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SPECTRAL ANALYSIS OF THE DISCRETE MAXWELL
OPERATOR: THE LIMITING ABSORPTION PRINCIPLE

OLIVIER POISSON
Aix Marseille Université, France

ABSTRACT. We make the beginning of the spectral analysis of the inhomo-
geneous discrete Maxwell operator HP defined on the square lattice Z3: we
prove that the limiting absorption principle holds. To this aim we construct a
conjugate operator to the Fourier series of HP at any not-zero real value. In
particular, we analyse the case of thresholds of HD.

1. Introduction. We are interested in the limiting absorption principle (LAP) for
the inhomogeneous discrete Maxwell operator HP defined on the square lattice
Z3, i.e. the limit in some usual or more abstract Besov spaces of the resolvents
R(z) = (HP — 2)~! when z € C\ R tends to a spectral value A of HP. It is
equivalent and more convenient to deal with the Fourier series H” of HP instead
of HP since HP is a multiplication operator on the three-dimensional real torus
T3 ~ (R/(27Z))3. The operator H” is so represented by the analytically fibered
self-adjoint operator T? 3> z + HP(z) on an Hilbert space HP where HP(x) is
a 6 x 6 real matrix. We prove the LAP using the conjugate operator technique,
as developed in the greatest generality by Gerard and Nier in a first version [3].
Actually, denoting ¥ = {(\,z)| A € o(HP(z))} the energy-momentum set, where
o(HP(z)) denotes the spectrum of an H” (x), we have the stratification ¥ = US_, %;
where ¥; is the semi-analytical set of elements (), ) for which A is an eigenvalue
of multiplicity i of HP(x) so we can introduce the (finite) set 7 of thresholds. At
this point we could simply apply [3, Theorem 3.1] and claim that for any interval
I cC R\ T, there exists an operator A; with domain C>(T3;C), essentially self-
adjoint on H?, conjugated to HP, and satisfying Points (i)-(iii) of [3, Theorem 3.1].
See Points (i)-(iv) of Theorem 3.1. However we go beyond this result. Moreover,
the construction of the conjugate operator in [3] contains an error since, in fact,
the analytically fibered self-adjoint operator for which the LAP is proved is not of
class C%(Ar). The authors of [3] have recently corrected it in the new version [4] at
the cost of losing the (strict) globality of Mourre’s inequality (3) which has to be
replaced be a local one as (4). Nevertheless, following the ideas of the old version
[3] and the new version [4] we construct an explicit conjugate operator A, to HP
with the same properties than the operator Ay of [3, Theorem 3.1]. Here we prefer
to use as parameter for the conjugate a numerical smooth function ¢ instead of an
interval I so A, is conjugated to HP at each point of ¢! (R*).
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We prove the LAP at any nonzero threshold. This result is optimal in the sense

that there is no conjugate operator to H” at 0 which is the obvious eigenvalue
of HP, and it shows also that H” has no other eigenvalue. Denoting by X* the
finite set of points z € T® such that o(HP (z)) N T is not reduced to the eigenvalue
0, we construct Ay as a first order symmetric differential operator with smooth
coefficients outside X* and with rational singularities at points x € X* such that
o(HP(z))N'T N ¢~ (R*) is not void. Then, the set of thresholds admits the parti-
tion T = Teq U Tom: let 2* € X* and A € T No(HP (2*)), if A € T4, then the local
part Az« of Ay near z* is essentially self-adjoint, and if A € 7, then A4 near x*
admits a maximal monotone extension. Thus, we obtain the LAP on R* \ Tg,, in
the same terms as [3, Theorem 3.3].
If A € $~H(R*)N Ty then A, may not have a maximal monotone extension since its
singularities may come from several points of X'* and since the sum of two maximal
monotone operators, even with disjoint supports, is not necessarily maximal mono-
tone. Nevertheless we prove the LAP on Ty, by a slight extension of [2, Theorem
3.3].

In Part 2 we describe the operator H” and the Hilbert space H” on which it is
self-adjoint. In Part 3 we state the main results of our work, notably, the existence
of a conjugate operator A, for HP at Theorem 3.1, then several LAP in terms
of abstract or usual Besov spaces at Corollaries 1-5. In Part 4 we describe the
spectrum of HP (x), the stratification of the energy-momentum set 3; we define the
thresholds and describe T. It appears that 7 depends mainly on the parameter
B = e x p where € and u denote respectively the permittivity and the permeability.
In fact outside the first quite basic case 3 = 0 we have to deal with many special
cases for which the set 7 is no more obvious. In Part 5 we construct the conjugate
operator A4 according to the parameter 3. We prove also the main properties of
Ag. In Part 6 we prove the main results (see Part 3).

All along the text we use the following notations. Let & € {T3, R} where T? ~
(R/(27Z))? is the 3-dimensional real torus. If f is a numerical function (from R
into R) we then denote by f again the mapping € > = — (f(z1), f(z2), f(x3)) € R?,
so if E C € then f(E) = {f(x); x € E} C R? and if £ C R3 then f~}(E) = {z €
&; f(x) € E}. In particular we set, for z € £,

y = sinz:= (y; =sinz,yp = sinag,y3 = sinzz) € R?,

z = yri=(n =yl =yl 2 =193 c R
(Although the letter z will be also used as a complex energy, there is no possible
confusion with the notation above.) The other notations are standard. If £ C £ €
{T3,R3} and F € {R",C"}, we denote by C°(E, F) the real space of C*> functions
with values in F, defined on £ and with compact support in E.
Let T a self-adjoint operator, then o(T') is its spectrum; if E C R then 15(T)
operator X[q,p)(T") where x is the characteristic function of a set J C R. If X and
Y are two metrics spaces B(X,Y) is the space of bounded operators from X into
Y and B(X) := B(X, X).
For n > 1 the space R™ (respect., C") is equipped with the scalar product < -, - >ga
(respect., with the hermitian product

< fg>ce=>_ LT, f=Ui<icn 9= (9)1<i<n)-

j=1
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Full notations are at the end of the text, Part 8.4.

2. The discrete Maxwell Operator.

2.1. The homogeneous discrete Maxwell Operator. Let Z° = {n = (n1,n2,n3); n; €
Z} the square lattice, T® ~ (R/(27Z))? the 3-dimensional real torus, U the unitary
transform between L?(T?) and 1?(Z?):

(Uf)(n) = f(n) = (27)} /T ¢ f(@)dz, n e 25,
so that any f € L?(T®) can be written
fa)= (U o) =@m~2 Y e fn), zeT
nez?

The homogeneous discrete Maxwell operator is the bounded operator Hy on ‘H =
(L?(T?3))8 defined by

Hy = UHU*,

with Ho(z) the real anti-symmetrical 6 x 6 matrix:

_ O3x3  M(y) 6 3
Ho(x)—<_M(y) O3t eR® =zeT°,

where y = sinz and M (y) is the real anti-symmetrical 3 x 3 matrix:

0 -ys w2
My)=|( w3 0 -y |, yeR’. (1)
Y2 N 0

The space H = L?(T3,dx; RS) can be written as the hilbertian sum

@
H= RSdz,
T3

with the scalar product

(u,v) = /]I‘3 < u(z),v(z) >ge dz.

We then have
53]
Hy = Hy(z)dz
T3
which shows that Hy is a bounded self-adjoint operator on .
All along the article we consider that the vectorial functions u and v may be
complex-valued so we denote by the same symbol H the hilbertian space fﬁ, Cbdx
equipped with the hilbertian product

6
(u,v) := /11'3 <u(x),v(z) >co dz = /TS Zuj(a?)vj(x)dx

and with norm ||ul| := (u,u)?.
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2.2. The discrete Maxwell Operator. Let € and p be 3 x 3 constant diag-
onal matrices with diagonal elements, respectively, e1,e2,e5 € (0,00) for e, and
11, o, pis € (0,00) for p. The inhomogeneous discrete-Maxwell operator is defined
by

HP = DH,,

D ( €  Oszxs >
O3x3 m

The (unperturbed) discrete Maxwell operator is H? = U*HPU so we have, since
D is constant,

where we set

HP = U*(DHy)U = DU*H,U = DH,.
The relation
(D7'HPu,v) = (Hyu,v)
shows that the operator HP is bounded and self-adjoint on the space HP = H
equipped with the hilbertian product

(u,0)yp = (D" u,v) = / < D7 tu(z),v(x) >co dz
T3

1

2

HD*

we can omit the index ";,n".) It appears that H” is a multiplication operator and

we write

and with norm ||u|lyp = (u, u) (Since the norms ||- || and ||+ || are equivalent,

&
HP = HP (z)dx,
T3
where HP () is self-adjoint on C% equipped with the hermitian product:
<u(x),v(x) >co p:=< D~ Yu(z),v(z) >cs -
Since HP(z) depends only on y = sin(z) we write it H” (z) = hP(y). It is known
(see [11]) that
o(HP) = Uperso(HP (), (2)
which is a compact set of R.

3. Results.

3.1. Main Theorem. We introduce the following settings:

Xo = {zeT?2=0}, T3=T3\AX,

x* = {zeT o(H"()NT #{0}} C T}
We denote Dy := C°(T? \ X*) and R(z) := (HP — 2)~! the resolvent of HP.
Theorem 3.1. Let 7/ C T with 0 € 7', and ¢ € C°(R\ 7'). Then there exists

a symmetric operator Ay defined on C*°(T?) if 7/ = T and on Dy if 7' # T, and
satisfying the following properties:

(i) There exists a constant § = §(¢) > 0 so that we have
S(HP)HP,iAglp(HP) = 3¢ (HP). (3)
(ii) The multi-commutators adfzd) (HP) are bounded for all k € N.

(iii) The operator A, is a first order differential operator in x whose coefficients
belong to C*(T?; L(C®)) if T = T and to C>(T?\ x*; L(C®)) if T" # T, and
there exists ¢ € C2°(R\ T') so that Ay, = ¢(HP)A, = App(HP).
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(iv) If Tem C T then Ay is essentially self-adjoint.

(v) If 7" = {0} then A, has the form Z?:O A; where Ag has smooth coefficients
and is essentially self-adjoint, A; and As have coefficients with rational singu-
larities at some points of X* and, defined on the domain Dy, admit a maximal
symmetric extension; moreover, supp A; N supp A, = 0.

Remark 1. e Since the coefficients of A, are smooth in T® \ X* and, since
Dy is dense in HP, then, for u € HP, the distribution Asu belongs to the
topological dual space of Dy so, since Ay is symmetric,

Agu € HP = |(u, Agv)yp| < C||v|]| Vo € Dy.

Setting
[ullpeay) = l[ull + [|Apul|  Vu € Dy,
the closure A¢ of Ay has domain

D(A(z)) = ﬁl"'lD(A¢) .

