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Abstract 

Short-fibre reinforced polymer composites are increasingly used as structural or functional 
components in many engineering fields. To obtain high-performance composite materials, the 
polymer matrices are reinforced with high fibre contents (>20-50 wt%). Hence, during their 
forming, the composites behave as concentrated fibre suspensions that exhibit a non-Newtonian 
rheology. In addition, their end-use properties depend on the fibre orientation which drastically 
evolves during the forming operations. Within this context, it is crucial to analyse the induced 
microstructure changes in flowing concentrated fibre suspensions. For that purpose, 3D in situ 
compression experiments were performed on model non-Newtonian concentrated fibre 
suspensions that were imaged using fast X-ray synchrotron microtomography. At the fibre 
scale, large fluctuations in the translation and rotation of the fibres were observed during 
compression. These fluctuations were shown to be on the same order of magnitude than the 
mean fields. They can be attributed to long-range hydrodynamic interactions between 
neighbouring fibres as well as to short-range interactions induced by the numerous fibre-fibre 
contacts which practically follow trends predicted by the tube model. Surprisingly, in spite of 



the chaotic kinematics of the fibres, the macroscopic deformation of the suspension was 
homogeneous and the flow-induced evolution of fibre orientation was found to be well 
described by the averaged Jeffery’s equation (related to the second order orientation tensor). 
 

Keywords: Short-fibre composites; Concentrated fibre suspension; Rheology; X-ray 
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1. Introduction 

Owing to their interesting mechanical and physical properties, short-fibre reinforced polymer 

composites are increasingly used as structural and/or functional components in many 

engineering fields. These composite parts are usually fabricated using cost-efficient forming 

processes such as injection and compression moulding [1][2][3]. A wide range of composite 

materials with tailored physical and mechanical properties can be designed by combining 

various types of fibrous reinforcements made of synthetic (e.g., carbon, glass, etc.) or natural 

(e.g., annual plant fibres such as flax and hemp fibres) fibres with varied morphology (shape, 

aspect ratio) with thermoplastic or thermoset polymer matrices . Short-fibre reinforced polymer 

composites with high fibre contents (>20-50 wt%) are used as structural parts adapted for high-

performance applications (e.g., for the energy and transport industries) [4]. Hence, during their 

forming, these composites behave as concentrated fibre suspensions with a non-Newtonian 

rheology [1][5][6][7][8]. In addition, the fibrous microstructures undergo large flow-induced 

restructurations that affect the end-use properties of the produced parts. However, these 

phenomena are still not well characterised and modelled because of experimental challenges 

related to the fibre scale observation and analysis of evolving fibrous microstructures and flow 

mechanisms in non-Newtonian suspending polymer matrices.  
 
Fibres are commonly characterised using several geometric descriptors, namely the fibre aspect 
ratio 𝛽 = 𝑙/𝑑 (where 𝑙 and 𝑑 are the length and diameter of the fibre, respectively) and its 
orientation through the unit tangent vector 𝐩𝑖 = sin𝜃𝑖cos𝜑𝑖 𝒆1 + sin𝜃isin𝜑𝑖 𝒆2 + cos𝜃𝑖𝒆3 
associated to the fibre main direction, as depicted in Figure 1: 
 

 

 Coordinate system and definition of fibre descriptors. Note that 𝜃𝑖 ∈ [0, 𝜋] and 𝜑𝑖 ∈
[0, 2𝜋].  

 



The study of fibre kinematics was initiated by Jeffery [9] who determined the motion of an 
ellipsoidal particle immersed in a linear and infinite laminar flow field of an incompressible 
Newtonian fluid. The Jeffery’s theory also assumes that the velocity 𝐯𝑖 of the centre of mass of 
an ellipsoid 𝑖 is an affine function of the macroscale velocity gradient ∇v of the suspending 
fluid. Hence, for homogenous macroscale fluid flow situations without rigid body motions, the 
position 𝐱𝑖 of the centre of mass of an ellipsoid 𝑖 can be predicted by integrating the ellipsoid 
velocity 𝐯𝑖 = ∇𝐯 ∙ 𝐱𝑖. In addition, using the first expansion of the fluid velocity field around the 
particle, the evolution of the ellipsoid orientation can be predicted from the well-known 
Jeffery’s equation, which describes the rate of the unit tangent vector 𝐩i: 

�̇�i =  𝛀. 𝐩i + 𝑏(𝐃. 𝐩i − (𝐩i. 𝐃. 𝐩i)𝐩i) Eq. 1 

where 𝛀 = (∇𝐯 − ∇𝐯)/2𝒕  and 𝐃 = (∇𝐯 + ∇𝐯)/2𝒕 ) are the macroscale vorticity and strain rate 

tensors, respectively, and 𝑏 is the effective shape factor that can be written as 𝑏 = 1 −
16.35 ln 𝛽

4𝜋𝛽2  

for straight cylindrical fibres with aspect ratio 𝛽 = 𝑙/𝑑 [10]. The validity of Jeffery’s theory 
was reported by numerous authors [11][12][13][14] and extended to any asymmetrical particles 
by Bretherton [15]. Many rheological models that account for the kinematics of fibres in 
polymer composites during their forming are based on Jeffery’s theory [9]. For these situations, 
a compact description of the orientation of a collection of fibres is often achieved by computing 
the fibre orientation distribution function 𝜓 or its moments such as the second 𝐀 and fourth 
order 𝔸 orientation tensors, respectively [16]. 
 
