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In this work, we are interested in an optimal power flow problem with fixed voltage magnitudes in distribution networks. This optimization problem is known to be non-convex and thus difficult to solve. A well-known solution methodology consists in reformulating the objective function and the constraints of the original problem in terms of positive semi-definite matrix traces, to which we add a rank constraint. To convexify the problem, we remove this rank constraint. Our main focus is to provide a strong mathematical proof of the exactness of this convex relaxation technique. To this end, we explore the geometry of the feasible set of the problem via its Pareto-front. We prove that the feasible set of the original problem and the feasible set of its convexification share the same Pareto-front. From a numerical point of view, this exactness result allows to reduce the initial problem to a semi-definite program, which can be solved by more efficient algorithms.

Introduction

The optimal power flow (OPF) study in an electrical network is an essential tool in power engineering. It is defined as an optimization problem where the cost function can represent an economic objective such as power generation cost, or/and a technical objective such as the minimization of power losses in the network. The constraints often represent some physical restrictions at each bus and at each transmission line of the network.

OPF problems are widely used in the literature for different goals, see for instance [START_REF] Elattar | Modified jaya algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement[END_REF], especially:

-The minimization of power production (or importation) costs. In this case, the objective function is quadratic. -The minimization of losses of active and/or reactive power in the transmission lines. The objective function is then non-linear, or even non-convex. -Maintaining a constant voltage profile. The objective function is then in the form of a l 1 or l 2 distance between the voltage v and a target value v t , i.e. J =∥v -v t ∥.

Some papers combine several cost functions, leading to consider multi-criteria optimization problems [START_REF] Shaheen | Solving multi-objective optimal power flow problem via forced initialised differential evolution algorithm[END_REF].

To compute the fluxes through the lines of the network, we use the power flow equations (see for instance [START_REF] Momoh | Electric power system applications of optimization[END_REF]). Those equations appear in the OPF problem as equality constraints and are non-convex. Thus, it makes the optimization problem itself non-convex and therefore very difficult and costly to solve numerically. On the other hand, there is no guarantee that an approximate solution provided by an optimization method will be a global minimum. For these reasons, it is preferable to find a convex problem that is equivalent in a certain sense.

There are several methods that can be used to convexify the problem. A first approach is to linearize the non-convex constraints under certain physical assumptions, in particular the reactive power constraints must be neglected and the voltages must be fixed. It is then possible to obtain a linear or a quadratic problem (see [START_REF] Castillo | Evaluating the effects of real power losses in optimal power flow-based storage integration[END_REF]).

Another approach relies on the convexification of the original problem via a convex relaxation. This consists in replacing the non-convex set of constraints by a convex set containing it. The convex relaxation is then said to be exact if the optimal value of the original problem is equal to the optimal value of the convexified problem. A first and natural possibility is to take the convex hull of the constraints set (see for instance [START_REF] Lavaei | Geometry of power flows in tree networks[END_REF]). However, the disadvantage of this method is the difficulty to find an algebraic representation of the convex hull that can be used in practice. An alternative is to use a larger convex set than the convex hull, and which can be represented algebraically in a simple manner.

In [START_REF] Bai | Semidefinite programming for optimal power flow problems[END_REF], the authors reformulate the objective function and the constraints of the original problem in terms of traces of positive semidefinite matrices, to which is added a rank constraint. By removing this rank constraint, they obtain a convex problem. This method is called a SDP relaxation.

The authors of [START_REF] Lavaei | Geometry of power flows in tree networks[END_REF][START_REF] Lavaei | Geometry of power flows and optimization in distribution networks[END_REF] states that the SDP relaxation is exact under certain conditions of monotony of the objective function and on the voltage phase angles. In [START_REF] Lavaei | Geometry of power flows in tree networks[END_REF], the voltage magnitudes are assumed to be fixed and to prove the exactness of the SDP relaxation, they studied the geometry of the feasible set of the problem via its Paretofront. However, in their proof the authors makes a simplifying hypothesis that is not always satisfied, which makes the proof incomplete (Lemma 4, page 581). In [START_REF] Lavaei | Geometry of power flows and optimization in distribution networks[END_REF], a generalization to variable voltage magnitudes is proposed, but the proof of exactness relies on the proof of the fixed voltage magnitude case. Therefore a complete proof is still an open problem in both the fixed and variable voltage magnitude cases.