The adjoint of A, or of Ay is the operator A" with domain D(A4") = {v €
HP; |(Apu,v) o] < Cllull, u € D(Ay)}. If suppp N'T = (0 then A, is essen-

tially self-adjoint and its self-adjoint extension has domain COO(']I‘3)‘H|D(A¢) D
H'(T3) (with dense inclusion).

o Our set T of thresholds may defer to the set of thresholds in [3]. Anyway, 7
is a discrete (and finite) set. The sets T, Ty and T, are precisely described
in Part 5.7.3.

e In the case 7' = T, the result of [3] implies the existence of an essentially
self-adjoint operator A; with smooth coefficients such that Points (i), (iii) and
(iv) with Ay replaced by A; hold. But the first commutator [HP, A;] is not
a multiplication operator so Point (ii) fails, and, in fact, H? & C1'1(A;) (this
set is defined at Point B of Corollary 1). The new version [4] of [3] provides
an essentially self-adjoint operator Ajj, with smooth coefficients such that
Points (ii)—(iv) and a local (weaker) version of Point (i) are maintained (with
Ay replaced by Ay r,).

o We give an explicite formula for A4 which is easier to read than the general
formula in [4] (which is only valid in the case 7' = T).

3.2. Main consequences and extensions. The first obvious consequence of The-
orem 3.1 is that the singular continuous spectrum of HP is then empty. But it is
actually a consequence of the general theorem in [3] revised in [4].

The second consequence is that we can state the LAP outside T, U {0} in the
same terms as those of Gérard and Nier in the old version [3] of their work. See also
[9, 10]. Let us consider a compact interval I C R* \ g, and fix ¢ € C°(R* \ Tam)
such that ¢ = 1 on a neighborhood of I. We denote by Aj)“ C Ay a self-adjoint
extension of A4. We define the abstract Besov space B4 by

1/2
Ba={f€H: |fll, =7 INs,_ <iaseicn, fI| < 00}.
j=0

Its dual space B4* is the completion of H” by the following norm

1/2
lulls.e = sup 73l <iage <o, vl
1=z
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For s > 1/2, the following inclusion relations hold :
D((1+ |A%"))*) € Ba C D((1+|A$)*/?) c HP
C D((1+ A7) € Ba™ € D((1+ |A5") ™).
We can claim
Corollary 1. (LAP on R*\ 7, in abstract Besov spaces.) We have

sup [|[R(A£ip)flly < Crllfllsy Vf € Ba.
Ael, un>0

Moreover letting s > 1/2 then the limits

E1_1>I§E10(1 +[AG) TR +ig) (1 + [AZ7])

exist in B(HP) and are bounded, with uniform convergence according to A € I. The
mapping R\ 7 3 A = R(A £40) is norm continuous in B(D((1 + [A3*])*, D((1 +
|A%*])~*) and weakly continuous in B(Ba, B4").

For further developments we establish also the LAP in terms of the usual Besov
spaces described by Isozaki and alii [12] with the restriction to spectral values

outside the thresholds. Thus, we consider the case supp¢ C R\ T in Theorem
3.1. We set N = (N1, N, N3), N; = i0/0x; and the self-adjoint operators

3
IN|=VN2=V-A, N*’=> N}=-A onT?
j=1

where A denotes the Laplacian on T3 = [—,7]® with periodic boundary condi-
tion. Let D'(T3,C) = (C>°(T3,C))’ the space of distribution on T* and consider
D'(T3,CS) ~ (D'(T3,C))% ~ (D'(T3,R))!2. We introduce the normed spaces

H* = {ue D'(T%CO), Jlulls < oo}, [ulls == [I(1+ N*)*2ull, s€R,
so H? is the completion of D(|N|?), the domain of |N|®, with respect to the norm
|lulls and we have HP = H® = L?(T3,C%). For s > 0 and u € C>®(T3,CO) we
have ||(1 +[A%*])*ul| < C|lul|s where C' does not depend on u. Thus, the following
inclusion relations hold :

H* C D((1+]A45))") CHP c D1+ AL ™) CH™® Vs> 0.

Using the sequence (7;)j>_1 where r_y = 0, 7; = 27 for j > 0 we define the Besov
space B by

Bi={feH"; |fls =D 1?1, <ni<r, Il < 00}

§=0
Its dual space B* is the completion of H by the following norm

1/2
lullse = sup 51y, <pi<r, el
1=

For s > 1/2, the following inclusion relations hold :
H CBCH2CHP cH V2B cH.
Moreover, Lemma 2.8 of [5] says that there is a constant C' > 0 such that

Iflls. < Cllflls Vf€B,
that is, B C B4, and so, B4* C B*. Hence, Corollary 1 can be extended as
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Corollary 2. (LAP on R\ 7 in usual Besov spaces.) We have

sup [|[R(A £ ip)| i) < o0,
€T, >0

for all compact set I C R\ 7. Moreover letting s > 1/2 then the limits
R(\£1i0) := li{% R(A*ie) e B(H?;H™?)
exist and are bounded, with uniform convergence according to A € I. The mapping

R\ 7 2 XA — R(XA£40) is norm continuous in B(H*; H~*) and weakly continuous
in B(B; B*).
Another consequence of Theorem 3.1 is the following extension of the LAP to

any nonzero spectral value, thanks to a slight adaptation of [2, Theorem 3.3].

Corollary 3. (LAP on R*.) Let I C R* a compact interval. There exists a constant
Cr such that B
[(u, REz0)eo| < Cillulb s, Vu € D(Ay),

for all z = A+ ip with X\ € I, p # 0 real. Moreover if z; = Ay + i1, 20 = Ao + o
are two such numbers, and if pq and puo have the same sign, then

|(u, (R(21) = R(z2))u) o | < Crlz1 — 22| ?|lully 4, Vu € D(Ay).
In particular, if u € D(A,) then the limits
lim (u, R(A £ ie)u)yp =: (u, R(A £i0)u)yp
e\t

exist uniformly in A € I, and, for all A1, As € I, we have
(u, (R(A1 £00) — R(Ag £ i0))u)yp < Crlhy = AoV |[ull3 4,5
An immediate consequence of Corollary 3 is
Corollary 4. The point spectrum o,(HP) of H is reduced to {0}.

Before giving the proof of Theorem 3.1, we state the results for some natural class
of perturbed Hamiltonians H‘? = HP +V, as done in [3]. We will simply recall
some well known results in the Mourre theory (see [9, 10]) and refer the reader
to the book [1] for a complete exposition of the Mourre method. In particular a
sharper version of Corollary 5 is given in [1, Prop. 7.5.6].

Corollary 5. Let a compact interval I C R*\ T, and fix ¢ € C°(R* \ Tsy,) such
that ¢ = 1 on a neighborhood of I. Let V a symmetric operator on H” so that

1. VR(i) and R(i)[V,iA4]R(i) are compact.

2. Ve Cbl(A,), ie.,

J 1RO W il [V iAD RO < o

Then, setting H{? := HP +V, the following results hold:
1. There exists a constant § > 0 and a compact operator K so that,

O(HY)[HY  iAg)o(HY) > 6¢°(HP) + K.

Consequently point spectrum o, (H?) is of finite multiplicity in R* \ T, and
has no accumulation point in R* \ 7.
2. For each A € I\ 0,(HY) there exist ¢ > 0 and ¢ > 0 so that,

Tn—eate) (HP)[HY iAy)] In—eate] = e nte (HP). (4)
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3. The LAP for HZ holds on I \ o,(H{): the limits
(L4 [Ag]) 7 RA £ ie)(1 + [Ag]) "

lim
e—=£0
exist and are bounded for all s > 1/2.
Consequently the singular continuous spectrum of H{ is empty.
4. If the operator (14 |A4|) *V (1 + |Ay|)~* is bounded for some s > 1/2, then
the wave operators

. 11D 17D
s— lim eV 1, (gP) = of
t—too

exist and are asymptotically complete:

15 (HP)HP = O HP.
4. First Spectral Properties.

4.1. Spectrum of h”(y). We introduce the new parameters:

B = exp=(p1,P20) (5)
a = (oq,0,a3), «ai:= (o3 +e3i2)/2 and, c.p.,

Y1 = eqesuops  and c.p. : (6)
Y2 = E1€3{1U3,

Y3 = E1€2i1 2.

(The abreviation "c.p.” means ”circular permutation” so we have the other values
by circular permutation, ex., 81 = a3 — €3/42).
Let us describe the spectrum of h” (y).

Lemma 4.1. We have
det(h” (y) — k) = det(eM (y)puM (y) + k?)

and the factorization

det(hP(y) — k) = k*(r7(2) = k) (7™ (2) = k?),

with
Ti:‘lf()i\/Ko, (7)
where
1
Ko(z) = 1(5122% —2B1B22122) + c.p., (8)
\IJQ(Z) = -z = (2] + Q22 + (323. (9)

Proof in Appendix A. Since the characteristic polynomial det(H? (z)—\) depends
on x via the new variable z = (21, 22, 23) = sin® z € [0, 1]® we set

p(: ) = det(HP(2) — A) = det(eM (y)u (y) + X2).
Remark 2. If z # 0 then
7H(2) = Uo(2) + VEo(2) > 77 (2) = ¥o(2) — /Ko(z) > 0.
Moreover there exists C' > 0 such that
7 (2) > Clz|, ze€]0,1]°.
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Since B3 -& = 0 and ¢; > 0 for all i € [[1,3]] then there exists j € [[1, 3]] such
that 8;8; < 0 and Bi8; > 0 for 4,k # j. If two of the 3;’s vanish then B vanishes.

Moreover 3 is replaced by —f if € and p are exchanged, which involves the same
analysis. Hence if 3 # 0 then we can assume without any restriction:
(AO0): f1 > 2> 0> Bz or 1 > P2 =0> fs.

The functions ¥y and Ky are homogeneous polynomials. The relation Ky = 0 is
equivalent to 3 = 0 which is the special case where € and p are proportional. If one
of the §8;’s vanishes, so, under Asumption (A0Q), 82 = 0, then 1/ Ky(2) is polynomial.
Thus, the functions R3 > z — 7%(2) are homogeneous analytical complex functions
with branch at z = 0 and at points z for which K(z) = 0 if S # 0 for all ¢, and
with branch point at z = 0 only if 83 # 0.

If z = 0 then hP(y) = Ogxe and all the eigenvalues vanish. Let us consider the
case z # 0.

Theorem 4.2. (Spectrum of AP (y).) Let z € [0, +00)3\ {Ogs }. Then 0 is a double
eigenvalue with eigenvectors (y1,y2,¥3,0,0,0) = y ® Ocs and (0,0,0,y1,y2,¥y3) =
0@3 ®y.

Assume B8 = 0. Then Ky = 0 and all the eigenvalues have multiplicity two.
Moreover, the nonzero eigenvalues of h” (y) are

+/7H(2) = /17 (2) = £VEamsz1 T e3za T E1piazs
Assume 3 # 0 (so (A0) holds). Then the nonzero eigenvalues of h”(y) are
o £./71(z), simple iff Ko(z) # 0,
e +./7(z), simple iff Ko(z) # 0.
e +./71(2) = £1/7(2), double iff Ky(z) = 0.
Assume B # 0 (so (A0) holds) with 82 = 0. Then, 7" and 7~ are linear according
to z:

H(2) = eapsz 4 espize + 2 23, (10)
3221 + E3H122 + E1U223. (11)

3
—
N
~—
Il

(Hence we observe that:
If (21, 23) # Oz, then the nonzero eigenvalues of h”(y) are £./71(2), simple. If
(21, 23) = Og2 and 25 # 0, then the nonzero eigenvalues of h” (y) are

EVTH(2) = £VT(2) = BV lys| = Bv/Esmlyal,
double.)
The Proof of Theorem 4.2 follows from (8) and (9).
Lemma 4.3. Let us assume 3 # 0 (so (A0) holds). We have

) 1
Ky '({0}) = {z € [0,1)*; Ko(2) = 0} = {t(B2,1,0); 0 <t < E}'
The Proof is let to the reader.