The predictions of Jeffery’s model have been validated [14][17][18][19] to deal with the fibre 
kinematics in dilute Newtonian fibre suspensions, where the fibre volume fraction is 𝜙 ≪ 1/𝛽2 
and the average distance between neighbouring fibres is larger than the fibre length 𝑙. When 
the fibre concentration is increased to the semi-dilute regime, defined as 1 𝛽2⁄ ≪ 𝜙 ≪ 1 𝛽⁄ , 
the fibre kinematics is affected by the presence of neighbouring fibres. In this regime, the 
average distance between fibres ranges between one fibre length and one fibre diameter. Thus, 
fibre-fibre interactions can occur, especially long-range hydrodynamic interactions 
[18][20][21]. In that case, the presence of a fibre within the suspension disturbs the fluid flow, 
which affects the kinematics of fibres that are in its vicinity. The theoretical estimation of the 
fibre orientation disturbance induced by long-range hydrodynamic interactions was studied 
using slender body theory for extensional [18][22] and squeeze flows [21][23]. These studies 
showed an increase in this disturbance with the increase in fibre concentration. However, this 
effect was limited by short-range particle screening effects due to multiple interactions that 
occur with the surrounding fibres (the neighbouring fibres playing a role like a cage) [24][25]. 
When the fibre concentration is above  𝜙 > 1/𝛽, the concentrated regime is reached. Short-
range interactions induced by fibre-fibre contacts have a predominant effect on the 
misalignment of fibre trajectories from Jeffery’s predictions [7][26][27][28][29]. Thus, for the 
semi-dilute regime, several modifications of Eq. 1 have been proposed in the literature based 
on the following phenomenological approach of Folgar and Tucker [30][31]: 

�̇� = (𝛀. 𝐀 − 𝐀. 𝛀) + 𝑏(𝐃. 𝐀 + 𝐀. 𝐃 − 2 𝔸: 𝐃) +  2𝐶𝐼|�̇�|(𝛅 − α𝐀) Eq. 2 

where 𝛅 is the identity tensor, |�̇�| = √2𝐃: 𝐃 corresponds to the magnitude of the generalised 
strain rate,  𝐶𝐼 is the (isotropic) orientation diffusivity and with α = 2 in two dimensions and 3 
in three dimensions. Several expressions of the orientation diffusivity 𝐶𝐼 have been proposed , 



leading to isotropic scalar functions of the fibre concentration and fibre geometry [32][33] or 
more complex expressions including anisotropic tensorial expressions of the orientation 
diffusivity [34][35][36]. Solving Eq. 2 requires the expression of the fourth-order orientation 
tensor 𝔸 which is constructed from a closure approximation from the second-order orientation 
tensor 𝐀 [37] [38][16][39][40][29][41]. 
 
Jeffery’s theory was established to describe the fibre kinematics for flow situations with a good 
scale separation, meaning that the fibre length should be small compared to the typical 
dimensions of the flow. However, considering the typical dimensions of the mould gaps, this 
restrictive condition scarcely occurs during composite forming. Hence, in most situations, the 
scale separation is low and the flow of short-fibre composites has to be considered as confined 
[42][43][44]. Deviations from Jeffery’s orbits for fibres in the vicinity of the mould walls or 
rheometer platens were reported by several authors for particles in suspension in Newtonian 
fluids [45][46][47], or non-Newtonian fluids [48][49][50]. Only few studies described the 
effects of fibre-mould mechanical interactions on the fibre kinematics by proposing a direct 
modification of Jeffery’s model [51] or using a modified dumbbell approach [52][49]. 
 
Considering the complex rheology of polymer composites, several authors also studied the 
kinematics of single ellipsoidal particles immersed in viscoelastic fluids and subjected to shear 
flow [53][54][55][56][57][58][59][60][61]. Deviations from the Jeffery’s orbits were observed, 
showing bistable particle orientations related to the fluid elasticity. However, only a few 
experimental and theoretical studies accounted for the shear-thinning behaviour of the 
suspending fluids or elongational flow situations [26][19], although these fluids and flow 
conditions are commonly encountered in short fibre-reinforced polymer composites. In a 
previous study [48], the authors showed that during the compression of dilute suspensions with 
non-Newtonian shear-thinning power-law fluids (𝑛 = 0.2), the fibre kinematics were not 
affected by the fluid rheology and were well described by Jeffery’s equation (Eq. 1) for non-
confined flows. These experimental results were in accordance with theoretical and numerical 
models [49]. 
 
