± 1 (y), χ(p) := χ x * (x). Thus, as in Case 2-1 withπ j s j = 1, A ± = π ± 1 A ± π ± 1 is essentially self-adjoint on H D . We denote by D ± the domain of the self-adjoint extension of A ± , so D ± = {u ∈ H D ; A ± u ∈ H D }. Then, A x * extends as a symmetric operator, A x * = A x * with domain D(A x * ) := D + ∩D -. Now, let v ∈ D((A x * ) * ) so |(A x * u, v) H D | ≤ C u ∀u ∈ D(A x * ). Let u ∈ D ± . Then A x * π ± 1 u = A ± u ∈ H D , so π ± 1 u ∈ D(A x * ). Thus |(A ± u, v) H D | = |(A x * π ± 1 u, v) H D | ≤ C π ± 1 u ≤ C u ∀u ∈ D ± . Hence v ∈ D ± . Thus, v ∈ D(A x * ), so A x * is self-adjoint.Case 2-2-c. We havep 1 (x) = ρ 2with p 2 | x 3 =0 = p 3 | x 3 = 0, so p 2 , p 3 ∈ C ∞ (R 3 ). Then, ∇p 1 = 2(x 1 , x 2 , ∇p 1 ⊥ ∇p j , j = 2, 3, and the Jacobian of the mapping Φ: x → p isJ Φ (x ) =It does not vanish if x 3 = 0 or ρ = 0. Let us invert Φ. The sign of x 3 is not determined by p so we considerΦ ± : R 2 * × R ± * x → p ∈ R × R 2 * . Let p ∈ R × R 2 * .We have x 1 = p 3 e 1 2x satisfies the equation F (x 2 3 ) = p 1 where we set F (t) := (p 2 2 + p 2

R 2 *

 2 ×R ± * < ũ± (p), ṽ± (p) > C 6 ,D dp, then H := H+ ⊕ H-. For ũ = (ũ + , ũ-) ∈ H, x ∈ R 2 * × R ± * , we set u(x) = |J Φ (x )| 1/2 ũ± (Φ ± (x )), so the transform T : L 2 (R 3 ) u → ũ ∈ His a bijective isometry (up to a nonzero constant multiplicative factor).Setting again χ(p) = χ x * (x), π(p) = π 2 (x), we have, for u, v ∈ C ∞ c (R 2 \ {(x * 1 , x * 2 )} × R \ {x * 3 }), (A x * u, v) H D =

D(

  Ãx * ) = H 1,0 := {ũ ∈ H; χ2 ∂ p1 ξj (ũ) ∈ L 2 (R + * × S 2 , C; dp), χ2 ∂ p1 ξj (ũ)| p1=0 = 0, j = 1, 2}.Let us prove that the default index N + of Ãx * vanishes. Firstly, observe that (41) D(( Ãx * ) * ) = H 1 := {ũ ∈ H; χ2 ∂ p1 ξj (ũ) ∈ L 2 (R + * × S 2 , C; dp), j = 1, 2}.

1 2 H

 2 D . (Since the norms • and • H D are equivalent, we can omit the index " H D ".) It appears that H D is a multiplication operator and we write

  and so, B A * ⊂ B * . Hence, Corollary 1 can be extended as Corollary 3. (LAP on R * .) Let I ⊂ R * be a compact interval. There exists a constant C I such that

	Corollary 2. (LAP on R \ T in usual Besov spaces.) We have
		sup	R(λ ± iµ) B(B;B * ) < ∞,
		λ∈I, µ>0
	for all compact set I ⊂ R \ T . Moreover letting s > 1/2 then the limits
		R(λ ± i0) := lim ε 0	R(λ ± iε) ∈ B(H s ; H -s )
	exist and are bounded, with uniform convergence according to λ ∈ I. The mapping
	R \ T	λ → R(λ ± i0) is norm continuous in B(H s ; H -s ) and weakly continuous
	in B(B; B * ).
	Another consequence of Theorem 3.1 is the following extension of the LAP to
	any nonzero spectral value, thanks to a slight adaptation of [2, Theorem 3.3].

  the H j 's are symmetric bounded self-adjoint operators on H

D 

(so H j is regular; see also

[

2, Remark 2.15]), then Assumption [2, (M1)] becomes: (M1*): [ for all j, H D ∈ C 1 (H j ).] We see that (M1*) is obviously satisfied and

  , p 3 )dp 2 dp 3 + L(p 1 ), , p 3 )dp 2 dp 3 , with L 1 L 2 (R) ≤ C g L 2 (R×S 1 ) . Hence we have χ2 ∂ ∂p 1 ξj (ṽ) ∈ L 2 (R 2 × S 1 , C; dp).