We set
N =max{\/7t(2); z €[0,1]*} € (0, +o0).
The following result is a consequence of Theorem 4.2 and of relation (2):
Proposition 1. 1) The operator H” admits 0 as eigenvalue of infinite order.

2) The spectrum of H? is
o(HP) = [-\*, \*].
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Proof in Appendix A.
4.2. Stratification and thresholds. Following [3] the set of energy-momentum
is
Y={(\xz)|X€o(H"(x)} ca(HP) x T

We have (A, z) € ¥ <= p(z; \) = 0. We consider the canonical projections:

Py : RxT33(\z)—zeT?,

Pe @ RxT*s(\z)— AR
It is clear that Pg|x is a proper map. The spectrum o(HP (z)) of HP (z) is discrete
and depends continuously on x. The operators H? (x) are the fibers and the space

T3 is the momentum space.
The set of energy-momentum ¥ admits the partition

Y =005,
where ¥; is the semi-analytical set of elements (A, x) for which A is an eigenvalue
of multiplicity i of HP (z). We set
X;=Pu(%;), j=1

We see that X; = 0 for j = 3,4,5, X6 = {0} x Xy so Xs = Xy, X; =0 for j = 3,4,5.
Moroever,

¥ = STulyp,

o= {2 0N =7(2) #77 ()},

L2 o= {Na); 0N =717(2) =77 (2)}-
If 3=0then 31 =0 and (A, z) € Xy iff 2 # 0 and A\? = Ug(2).
If B # 0 holds then (), z) € 3y iff Ko(z) # 0 and A2 € {71 (2),7(2)}.

Let us define the set of thresholds, 7. For a more general definition of 7 (which

may defer from ours), see [3]. We set

o= Stun,
iE = {(\z) € By N2 =7T(2), Vort(2) = 0},
Y5 o= {(\x) € Xo; A2 = \/Uy(2), and V,¥y(z) is normal to X, at x},
then
T; = R(¥)),
xF = Pu(%)),
Zy = sin?(&)), j=1.2

Observing that Pr(¥s) = {0}, we set the set of thresholds, T, as
T:={0}UTLUTs.
Let us describe 7. Setting
X=X UXS
we see that ) is a threshold iff there exists 2* € sin®(X*) such that p(z*;\) = 0.
Setting
T o= R(ET),
Xl*i PM(ZTi)7
Zfi = sinQ(Xl*i),



SPECTRAL ANALYSIS OF THE DISCRETE MAXWELL OPERATOR 11

we have
o= TTUT
Xo= auAT
sin?(A7) = Zituzi,
SO
T=T"UT, UT,U{0}. (12)

Obviously 7 is symmetric to 0 so we shall analyse H” at the positive thresholds
only.

Lemma 4.4. A) Assume 8 = 0. Then we have 0.,7%(z) = 9., ¥o(z) > 0 for all
1.
B) Assume 8 # 0 (so (A0) holds.) We set

2a3v/B1 B2 — /3(P1 + B2)
1Bslv/s '

Let z € [0,1]3 such that Ko(z) # 0.
1) We have 0,,7%(z) >0 for i =1,2,3, and 0,,7(2) > 0 for i = 1,2.
2) a) Assume 83 =0 (so v < 0). Then 9,,7 () > 0.
b) Assume 53 > 0.
(i) If z; =0 or z2 =0 then 0,,7 (2) > 0.

(ii) The derivative 9,,7 (1,1, z3) vanishes iff z3 = v € [0, 1], and if
z3 # v then 0,,77 (1,1, 2z3) has the same sign than z3 — v .

Proof in Appendix A.
Remark 3. Let 7 € R there exist € and p such that v = . Proof in Appendix A.

Lemma 4.4 implies that the thresholds of the analytically fibered family (H” (z),z €
T3) come from the values = € T? such that 9,,2;(x) = 0 at least for i = 1,2, so
21,22 € {0,1}, and, in addition, we have z3 € {0,v,1}.

We can determine now the set 7 of thresholds. Setting

Z{O,l} = {07 1}37 Z?Oﬁl} = Z{O,l} \ {0R3}7
Xpoay = {z€T% z€Zpy)t, Xy ={zeT? ze€Zp,},

we obtain the following (remember also (12))

Lemma 4.5. 1) Case 8=0. We have Ko =0, X1 =0, X1 =0, X = T3. Then
sin®(X5) = Z7, 43, L =0, T = {0} U Tz and

T NRY = {\/Wo(2);2 € Zfy 13}

2) Case ,6 # 0 (so (A0) holds). We set Z} = {(1,1,v)} N [0,1]>. Then the
sets &, j = 1 2 are not trivial (remember Lemma 4. 3) We have Z;T =
Zfo,l}\{ F L0}, 217 = Z5, yUZ\(3,1,0)} and sin® (X5) = {(52,1,0)},
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SO
TFNRY = {V77(2), 2€ Zfy 1y, 2 # (%,1,0)},
T NRY = {/77(2), z € Zioy V2, 2 # (%, 1,0)},
EHR+ = { \IJO<&7170>}
Vs

Proof in Appendix A.

Remark 4. We have X" C X~ and the inclusion is an equality if and only if
v ¢ (0,1).

Remark 5. Let us consider the case f5 = 0. By definition of 75 we have

T2NRT = {/U(2); 2 #0, Vor/Po(2) = 0}.

Then, the eigenvalues v/7% are analytic in [0, +00)? \ {Ogs}, since the functions 7
are linear and positive in [0,4+00)% \ {Ogs}. Hence it would be an alternative to
replace T3 by 75 where we set

T = VTR 2 #0, Va/TE() = 0} = T{ R
But, thanks to Points B) 1) and 2) a) of Lemma 4.4 we obtain
Tt ={VE(); 2 €{0,1}%, 2 #0ps} = T NRT,

so the sets 75 and T3 coincide.

+

5. The conjugated operator. In this section we consider a set 7/ C T and a
function ¢ € C°((0,+00) \ T';R). We construct an adequate conjugated operator
Ay to H on supp ¢.

5.1. Eigenprojectors. If 3 = 0 then ¥; = () and the function /Wy (y?) is analytic
in R3\ {Ogs}. The associated orthogonal eigenprojection

1

ma(y) = /C (hP(y) — O)7'dC Wy #0, (14)

~ 2ir
where C C C is a complex contour containing /Wo(z) but not 0, is then analytic

in R3\ {Ogs} and has range two.
Let us assume 8 # 0. Let us denote by wf (y) the orthogonal eigenprojection on

ker(hP (y) — /7%(2)), i.e.,

() = / (hP(y) — )7y € sin(Xy),
C

- 2im
where C is a contour containing /7%(z) but no other eigenvalue of h(y). Let

again ma(y) defined by (14) where now C is a contour containing both /7 (2) and
/77 (z) but no other eigenvalue. Thus m3(y) is the orthogonal eigenprojection on

ker(hP (y) — \/71(2)) + ker(hP (y) — /7 (2)), and
ma(y) =m (y) @7y (y) Yy € sin(Xy).
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Each 7 (y) has range one and my(y) has range two. Each 7 is analytic at y €
sin(X;) (as subset of R?), 3 is analytic on sin(R3) \ {Ogs} (C R?), and
WP () ma(y) = 7H@e)m (y) + /7 ()7 (y)  Vy € sin(Ay),
WP (y)maly) = VWo(2)ma(y) Vy € sin(Aa).
5.2. Global tangent field to X,. If S = 0 then the 7*’s and wf’s extend ana-
lytically into R3 \ {Ogs} with the relation
ma(y) = 71 (y) + 71 (y) Yy # Ogs.

In addition, in Case (A0) (with 82 = 0), the sum 7 (y) + 7 (y) is direct.

Let us assume 2 # 0 (with Assumption (A0)) and make a precise description
of X,. A point x € T? belongs to X, iff z # 0 and z3 = 0 = 8121 — Baze. The last
relation can be written

Byt = Bayz  ye € [-1,1]\ {0}
When an nonzero eigenvalue of H? (x) (respect., of h”(y)) is not simple then the
stratification method explained in [3] involves a tangential vector field to the set
Xy (respect., to sin(Xz2)): w(z) = (sin(z1) cos(zz),cos(z)sin(xz),0), (respect.,
W(y) == (y1,Y2,0) ). We observe that |w(z)| # 0 for all x € Xp \ X*, and |w(z)| # 0
for all x € Xy if B2 € (0,61). If B2 = (1 then w vanishes at all z* € XJ since
2 =25 = L.

We introduce the following notations. Letting a function f: T® or R® — C»
and a vector field v(z) = (v;(x))1<j<n € C™, then v -V, f is the vectorial function
x 305 vj(2)0y, f(x) € C™. We set also

fw = w- vwfa
fNﬁ) = w- Vyf
‘We thus have }
fuw() = cos(x1) cos(w2) fz (y)- (15)

5.3. First cut—off functions. We consider the following metric on T? ~ (R/(27Z))3:
do(w,7%) = |67 — &'| 2%,z € T°.

We denote do(z, F) = inf{dg(z,2*) |2* € E} when E C T?. We consider a cut—off
function ¢1 € C*(R;[0,1]) such that suppyr C {s € R; |s] < 1} and 1 = 1 in
{s; |s| < 1/2}. Let b,by with 0 < b < by/2 two small parameters which will be
precised later. We separate the eigenvalue 0 from R, and, equivalently, Xy from
T3, with the cut—off function xo(z) := ¥1(]z|/bo). Since supp ¢ C (0,00), we can
fix by sufficiently small such that:

{V7H(2), V7 (2)} Nsupp ¢ # 0 = xo(z) = 1.

In addition we set

Yo (2) = @i(do(w,2*)/b) ¥, €T3,

X (z) = (1= xo(@) M gqrt (1= Xar),

V@) = (1= 0@ eene (1 e
X'(x) = (1= xo(@))Herex-(1 = Xan),

so x* vanishes in {z € T3;do(z, X*) < b/2} and in {x € T3;|2| < by/2}; we have
also x*(x) = 1 if do(x, X*) > b and |z| > bp. It means that x* is a smooth cut-off
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function localizing in the complement of A* U Ay, and, since X* U A} is a discrete
set (and finite), we then have, for by > 0 sufficiently small,

L—x"() = xo(x) + Y Xar (@),
r*eX*
L= xX"F (@) =xo@) + > xer(2).

T* eXl*i

5.4. The conjugated operator outside thresholds. Case 8 = 0. Remember
that we have " = 7| = ma which is analytic in R\ {Ogs }. We set, for u € C>(T?),
x € T3,

Ve Yol(z
Aouru () = ix" (2)ma(y) 5 === Va (X" (#) ma (y) u(2)).
Ve Wo(z |2
Case 3 # 0 and 3, = 0 (with Assumption (A0)). Remember that the functions 7+ (-)
are analytic in R? (see (10) and (11)) and are positive in [0, +00)3 \ {Ogs}. Thus,
the eigenvalues 1/7%(+) are analytic in [0, +00)® \ {Ogs}. We set, for u € C>(T3),
x €T3,

At () = 30 @) 5 =Yg ﬁVTi'Q Va0 @) (g)u(a).