Owing to the difficulty to observe and characterise in 3D the evolution of the fibrous 
microstructures during the flow of fibre suspensions, the complex flow mechanisms induced at 
the fibre scale still remain not well understood. Most of the experimental observations of fibre 
suspensions were performed using 2D optical techniques [11][12][17][62][63], 2D wide-angle 
X-ray diffraction [64], high speed X-rays phase-contrast 2D imaging [19] and video camera 
with isorefractive systems [14] [18] [21]. These techniques work well for studying dilute 
suspensions. However, they are inappropriate for the characterisation of semi-dilute and 
concentrated fibre suspensions. In previous studies [48][49], 3D in situ and real time 
observations of non-Newtonian shear-thinning dilute and semi-dilute fibre suspensions 
(𝜙 ≪ 1/𝛽2) subjected to lubricated compression experiments were performed using 3D X-ray 
synchrotron images. Despite the non-Newtonian fluid behaviour and regardless of the 
investigated experiment conditions (fibre aspect ratio and orientation), Jeffery’s theory was 
also found to be efficient for predicting fibre kinematics when fibres were far enough from 
compression platens (around 3 times a fibre diameter). Deviations from the affine motion of 
the fibre centre of mass were also observed experimentally but were not predicted by the 
simulation. The potential origins of these deviations were attributed to unexpected rigid body 
motions of the compressed sample or fluid viscoelastic effects. Confinement effects were also 



observed experimentally and numerically on the translation and rotation when fibres entered in 
contact with the compression platens.  
 
In this context, the objective of this study was to investigate fibre scale flow-induced 
microstructure changes occurring in concentrated fibre suspensions with non-Newtonian 
suspending fluid subjected to confined elongational flows. Hence, using a similar procedure to 
that previously reported in [48][49], model concentrated non-Newtonian fibre suspensions 
were prepared and compressed using a micro-rheometer that was installed in a synchrotron X-
ray microtomograph. 3D in situ and real time observations of the evolving fibrous 
microstructure were then performed during sample compression. The analysis of the 3D images 
acquired during these experiments revealed for the first time translation and rotation motions 
of the fibres during plane strain compression of a concentrated fibre suspension. The kinematics 
of fibres in concentrated fibre suspensions were compared with the predictions of Jeffery’s 
model. 
 

2. Experimental procedure 

2.1. Materials  

A hydrocarbon gel was used as suspending fluid [6]. At a temperature of 120°C the gel behaved 
as a Newtonian fluid and its shear viscosity was approximately 1 Pa s. At room temperature, 
the gel was solid which enabled the fibrous microstructure to be “frozen” and facilitated the 
handling of the suspension. At a temperature of 50°C, the gel exhibited a non-Newtonian 
behaviour close to that of industrial polymer matrices used in composites. The gel viscosity in 
shear could be modelled as a shear-thinning fluid of power law type, i.e., 𝜂𝑚 = 𝐾|�̇�|𝑛−1 with 
a consistency 𝐾 = 440 Pa. s𝑛 and a power-law index 𝑛 = 0.2. The parameters 𝐾 and 𝑛 were 
determined using classical rheometry experiments (Anton Paar MCR301 rheometer equipped 
with a cone-plane geometry). 
 
Short fibres used in the model suspensions were obtained from continuous elastic fishing wire 
(diameter 𝑑 = 200 µm, length  𝑙 = 1500 µm, i.e., 𝛽 = 7.5, Young’s modulus 𝐸 = 2 GPa). 
Model concentrated fibre suspensions with 3D random fibre orientation were prepared 
manually using an experimental procedure that slightly differed from that already reported by 
Laurencin et al. [48]. Briefly, this procedure consisted in projecting fibres inside the cavity of 
a mould. This allowed obtaining a fibre mat with a fibre orientation comprised between a 2D 
in-plane random fibre orientation and a 3D one. Then this fibre mat was impregnated by the 
hydrocarbon gel heated at 120°C and subjected to vibration to remove the air bubbles that could 
possibly be entrapped. Finally the as-obtained suspensions were cooled down to ambient 
temperature. To determine the fibre volume fraction 𝜙 (and thus the total number of fibres 𝑁) 
required to obtained fibre suspensions in the concentrated regime, i.e., suspensions with a mean 
coordination number 𝑧 (mean number of fibre-fibre contacts per fibre), greater than 1, we used 
the statistical tube model [65] the estimates of which for these types of  fibrous media were 
shown to be relevant [6][66]: 

𝑧 = 4𝜙 (
2

𝜋
𝛽Φ1 + Φ2 + 1) Eq. 3 



where the orientation functions Φ1 and Φ2 can be estimated from the knowledge of the tangent 
unit vectors 𝐩i and the total number 𝑁 of fibres as follows: 
 

Φ1 =
1

𝑁2
∑ ∑ ‖𝐩𝑖 × 𝐩𝑗‖

𝑁

𝑗=1

𝑁

𝑖=1
    and    Φ2 =

1

𝑁2
∑ ∑ |𝐩𝑖 ⋅ 𝐩𝑗|

𝑁

𝑗=1

𝑁

𝑖=1
 Eq. 4 

 
Note that Φ1 = π/4  and Φ2 = 1/2 for fibrous structures with a 3D random fibre orientation 
[65]. 
 