The main goal of this paper is to provide a rigorous proof of the exactness of the SDP relaxation in the case of fixed voltage magnitudes. Whereas the variable voltage magnitude case is of practical greater interest, an exactness proof appears to be much more difficult to reach in this case without additional very restrictive conditions (for instance no lower bound limitation on the injected active power). In order to do so, we will use two main ingredients: the tree structure of the distribution network and a geometrical study of the feasible sets and their Pareto-front. Furthermore, the new techniques proposed in this paper can be useful tools to help reaching a proof in the variable voltage magnitude case in a future work.

The rest of this paper is organized as follows. In Section 2, we present the model and the physical equations governing the power distribution network. We then define the optimization problem of interest and provide different equivalent formulations of this problem. Section 3 is dedicated to the notion of Pareto-front. We give some definitions and provide some elementary properties that will be frequently used to prove the theoretical results of this paper. In Section 4, we introduce and study the convexified problem in the simplified case of a network of only one line, and we show some results that will be used in the following. In Section 5, we prove the main result of this paper which states that under some conditions, the initial problem and its convexification share the same Pareto-front, i.e. the relaxation is exact. We conclude by proving a theorem that allows to use this convexification in practice. In Section 6, we present some numerical tests to highlight the proven theoretical results. Finally, in Section 7, we give some concluding remarks and perspectives.

2 Modeling of the power distribution network

Geometry of the network

We consider a power distribution network modeled by a tree Σ = (S, E), where S = {1, • • • m}, m ≥ 2, is the set of vertices that represent the nodes of the network and E ⊂ {{i, k} ∈ R 2 , i ̸ = k} is the set of non-oriented edges that represent the transmission lines. Let us notice that since Σ is a tree, the cardinal of E is necessarily m-1. Figure 1 shows an example of such a network presented in [START_REF] Kersting | Radial distribution test feeders[END_REF]. In order to enumerate the elements of E, we consider a bijection

ψ : {1, • • • , m -1} → E.
In the following, we will need to consider flows in both directions in the transmission lines. To this end, for each non-oriented edge of E, we associate two oriented edges. Therefore, we define the set

E = (i, k) ∈ S 2 | {i, k} ∈ E ,
whose cardinal is 2(m -1). In other words, for each edge {i, k} in E, the set E contains the two couples (i, k) and (k, i).

To enumerate the elements of E, we introduce the bijection

φ : {1, • • • , 2(m -1)} → E, defined such that if ψ(ℓ) = {i, k}, with i < k, then φ(2ℓ -1) = (i, k) and φ(2ℓ) = (k, i).
It means that the two orientations of the same edge are consecutive in φ, and that the order of the edges is the same in φ and in ψ.

Physical formulation

We present here the main governing equations and constraints in a AC-power distribution system. We refer to [START_REF] Momoh | Electric power system applications of optimization[END_REF] for a more detailed presentation of power engineering equations.

Let v i be the complex voltage at node i, written as

v i = V i e jθi , (1) 
where V i is the modulus of v i , called the voltage magnitude and θ i is the argument of v i in ]-π, π], called the voltage angle. We assume in this work that the voltage magnitudes are fixed and known for each node i of the network.

To each non-oriented edge {i, k} ∈ E, we associate a complex admittance y ik , defined by

y ik = g ik -jb ik ,
where g ik and b ik are the conductance and the susceptance of the line {i, k}, respectively. We assume that b ik > g ik > 0. This hypothesis is classical in the literature when addressing this type of problems (see for instance Zhang et al. ( 2014)).