	∂ ∂p 1	K(p 1 ) = ξj (ṽ)g(p 2 L(p 1 ) := R×S 1 χ2 (p) ∂ ∂p 1 R×S 1 ξj (ṽ)( ∂ ∂p 1 χ2 (p))g(p 2

5.7.

The conjugated operator near thresholds. 5.7.1. Enumeration of the different cases. Since our proof of the LAP at each threshold related to some x * ∈ X * requires a special treatment which depends on the values of β and of x * , we enumerate the different cases as follows. Case 1 β = 0 and x * ∈ X * 2 . Case 2 β = 0 (so (A0) holds) and x * ∈ X * 1 . Subcase 2-1 β 2 = 0. Subcase 2-2 β 2 > 0.

Subcase 2-2-a x * ∈ X * - 

> 0 for j = 1, 2, 3 so, by using (36),

Case 3-1 is similar since the six partial derivatives ∂ zj τ ± are all constant and positive, and τ ± (z * ) > 0. (See [START_REF] Perry | Spectral analysis of N-body Schrödinger operators[END_REF] and [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF].) Cases 2-1 and 2-2-a and 2-2-b are similar to Case 1, the sign of C j being a consequence of Lemma 4.4. Let us be more precise in Case 2-2-a. Since z * 3 = ν ∈ (0, 1) then sin(2x * 3 ) = 0 so, by using (37), (36), we have

is similar to the other cases (with s j = s * j = -1). By using (36) we have

Thus (24) holds too. The lemma is proved. 8.2. Proof of Lemma 5.2. We remember that y * 1 = 0, z * 2 = 0 and z * 3 = 0, so,

Thanks to (19

choose ũ(p) = f (p 1 )g(p 2 , p 3 )ϕ j (p) with arbitrary f ∈ H 1 (R + * ; C; dp 1 ) and g ∈ L 2 (S 2 ; C; dp 2 dp 3 ), so we have

, C; dp), so ṽ ∈ H 1 . Therefore, (41) is proved. Now, let ṽ ∈ D(( Ãx * ) * ) such that ( Ãx * ) * ṽ = iṽ. Thus we have (-i( Ãx * ) * ṽ, ṽ) H = (ṽ, ṽ) H . An integration by parts (according to the variable p 1 ) shows that v = 0. Consequently, A x * with domain T -1 (D( Ãx * )) is a maximal symmetric operator with the default index N + = 0. (See also [START_REF] Georgescu | Commutators, C 0 -semigroups and resolvent estimates[END_REF]Lemma 1.3] for results of the same kind). C) (Cases 3-2 and 3-3). We set

We set

We have w •∇ x u = u w = -|∇p 1 | 2 ∂ p1 u and, thanks to (15), Ψ 0 (z) w = p 1 ˜ Ψ 0 (z) w where ˜ Ψ 0 (z) w is analytic and does not vanishes at x * . Case 3-3. We have ∇ x p 1 (x * ) = 0 and J Φ (x * ) = 0, so Φ is a local diffeomorphism from a neighborhood of x * in R 3 into a neighborhood of 0 R 3 in R 3 . Hence, we have

where k is smooth with k(x * ) > 0. As in the above cases, we thus set q = (q 1 , q 2 , q 3 ),

We then obtain

where H = L 2 (R 3 , (C 6 , <, > C 6 ,D ); dq) is a usual Hilbert space. The projection π has range two so Case 3-3 is similar to A-2) with A x * replaced by -A x * . Hence, A x * has default index N -= 0 and admits a maximal symmetric extension. Case 3-2. We have ∇ x p 1 (x * ) = 0 so J Φ (x * ) = 0. Let us "invert" x → p. For simplicity we assume y * 1 = y * 2 = 1. Set x j = x j -x * j for j = 1, 2. Since sin x j 1-(x j ) 2 /2 and cos(x j ) -x j for j = 1, 2 then p 1 x 1 x 2 and -2p 2 (x 1 ) 2 -(x 2 ) 2 . Thus (x 1 + ix 2 ) 2 2i(p 1 + ip 2 ). It means that we have the same transform than in Case A-1), i.e., there exists an Hilbert space H and an isometry

, χ2 π2 ṽ > C 6 ,D dq, 8.4. Notations. y = sin x (y j = sin x j ), 

1 ), sin 2 (X * ) = sin 2 (X * 1 ) ∪ sin 2 (X * 2 ),