Following this procedure, several cuboids (in-plane dimension 𝑤0 × 𝑤0  =  8 × 8 mm² and 
height ℎ0  = 2.2 mm) with 𝜙 = 40% (or conversely 𝑁 =  2770).  
 

2.2. Plane strain compression experiments with real-time 3D in situ X-ray imaging 

Samples were subjected to lubricated plane strain compression loading at a temperature of 50°C 
using a specific micro-rheometer [67][48][49]. The micro-rheometer was mounted on the 
rotation stage of a synchrotron X-ray microtomograph (TOMCAT beamline, Swiss Light 
Source, Paul Scherrer Institute, Villigen, Switzerland) which enabled 3D in situ images of the 
evolving fibrous microstructure to be acquired in real-time conditions. To maintain the fibre 
suspension at a constant temperature of 50°C, heaters and thermocouples were inserted inside 
the compression platens. Before compression, the platens were lubricated with silicone oil (47 
V1000-80026, Chimie-Plus Laboratoires), and the suspensions were subjected to a small pre-
compression to ensure a good mechanical contact. After a stress relaxation and temperature 
homogenisation (~10 min) the mechanical loading was applied continuously through a 
piezoelectric actuator attached to the lower compression platen. Plane strain compression 

experiments were performed at a constant velocity ℎ̇ = 11 µm s-1 of the lower platen, 

corresponding to an initial strain rate 𝐷33 = ℎ̇ ℎ0 = 0.005⁄  s-1 along the 𝐞3-direction. A load 
cell of 5 N was also placed under the upper compression platen and used to measure precisely 
the axial force 𝐹 exerted on the sample in the  𝐞3-direction. Then, by assuming the suspension 

incompressibility, the axial compression stress 𝜎33 = |𝐹|ℎ/(ℎ0𝑤0
2) was plotted as a function 

of the axial compression Hencky strain |𝜀33| = |ln (ℎ/ℎ0)| (up to 0.5). Note that the suspension 
flow was considered to be confined because of the poor scale separation, i.e., 𝑙/ℎ = 𝒪(1). To 
acquire 3D X-ray microtomography images of the suspension during compression, the X-ray 
energy and the number of radiographs (dimensions of the images: 1776 × 1776 pixels) were 
set to 20 keV and 600, respectively. The scan duration was 0.42 s. 3D images of the scanned 
specimen with a size of 1776 × 1776 × 450 voxels for a voxel size of 11 × 11 × 11 µm3 were 
obtained using the phase-contrast Paganin reconstruction mode [68][69] and suitable 
reconstruction algorithms. 
 

2.3. Image analysis and data post-treatment 

To detect and quantitatively follow the evolution of the fibrous microstructure during lubricated 
plane strain compression, several image analysis operations were performed following the 
methodology reported by Latil et al [67]. After a segmentation step of images on the fibrous 



phase (Figure 2a), the numerous contacts between fibres did not enable each fibre to be clearly 
distinguished. To individualise the fibres, a 3D distance analysis between the two phases (i.e., 
fibre and fluid) was applied (Figure 2b). This stage consisted in calculating the distance of each 
voxel of the fibrous phase with the fluid phase and attributing a new grey level value to the 
considered voxel. Then, the as-obtained 3D Euclidian distance map was segmented. This 
operation enabled the removal of all the fibre-fibre contacts by reducing the fibre diameter. The 
fibre centrelines were extracted using a skeletonisation algorithm [70], namely the distance 
ordered homotopic thinning algorithm implemented in Avizo software (Figure 2c). 
 

 

  Illustration of the procedure used to individualise each fibre. (a) Initial 3D image of 

a concentrated fibre suspension segmented on the fibre phase. (b) Same 3D image 

obtained after segmentation on the Euclidean distance map calculated on the fibre 

phase and (c) after skeletonisation and smoothing of fibre centrelines. 

 
The centreline of each fibre 𝑖 was smoothed and fitted using a linear parametric curve with 
coordinate 𝐱𝑖(𝑠) along the curvilinear abscissa 𝑠 of the considered fibre 𝑖. Then, a local Frenet 
basis was associated to each coordinate 𝐱𝑖(𝑠), using the procedure reported in [67][71]. In this 
local basis, 𝐭𝑖 is the unit tangent vector, 𝐧𝑖 and 𝐛𝑖 are the unit normal and binormal vectors, 
respectively. Hence, the set (𝐱𝑖, 𝐭𝑖, 𝐧𝑖, 𝐛𝑖) enabled the description of the local geometry of the 
fibres, their orientation (𝐩𝑖 corresponds to the average of all unit vectors 𝐭𝑖 along the curvilinear 
abscissa 𝑠 of the fibre 𝑖), and the orientation and position of each fibre-fibre contact. 
The set 𝐶 of fibre-fibre contacts was extracted from the 3D images using the procedure reported 
in [67][66]. This procedure was based on the calculations of the distances between the fibre 
centrelines. A fibre–fibre contact was detected when the local distance between two 
neighbouring fibre centrelines was less than or equal to a fibre diameter 𝑑. Hence, it was 
possible to estimate the mean coordination numbers 𝑧 in the studied suspensions for each 
compression stage. In addition, the unit normal vector 𝐜𝛼 of each contact 𝛼 (1 ≤ 𝛼 ≤ 𝐶) 
between two contacting fibres 𝑖 and 𝑗 was calculated as follows: 𝐜𝛼 = 𝐩𝑖 × 𝐩𝑗. 

 
Doing so, it was also possible to analyse the overall orientation of fibres and fibre-fibre contacts 
by using deterministic estimates of the second 𝐀 and the fourth 𝔸 order fibre orientation tensors 
[6][67]: 
 

𝐀 =
1

𝑁
∑ 𝐩𝑖 ⊗ 𝐩𝑖

𝑁

𝑖=1
   and   𝔸 =

1

𝑁
∑ 𝐩𝑖 ⊗ 𝐩𝑖 ⊗ 𝐩𝑖 ⊗ 𝐩𝑖

𝑁

𝑖=1
 

Eq. 5 



 
and the second order orientation contact tensor C [6][7][29][67][72] [73]: 
 

𝐂 =
1

𝐶
∑ 𝐜𝛼 ⊗ 𝐜𝛼

𝐶

𝛼=1
 

Eq. 6 

 
In addition, fibre positions, orientations and fibre-fibre contacts were tracked between each 
compression step. The rigid motion of fibres was followed using a fibre centreline tracking 
algorithm based on a correlation distance function [74]. Briefly, the principle of the correlation 
method consists in recognizing the fibre 𝑖 from a so-called initial configuration of the fibre 
suspension at time 𝑡 among the 𝑁 fibres 𝑗 of a so-called deformed configuration of the 
suspension at time 𝑡 + 𝑑𝑡. This method relies on the minimisation of the following discrete 

correlation function 𝑀𝑖𝑗 defined as follows: 

 

𝑀𝑖𝑗 =  ∑ ∑ ∑ ‖𝐱𝑖
𝑡(𝑠𝑘) − 𝐱𝑗

𝑡+𝑑𝑡(𝑠𝑘)‖𝑘
𝑁
𝑗

𝑁
𝑖   Eq. 7 

 
For each couple (𝑖, 𝑗), the function 𝑀𝑖𝑗 represents the inter-fibre distance calculated from the 

spatial coordinates 𝐱𝑖
𝑡(𝑠𝑘) and 𝐱𝑗

𝑡+𝑑𝑡(𝑠𝑘)  along the curvilinear abscissa 𝑠𝑘 of the fibre 

centrelines. Minimising this function 𝑀𝑖𝑗 enables finding for each fibre 𝑖 its corresponding fibre 

𝑗. The validity of each fibre association is checked by using again the correlation technique to 
recognize each fibre 𝑗 at time 𝑡 + 𝑑𝑡 among the 𝑁 fibres 𝑖 at time 𝑡. The correlation is validated 
if the couples (𝑖, 𝑗) of associated fibres obtained from both minimisation processes is identical. 
 
The relevance of Jeffery's model was assessed by testing the validity of the affine assumption 

(i.e., 𝐯𝑖
𝐽𝑒𝑓𝑓

= ∇𝐯 ∙ 𝐱𝑖
𝐽𝑒𝑓𝑓

), and the orientation equation (Eq. 1) for the predictions of the position 

of the centre of mass 𝐱𝑖
𝐽𝑒𝑓𝑓

 and the orientation vector 𝐩𝑖
𝐽𝑒𝑓𝑓

of each fibre 𝑖 of the model 

suspensions. These equations were numerically solved using a fourth order Runge-Kutta 
integration scheme implemented in Matlab. Previous measurements made on dilute fibre 
suspensions [48] revealed that the macroscale suspension flow was homogeneous, 
incompressible (∇. 𝐯 = 𝟎) and irrotational (𝛀 = 𝟎). Therefore, the strain rate tensor 𝐃 was 
estimated from the height of the suspension ℎ measured using the 3D images with an error of 

±1 voxel. The initial positions 𝐱𝑖
0 and the initial orientation vectors 𝐩𝑖

0 were taken from the 
initial undeformed configuration of the suspension measured on the 3D images, with maximum 
errors of ±1 voxel and ±0.15°, respectively. Then, two thousand integrations per experiment 

were computed using errors associated with ℎ, 𝐱𝑖
0 and 𝐩𝑖

0 that were randomly chosen within the 
aforementioned ranges. Hence, the errors on the corresponding integrated parameters could be 
estimated. The errors were considered to correspond to the difference between the 2nd and 98th 

percentile values of the computed distributions. Finally, the calculated orientation vectors 𝐩𝑖
𝐽𝑒𝑓𝑓

 

from the integration of Eq. 1 enabled the second order fibre orientation tensor 𝐀𝐽𝑒𝑓𝑓 to be 

directly calculated again from Eq. 5. The as-calculated tensor 𝐀𝐽𝑒𝑓𝑓 could be compared to the 
tensor 𝐀 measured from the 3D images.  
 



3. Results and discussion 

3.1. Flow mechanisms at the sample scale 

Figure 3 shows the typical evolution of the stress 𝜎33 measured along the 𝒆3 axis during the 
plane strain compression of a model concentrated fibre suspension. 3D views of the fibrous 
structure obtained at various strain |𝜀33| are also shown in this figure. The compression curves 
of concentrated fibre suspensions exhibit two regimes: a first regime where the stress increases 
non-linearly up to a flow stress 𝜎33 ≈ 2.3 × 104 Pa followed by a plateau-like regime. Note 
that in these flow conditions, the contribution of the suspending fluid scales as 295 Pa which 
demonstrates the crucial of fibres on the rheology of the studied suspensions. In the same time, 
the 3D images reveal that the fibre microstructure is compressed along the 𝒆3 axis but also 
flows along the channel’s axis in the 𝒆2 direction. At the macroscale, the flow of the suspension 
is homogeneous and corresponds to an incompressible plug-like flow without any phase 
separation between the fibres and the polymer matrix. This tends to show that despite the high 
concentration of the suspension, the entanglement of the fibrous network is sufficiently low to 
enable the fibres to move relatively to each other under the applied compression stress.  
 
 

 

 Plane strain compression of a model concentrated suspension containing 2770 fibres 

(𝜙 = 40%). The graph shows the evolution of the compression stress 𝜎33 measured 

along the 𝒆3 axis as a function of the compression strain |𝜀33|. 3D images numbered 

from 1 to 4 show the evolution of the fibre microstructure during lubricated plane 



strain compression. Numbers on the curves show the corresponding stress and strain 

states to these images. 

 
Figure 4 shows the evolution with 𝜙 of the dimensionless compression stress 𝜎33

∗ =
𝜎33(𝜙)/𝜎33(𝜙 = 0), where 𝜎33(𝜙) and 𝜎33(𝜙 = 0) are the axial compression stresses of the 
fibre suspension and the polymer matrix, respectively, that were measured at a compression 
strain |𝜀33| = 0.3. For comparison purpose, we have also plotted the dimensionless 
compression stresses 𝜎33

∗  obtained for various model fibre suspensions in the dilute and semi-
dilute regimes prepared in the same conditions and with the same fibre aspect ratio 𝛽 = 7.5 
[48][49]. This shows that the compression stress required for the flow establishment of a 
concentrated fibre suspension (i.e, suspensions with 𝜙 = 0.4) is ten times higher than that 
measured for semi-dilute fibre suspensions. In addition, this figure emphasises the weak (resp. 
pronounced) effect of the compression strain rate 𝐷33 (resp. 𝜙) on the dimensionless 
compression stress 𝜎33

∗ .  
 

 

 Evolution with the fibre content 𝜙 of the dimensionless compression stress 𝜎33
∗  for 

various model fibre suspensions (𝛽 = 7.5) that were prepared following the 

procedure described in subsection 2.1. 

 

The graphs in Figures 5a,b show the evolution of the diagonal components of 𝐀 and 𝐂 tensors. 

Note that it was checked that the diagonal components could reasonably be associated to the 

principal components of these two tensors. These graphs reveal that the fibre orientation of the 

initial suspension exhibited a 3D transverse isotropy (𝑖. 𝑒. , 𝐴11~𝐴22 ≠ 𝐴33) with a high density 

of unit normal vectors 𝐜𝛼 of fibre-fibre contacts oriented along the 𝒆3 axis (i.e., 𝐶33 > 𝐶11 ≈
𝐶22). These features were presumably inherited from the sample preparation since each fibre 

of the suspension was introduced into the suspending fluid from the top, along the 𝒆3 axis. The 

evolution of the diagonal components of 𝐀 and 𝐂 tensors with the compression strain |𝜀33| 
revealed that the fibres tended to reorient along the channel’s axis 𝒆2. This is illustrated by the 



increase of the components 𝐴22 and 𝐶11 with the increase in the compression strain |𝜀33|. Then, 

it is interesting to notice that 𝐶33 did not evolve, proving that the density of unit normal vectors 

of fibre-fibre contacts remains almost the same.  

Figure 5c shows the evolution of the mean coordination number 𝑧 as a function of the sample 

compression strain |𝜀33|. The error bars shown in the graph correspond to an error of  ±1 voxel 

that was related to the extraction procedure of the centerlines of each fibre of the suspension. 

This figure shows that the mean coordination number 𝑧 was initially close to 2. This proves 

that the studied suspension was in the concentrated regime and that the fibres formed a 

connected network. In addition, this graph shows that 𝑧 slightly decreased with increasing the 

compression strain |𝜀33|. This evolution could be related to the flow-induced orientation of 

fibres along the 𝒆1 axis. It is well-established [65][75] [76] that the mean number of fibre-fibre 

contacts decreases as the fibres orientate along a preferred/principal direction. It is important 

to notice that this trend is also well reproduced by the statistical tube model [65] even if the 

theoretical predictions of 𝑧 are slighly higher than the measurements. This results is in 

agreement with several observations made from 3D images of fibrous materials by Orgéas et 

al. [66] and Guiraud et al. [6]. 

 

 



 (a) Evolution of the diagonal components 𝐴ii of the measured second-order fibre 

orientation tensor 𝐀 with the sample compression strain |ε33|. The continuous lines 

represent the predictions of the calculated second order orientation tensor 𝐴𝑖𝑖
𝐽𝑒𝑓𝑓

. (b) 

Evolution of the diagonal components 𝐶𝑖𝑖 of the second order orientation contact 

tensor C with the sample compression strain |ε33|. (c) Evolution of the mean 

coordination number z with the sample compression strain |ε33|. The blue and red 

curves represent the mean coordination number 𝑧 that was directly measured from the 

3D images shown in Fig. 3 and that predicted by the statistical tube model (Eq. 3), 

respectively. 

 

3.2. Flow mechanisms at the fibre and fibre-fibre scale 

Using the correlation technique [74], it was also possible to analyse the flow mechanisms and 
the complex microstructure of fibre suspensions under flow at the fibre and contact scale. In 
particular, it was possible to describe the kinematics of single fibres that could be recognised, 
identified and followed during plane strain compression (Figure 6). 
The graph in Figure 7a shows the performance of the used semi-discrete correlation procedure. 
This graph shows the evolution during a plane compression experiment of the percentage of 
good fibre associations obtained by correlation between discretised 3D images at a compression 
deformation state |𝜀33| and that at |𝜀33| + 𝛥|𝜀33|. Thanks to the recent progress offered by 
synchrotron radiation facilities, 3D high resolution images were obtained at a sufficiently high 
frequency, i.e., with deformation increments between images Δ|𝜀33|< 0.03, thus leading to a 
high percentage (>90%) of fibre associations. Hence, as shown in Figure 6, it was possible to 
track the positions and orientations of a selection of neighbouring fibres taken at the centre of 
the sample as well as the positions and the number of contacts between them. The 3D images 
on the left-hand side show all fibre centrelines and their evolution for various deformation state 
|𝜀33| of the sample subjected to plane strain compression. The images on the right-hand side 
are zoomed views in the core of the sample where the fibre centrelines of tracked fibres appear 
in the form of coloured thick lines and their discrete contacts with the neighbouring fibres 
(represented by thin grey lines) are symbolised by red dots (Figure 6). 
 



 

 (a-d) Left-hand side 3D images: identified fibre centrelines during the plane strain 

compression of a concentrated fibre suspension at various compression strains |𝜀33|. 
(a-d) Right-hand side images: zoomed views in the core of the sample. These zoomed 

images show the evolution of the kinematics (positions and orientations) of nine fibres 

(represented by thick coloured lines) that were selected in the centre of the sample. 

The evolution of their discrete contacts with their neighbouring fibres (represented by 

thin grey lines) is also shown and represented by red dots. 

 

The graph in Figure 7b shows the evolution with |𝜀33| of the deviation Δx𝑖 = ‖𝐱𝑖 − 𝐱𝑖
𝐽𝑒𝑓𝑓

‖ of 

the experimental position of the fibre centres of mass 𝐱𝑖 with respect to 𝐱𝑖
𝐽𝑒𝑓𝑓

of the nine tracked 

fibres. In addition, the two graphs c-d in Figure 7 show the evolution of the orientation angles 
𝜃𝑖 and 𝜑𝑖 of the nine tracked fibres as a function of the macroscopic compression strain |𝜀33|. 
For comparison purpose, the evolution of the orientation angles predicted by Jeffery’s model 
(continuous lines) are also plotted in this figure. These three graphs clearly illustrate the erratic 
motion of these fibres in their network. The graph b reveals that the translation motion of 
tracked fibres was different from that they should follow under the affine field assumption. 
These deviations are much more pronounced than those observed for dilute and semi-dilute 
fibre suspensions [48][49]. As discussed in these previous studies, it is difficult to determine 
whether the general trend of the deviations had physical origins (e.g. small shear flow related 
to non-ideal lubrication conditions between the samples and the compression platens) or were 
induced by experimental artefacts (e.g. unexpected rigid body motions of samples). However, 
the evolution of Δx𝑖 of the analysed fibres also revealed that they were subjected to several 
events (related for instance to the loss or creation of fibre-fibre contacts) that induced 
pronounced and erratic variations in the position of their centres of mass. Some of these events 
are clearly visible for the blue fibres in the graph b of Figure 7 and are now indicated by arrows. 
Note also that all the analysed fibres from graph b were affected by this type of events. 
In addition, the graphs of Figures 7c-d reveal that the rotation of each fibre was extremely 
erratic and showed large fluctuations, i.e., a behaviour far from that predicted by Jeffery’s 
equation (depicted by the continuous lines), as revealed by the fluctuations of the 𝜃𝑖 and 𝜑𝑖 
angles measured during compression. The rotation of these fibres was presumably hindered by 



their contacts with their neighbouring fibres (zoomed views of Figure 6). For the highest 
compression strain, almost all the fibres tended to align along the main flow direction (increase 
of 𝜃𝑖 and 𝜑𝑖 angles). However, some fibres exhibited an inverse trend, see for instance the 
yellow, green and red fibres. 
These results obtained in the core of the sample, i.e., in a zone far from the two platens, are 
different from those observed for dilute and semi-dilute fibre suspensions [48][49]. In the 
present case, the erratic translation and rotation motions of fibres were induced by the multiple 
interactions between fibres. However, in spite of the chaotic kinematics of individual fibres it 
is interesting and surprising to notice that the macroscopic deformation of the sample remained 
homogeneous and the overall fibre orientation of the suspension could be well predicted by the 

second order fibre orientation tensor 𝐀𝐽𝑒𝑓𝑓 (Figure 5a).  

 

 
 

  (a) Graph showing the percentage of fibre associations obtained using the semi-

discrete correlation method of the fibre centrelines as a function of the sample 

deformation |ε33|. (b-d) Graphs showing the evolution of the deviations Δxi (b), 



angles 𝜃i (c) and 𝜑i (d) of nine tracked fibres taken in the centre of the sample as a 

function of the compression strain |ε33|. 

 

4. Conclusion 

The objective of this study was to observe and characterise at the fibre scale, the flow 
mechanisms occurring in concentrated fibre suspensions. For that purpose, model concentrated 
fibre suspensions with a non-Newtonian suspending fluid and 3D random fibre orientations 
were prepared and deformed in confined flows by performing continuous tests with a 
compression rheometer that was installed on a synchrotron X-ray microtomograph. The image 
acquisition parameters enabled the acquisition of 3D images with high spatial resolution and 
short scanning time (i.e., less than 0.5 s). An image analysis procedure was specifically 
developed and enabled the extraction of several key microstructure descriptors such as the 
positions and orientations of fibres and their contacts. The evolution of these descriptors was 
followed using a semi-discrete correlation technique of the spatial positions of fibre centrelines 
[74]. 
 
These experiments enabled the 3D observation and characterisation of a confined plane strain 
compression test of a concentrated fibre suspension. The quantitative analysis of the 3D images 
led to original results that clearly emphasised the complex kinematics of individual fibres. 
Large fluctuations in the translational and rotational fields of the fibres were observed during 
plane strain compression. These fluctuations were shown to be on the same order of magnitude 
than the mean fields. The kinematics of fibres was found to be different from that observed for 
dilute and semi-dilute fibre suspensions under similar confined flow conditions [48][49]. We 
also observed that contacts between fibres induce locally very strong perturbations in the fibre 
motion, leading to fibres kinematics that are far from the affine field and local Jeffery’s 
equation predictions. This emphasises the central role played by the interactions between fibres 
on the rheology of these concentrated suspensions. 
 
Surprisingly, in spite of the chaotic kinematics of the fibres, the macroscopic deformation of 
the suspension was quasi homogeneous and the overall fibre orientation in the suspension was 
found to be well described by the second order orientation tensor estimated from the integration 
of Jeffery’s equation for each fibre of the suspension during compression. In addition, our 
results showed that the statistical tube model [65] was relevant to estimate the mean number of 
fibre-fibre contacts per fibre in concentrated fibre systems. The knowledge of the number of 
contacts is crucial to feed rheological models that enable estimating the predominant 
contribution of contacts to the overall stress field [7][29][72] within such systems.  
 
The experimental results obtained in this study are promising and would enable improving 
micromechanical models and upscaling approaches related to the rheology modelling of 
concentrated fibre suspensions [7]. This approach would also enable an in-depth 
characterisation of the fibre mesostructures (fibre aggregates) present in these suspensions 
(Figure 8). This would help understanding the complex micromechanics of these 
mesostructures and would help revealing the role they play on the rheology of concentrated 
fibre suspensions.  
 



 

 2D map showing the fibre density in the suspension (for a compression strain of 
|𝜀33| = 0.2) obtained thanks to the “Bivariate Kernel Density Estimator” function 

implemented in Matlab from the fibre centrelines projected in the (𝐞2, 𝐞3), (𝐞1, 𝐞2) 

and (𝐞1, 𝐞3) planes, respectively. These maps show the presence of fibre 

mesostructures or aggregates within the fibre suspension, in particular in the (𝐞1, 𝐞2) 

plane. 
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