For each oriented edge (i, k) ∈ E, the active power flow from node i to node k is defined by

F ik (θ ik ) = V 2 i g ik + V i V k b ik sin(θ ik ) -g ik cos(θ ik ) , (2) 
where

θ ik = θ k -θ i .
The total amount of power that can flow through a transmission line {i, k} = ψ(ℓ) is limited by a physical capacity. This limit is called a thermal constraint and ensures that the equipment of each transmission line does not become overloaded or overheat [START_REF] Conti | Distributed generation in lv distribution networks: voltage and thermal constraints[END_REF]; [START_REF] Liu | Optimal energy management for formulae cars with regulatory limits and thermal constraints[END_REF]. There are several ways to formulate this constraint (see [START_REF] Madani | Convex relaxation for optimal power flow problem: Mesh networks[END_REF]), for instance

F ik + F ki ≤ F ℓ , (3) 
where F ℓ > 0. The advantage of this formulation is that it can easily rewrite in terms of voltage angles. Indeed, according to (2), we have

F ik + F ki = (V 2 i + V 2 k )g ik -2V i V k g ik cos(θ ik ).
We can then distinguish three cases according to the value of F ℓ :

-if F ℓ < (V i -V k ) 2 g ik , the constraint (3) is not feasible; -if (V i -V k ) 2 g ik ≤ F ℓ < (V i + V k ) 2 g ik , the constraint (3) is equivalent to -θ ik ≤ θ ik ≤ θ ik ,
where

θ ik = arccos (V 2 i + V 2 k )g ik -F ℓ 2V i V k g ik ; -if (V i + V k ) 2 g ik ≤ F ℓ , the constraint (3) is automatically satisfied.
The first case is not interesting. Therefore in the following, the quantities F ℓ will be assumed to satisfy

F ℓ ≥ (V i -V k ) 2 g ik ,
for every edge. As a consequence, the thermal constraint rewrites as follows:

-θ ik ≤ θ ik ≤ θ ik , (4) 
with θ ik ∈ [0, π]. Let us notice that θ ik does not depend on the direction of the line, thus θ ki = θ ik . In the following, the thermal constraint will be expressed indifferently in the form (3) or in the form (4).

For some technical reasons, we assume that

0 < θ ik ≤ π 2 .
This condition is equivalent to

(V i -V k ) 2 g ik < F ℓ ≤ (V 2 i + V 2 k )g ik .
Actually, an even more restrictive assumption will be made later. The physical relevance of this restriction will then be discussed. At each node i ∈ S, the injected active power P i must be equal to the generated active power minus the consumed active power. These powers can also be written in terms of power flow equations as follows (see [START_REF] Monticelli | State estimation in electric power systems: a generalized approach[END_REF])

P i = k∼i F ik , (5) 
which stands as an equality constraint. Furthermore, the injected active power must satisfy the following inequality constraints

P i ≤ P i ≤ P i , (6) 
which limit the quantity of generated or consumed power at each node Monticelli (2012).

There are many objective functions that can be considered to define the optimal power flow problem, such as the total loss in the network or the power generation cost (see [START_REF] Elattar | Modified jaya algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement[END_REF]). Let P = (P 1 , • • • , P m ) T ∈ R m be the vector of all the power injections defined by equation (5). In this work, we consider an objective function

J : P -→ J(P ), (7) 
strictly increasing with respect to P, in a sense that we will be precised in Section 3. Let θ ∈ R 2(m-1) be the vector containing all the phase angles of the network, such that θ ℓ = θ ik for φ(ℓ) = (i, k). Let us notice that according to (5) and (2), and since the voltage magnitudes V i are fixed, the active injected power P i can be seen as a function of the phase angles θ ik . In other words, P := P (θ) is a state variable which depends on the control variable θ. Therefore, we introduce the objective function

J(θ) = J(P (θ)),
where J is the function defined by ( 7).

The optimal power flow problem of interest then states as follows

min θ∈R m J(θ), s.t. -θ ik ≤ θ ik ≤ θ ik , ∀(i, k) ∈ E, P i = k∼i F ik , ∀i ∈ S, P i ≤ P i ≤ P i , ∀i ∈ S.
(OPF 1 )

Semi-definite reformulation

The power flow equations make the problem (OPF 1 ) non-convex and therefore difficult to solve. In this section, we are going to reformulate this problem in a matrix form (see [START_REF] Lam | Distributed algorithms for optimal power flow problem[END_REF]). The non-convexity will then appear more clearly. On the other hand, this reformulation will also be helpful to build a convexification of the problem.

We start from expressing all the constraints of Problem (OPF 1 ) in terms of the vector v = (v 1 , • • • , v m ) T of the complex voltages. In order to do so, we introduce the following hermitian matrices:

for 1 ≤ i ≤ m, the matrix E i such that E i i,i = 1 and all the other entries are equal to 0; the matrix Y defined by

∀i ∈ S, Y i,i = k∼i y ik , ∀(i, k) ∈ E, Y i,k = -y ik ,
and all other entries are equal to 0; for 1 ≤ i ≤ m, the matrix B i defined by

B i = 1 2 (Y * E i + E i Y ); -for (i, k) ∈ E, the matrix B ik such that      B ik i,i = g ik , B ik i,k = -y ik 2 , B ik k,i = -y ik 2 ,
and all other entries are equal to 0.

An immediate computation shows that F ik = Tr(B ik vv * ) for all (i, k) ∈ E and P i = Tr(B i vv * ), for all i ∈ S.

Now, let us consider the following optimization problem min

W ∈Hm J(W ), s.t. P i ≤ Tr(B i W ) ≤ P i , ∀i ∈ S Tr(B ik W ) + Tr(B ki W ) ≤ F ℓ , ∀{i, k} = ψ(ℓ) ∈ E, W ⪰ 0, rank(W ) = 1, (OPF 2 )
where H m is the set of hermitian matrices of order m, the notation W ⪰ 0 means that the matrix W is positive semi-definite and

J(W ) = J(Tr(B 1 W ), • • • , Tr(B m W )).
Problems (OPF 2 ) and (OPF 1 ) can be linked by the following result whose proof is immediate.

Proposition 1 Problems (OPF 1 ) and (OPF 2 ) are equivalent in the following sense:

if θ is a solution of (OPF 1 ), then noting v = V e jθ , the matrix W = vv * is a hermitian matrix of rank 1 and a solution of (OPF 2 ); if W is a solution of (OPF 2 ), then there exists a vector v ∈ C m such that W = vv * and θ = arg(v) is a solution of (OPF 1 ).

Problem (OPF 2 ) is obviousely non-convex because of the rank constraint. A natural way to make it convex is therefore to remove this rank constraint, which leads to consider the following problem:

min W ∈Hm J(W ), s.t. P i ≤ Tr(B i W ) ≤ P i , ∀i ∈ S, Tr(B ik W ) + Tr(B ki W ) ≤ F ℓ ∀{i, k} = ψ(ℓ) ∈ E, W ⪰ 0. (OPF 2 )
This is a semi-definite program (SDP) that is much easier to solve numerically than Problem (OPF 2 ) (see for instance [START_REF] Bai | Semidefinite programming for optimal power flow problems[END_REF]). However, there is no guarantee that a solution of (OPF 2 ) is of rank 1 and therefore leads to a solution of (OPF 2 ). The following of this paper is dedicated to find some conditions that ensure that this is the case and to prove it.

Set reformulation

In this section, we propose another formulation of Problem (OPF 1 ) by considering the vector of injected active power as a decision variable and by defining the constraints in terms of sets. This formulation will be more adapted to the mathematical study that will follow.

We define the following order relation: for x, y ∈ R n , we set

x ≤ y ⇔ ∀i ∈ {1, • • • , n}, x i ≤ y i .
The fluxes defined by ( 2) are gathered in one vector F (θ) ∈ R 2(m-1) where the ℓ-th component is

F ℓ (θ) = F ik (θ ik ), with φ(ℓ) = (i, k). (8) 
The injected active power flow vector P (θ) ∈ R m then writes

P i (θ) = k∼i F ik (θ ik ). ( 9 
)
We are now going to define a feasible set for each constraint. Concerning the injected active power constraint, we only need to introduce

P P = P ∈ R m , P ≤ P ≤ P . ( 10 
)
Next we consider the thermal constraint. For each non-oriented edge ψ(ℓ) = {i, k} ∈ E, the feasible set for the active power flows is defined by

F ℓ = (F ik (θ ik ), F ki (-θ ik )) T , -θ ik ≤ θ ik ≤ θ ik . ( 11 
)
Considering the whole network, the feasible set for the active power flow reads

F = F (θ), -θ ≤ θ ≤ θ . (12) 
We immediately see that the sets F and F ℓ are connected as follows

F = m-1 ℓ=1 F ℓ . (13) 
Finally, the feasible set of the injected active power for the thermal constraint is given by

P θ = P (θ), -θ ≤ θ ≤ θ . ( 14 
)
In order to link the sets F and P θ , we introduce the connectivity matrix A ∈ M m,2(m-1) (R), defined by

A i,ℓ = 1 if φ(ℓ) = (i, •), 0 otherwise,
where the notation φ(ℓ) = (i, •) means that there exists k ∈ S such that φ(ℓ) = (i, k) (i.e. there exist k ∈ S such that i ∼ k). We then have

P (θ) = AF (θ),
and therefore

P θ = AF. ( 15 
)
Such a construction already exists in the literature, see for instance [START_REF] Lavaei | Geometry of power flows in tree networks[END_REF][START_REF] Lavaei | Geometry of power flows and optimization in distribution networks[END_REF]. This leads to consider the following optimization problem min P ∈R m J(P ) s.t. P ∈ P θ ∩ P P (OPF 3 ) Proposition 2 Problems (OPF 1 ) and (OPF 3 ) are equivalent in the following sense:

-If θ is a solution of (OPF 1 ), then P (θ) defined by (8) and ( 9) is a solution of (OPF 3 ). -If P is a solution of (OPF 3 ), then there exists θ ∈ R 2(m-1) such that P = P (θ) and θ is a solution of (OPF 1 ).

Once again, we omit the proof that is immediate.

Pareto-front

In order to convexify Problem (OPF 1 ), we are going to study the geometry of the feasible set for Problem (OPF 3 ). The main tool we will use to locate potential solutions is the Pareto-front. This section is dedicated to recall this notion and its main properties. First, we introduce the following order relation

x ≺ y ⇔ ∀i ∈ {1, • • • , n}, x i ≤ y i and ∃i ∈ {1, • • • , n}, x i < y i .
We can then define the notion of Pareto-optimality.

Definition 1 Let A ⊂ R n . A vector x ∈ A is said to be Pareto-optimal in A if y ∈ A, y ≺ x = ∅.
The set of all vectors x ∈ A which are Pareto-optimal in A is called the Pareto-front of A and is denoted by O(A).

Let us notice that the Pareto-front of a set A is always a subset of the topological frontier of A.

The following definition allows to link the Pareto-front with optimization problems.

Definition 2 A function f : A ⊂ R n → R is said to be strictly increasing on A if for all x, y ∈ A such that x ≺ y, we have f (x) < f (y).
We then have the following classical result.

Proposition 3 Let f : A ⊂ R n → R be a strictly increasing function. If x ⋆ = arg min x∈A f (x), then x ⋆ ∈ O(A).
Proof By absurd, suppose that x ⋆ / ∈ O(A). Then there exists x ′ ∈ A such that x ′ ≺ x ⋆ . Since f is strictly increasing, we have f (x ′ ) < f (x ⋆ ). That contradicts the optimality of x ⋆ .

Next, we establish a result that ensures that under certain conditions, nested sets have the same Pareto-front. Up to our knowledge, this result does not exist in the literature, although it is quite elementary. If x ⋆ does not belong to O(B), then there exists x ′ ∈ B such that x ′ ≺ x ⋆ . Hence, we have x ′ ≤ x ⋆ ≤ x and consequently x ′ ∈ C. In addition, f is strictly increasing, therefore we have f (x ′ ) < f (x ⋆ ), which contradicts the optimality of x ⋆ . As a consequence, x ⋆ ∈ O(B). Since x does not belong to O(B), we cannot have x ⋆ = x. Hence we have x ⋆ ≺ x. Now, since

Proposition 4 Let A ⊂ B ⊂ R n . 1. We have A ∩ O(B) ⊂ O(A). 2. If in addition B is a compact set and O(B) ⊂ A, then O(A) = O(B). Proof 1. Let x ∈ A∩O(B). If x / ∈ O(A), then there exists x ⋆ ∈ A such that x ⋆ ≺ x. Since A ⊂ B,
x ⋆ ∈ O(B) ⊂ O(A) ⊂ A, this contradicts x ∈ O(A). Therefore x ∈ O(B) and O(A) ⊂ O(B).

Distribution network of one transmission line

The objective of the following sections is to build a relevant convexification of Problem (OPF 3 ), then to prove that this convexification is exact under some conditions. This type of proof will be based on two main elements:

the geometrical properties of the feasible sets at the local level of a transmission line; the tree structure of the network.

In this section, we are interested in a network constituted of only one transmission line. In a first instance, we don't take into account the injected power constraints. The purpose is to introduce some notations, to prove some geometric results on the feasible set and to come up with a convexification of the problem in this very simplified case. We will then extend these results to the whole network in the following sections.

We consider a graph constituted of a single edge {1, 2} (see Figure 2). For simplicity of notations, the coefficients b 12 and g 12 will simply be noted b and g. The active power flow F 12 and F 21 will respectively be noted by F 1 and F 2 . Finally, the angle θ 12 will be noted θ. T , where

F 12 (θ) = V 2 1 g + V 1 V 2 b sin(θ) -V 1 V 2 g cos(θ), F 21 (θ) = V 2 2 g -V 1 V 2 b sin(θ) -V 1 V 2 g cos(θ). We define A = F (θ) ∈ R 2 , θ ∈ [-π, π] .
Let us notice that A is an ellipse whose axis of symmetry is the line y = x, see Figure 3 (a). The feasible set of the active power flow is defined by

F = F (θ) ∈ R 2 , θ ∈ [-θ, θ] . ( 17 
)
This set is an arc of the ellipse A (see the example in Figure 3 (b), with θ = π/2).

By studying the variations of functions F 1 and F 2 , we can easily see that the Pareto-front of the set F is

O(F) = F (θ) ∈ R 2 , θ ∈ -max(θ, α), min(θ, α) , (18) 
see Figure 3 (c). The purpose here is to build an exact convexification of the set F which can be used in practice. A natural idea is to consider the convex hull of F. However, the convex hull does not have a simple algebraic characterization and is therefore difficult to use in practice for our optimization problem of interest.

We will build another convexification based on a positive semi-definite hermitian matrix formulation which has a very simple algebraic characterization.

We note H + m the set of m × m positive semi-definite hermitian matrices. We introduce the set

H = W ∈ H + 2 , W 1,1 = V 2 1 , W 2,2 = V 2 2 , -tan(θ) Re (W 1,2 ) ≤ Im (W 1,2 ) ≤ tan(θ) Re (W 1,2 ) .
One can easily check that a matrix W of order 2 belongs to H if and only if there exists α ∈

[0, V 1 V 2 ] and θ ∈ [-θ, θ] such that W = V 2 1 αe jθ αe -jθ V 2 2 . ( 19 
)
Moreover, such a matrix is of rank 1 if and only

if α = V 1 V 2 .
The set F can then be written in terms of hermitian matrices of H as follows

F = {Re(diag(W K)), W ∈ H, rank(W ) = 1}, (20) 
where the matrix K is defined by

K = g + jb -g -jb -g -jb g + jb .
By removing the rank constraint in (20), we obtain a convexification of F, i.e. a convex set containing F, which will be denoted by

conv(F) = {Re(diag(W Y )), W ∈ H}. ( 21 
)
Lemma 2 We assume that θ ≤ α. Let (x ⋆ , y ⋆ ) ∈ F and (x, y) ∈ conv(F). Then, we have

1. if x ≤ x ⋆ , then y ≥ y ⋆ ; 2. if x < x ⋆ , then y > y ⋆ ; 3. if y ≤ y ⋆ , then x ≥ x ⋆ ; 4. if y < y ⋆ , then x > x ⋆ .
Proof Since θ ≤ α, thanks to (22), we have (x ⋆ , y ⋆ ) ∈ O(conv(F)). If x ≤ x ⋆ and y < y ⋆ , then we have (x, y) ≺ (x ⋆ , y ⋆ ), which contradicts (x ⋆ , y ⋆ ) ∈ O(conv(F)). The other statements can be proved in a similar way.

Consideration of injected active power constraints

Here, we consider in addition the constraints

P i ≤ F i (θ) ≤ P i , i ∈ {1, 2}.
The feasible set is then written in the form F ∩ F P where F is defined by ( 17) and

F P = F ∈ R 2 , P ≤ F ≤ P .
Note that since F P is convex, the set conv(F) ∩ F P is a simple convexification of F ∩ F P . In order to prove that this convexification is exact, we would like to have

O(F ∩ F P ) = O(conv(F) ∩ F P ). (23) 
However, we can easily see that this equality is not always satisfied. To illustrate this failure, let us consider the following setting θ = π/2, b = 5, g = 2 and V 1 = V 2 = 1. Figure 5 shows different scenarios for the set F ∩ F P , depending on the values of P i and P i . In the cases (a) and (b), the sets O(conv(F) ∩ F P ) and O(F ∩ F P ) are both equal to F ∩ F P and so (23) holds. However, it is not true in case (c), as we can see more clearly in Figure 6.

We observe that those problematic cases only appear when some elements of F are not Pareto-optimal and the values of P i are large enough. To avoid this, a classical assumption is to suppose that all the points of F are Paretooptimal in F (see for instance [START_REF] Lavaei | Geometry of power flows and optimization in distribution networks[END_REF]). This assumption is equivalent to θ ≤ α. In [START_REF] Lavaei | Geometry of power flows and optimization in distribution networks[END_REF]; [START_REF] Huang | A review of the convexification methods for ac optimal power flow[END_REF], authors explain that this assumption does always hold in practice for distribution networks.

Let us notice that under this condition, equality (23) does not necessary hold. But it does not hold only when the feasible set F ∩ F P is empty, as we can see in Figure 7. This alternative is sufficient to apply in the framework of our optimization problem.

In the following section, we generalize and prove relation ( 23) in the case of a general network of m ≥ 2 nodes. We start by generalizing the definitions and notations of Section 4.2 to the case of a whole network.

For each non-oriented edge ψ(ℓ) = {i, k}, we reproduce the convexification of the power flow feasible set F ℓ , defined by (11). We thus introduce where the set H ik is defined by

conv(F ℓ ) = {Re(diag(W K ik )), W ∈ H ik }, (24) 
H ik = W ∈ H + 2 , W 1,1 = V 2 i , W 2,2 = V 2 k , -tan(θ ik ) Re(W 1,2 ) ≤ Im(W 1,2 ) ≤ tan(θ ik ) Re(W 1,2 ) ,
and the matrix K ik is given by

K ik = g ik + jb ik -g ik -jb ik -g ik -jb ik g ik + jb ik .
According to relations ( 13) and ( 15), it is natural to define the convexification of the sets F and P θ by

conv(F) = m-1 ℓ=1 conv(F ℓ ) (25) and conv(P θ ) = A conv(F). ( 26 
)
The sets conv(F) and conv (P θ ) are convex as a product of convex sets and the image by a linear map of a convex set.

Those definitions lead us to consider the following optimization problem min P ∈R m J(P ) s.t. P ∈ conv(P θ ) ∩ P P , (OPF 3 ) where P P is defined by (10).

As stated previously, we obtain (OPF 2 ) as a convexification of (OPF 2 ). On the other hand, Problems (OPF 2 ) and (OPF 3 ) are both equivalent to (OPF 1 ). Moreover, (OPF 2 ) and (OPF 3 ) are equivalent as stated in the following result, whose proof is straightforward and not given here.

Proposition 5 Problems (OPF 2 ) and (OPF 3 ) are equivalent in the following sense:

-If P is a solution of (OPF 3 ), then for every edge {i, k} ∈ E, there exists α ik ∈ [0, V i V k ] and θ ik ∈ [-θ ik , θ ik ] such that we have

P i = k∼i (V 2 i g ik + α ik b ik sin(θ ik ) -α ik g ik cos(θ ik )).
The matrix W defined by

     W i,i = V 2 i , if i ∈ S, W i,k = α ik e jθ ik , if (i, k) ∈ E, W i,k =0, else, (27) 
is then a solution of (OPF 2 ).

In addition, if P ∈ P θ , then the matrix W is of rank 1. -If W is a solution of (OPF 2 ), then by defining

P i = Tr(B i W ), ( 28 
)
where B i is defined by (2.3), the vector P is a solution of (OPF 3 ).

In addition, if the matrix W is of rank 1, then P ∈ P θ . In this case, there exists v ∈ C m such that W = vv * and we have P = P (arg(v)).

In order to prove that the convexification introduced earlier is exact, we need the following assumption.

Assumption A 1 For every edge {i, k} ∈ E, we have

θ ik ≤ arctan b ik g ik .
As introduced in the previous section, the convexification of the feasible set P is conv (P θ ) ∩ P P , where conv(P θ ) is defined by (26). In this section, in a first instance, we establish that O (conv (P θ ) ∩ P P ) = O(P), under certain conditions that will be precised. This result is difficult to prove and will require some preliminary results. We will then deduce the main theorem of this paper, which ensures that the convexification (OPF 2 ) is exact in this framework.

As a first preliminary result, we give a characterization of the vectors of O(conv(P θ ) ∩ P P ).

Lemma 3 Let us suppose that Assumption A 1 holds. Let P ∈ O(conv(P θ ) ∩ P P ) and F ∈ conv(F) be such that P = AF .

If a vertex i ∈ S satisfies P i > P i , then for every vertex k ∈ S such that k ∼ i, we have (F ik , F ki ) ∈ F ℓ , with ψ(ℓ) = {i, k} and i < k.

Proof By absurd, we suppose that P i > P i and that there exists k ∈ S with k ∼ i, such that (F ik , F ki ) / ∈ F ℓ . We will construct a vector P ⋆ ∈ conv (P θ ) ∩ P P such that P ⋆ ≺ P . This will contradict the assumption that P belongs to the Pareto-front of this set.

We have (F ik , F ki ) ∈ conv (F ℓ ) \F ℓ , then according to Lemma 1, there exists δ > 0 such that (F ik -δ, F ki ) ∈ F ℓ and for all ε ∈ [0, δ], we have (F ik -ε, F ki ) ∈ conv (F ℓ ).

We set ε = min (δ, P i -P i ) > 0. Let F ⋆ be defined by

F ⋆ qr = F qr if (q, r) ̸ = (i, k), F ik -ε if (q, r) = (i, k),
and P ⋆ = AF ⋆ . Then we have

P ⋆ i = n∼i F ⋆ in = F ik -ε + n∼i n̸ =k F in = P i -ε
and for all n ̸ = i, we have P ⋆ n = P n . We deduce that P ⋆ ≺ P . Now, let us prove that P ⋆ ∈ conv (P θ ) ∩ P P . We have F ⋆ ∈ conv(F), therefore P ⋆ ∈ conv (P θ ) . On the other hand, since P i ≤ P i -ε = P ⋆ i < P i ≤ P i , we deduce P ⋆ ