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OLISIA: a Cascade System for Spoken Dialogue State Tracking

Though Dialogue State Tracking (DST) is a core component of spoken dialogue systems, recent work on this task mostly deals with chat corpora, disregarding the discrepancies between spoken and written language. In this paper, we propose OLISIA, a cascade system which integrates an Automatic Speech Recognition (ASR) model and a DST model. We introduce several adaptations in the ASR and DST modules to improve integration and robustness to spoken conversations. With these adaptations, our system ranked first in DSTC11 Track 3, a benchmark to evaluate spoken DST. We conduct an in-depth analysis of the results and find that normalizing the ASR outputs and adapting the DST inputs through data augmentation, along with increasing the pre-trained models size all play an important role in reducing the performance discrepancy between written and spoken conversations. 1 

Introduction

A majority of recent research on task-oriented dialogue (TOD) systems has focused on chat corpora such as MultiWOZ [START_REF] Budzianowski | MultiWOZ -A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling[END_REF]. With voice assistants becoming more prominent in our daily lives, there has been a renewed interest in spoken dialogue systems [START_REF] Faruqui | Revisiting the Boundary between ASR and NLU in the Age of Conversational Dialog Systems[END_REF]. However, state-of-the-art systems trained on chats face robustness issues when dealing with spoken inputs [START_REF] Kim | How Robust R U?[END_REF].

In a TOD system, the role of DST is to predict at each turn and based on the dialogue history the current belief state, i.e. a condensed and updated representation of the user needs. DST plays a central role as the system relies on the belief state to decide which action to take next. The belief state is typically frame-based and represented as a list of <slot, value> pairs. While both cascade and end-to-end approaches have been well studied for Spoken Language Understanding (SLU, [START_REF] Serdyuk | Towards end-to-end spoken language understanding[END_REF]), there has been little recent work on spoken DST. Considering the entire dialogue context, as opposed to only the current turn, requires tricky strategies for end-to-end systems [START_REF] Tomashenko | Dialogue history integration into end-to-end signal-to-concept spoken language understanding systems[END_REF]. In order to leverage state-of-the-art models, a cascade approach with separate ASR and DST components is thus preferred. However, these two components do not benefit from joint optimization and often lack integration.

To address these shortcomings, we propose OLISIA, a cascade system composed of an ASR model and a DST model. OLISIA integrates these two components through adaptations in the ASR outputs and the DST inputs. With this design, our system ranked first in the Speech-Aware Dialog Systems Technology Challenge (DSTC11 Track 3),2 a benchmark to evaluate spoken DST models.

In this paper, we describe our cascade spoken DST system along with the proposed adaptations. Additionally, we conduct an analysis of these adaptations based on the results from various evaluation setups.

Our contributions can be summarized as follows. In the context of the Speech-Aware Dialog Systems Technology Challenge, we show • the need for post-processing the ASR output in a pipeline;

• the relevance of different data augmentation techniques for DST;

• the importance of scaling up the foundation model size -both for ASR and DST.

Related work

Much of the research in task-oriented dialogue (TOD) systems initially focused on spoken dialogue, for instance leveraging probabilistic modeling to account for the uncertainty associated with noisy utterances [START_REF] Roy | Spoken dialogue management using probabilistic reasoning[END_REF][START_REF] Williams | Partially observable Markov decision processes for spoken dialog systems[END_REF][START_REF] Thomson | Bayesian update of dialogue state: A POMDP framework for spoken dialogue systems[END_REF]. 2014)) introduced the first standardized benchmark for DST, releasing annotated spoken dialogue corpora. However, the focus of research in TOD gradually shifted to chats, assuming that the upstream ASR model would be able to provide accurate transcriptions. Recently, there has been a renewed interest in spoken dialogue to address the lack of attention on the differences between spoken and textual inputs [START_REF] Faruqui | Revisiting the Boundary between ASR and NLU in the Age of Conversational Dialog Systems[END_REF]. DSTC10 Track 2 proposed a DST task on spoken conversations which stimulated work on this aspect, though only the n-best ASR hypotheses were provided without audio data.

When audio-only data is available, End-to-End Spoken Language Understanding (SLU) systems [START_REF] Serdyuk | Towards end-to-end spoken language understanding[END_REF] are often preferred because they benefit from joint optimization. Although cascade approaches suffer from error propagation because the textual Natural Language Understanding (NLU) model does not consider the uncertainty of the ASR transcriptions, they remain competitive. In fact several adaptation techniques can boost the cascade's performance.

Performing hypothesis rescoring with a language model specifically trained on the targeted domain proves to be effective when data is available in high quality and large quantity [START_REF] Chung | Lattice rescoring for speech recognition using large scale distributed language models[END_REF]. We rather adopt a post-processing approach such as spelling correction which can also help aligning the transcriptions with the targeted domain [START_REF] Hrinchuk | Correction of automatic speech recognition with transformer sequence-to-sequence model[END_REF], especially when focusing on domainspecific words.

With the recent advances in Text-to-Speech (TTS) technologies, adapting ASR models by finetuning them on synthetic speech of the target domain [START_REF] Li | Training neural speech recognition systems with synthetic speech augmentation[END_REF][START_REF] Rosenberg | Speech recognition with augmented synthesized speech[END_REF][START_REF] Zheng | Using synthetic audio to improve the recognition of out-of-vocabulary words in end-to-end asr systems[END_REF]) is now common. However, with only synthetic speech in the training set, such a finetuning might degrade the performances on human speech [START_REF] Laptev | You do not need more data: Improving end-to-end speech recognition by text-to-speech data augmentation[END_REF]. Simulating ASR hidden representations from text in order to train an end-to-end SLU model reaches higher Named-Entity Recognition (NER) performances than training it on the synthesised speech [START_REF] Mdhaffar | End-to-end model for named entity recognition from speech without paired training data[END_REF]. Therefore, relying on the text NLU model to tolerate and correct some errors of the ASR model seems more adapted in our setting.

Recent approaches have focused on data augmentation techniques to simulate spoken data [START_REF] Wang | Data Augmentation for Training Dialog Models Robust to Speech Recognition Errors[END_REF][START_REF] Liu | Robustness Testing of Language Understanding in Task-Oriented Dialog[END_REF][START_REF] Tian | TOD-DA: Towards Boosting the Robustness of Taskoriented Dialogue Modeling on Spoken Conversations[END_REF] in order to make the language understanding components of TOD systems more robust to spoken inputs. Other approaches have sought to leverage the multiple hypotheses provided by the upstream ASR model in the hope that these different hypotheses complement each other to help language understanding [START_REF] Lina | Exploiting sentence and context representations in deep neural models for spoken language understanding[END_REF][START_REF] Li | Improving Spoken Language Understanding By Exploiting ASR N-best Hypotheses[END_REF][START_REF] Ganesan | N-Best ASR Transformer: Enhancing SLU Performance using Multiple ASR Hypotheses[END_REF]. Similarly, others used a more compact representation of these hypotheses, such as word confusion networks [START_REF] Henderson | Discriminative spoken language understanding using word confusion networks[END_REF][START_REF] Pal | Modeling ASR Ambiguity for Neural Dialogue State Tracking[END_REF].

Speech-Aware Dialog Systems Technology Challenge

The lack of recent work on spoken dialogue can be attributed in part to the lack of available datasets. User utterances in the dev and test sets are vocalized by crowdworkers. A speech synthesized version of the training data is also provided in the aim of assessing the validity of such data to mitigate the lack of real spoken conversations.

Two verbatim versions of the dev set are provided to the participants, i.e. user utterances are vocalized as is by a TTS system (TTS-v) and human crowdworkers (Human-v). The test set includes the same setup along with a third version containing paraphrased user utterances vocalized by humans to sound more natural (Human-p). 5System submissions are evaluated using Joint Goal Accuracy (JGA) and Slot Error Rate (SER), defined as follows:

JGA = C N t = N o. of correct state pred. N o. of turns SER = S + D + I N s = N o. of slot errors N o. of slots in ref.
where S, D and I respectively denote substitutions, deletions and insertions of <slot, value> pairs. Regarding the challenge constraints, any type of model can be used but only MultiWOZ is allowed as training data for the dialogue component.

Method

In this section, we present our cascade approach with an ASR component which converts the user spoken inputs into text and a DST component which predicts the current dialogue state from the transcript of the previous turns. The overall architecture of the system is shown in Figure 2 On the ASR side, given that the turns are perfectly segmented, we can easily transcribe the user's turns with Open AI Whisper [START_REF] Radford | Robust Speech Recognition via Large-Scale Weak Supervision[END_REF] transformer model with a forced English decoding. On the DST side, we use a generative DST model based on a pre-trained T5 model [START_REF] Raffel | Exploring the limits of transfer learning with a unified text-to-text transformer[END_REF], which proved to be more robust to spoken inputs than an extractive model in preliminary experiments.

The input to the DST model consists of the entire dialogue history at a given turn, with agent and user utterances separated by delimiter tokens. At each turn, the model outputs the current dialogue state from scratch in the form of <slot-name, slot-value> pairs. Formally, let U i and A i respectively be user and agent utterances at turn i. The input at turn T is linearized by concatenating the utterances (U 0 , A 1 , ..., A T -1 , U T ) and prepending the delimiters "user:" and "agent:". The output dialogue state is linearized as a semicolon-separated list of strings "slot-name=slot-value".

Our contribution lies in the adaption of the transcriptions outputted from the ASR for DST and the adaptation of the DST component to handle speech specificities, which are discussed in the next two sections.

ASR normalization

The first adaptation we apply to Whisper's transcriptions is time normalization. Given the data sources on which Whisper was trained, the outputted time formats vary a lot. We use several regular expressions to identify the most salient patterns (e.g. "5 o' 8 am", "2 to 3 pm", "midnight", "quarter past 10 am") and map them to the standard "[hour]:[minutes] [am|pm]" format found in Multi-Woz.

The second adaptation we apply is proper noun correction which impacts the values of the slots hotel-name, restaurant-name, taxi-destination, train-destination, taxi-departure and train-departure. Many proper nouns are either misspelled by the user (e.g. the American city Itta Bena is pronounced "I-T-T-A bena") or incorrectly recognized by Whisper (e.g. Itta Bena transcribed as "Itta Benna"). In both cases, we use a Named Entity Recognition (NER) model6 from Nvidia NeMo [START_REF] Kuchaiev | Nemo: a toolkit for building ai applications using neural modules[END_REF] to identify lists of proper nouns from both agent and user turns. We then score each pair of user and agent identified named entities with Character Error Rate (CER) and tune a threshold in order to replace the user turns' misspelled proper nouns with their matching ones from the agent turns.

More formally, given a list of user proper nouns l u , a list of agent proper nouns l a and a threshold δ, we have:

∀u ∈ l u , a ∈ l a u = u if CER(u, a) > δ a otherwise
Where u and a refer respectively to user and agent proper nouns.

DST data augmentation

To improve robustness and reduce the discrepancy between training and testing data, our DST model is fine-tuned on an augmented version of the provided train set. We apply value replacement, paraphrasing and speech simulation, in this order. In a similar way to how the dev and test sets were modified by the track organizers, our value replacement concerns named entities (town, restaurant and hotel names) and time slots. To replace entity values, we create a new ontology based on data from OpenStreetMap7 . We then sample entities with a uniform distribution over our ontology. Values with time mentions are replaced with a random time.

The value replacement process goes as follows: This process ensures dialogue consistency: if a value for a slot is updated during the dialogue, a new value is sampled thanks to the first step, if a value is shared between multiple slots, the same replacement value is used thanks to the second step, and finally, the string replacement in the third step is performed by decreasing lengths in order to avoid replacing sub-strings (e.g. city names can be present in restaurant or hotel names).

Based on this new train set with replaced values, we paraphrase the user utterances using SG-GPT [START_REF] Peng | Few-shot natural language generation for taskoriented dialog[END_REF] which allows us to condition the generation of the paraphrase on the previous turn along with the desired dialogue state for the current turn, preventing annotation inconsistencies due to hallucinations or omissions.

Lastly, we obtain the ASR transcripts for the speech simulation by synthesizing the augmented user turns with a Tacotron2-based [START_REF] Shen | Natural tts synthesis by conditioning wavenet on mel spectrogram predictions[END_REF] TTS system using SpeechBrain8 and transcribing them with Whisper.

Results

We propose an overview of the challenge's results in section 5.1 and further analysis of the impact of each adaptation on our system's performance in the following sections.

Overview

The challenge's leaderboard is shown in Figure 3. All submissions have a gap between their TTS performance and human performance (14.32% average relative JGA decrease and 19.19% average relative SER increase). The gap between the human-verbatim and human-paraphrased is less pronounced (3.36% average relative JGA decrease and 0.08% average relative SER decrease).

Our primary submission (F-p in Figure 3) consists in an ensemble of 5 instances of our system described in section 4 with transcriptions provided by Whisper-Large9 and a T5-Large model10 fine-tuned on the variations of the training data presented in Table 2. Replace-S refers to one version of the train set with value replacement. With Replace-L, a different version of the train set is used at each epoch until convergence,11 with newly sampled entities for value replacement along with the TTS-ASR and optional paraphrasing pipeline.

We used majority vote on each predicted slot value as ensembling strategy. Our secondary submission (F-s in Figure 3) consists in the best instance of the models in the ensemble (fine-tuning on T 2 ). For all models, we use a learning rate of 5e -4 and a batch size of 16. We compare their performance on the dev and test set with the challenge baseline and our system with text oracle12 in Table 1. Note that we exclude the ASR-TTS data augmentation for the system evaluated on the text oracle (+5 JGA increase).

While there is still room for improvement (10 JGA points between our system with and without text oracle), both our submissions achieved over 40 JGA on the TTS-verbatim test set. Our performance decrease (4 JGA points) from the TTSverbatim to the Human-verbatim version is steady across the dev and test sets. We observe a smaller decrease (2 JGA points) from the Human-verbatim to the Human-paraphrased version. Finally, the difference between the dev and test sets (4 JGA points) can be explained by overfitting, a difficulty difference, or both.

Replace-S Replace-L TTS-ASR Paraphrase

T 1 T 2 T 3 T 4 T 5 * *
Table 2: Composition of the training sets used to finetune the models in the ensemble for our primary submission (OLISIA 1 ); * denotes the augmented data provided by the track organizers.

ASR cascade adaptations

Given that only a few words in the users' utterances are really important to the dialogue state, Word Error Rate (WER) is not a good measure for the quality of the transcriptions [START_REF] Wang | Is word error rate a good indicator for spoken language understanding accuracy[END_REF]. Therefore we compute both JGA and WER at each correction step with the same T5-Large trained on the training set with value replacements. We present the results in Table 3. Unsurprisingly, the TTS-verbatim version of the test set is much cleaner than the Human-verbatim version because of the higher diversity of the crowdworkers pronunciations compared to the synthetic voices. Hence we observe over 70% relative WER increase on every correction's step outputs. This noisier version only impacts the JGA by around 10% relative JGA decrease, confirming that only a few words matter to DST. 13Time normalization improves equally all three versions of the test set (around 5% relative JGA increase).

Proper noun correction does not help much the clean TTS-verbatim (0.75% relative JGA increase), however, it seems to be much more valuable for the noisier Human-verbatim and Human-paraphrased versions (respectively 1.4% and 2.4% relative JGA increase) again illustrating differences between synthetic and natural speech.

Data augmentation strategies

In order to better understand how each data augmentation technique we used contributes to the overall performance, we conduct an ablation study on different versions of the training data. We incrementally add one augmentation technique at a time to the default train set and fine-tune a T5-Large model on each version. The results are shown in Table 4. We observe that introducing new values for the slots hotel-name, restaurant-name, train-departure and train-destination greatly alleviates the issue of memorization with MulitWOZ and enables the model to generalize more, with a 7% to 8% absolute increase in JGA. The speech simulation provides an additional slight improvement which is particularly marked on the Human-paraphrased test set (+1%). This shows that using speech synthesized training data in the absence of real spoken data can help address spoken dialogues at inference. On the other hand, paraphrasing the user utterances leads to an overall worse performance. One possible explanation for this result is the noisy nature of the process, using a generation model can lead to potential inconsistencies both in the flow of the dialogue and in the annotation. 

Model size

When dealing with noisy data and robustness issues we often observe that models with more parameters perform better. However, there is a trade-off between the computation resources needed for large models and the performance gains. In this section we attempt to explore this trade-off by exposing the performance gained by each model size increase. For the ASR part, we consider Whisper-Small (244M), Whisper-Medium (769M) and Whisper-Large (1550M). For the DST part, we consider T5-Small (60M), T5-Base (220M), T5-Large (738M) and T5-XL (3B), fine-tuning each model on our best training set (T 2 ). We present the impact of the size of the ASR and DST models respectively in Figure 4 and5. Interestingly JGA does not increase much when moving from T5-Small to T5-Base whereas it increases by almost 6 points when using T5-Large instead of T5-Base. The performance then drops back 6 points when using T5-XL, although this larger model seems to be more robust to the para-phrased test set. This suggests that XL models tend to overfit, while Large models provide a good compromise between the number of parameters and generalization. For Whisper this trend is different: using Whisper-Medium instead of Whisper-Small increases JGA of at least 2 points on the Humanverbatim dev set while using Whisper-Large instead of Whisper-Medium only increases JGA of 1 point or less. It is noteworthy that the lower parameter ratio between the Large and Medium models might explain this lower JGA increase.

While our whisper models were not fine-tuned on any data, we can already observe that the decrease of WER obtained by using Whisper-Large instead of Whisper-Medium on the TTS-verbatim version is not found on the Human-verbatim version.

Ensemble

We compare two different ensembling strategies with a single model fine-tuned on T 2 in Table 5 (all models are based on T5-Large). Both ensembling strategies consisted of a majority vote for each slotvalue. In one case, we used five models fine-tuned on the same train set with different random seeds and in the other, we fine-tuned five models on five different variations of the train set (c.f. Table 2). We find that the value of the ensemble from the same train set is limited, only providing a slight increase in JGA compared to the single model. The advantage of ensembling appears with five models fine-tuned on different train sets, providing a 3% absolute increase in JGA. This suggests that the ensemble benefits from having contrasting views of the same instance at evaluation, and by extension that T5 models fail to learn invariant representations of proper nouns (or that our method does not enable that). It is also noteworthy that performance does not increase that much beyond 5 models, with marginally better results at 9 models, 14 likely showing a performance ceiling.

TTS-v Human

Limitations

Overall, the dataset released in this challenge is a good step towards bridging the gap between written and spoken dialogue systems. However, as the user utterances were read aloud by humans, this spoken data lacks in spontaneity associated with actual speech. It would be interesting to see if our findings hold on spontaneous spoken dialogue. One limitation of our system lies in the use of Transformer-based models for both ASR and DST. While these models provide attractive performances they come with their own limitation of quadratic memory and limited input size. Dialogues in MultiWOZ are relatively short and this was not a concern in this work, but this could become problematic when dealing with longer, more realistic conversations. One alternative would be to reduce the input context to the most recent turns and include the linearized previous dialogue state in the DST input.

Another concern is the use of large pre-trained models to achieve competitive results. As pointed out before [START_REF] Strubell | Energy and policy considerations for deep learning in NLP[END_REF], training these large models on abundant data requires a substantial electrical consumption. In light of the human impact on the environment, we should promote efficiency as the main performance factor rather than metric scores.

Conclusion and future work

This work introduced OLISIA, a cascade system for spoken DST that integrates an ASR and a DST model through several adaptations. We used ASR normalization and DST data augmentation to adjust each component to its counterpart. We have 14 Post-evaluation experiments shown the importance of these adaptations in improving robustness to spoken inputs and our system achieved first place in the Speech-Aware Dialog Systems Technology Challenge.

While having user turns as speech and agent turns as text is a natural setup for a spoken dialogue system, this mix of modalities makes it more challenging to develop end-to-end systems. Recent progress on speech and text multimodal models could prove to be useful in addressing this problem [START_REF] Ao | SpeechT5: Unified-modal encoder-decoder pre-training for spoken language processing[END_REF]. Another possibility would be to exploit agent turns using an audio only model, either as synthesized speech or as intermediary ASR representations [START_REF] Mdhaffar | End-to-end model for named entity recognition from speech without paired training data[END_REF].

This work focused on a cascade approach but a thorough comparison of end-to-end and cascade approaches could also be helpful in further research on spoken dialogue systems.
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 1 Figure 1: DSTC11 Track 3 introduced a spoken version of MultiWOZ 2.1 (Eric et al., 2019) with user utterances voiced by crowdworkers.

Figure 2 :

 2 Figure 2: Illustration of OLISIA, our cascade system with adaptations of ASR and DST models to handle their respective errors.

Figure 3 :

 3 Figure 3: Overall test set results (JGA↑ / SER↓) of the challenge for all submissions. Our primary and secondary submissions respectively correspond to F-p and F-s.

  paraphrased test set as no ground truth transcripts were provided for this version.

Figure 4 :

 4 Figure 4: Impact of ASR model size (no. of parameters in parenthesis) in terms of JGA↑ in comparison with WER↓ on both dev and test sets.

Figure 5 :

 5 Figure 5: Impact of DST model size (no. of parameters in parenthesis) in terms of JGA on the dev and test sets.

Table 1 :

 1 Performance (JGA↑ / SER↓) of our submission compared with the challenge's baseline and our system with text oracle on both dev and test sets. The baseline results on the test set were not shared.

			Dev					Test			
		TTS-v	Human-v	TTS-v	Human-v	Human-p
		JGA↑ SER↓ JGA↑ SER↓ JGA↑ SER↓ JGA↑ SER↓ JGA↑ SER↓
	Baseline	26.3	27.5	22.6	31.6			n.a.			
	OLISIA 1	47.2	15.7	43.2	17.9	44.0	17.1	39.5	20.0	37.9	20.4
	OLISIA 2	44.1	17.3	40.3	19.5	40.4	19.2	36.0	21.9	34.3	22.4
		JGA↑	SER↓		JGA↑			SER↓	
	OLISIA 1 (oracle)	57.2		12.5			53.2			13.9	
	OLISIA 2 (oracle)	55.0		13.6			51.1			15.0	
	1. Successively go through each dialogue state						
	in a dialogue, sample one value from our on-						
	tology for each distinct value and replace it in						
	the dialogue state;									
	2. Track these replacements with a mapping be-						
	tween replaced value and new value;							
	3. Based on the obtained mapping, perform a						
	string replacement in the dialogue context.						

Table 3 :

 3 Impact of the ASR post-processing steps on the test set performances (JGA↑ / WER↓).

		TTS-v	Human-v Human-p
	Whisper raw outputs 37.9 / 4.92 33.8 / 8.4	32.0 / _
	+ Time normalization 40.0 / 4.49 35.6 / 7.89	33.5 / _
	+ Noun correction	40.3 / 4.36 36.1 / 7.71	34.3 / _

Table 4 :

 4 Contribution of the different data augmentation techniques for DST in terms of JGA on the test set.

		TTS-v Human-v Human-p
	Default train set	32.2	28.3	26.8
	+ Value replacement	40.2	35.5	33.2
	+ Speech simulation	40.3	36.0	34.3
	+ Paraphrasing	37.3	33.9	31.5

Table 5 :

 5 

Comparison of different ensembling strategies on the dev set in terms of JGA.

Our code is made available at https://github.com/ Orange-OpenSource/olisia-dstc11.* Equal contribution.

https://storage.googleapis.com/gresearch/ dstc11/dstc11_20221102a.html

Rebranded as the Dialog Systems Technology Challenge since DSTC6.

https://dstc11.dstc.community/

No further details were provided regarding the value replacement and paraphrasing processes.

https://docs.nvidia.com/deeplearning/ nemo/user-guide/docs/en/v1.0.0/nlp/token_ classification.html

https://wiki.openstreetmap.org/wiki/Overpass_ API

https://speechbrain.github.io/

https://github.com/openai/whisper

https://huggingface.co/t5-large

Four epochs for T5-Large.

Text oracle considers the ground truth user turns' transcriptions. We provide these results in order to give an upper bound of our system's performances.

Note that WER values are missing for the Human-
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