Case B2 # 0 (with Assumption (A0)). Firstly, we have X7 C X;”, but not
necessarily the converse inclusion. Actually, if v € (0,1) (remember Lemma 4.5)
then the value \/77(1,1,v) is a threshold be not necessarily /77(1,1,v), so we
may have z7, € X7~ \ &/,

Secondly, in aim to have HP € C*(A,ut), we need to separate Xy C 9X; from
X1, as explained in [4]. Since X2 = Xo U Xy = {z € T3; Ky(z) = 0} is compact
then there exist two smooth cut-off functions, y; and yo in C*°(T3;[0,1]), such
that supp xa C {z; do(z,X2) < 2b}, xo(x) = 1 if do(z, X)) < b, x1(x) = 1 if
do(x, Xo) > 3b, and supp x1 C {z; do(z, Xo) > 2b}. Thus supp x1 Nsupp x2 = @ and
X2 = 1 on Xp. We then set x3 := 1 — x1 — x2 so supp x3 C {z; b < do(z, X2) < 3b},
and

3
fo(x) >0 VzeT?
j=1

See Figure 1. We have in addition (b being sufficiently small)

supp xz+ C supp x1 \supp xs Vz" € &7, (16)
supp Xz C supp xz2 \ supp xs Vz* € A5. (17)
X;(x) = X*(x)Xj(x) j=2,3
i) = X F(@)a(@).
(In fact, Relations (17) and (17) imply x5 = (1 — xo)x3.) The function x5 is a

smooth cut-off localizing in X5 \ X'* while X1i is a smooth cut-off localizing in
X\ At
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FIGURE 1. Cut-off

supp g

For u € C*°(T3), z € T3, we set,

:t
Aour (z E 1 — - V. x)my u(x

+ix3 (@) (V¥o(2),,) ()m(y) (@))w

+sz§(x)(\/\lfo (X3 ()75 () u(@))w-

Remark 6. The function /¥¢(z), may vanish at points of X* but not of A5 \ A

so x5(2)(v/VYo(2),) is well-defined (for b sufficiently small). For more details, see

the proof of (19) below. Similarly, the function @ — |V,+/7%(z)| is positive in
*4

Supp xp -

In each case we symmetrize A,,; by setting
Aout = Aout + Aoutv

with domain C*°(T?). Here A%, is the hermitian conjugate of A,.;. By observ-
ing that the mappings = +— y;(z)7F(y) for j = 1,3, and z + (1 — xo(z))m2(y)
are smooth, then A,,; is a symmetric first order differential operator in 2 whose
coefficients belong to C*°(T?; £(C®)). It is then essentially self-adjoint on HP (see
[3, Lemma 3.10]). Since D(HP) = HP, some possible problematic points of the
Mourre Theory then become trivial (see [2]).

5.5. "Punctual” Mourre’s estimate outside thresholds. We set

Hy pu(x) = [HD,iAout](:c).
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Similarly to proof of the Mourre’s estimate in [3] we show that if the positive
parameter b is sufficiently small then A, is strictly conjugated to H on I.
Case 32 # 0 under assumption (A0). Let u € C>°(T?), we have

—iAgus 0 HPu (z) =
Ve /TE(2)
ZX )i (y) |vx\/7T(Z)|2VI(X *(2)mi (y)h (y)u(z))
+X5 (@)™ (1) (VWo(2),,) ™" (X5 (@) m2(y)h” (y)u(@))w
+ Y @) W) (V0(2),) 7 (G @) WP (1)) w-
+

By using
(rfW)? =7 (y), WP y) =hrPWri(y), m@)hPy) =1L y)my),

we obtain the expression of [H D iAout] as a multiplication operator:

[HP iAgw](x) = (HP o Apur — iAgus 0 HP)(2)

= *iggQVmT Vo (7 (y)hP (y)) 7w
Zi:(x @), ﬁ()lQ T () Va (77 (9R" ()7 (y)

+(x3(2))* (V%o (2),,) 7" ma(y) (7 (y)ma(y)) w2 ()
+06G@)*(VP0(2),,) 7w (1) (WP ()7 (@) wrt (v)-
+

In X7 we have

i (W) Ve (WP ()75 W))m1 (1) = Vo' 75 (2)77 (9)

Vo VTE(2)|2af () Vo VrE(2) - V ( Py)ri ()i (y) = 71 (),
S Q) e V) 0) = 2w ) = )
+

Let us make the following computations near X, premsely in supp x5 U supp x3.
Setting £(y) := AP (y)m2(y) — \/Wo(2)m2(y), we have

ma(y) w(z) - Vo (hP (y)m2(y))m2(y) = V/o(2)(@)ma(y) + m2(y) Euwlz)ma(y)-
Thus,

sHiou() = D0 @) () + (06(@)* + (G (@) ma(y)
+0 (@) m2 () (VWo(2)) ™! Eu(@)ma(y). (18)

For x € X, we have £(y) = 0, so, since w is a tangent field to sin(Xs),
Ex(y) =0, Vze k.
For x € X5 we have
Uo(2), = (Wo(2)) /(121 + azz9) > 0. (19)

In addition, since the relation

(VE(2),,) " €u(@) = (vTo(2) ) €nw)
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holds true for 2 ¢ X* and \/Wo(z), # 0, then the function (\/Wo(z),) &y is
defined and is smooth in the compact set supp (1 — xo)x2 C suppx2 C {z € T3;
do(z, X3) < 2b}, and vanishes on Xo. Hence, for b sufficiently small, we have

_ 1
(Vo)) ()l < 3 ¥ € supp (1~ X0 (20)
where || - ||oo denotes here the usual infinite norm on matrices. From (18), (20), we
then obtain
Hiour(w) 2 Y (G (@)1 () + (6G(@)* + (G () ma(y). (21)
+

Remark 7. In the two other cases where 5 = 0 we obtain

1 *

§H1,out(x) = (X (1’))27T2(y)7 (22)
so the punctual Mourre’s estimate becomes simply

Hl,out(l') Z Q(X*(ﬂf))z’ﬁg(y)

5.6. Smoothness. Relations (22) and (18) show that the symmetric form Hi oy
defined on C*°(T?) is a multiplication operator on H” by smooth coefficients, so
is bounded and closeable. Thus, [H1,out, iAout) is a differential operator of order
one at most. But when computing it’s first order term we have to check only that
Hj oyt is commuting with each coefficient of the first order terms of —iAyy(z). In
fact, the possible problematic bracket arising from the calculation of [Hy oy, tAout]
is, in the case Py # 0,

0GE)A(VTE),) ) Cal@ml) @) L

71 (y) Ve (WP ()71 (v)71 ()]
But since x1x2 = 0 then this bracket vanishes. Hence, [Hi out, 1Aoyt] is a multipli-

cation operator, is bounded in H, and we have H” € C?(A,,;). By induction we
see that HP € C*°(Apyt). (See also [4].)

5.7. The conjugated operator near thresholds.

5.7.1. Enumeration of the different cases. Since our proof of the LAP at each thresh-
old related to some z* € X* requires a special treatment which depends on the
values of B and of z*, we enumerate the different cases as follows.
Casel B =0and 2* € A7.
Case 2 B # 0 (so (A0) holds) and z* € X}.
Subcase 2-1 2 = 0.
Subcase 2-2 85 > 0.
Subcase 2-2-a ¢* € X" and 2§ =23 =1 and 25 =v € (0,1).
Subcase 2-2-b z* € X]” and 27 = 25 =1 and 2§ # v.
Subcase 2-2-¢c z* € X" and zf =23 =1 and 25 =v € {0,1}.
Subcase 2-2-d z* € X and (25 =0 or z5 = 0).
Subcase 2-2-e z* € X,
Case 3 B #0and z* € Ay.
Subcase 3-1) B2 = 0.
SubCase 3-2 B = (.
SubCase 3-3 35 € (0, 81).

Remark 8. In Case 2-2-c, if 51 = B2 then (1,1,0) € sin® X so v = 1.
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5.7.2. Behaviour of the eigenvalues of HP (x) at a threshold. We set s;=1-2z
if 25 € {0,1}, j € [[1,3]], so s} € {—1,1}. We set also s; = s} for j =1,2.

In Case 1 weset V = V. ° U, osin? and s3 := s5.

In Case 2 with 2* € A% and in Case 3-1 we set V = Ve 7+ o sin? and

- in Cases 2-1 and 2-2-d and 2-2-e, and 3-1 we set s3 := s3;

- in Case 2-2-a we set s3 := 1;

- in Case 2-2-b we set s3 1= sgn(zj — v)s3.

Lemma 5.1. In Cases 1 and 2-1 and 2-2-a and 2-2-b and 2-2-d and 2-2-e and 3-1)
we have

Zc sj(z; — af)da;)(1+ O(do(z,2%))), (23)

as ¢ — ¢, where C; >0, j =1,2,3.
In Case 2-2-c we have

dv ZC @)y + Cy(zg — 5) das)(1+ O(do(z, 27))),

(24)
as ¢ — x*, where C; >0, 7 =1,2,3.
Proof in Appendix B.

Lemma 5.2. Consider Cases 3-2 or 3-3 (i.e., Assumption (AQ) with 82 # 0 and
x* € Xy). We then have the following estimates.
In Case 3-2,

(V¥o(2),) = Clo1 — z7)(22 — 23)(1 + O(do(z,27))), (25)
and, in Case 3-3,
(V¥o(2),,) = Clxz —5)(1 + O(do(x, 27))), (26)
for some C # 0 as x — x*.

Proof in Appendix B.

5.7.3. Partition of the set of thresholds. With the notations (the s;’s notably) of
Part 5.7.2 we set

Tsa = T\ (Tem U{0}),
Tom = TanU—Tem,
Ton = TmsaUTsos
with, in Case 3 = 0:
Torsn = 0,
Tk 2 = {VWo(2*); 2" € X5 (= X{o13), 1= s2 =53 = +£1},
in Case 3 # 0:
Tt = VTt VT (2); 2* € X, sy =so=s3 =1} U T,

ms,1

Th, = {,/%(éj O},
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with
T, = V7 (2*); 2" € A, sy =s2=1(=:53)} ve(01),
T, = 0 v ¢ (Oa 1)

5.7.4. New coordinate near an element of X*. We give an approximation of a vector
proportional to V,V(z) (where V is defined in Part 5.7.2) of the form V. p; near
a point z* € X7. We then give an approximation of a vector proportional to w(x)
near a point z* € A3 in Cases 3-2 and 3-3.

With the notations of Lemma 5.1, in Cases 1, 2-1, 2-2-a, 2-2-b, 2-2-d, 2-2-e and

3-1, we set
13
w) =5 ) Cysjla; —
j=1
in Case 2-2-c, we set
1< 1
=3 > Ci(xy—ap)? - Zc?,(x?, — )t
j=1

Then, Relations (23) and (24) of Lemma 5.1 can be written
dV(z) = (1 + O(do(z, 2*)))dp1 (z; %), = — z™.

5.7.5. The conjugated operator near thresholds. Let x* € X*. For simplicity we
then write py (z;2*) = p1(x). For u € Dy and = € T2\ {x*} we set,
-in Case 1 (B=0, z* € AJ):

va:pl( )

Azt (2) 1= ixer (@)m2(y) 5 V(@) Vs \/W (@)ma(y)u(z)),
-in Case 2 (B8 # 0, z* € X;F) and Case 3-1) (B#0, B2 =0, 2% € X5):

+ — v (2 ’/T:t prl( ) ﬂi ulx
Az (2) 1= ixe ()77 () 5 V(@) V. \/7T o= ()7 (y)u (),
and A, := AL + A

xT*

- in Cases 3-2 and 3-3 (B2 # 0, z* € X5):
At (2) = it ()2 (1) (V0 (2),) ™ (o ()2 (1)) -
In each case we symmetrize A, and .Ai by setting
Age = Age + Ap*, AL = AT + (AT,

where A,+* (respect., (AZ.)*) denotes the formal adjoint to A,- (respect., to AL).
It is defined on Dy too.

We set
Tin = (T\T')N(0,+00),
X5 = e MTVrEQR) € T,
X in {z € X5/ Wo(2) € Tin}-
(We have, in Case 1, X*i =(.) We set

- Y Ay ¥ an

TrEXT zrex’t

1,in
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Then the operator A;, with domain Dy is symmetric, closable and densely defined
on HP.
We set, as quadratic forms defined on Dy,

Hl,z* = [HD,Z.AE*], Hl,in = [HD,ZAWJ
By a straight calculation as in Part 5.5 we obtain

Lemma 5.3. We have for x # z*, in Cases 1 and 2:

1
SHia (@) = (o (2)*72(v),
and, in Cases 3-2 and 3-3,

%Hl,z*(l‘) = (Xa (2))?m2(y) + (X (2))*m2(y) (VW0 (2),) ™" €w(@)m2(y)-

Lemma 5.3 shows that the quadratic forms H; ;- and H; ;,, extend continuously
as bounded quadratic forms on H” which are associated with bounded self-adjoint
operators, as multiplication operators by smooth real symmetric coefficients, de-
noted, respectively, Hy ;~ and Hj ;. In addition, these coefficients (as functions of
x) are commuting with 7o (y). Then, an obvious iteration shows that H” € C>(A,-)
for all 2* € X*. Since x # 2’ implies supp X, Nsupp X = ) then H? € C>®(A;,).

We set

A¢ = Aout + Azn
The argumentation to prove the property H” € C®(A,y:) at Part 5.6 still holds
with Aoy replaced by Ag, so we obtain

Lemma 5.4. The quadratic form Hi s = [HP,iA,] defined on Dy defines a
bounded self-adjoint multiplication operator on HP. In addition, HP € C*°(Ay).

5.8. ”Punctual” Mourre’s estimate. Let us prove that
S(HP) () Hy4(x)p(HP)(x) > Co*(HP)(2), (27)

for all z € T3, where C > 0 does not depend on x but on ¢ only.

We consider the case 82 # 0 (under assumption (A0)) only. The other case
B2 # 0 is more simple and omitted. As in Part 5.5 (see (18)) the calculation of Hy 4
yields

%HLM&U) = D 0GT @)1 () + (G () + (G (@) )m2(y)
+

063 (2) 2 (y) T (2) ™" € (@)maly)
Y @+ Y (e @)ma)
+

zrex; T uxrs T EXS,,

1,in 1,in

+ Y (e @)m@)(V(2),) " Cul@)m(y) @ d XTUX.
r*eXy

2,in

Thus, as for Inequality (21), we get,
Higlz) > D 0G@) 5 (v) + (6(@)° + (G(2) ) ma(y)

+
> > Ge@Prr@ -+ Y (@) m(y).
+ oerexrt uar; T EXS,,

1,in 1,in

(28)
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Let us fix x € supp ¢(HP(x)). Thus xo(z) = 1. We consider the following cases.

1. Case do(z,X*) > b. Then, z & supp x,+ for any z* € X*, and x*(z) =
x**(z) = 1. Hence (28) becomes

3
Hig(z) > Y i@ )+ (03@) +x3@)my) = > X (@)m(y)
£ j=1
> doma(y),
where 0o := mings >, X; > 0. Since S(HP (z))ma(x) = ¢(HP (x)), then (27)

holds.
2. Case do(x, X*) < b. Then there exists exactly one z* € X* such that = €
supp Xz~ and = & supp x, if ' € X* \ {z*}. We set
§(z*) = {min}(l — Xa)? + (xa)? > 0.

Xo=1

Ifz* ¢ X5, U Xyt UAS then o ¢ sup ¢(HP)(z) so (27) is trivial. We thus

1,in 1,in
assume z* € X3, UX'T UA .

(a) Case a* € X3 ;- Thus o & supp x1 U supp xs and
X2(2) = (1= Xo= (2))x2(2) = (1 = Xo= (2)).

Hence (28) becomes
Hyg(z) > (x3(2))*m2(y) + (xo+ (2))*m2(y) = 6(27).
Thus (27) holds.
(b) Case z* € X;} (which is included in X7, and does not intersect A3 ;,,).

1,in

Thus = & supp x2 U supp x3 and
X (@) = (1= xa= (2))x1(2) = 1 = X (@).

Hence (28) becomes

Higle) > D (1= xe(@))® + (xar (2))*)m7 ()

+

(1= Xor (@) + (Xo= (2))*)m2(y)
> (a")ma(y).
Thus (27) holds.
(c) Case z* € X[, \Xl*j'n (which does not intersect Ay, ). Thus = ¢

1,in

supp x2 U supp x3 and
Xi (@) = (1= xar (@)x1(2) =1 = xa= (2),  Xi"(2) =0
Hence (28) becomes

Hig(z) = Y (1= xer (@) + (xor (2))*)m) ()

+
> 0(x")my (y).
But we have also
P(HP)(2) = ¢(v/7~ ()77 (y).
Thus (27) holds.
As conclusion, (27) is proved with C' = min(dp, miny~ §(x*)). O
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5.9. Self-adjointness and maximal monotonicity of parts of the conjugated
operator. The conjugate operator Ay with domain Dy is a symmetric first order
differential operator in z whose coefficients belong to C> (T3 \ X*; L(C®)). As we
already saw, Ay, with domain C*°(T?) is essentially self-adjoint and a self-adjoint
extension is A,yur = Aoy with domain D(Ayy¢) = {u € HP; Aguiu € HP}. (We may
observe that D(A,y:) is also the closure of C>°(T?) under the norm ||u| + || Aoueul].)
Let us check that for all z* € X* the operator A,« (with the same domain Dy) is
essentially self-adjoint or, at least, admits a maximal symmetric extension.

Lemma 5.5. Remembering the notations of Section 5.7.2 we then claim:

A) Cases 1 and 2-1 and 2-2-a and 2-2-b and 3-1. If {s1, s2,s3} = {—1,1}, then
A, is essentially self-adjoint on H”. Otherwise, i.e., if all the s;’s have the
same sign, then Ag-admits a maximal symmetric extension on HP.

B) Case 2-2-c. The operator A,- is essentially self-adjoint on HP.

C) Cases 3-2 and 3-3 (so we have (A0) with 8 € (0, 41], * € &S, |y5| = 1). The
operator A, admits a maximal symmetric extension on HP.

Proof in Appendix B.

Remark 9. When A, is essentially self-adjoint then the set Dy is not dense in the
domain of the self-adjoint extension A« of Az«. (The simple reason is that C2°(R*)
is not dense in H'(R).)

We set
XL = {z" € X", Ay~ is essentially self-adjoint}, X, = X"\ X,

and
A= > Ay, D(Ay) =Dy,

T*EXS,

Corollary 6. 1) The operator A, is essentially self-adjoint on HP.
2) If 5 C T’ then the operator A4 defined on Dy is essentially self-adjoint on HP.

Proof. 1) The operator A, is the finite sum of essentially self-adjoint operators A,
defined on Dy and with disjoint supports so Ay, is essentially self-adjoint too.

2) For simplicity we assume that 7' = T, and we consider the case 82 # 0 only.
The operator A := A, with domain D(A) := {u € HP; Ayu € HP} is a symmetric
extension of A,. Let us prove that it is self-adjoint. Let v € D(A*) so

|(Au,0)u0| < Cllull Vu € D(A).

Let u € D(A). Let ¢ € C®(T3\ X%,;[0,1]) such that supp ¢ is a small neigh-
bourhood of X7, and ¢; = 1 near &7. Setting B := <€1A¢<p1, since Vi vanishes
near X* then B — A3 is bounded on HP, p?u € D(A) and we get

|(Bu, v)3o | < [(A(gin), v)po| + C'lull < C”ull.

In addition, we have B = ¢ Ay, since A coincides with A, in supp @1, so B is
essentially self-adjoint (the proof is similar to those of Ay,). Hence, Bv € HP and
then p3v € D(A). Let @a € C°(T3\ X*;[0,1]). Then, p2Asps — Agp3 is bounded
on HP, p3u € D(A) and

|(p2A(p2u), v)p0| < |(A(@3u),v)pp] + C'|lull < C”|lull.

Since poAspo is a symmetric first order differential operator with smooth coeffi-
cients it is so essentially self-adjoint and we get o Agpav € HP, and p3v € D(A).
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Letting ¢; such that its derivatives at any order vanish on ¢;*({1}) we can choose

po = m Then v = Z?:l SO?/U € D(A) =

6. Proofs of the main results.

6.1. Proof of Theorem 3.1. Clearly, it is not restrictive to consider that supp ¢ C
(0,+00) so ¢ € C((0,+00) \ T'). We then construct the operators Agyut, Ain, Ag
as above. Thanks to Lemma 5.4, the operator Ay satisfies Point (ii). Point (i) is a
straight consequence of (27).

Proof of Point (iii). We consider the cases supp ¢ C (0,+00) and 82 # 0 only.
We have supp Ay C X4 where we set

X4 = supp X5f+ Usupp X7 Usupp x5 Usupp x; UZ*GXF‘ZUXF;UXJM Supp Xz*-

The set K := Uy /7% (sin?(X4)) is then a compact subset of (0, 00)\7”. Thus there
exists ¢ € C2°((0,00) \ 77) with ¢ = 1 in K. Thus if z € supp Ag N X; then

SHP) (@) =Y d(v/TE())m (y) = ma(y),
+

and, if « € supp Ay N A, then

S(HP)(z) = $(v/ Vo (2))m2(y) = m2(y)-
Hence, ¢(HP)(x) = m(y) on supp Ag. In addition, A,(z) is obviously commuting
with mo(y) for all x. It shows that Point (iii) holds.
Point (iv) is Point 2) of Corollary 6.
Point (v) is the consequence of Corollary 6.

6.2. Adaptation of the theory of Georgescu and alii. Notation: if @ is a
bounded quadratic form on H we denote by Q° the bounded operator associated
with @. Let us consider the case 7' = {0} so A;,, may not be essentially self-adjoint.
We set

Xr o= {a" € XJ,,; Ap+ has default index (NT, N~ =0)},
X ={z" € X},; Az has default index (NT =0, N")}.

We write

Ay =Ao+ A1 + Ao
where all the A; are differential operators of first order defined at least on Dy by:
Ag = Apus, A1 = Zm*eXs*mluX;u A, Ay = Zw*EXs*mz Ag+. The proof of Corollary
6 shows that the operator Ay is essentially self-adjoint.

Remark 10. We could have set more naturally Ag = Asq + Aout, A1 = Zm*eX* )
and Ay unchanged. In such a choice some coefficients of Ay have a rational singu-
larity on X7,.

Since the supports of the A+, z* € X*, are two-by-two disjoint then the op-
erators =4y and (—1)J Aj, 7 = 1,2, admit a maximal symmetric extension with
deficiency index of the form (NV,0). We denote by A¥™ with domain D(A$™) the
maximal symmetric extension of A; (with domain Dy).

Let us show that we can modify the main hypotheses (M1)-(M5) of [2, Theorem
3.3] and extend the statement of [2, Theorem 3.3] to our situation. We consider
variables z € p(HP) and e real with 0 < |¢| < g9 and Sm(z)e > 0. We set
H.:= HP —icH'. (Thus H = H_..) Then, the resolvent R.(z) := (H. — 2z)~ ! is
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well-defined if ¢q is sufficiently small, see [2, Proposition 3.11]. Actually we make
the following observations:
e The domain Dy of A, is dense in HP.
e Assumption [2, (M3)] becomes:
(M3*): [£AF5™ (vespect., (—1)7 A5™) is the generator of a Co-group (Wt(o))teR
(respect., semigroup (Wt(]))tzo) in HP ]
Clearly, Condition (M3*) is satisfied.
e Setting < H >:= (1 + H?)'/2, Assumption [2, (M2)] becomes:
(M2*): [ a bounded open set J C R is given and there are numbers a > 0,
b > 0, such that H' > (al;(H?) — blg, ;) < HP > as forms on HP ]
Thus, for all bounded open set J CC (0,+00), Condition (M2*) is satisfied
(by choosing ¢ such that ¢ = 1 on J, and with b = 0), thanks to Mourre’s
Inequality (27).
e Assumption [2, (M4)] becomes:
(M4*): [ There is Hj € B(H") such that the limits

lim  (—1)7t{(H u, W u)yo — (u, W HPu)yn} (5 #0),

t—0+

lim T {(HPu, W U)o — (u, WO HPu)y0} (5 =0)

t—0
exist and are respectively equal to (u, H ]’u) for all u € HP ]
Clearly, Condition (M4¥) is satisfied. We have [HP,iA;]° = H} and [HP,iAy]° =
= Z?:O Hj € B(HP), and we can write H? € C'(A5™), HP € C'(Ay).
e The proofs of [2, Lemmas 3.13 and 3.14] with Conditions (M3*) and (M4*)
satisfied imply the following relations:

[Re(2),iA5™]° = Re(2)(iHj+eHj)R(2) j=0,1,2,
[Re(2),i44]" = Re(2)(iH' +eH")R.(2),
dR.(z)

A [Re(2),iA4)° — eR:(2)H"R.(2).
In particular the map ¢ — R.(z) € B(H”) is C' in norm on ]0, 1].

e Since H” and the H ]’-’s are symmetric bounded self-adjoint operators on H"
(so Hj is regular; see also [2, Remark 2.15]), then Assumption [2, (M1)] be-
comes:

(M1*): [ for all j, HP € C'(H})]
We see that (M1*) is obviously satisfied and H? € C1(H').

e Assumption [2, (M5)] becomes:

(M5%): [ for all j = 0,1,2, there is H} € B(H") such that the limits
lim (=17 (', W) = (w, W H )} #0,

t—0t

lim (W) — (u, WO H W)} (G =0),

t—0

exist and are respectively equal to (u, Hu) for all u € HP ]
Thanks to [2, Remark 3.1], Condition (M5%*) is satisfied since it follows from
the following facts: HP € C'(A5™) with [HP,iA3™]° = H}, H' € C'(A5™)
with [H',iA%™]° = HY, so we can write HP € C?(Ay).

Then the proof of [2, Theorem 3.3] implies the result of Corollary 3. O
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Conclusion. The results of this work, notably the LAP outside thresholds, is the
first step to futur developments as:

e Extension of the result of Isozaki and Morioka [8] on Rellich type theorem for
discrete Schrodinger operators to the case of discrete Maxwell operators.

e The LAP for perturbed discrete Maxwell operator of the form HP = DH,
where D is not constant but depends on n € Z3.

e Conditions of radiation for perturbed discrete Maxwell operators. Actually,
let f in a suitable subspace of L2(Z3), particularly the space of sequences
with compact support. We have to characterize 4 (n) for |n| large where
o = (HP — X +i0)1f.

e Extension of the result of Isozaki and Jensen [6] on the continuum limit for
lattice Schrodinger operators to the case of discrete Maxwell operators.

e Extension of the result of Isozaki and [7] on the inverse scattering for lattice
Schrodinger operators to the case of discrete Maxwell operators.

7. Appendix A.

7.1. Proof of Lemma 4.1. We have

ﬁﬁo(x)—A:( A SM).

—uM =X
Thus,
det(DHoy(x) — \) = det(A\2 + eM (y)uM (y)) =: p(z; A).
We have
0 —€1Y3  €1Y2 0 —p1ys  p1ye
eMpuM = €293 0 —E2y1 H2Ys3 0 —H2Y1
—€3Y2  €3Y1 0 —p3y2 M3yl 0
—€1/13Y5 — €1/12Y3 €1/43Y1Y2 1020193
= E213Y1Y2 *€2M3y% - 52/~L1y32, E2M11Y2Y3
E3H2Y1Y3 E3M141Y2Y3 —63/121/% - 53#195

Then, for t = -A\? € C,

det(eMuM —t) = —t* —t*{((eaps + e3p2)yi + (€13 + €3p1)y3 + (E1p2 + e201)y3}
—t{eaespiapizyt + c16301 3Y5 + €1€2N1M2y§ + (e2e3pt1 113 + €18312143) Y1 Y5

+(eaeapn 2 + E182p12/13) YT Y3 + (16301 112 + €120 113) Y5 Y3 }
= —ts - 2t2\110 - tq)o,

where Wy (z) is defined by (9)
dq := 5253M2ﬂ32% + (6263113 + €163 p2413) 21 22 + C.P..
We easily observe that the following relations hold (also, +c.p.):

1
Oé? -MN zﬂ%a (29)

1
E1p1O] — Qay = zﬁzﬁ?ﬂ (30)
azfBa +azfs = —epfhu, (31)
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where  is defined by (6) and 8 by (5). Thanks to (29), (30), (31), we compute:

U2 — Dy = (121 + agze +a3z3)?/4 — {712} + 1223
+73232, + 2e3p3321 20 + 281 1y 2223 + 260002123 /4
= KO(Z)v

where K is defined by (8). Hence the eigenvalues of e M (y)uM (y) are 0 and
t=k*=Uy(2) £ VKo(2).
Then Relation (7) follows.

Remark 11. From (8) we obtain the relations

Ko(z) = 2(6121 — Bazo — B323)” — B2Bs222s, (32)

Ko(z)

1

1(5323 — Bi21 — Ba22)” = B1faz1 2.
7.2. Proof of Proposition 1. Similarly to (2) we have

a(h?) = Uye-1,130 (WP (y)).-

In addition, since 7+ and 7~ are continuous with Ti(O) =0and 77 > 7" >0in
[0,1]3, then

Upelerapo(hP(9)) = Us {7 (2); = € [0,1°) = [-A", .

The conclusion follows.

7.3. Proof of Lemma 4.4. We set 2z} = 3,z (so 21,24 > 0 and 2z < 0). Remember
that
(4af = B7) = (2a1 — B1) (200 + B1) = dezpaeaps = 4y > 0.
A) (Case B8 =0). This point is obvious.
B) (Case B # 0.) Thanks to (32) we have

0 1
aileo = 551(23 - Zé - Z:I)))v (33)
0 1
%KO = iﬁS('zé _Zi _Zé)v
and )
Rol?) > 3124 — % — 241 (34)
1) We have

1
VE V1" = VK V.0 — S V. K,
so, by using (33), (34),
1 1
2R @0, (2) = /Koo — 218 + BV £ sl - 2 -
1
> 2/ Ko(2)(ag — §\ﬁ1|) > 0.

Hence 0,,7%(2) > 0. Similarly, 9,7 (z) > 0.
We have

1
2v/ K002, 7 (2) = 2¢/Koas + 553(% — 21— 23).
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Since 83 < 0 and 2z} — 2 — 25 < 0 then 9,,71(z) > 0. Moreover if
0.,77(2) = 0 then y/K(z) = 0 which is forbidden. Hence 9,,77(z) > 0.
2) a) (Case B2 =0.) Thanks to (32), we have
_ 1 1
2V K00, 77 (2) = as(z] — 24) — §ﬁ3(zg —21) =2V Ko(az — gﬂg) > 0.
b) (Case B2 > 0.)
(i) Assume z; =0 or 2o = 0. Then /Ko(z) = 3(z] + 2} — 24) and

1
2V K00z, (2) = (a3 = 51l) (21 + 2 — 23) > 0,

0, 0,,7 (2) > 0.
(i) Assume z; = 25 = 1. The functions € := 4K (2)0,,7 (2)0., 71 (2)
and 0,,77 (2) have the same sign outside K, '({0}). We have

£ = 4aiKo(2) — (0:Ko(2))
40%(%(51 + B2 — 23)* — Bi1B2) — 355(51 + Bo — 23)?
13(B1 + B2 — 23)° — 4a3B1fa.
Thus, if v3 = 0 then £ < 0 and if 73 # 0 then
€=0 <= 3(81+ B2 — P3z3) = 2031/ B1f2

<~ 23 =1U.

Moreover, we have

02,6 = 0= —2/7383(B1 + B2 — Baz3) > 0.

The conclusion follows.

7.4. Proof of Lemma 4.5. Lemma 4.5 is a straightforward consequence of Lemma
4.4 and of the following observations.

1) Case B =0. We have Ko =0s0o X1 =0, 71 =0, Xy = T3\ {0}. In addition
we have 0., ¥y = 2q; sinz; cos ;. Hence V,¥q(z) vanishes iff z € {0,1}3. Hence,
noting that 7% = Wy, we obtain Z3 = Zio1y and T2 = Wo(Z7, 4y)-

2) Case B # 0 (so (A0) holds). Thanks to Lemma 4.3 we have

s () € 0.1° \ (28,00, € [0.1]).
1
For t € [0,1] we have (B2t/B1,t,0) € {0,1}3\ {Ops} iff t =1 and B = B4, or t =1
and By = 0. The characterization of sin®(X;) follows, then those of X;* and of 7T;.
Let us determine X;. We look for a tangent vector field to X>. A point x € T3
belongs to X5 iff z # 0 and z3 = 0 = [127 — B2220 = 0. The last relation can be
written
ﬂly% = ﬂnga

and yo # 0. (If yo = 0 then y; = 0 so z = 0 which is forbidden.) Then a tangent
field to Xy (respect., to sin(A>)) is then given by the vector field

wo(x) := (sin(z1) cos(xz), cos(z1) sin(z2), 0), (35)

(respect.,

Wo(y) = (y1,¥2,0)
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Remark 12. In Case 3-1) (i.e, 82 = 0) it is equivalent but more simple to set
wo(z) = (0,1,0). However our choice in (35) is general.

We then observe that |w(z)| # 0 for all z € X2\ X*, and |w(z)| # 0 for all z € X,
if B3 € [0,81). If B = B1 then w(zx) vanishes at all z* € X5 since 27 = z5 = 1. The
determination of sin?(X;) follows, then those of X5 and of 7T5.

7.5. Proof of the statement of Remark 3. Step 1. We prove the following
assertion. Let a real vector B € R3 and three positive real values 1, 1, a3 such
that 81 > B2 > 0 > B3 and g > |B3]|/2. Then there exists positive values €5, 1,
7 =2,3, such that 8 =€ x p and 2a3 = €12 + €1 2.

Proof. We set successively

1
(Ft = 043:|:553>0,
5-
gg = — >0,
M1
5+
= — >0,
b2 )
- €1B1 + €202 >0,
—B3
g = Mfitueb
—B3
A direct calculation provides € x p = 3 and €1z + eau1 = 2a3. O

Step 2. Let B € R3 such that 8; > B2 > 0 > B3. Let us consider the function
(1831/2,400) 2 ag +— v(a3) = v defined by (13) and set

F(r) = T 2 forr > |Bs]/2,
- 17
V*(ﬁ) = _(\/E_ \/ﬁ>2)2
B3]
Then we have
Vas) = 7 = Flag) = 2L (5 - ().

V102
Obviously, the function F' realizes a decreasing bijection from (|83]/2,+00) into
(0,4+00). Thus if v*(8) < U then there exists a unique value as > |/33]/2 such that
v(az) = . But the condition v*(3) < U is easily satisfied since v*(3) — —oo as
B3 — 07 if 81 > B3. The conclusion follows.

8. Appendix B.

8.1. Proof of Lemma 5.1. Firstly we observe that if z; € {0,1} then

zj— 2z = sin® z; — sin® xy =sin(2x7)(x; — a}) + 2cos(22}) (z; — 23)*

+0((@; — a)°)

J

= 2s}(x; —27)° + O((x; — )Y, (36)
and if z; & {0, 1} then
zj — z; =sin(2z})(v; — x}) + O((z; — x;)Q), (37)

with sin(2z7) # 0.
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Case 1. Assume 8 = 0 so V(z) = /¥o(z). We have 9, Vi) =
for j =1,2,3 so, by using (36),
0, V(x) = 0.,V(x)0s,2; = 0., V(x)sin(2x;)
= (0,;V(2z") + O(z — 27))(sin(2z}) + 2 cos(27] ) (w5 — x7)
+0((x; - 23)*))
= 200:,V(z") + Oz = 27))(s7(x; — @) + O(w; — 27)*))
= Cysj(a; ~ )1+ Oldloa"))
where C; = 20,V (2*) = \/W > 0. Thus (23) is proved

Case 3-1 is similar since the six partial derivatives 0 ]T are all constant and posi-
tive, and 7%(2*) > 0. (See (10) and (11).)

Cases 2-1 and 2-2-a and 2-2-b are similar to Case 1, the sign of C; being a conse-
quence of Lemma, 4.4.

Let us be more precise in Case 2-2-a. Since z5 = v € (0, 1) then sin(2z%) # 0 so, by
using (37), (36), we have

sveae > 0

00, V3(x) = 0.,7 (2)sin(2x3)
= (O(z1 = 2) + O(22 — 23) + 92,77 (")) (23 — 3)
(1+O((z8 — 23)))(sin(2z3) + O(ws — x3)).
Since zj — 25 = O((x; — 3)?) = O(0, 7™ (2)do (2, 2*)) for j = 1,2, and
zg — 25 = sin(2x%)(x3 — 25)(1 + O(x3 — %)) then
0, V(z) = 82;(;)) = Cylas — a3) + O(d3(z,2"))
= 03( 3*x§)+ VoV (2)[O(do(, 7)),
where C3 = (2/7 (%)) 7102, 77 (z*) sin®(2a%) > 0. Thus (23) holds in Case 2-2-a

too.
Case 2-2-c. The computation of the derivatives d,,V (x), j = 1,2, is similar to the
other cases (with s; = s7 = —1). By using (36) we have

02, Vi(x) = 0.,7 (2)sin(2x3)
= (01 = 2) + Oz = 23) + 02,77 (")) (25 — 2) + O(zs — 24)?)

( (x3 —25) + O((z3 fxg)j)).
Hence
8I3V(a:) = Cg(.’tg - .’E;)S + O(|sz(£C)| do(x,x*))7
where C5 = 2(\/7~(2*)) 102,77 (2*) > 0. Thus (24) holds too.

The lemma is proved.

8.2. Proof of Lemma 5.2. We remember that y; # 0, 25 # 0 and 25 =0, so,
U(2),, = cos(x1) cos(z2)y/ Wo(2) ;-

Thanks to (19) the function x — \/Wo(2). = 2a121 +2a229 is smooth and positive
in supp xa-

In Case 3-3, we have 0 < zf < 2z = 1 then cosy; # 0 so cos(zy) = cos(z}) +
O(do(z,z*)) with cos(z}) # 0, and cos(z2) = —y3 (z2—23)+O(z2—23)>. Hence (26)
holds.
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In Case 3-2, we have 2{ = 23, cosyi = 0 so cos(x;) = —yj(z; — z}) + O(x; — 3)?,
j =1,2. Hence (25) holds.

8.3. Proof of Lemma 5.5. We fix a representation of 2* € T2 in R? which we
denote again x*. Then, the multiplication by x,- is an isometry (non surjective)
from HP into the Hilbert space L% (R?, C%) := L?(R?, C®) equipped with the scalar
product

(u, U)LZD(R3;(C6) = /

< u(z),v(x) >co,p do = / < D7 u(x), v(x) >co da.
R3

]RS
So, we can identify A, with an unbounded symmetric operator on L2(R3;CY),
which we denote A,~ again.

We set 2y = /C;j/2(z; — x}) where the C;’s are the positive constants of Section

5.7.4, and in (23) or in (24) of Lemma 5.1. We set also p/ = /22 + 22, r' =
/pl2 + ‘,L,éQ.
A-1) Let us consider Case 1 with s; = so = 1 and s3 = —1. Since 8 = 0 then we

have p = ke, with the scalar k > 0. We have

pi(z) = p? — 2,

and we set
po(x) = 2p//x§/),
ps(z) = U e s xR/(27Z).

The mapping R? \ {(0,0)} > (], 25) — (p',p3) € RT x S! is the polar change of

coordinates. Since p1 + ip2 = (p’ + ix})?, then the mapping (o', z5) + (p1,p2) is a

C*°-diffeomorphism from (0,00) x R onto O := R?\ (R~ x {0}). Thus the mapping
d: :Cl = (x/17:17/251{°,) }_>p = (p17p27p3)

is a C*°-diffeomorphism from R?* x R onto I := O x S!, with jacobian

For @€ H, p € U, we set

u(z) = |Jo(2')|Y?a(p), ' =3 '(p) € R?, (38)
so the transform .

T: LR C>u—aeH

is a bijective isometry. Setting 7(p) = m2(x) and X(p) = xa= (%), the partial deriva-
tives 9] X, j > 0, are bounded in R* x S! since Y = 1 near p(z*) = 0 and the
function |V, p1| on supp Vi« is smooth and bounded by below by a positive con-
stant. For example if j = 1, we have

sup 0] X(p(x))| = sup [0 x(p(x))| < C.
z€B(R3) £ <do(z,z*)<r

The projector 7 is continuous but admits a singular of first order at p = 0. Observing
that
Vpi(z)Vu(z) — du
|Vp1]? Ip1’
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and denoting by "+ sym.” the terms of symmetrization of A+, we have, for u,v €

CE((R?\ {(a7,23)} x R),

(Agrt, v)po = / 3i><w*(x)<m(y)Vpl(x)v|(§;*1g;7|;2(y)u(x))

)
/ i< gr ),xz(p)ﬂ(p)v(p) >co p dp + sym.
R2 xSt P1
(

,0(z) >co,p do + sym.

_ / i < Q000 cos >co.p dp = (Age i, 7) 5.
R2 xS Ip1

The projection 7 has range two. Since 3 = 0, we have, for z # 0, a basis of
the eigenspace ker(HP (x) — \/Wo(2)) of the form (¢1(p), v2(p) = w1(p))?, with
o1 = (q,i\/kq) and q(p)T € ker(i/keM (y) — ¥o(z)I3), where & = x(p), I3 denotes
the identity matrix of size 3, and M (y) is the 3 x 3 matrix defined at (1). Moreover
we can choose ¢(p) such that x — ¢(p(z)) is analytic in the support of x,- at least,
and with < e~ 1q(p), ¢(p) >cs= 1/2, s0 (¢1(p), p2(p)) is orthonormal in C° equipped
with <,>cs p. We thus have < ¢;(p), ¢;(p) >cs,.p=0i, i, j € {1,2}, but also

<Opp1,p2 >cop = <€ '0pq,q >cs + < T 0p(ivEq), —ivEg >cs
= < 6_16pq, q>cs + < ie—la,,% —iq >¢s
0.

Similarly, < ¢1,0pp2 >cs, p= 0. Hence we have

#(p)a(p) = & (@) ()1 (p) + (@) (p)2(p),

where we set

& (@)(p) =< u(p), pj(p) >cs,p - (39)
We then have

Aeitg =i [ G GE@IEE

Let us set
D(A,-) = {u € H; X°0,,&(a) € L*(R? x SY,C;dp), j = 1,2}.
Let us show that D(A%.) = D(A,-). Let # € D(AZ%.), so we have:
(A, 0) | < Cllall g, Va € D(As-), (40)

that is,
|Z/ OE) ) @ < Cllly, Vi € D(Ae).
R2xS? 3]31 ! H’ ’
We fix j € {1,2} and choose u(p) = f(p1)g(p2,p3)e;(p) in the above estimate
with arbitrary f € HY(R;C;dp;) and g € LQ( x St; C dpadps). Then |||z <
C||f||H1(C)||g||L2(R><Sl) SO we have

0 N =
| / T®L) ) 0)E @)dpl < Cl 1l ol 2
R2 xSt apl

Vf e HY(R;dpy), g € L*(R x S, dpadps).
It shows that

Kip)i= [ @)aln pdpadps € H' (R Cidp)
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with 5
||6731K(P1)||L2(R) < Cllglle@xst)-

But we have

%K(Zh) = /RXSI5(2(1’)£5j(5)9(p2’273)dp2dp3+L(P1)a
L) = [ GOl pdpadpa

with || L1 2r) < Cllg]l2mxst). Hence we have

9 -
V=—¢;(0) € L*(R* x S, C; dp).

Op1
Thus, v € D(Az*) and so Ay is self-adjoint. Consequently, A,- with domain
T~Y(D(A.+)) is a self-adjoint operator.

Case 1 with the general situation s;sss3 = —1 is similar.

Cases 2-1 and 2-2-a and 2-2-b and 2-2-d and 2-2-d and 2-2-e, with s;s2s3 = —1, are

similar, except that the projection & (= 7, (y) or = 7, (y)) has range one, which

simplifies the proof.

Case 3-1 with s1s59s3 = —1. We set wammrli = A¥ s0 Ay = >4 A* with
D(A*) = Dy. We prove that A is essentially self-adjoint on HP. We set
b Vo)
[Vap1(2) - Var/7%(2)]1/2
Thanks to Lemma 5.1 we have
EE(xz) =14+ O(do(z,z%)).
Thus k*(x) is defined for x ~ 2* and = # z*, extends as a positive lipschitzian

function near x*. We then consider the same transforms than in Case 1 with H=*
replacing H so we have

EE(

. 0 . .4 =T
(AFu* v )yp = Z/ < 87( @*), X0F >co,p dp
R2 xS! P1
= (A%aF,0%)g,
where we set AT = iX © 6%1 o ¥, and

@ (p) = [Vapr ()| e (@) 7V2RF (p)ulz) o' =27 (p) € R,

and kE(p) := k*(z), 7T (p) := 7 (y), X(p) := Xa= (). Thus, as in Case 2-1 with
mis; = 1, A¥ = mE A+ is essentially self-adjoint on HP. We denote by D* the
domain of the self-adjoint extension of A*, so D* = {u € HP; A*u € HP}. Then,
A, extends as a symmetric operator, A.. = A, with domain D(A,.) := DtND~.
Now, let v € D((A,-)*) so

(Aget,0)300] < Cllull Vu € D(A.).
Let u € D*. Then A,-nfu= A*u € HP, so nfu € D(A’.). Thus
(A% u, 00| = [(Ag 7w, v)yo| < Cllmkull < Cllull Vu € D,
Hence v € D*. Thus, v € D(A,.), so A.. is self-adjoint.



SPECTRAL ANALYSIS OF THE DISCRETE MAXWELL OPERATOR 33

Case 2-2-c. We have

pila) = o = St
and we set

pa(z) = x’geiﬁ,

ps(x) = x’le_ﬁ,

with pa|s—0 = p3lay, = 0, 50 p2,p3 € C>°(R?). Then,

Vpl 2($/17I/23 71'/33)7
__1_

Vp2 = € 28 (Oa 1, :E/Q/'rgg)7
1

Vps = e (1,0, /%),

Vp1 L Vp;, j =2,3, and the Jacobian of the mapping ®: z’ — p is

pl2 _ 12
=7
Jcp(x/) = Fe 3.

3

It does not vanish if a% # 0 or p’ # 0. Let us invert ®. The sign of x4 is not
determined by p so we consider

d* . R¥* xR* 52’ - peR xR,

_1 _1
Let p € R x R?*. We have o} = p3e*5, x), = pae>*5 so xj satisfies the equation
F(2%) = p1 where we set

1
F(t) := (p} + p3)et/t — itz, t>0.

Since F' > 0, F(+00) = —oc and F(0T) = +oo, then the equation is uniquely
solvable by some t; > 0 so we obtain x5 = ++/%5 € R*. Hence ®7 is bijective. We
let the lector to check that ®* is an homeomorphism from R?* x R** into R x R?*.
Hence, ®* is a C*°-diffeomorphism from R?** x R** into R x R?*

We set the Hilbert spaces HE = L2 (R%* x R** CS;dp) equipped with the scalar
product

(@ e = [ <70 750) >en dp
R2* ><]Ri*
then H := Ht @ H—. For i = (at,4") € H, 2’ € R** x R¥*, we set
u(z) = |Jp(2")[V2a* (@F (")),
so the transform
T: R >su—aecH
is a bijective isometry (up to a nonzero constant multiplicative factor).

Setting again Y(p) = Xu«(z), T(p) = ma(z), we have, for u,v € CX(R?\

{(z1,23)} x R\ {x3}),
(A u,v)yp :/ i<

R3 Op1

I I6%Z -
(x7a) K70 >cop dp = (Agei 0) g

The projection 7 has range one so this case is similar to case 2-1, so A« is essentially
self-adjoint.
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A-2) Let us treat Case 1 with s; = so = —1 (and s3 = —1). We observe that

3
) =S @ 20
j=1
(where we set 2/ = /Cj/2(z; — x})). We use the spherical coordinates: z’ = pw

with p = y/a/7 + 2/3 + 2/3 > 0, w = p~'a’ € S?, so we have p; = p? and choose two

other coordinates, ps, p3, on the sphere S2.
We then follow the above method (Case 1 with s1 = s = 1 = —s3) with similar no-
tations, notably, with the same couple (¢1, ¢2) and coordinates ; (defined by (39))
7 = 1,2. The mapping

®: a2’ = (21,25, 75) = p = (p1,p2,P3)
is a C°°-diffeomorphism from R3* onto RT* x S2. The jacobian of ® has the form

Jo(x") = j(p2; p3)v/P1,

where j is a positive smooth function on S2. We set H = L*(R*T* x S2,C®;dp)
equipped with the following scalar product:

(8,9 == / < ii(p), 5(p) >eo.p dp.
R+*xS2

For @ € H, p € U, we consider the transformation defined by (38) between u and @
so it is a bijective isometry (up to a positive constant multiplicative factor) between
L?(R3,C°%) and H which we denote T again. Setting 7(p) = m(y), we have X €
CP(RT* xS?) and ¥ = 1 near p(z*) = 0. We thus have, for u,v € C°(RT* xS?, C"),

( z* Uy U ’HD = Z/ Xfijl())%dp = (Aw*aaﬁ)ﬁ'

+* XSZ

The above formula defines the symmetric operator A+ on H with domain Ce(RT*x
S?). Thus, A, extends to the operator with the same formula defined on

D(Ag) = Hig={a€H; X*0,,§(n) € L*(R™ x §,Cdp),
5(2317151'(11”1)1:0 =0, j=1,2}
Let us prove that the default index N* of A« vanishes. Firstly, observe that
D((Az+)*) = Hy = {t € H; $0,,§;(0) € L*(R™ x S%,C;dp), j=1,2}. (41)
In fact an integration by parts shows that D((A+)*) contains H;. Then, let & €
D((Az+)*) so (40) holds. As in Case 1 with II3_ s, = —1, let j € {1,2} and

choose a(p) = f(p1)g(p2,ps)e;(p) with arbitrary f € H'(RT*;C;dp;) and g €
L?(S?; C; dpadps), so we have

0 - =
| / IB1) )22 )6 )dp] < ClL s o 9l 2oy,
R+ xS2 apl

vf e H' (R;dpi), g € L*(S?, dpadps).
It implies 52-(¥2;(7)) € L2(R** xS?,C; dp), then ¥*52-£(7) € LA(RT* xS?,C; dp),
so 0 € Hi. Therefore, (41) is proved. Now, let o € D((Ag+)*) such that (A,.)*s =

iv. Thus we have (—i(A,«)*d,7) 5 = (3,7) 7. An integration by parts (accordmg to
the variable p;) shows that v = 0. Consequently, A, with domain T—(D(A.+)) is
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a maximal symmetric operator with the default index N+t = 0. (See also[2, Lemma
1.3] for results of the same kind).

C) (Cases 3-2 and 3-3). We set
p1 = cos(x1) cos(z2),

so pp vanishes at © = z* € X (such that z* = (%, 1,0)). We have

V.p1 = —w = (sinx; cos 9, sin xy cos x1, 0).

We set

sinz; sinz]
b2 = = T ¥ D3 = T3,
sinze  sinal

80 Vup; - Vgp; = 0 if i # j and the jacobian of the map ®: x +— p = (p1, p2,p3) is

J<I> (.’L‘) = H?:lva:pj-

We have w-Vau = uy = —|Vp1|?0p, u and, thanks to (15), \/W¥o(z), = p“/\IINO(z)w
where \/Wq(z) is analytic and does not vanishes at x*.
Case 3-3. We have V,p1(x*) # 0 and Jg (2*) # 0, so @ is a local diffeomorphism
from a neighborhood of z* in R? into a neighborhood of Ogs in R3. Hence, we have
k(z) _ O(xamau)

Agsu,v)yp = —z'/ < , X272V >ce p dp + sym,
( X )H R3 pl apl ,D

where k is smooth with k(z*) > 0. As in the above cases, we thus set ¢ = (¢1, ¢2, g3),
q1 = p1|p1|, q; = Dj fOI‘j = 273a X(Q) = Xa* (Z‘), ﬁ(q) = W?(y)? ﬂ/(q) = |k‘(x)\1/2u(a:)
We then obtain

o(xwa) . . . 5 L.
, sgn(q1) < (§Q1 )3X27T2'U >co,p dg = (A1, 0) g,

(Am*u,’l))HD = —Z/

R

where H = L?(R3, (CS, <, >ce.p);dg) is a usual Hilbert space. The projection 7
has range two so Case 3-3 is similar to A-2) with A,~ replaced by —A,~. Hence,
Ay« has default index N~ = 0 and admits a maximal symmetric extension.

Case 3-2. We have Vp1(z*) = 0 so Jop(z*) = 0. Let us "invert” z — p. For
simplicity we assume yi = y5 = 1. Set 2 = z; — a7} for j = 1,2. Since sinz; ~
1—(2%)?/2 and cos(x;) ~ —a; for j = 1,2 then p; ~ 25 and —2py ~ (2)* — (x5)>.
Thus (2] + ixh)? ~ 2i(p1 + ip2).

It means that we have the same transform than in Case A-1), i.e., there exists an
Hilbert space H and an isometry L?(R3) > u — @ € H such that
. oxwa) . . .
(Agru,v)3p = —Z/ sgn(q1) < (8 ),ngv >cs,p dg,
R2 xSt q

where X(q) := xz~ (), T(q) := m2(y). Hence, as in Case 3-3, A~ has default index
N~ =0) and admits a maximal symmetric extension.
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8.4. Notations.

y = sinz (y; =sinz,),

z = ¥ (z =y,

B = exp=(B,pB,0H),

a = (a1,09,a3), «a1:=(eapu3+e3u2)/2 and c.p.,

M = e2e3p2pu3  and c.p.,

L 2a3v/B1 B2 — /73(B1 + B2)

B33 7

Dy = eaezpopsei + (e2e3p1 3 + 18300 H3) 21 22 + C.D-,
Ko = i (B121 + B3 25 + B323 — 2B1Pa2122 — 2B2B32023 — 2B1B32123)
Uy = a-z = a1z1 + asze + aszs,

™ = W+ VKo,
A* = max{\/7T(z)| FAS [Oa 1]3}’

Py : RxT?*>(\z)—a2cT?
P : RxT3®3(\z)— A€ER,
Y = {(Aao)[dea(HP(2)} = Uiy,
X; = Pu(%;), j=12,
S = {(ha) € Ko(2) 20},
S = {(\2) €35 A2 =1F(2), Vot (2) = 0},
o= wrtusi,
S = {(\a) €%z £0, Ko(z) =0, X = U(2)},
5 = {(\z) € 3g; Vi Ug(2) is normal to X at x},
Xo = {zeT? 2=0},
TS = T3\ A,
Zay = {0,1)%
Z?O,l} = Z{o,l} \ {(07070)}a
X1y = {zeT% z€Zpnl
Xfny = {zeT% zeZjy,),
T = T1uUTuU{0},
T, = (X)),
T5 = Pe(Zi),
X: o= Pu(%)),
Xt = Pu(E1),
X* = XFUXS,
ZE = i),
sin?(X*) = sin®(&}) Usin?(X5),
Aout = Aout + Ay
Ay = Aout +Ain = A0+ A1 + Ay,

AO = Aout .
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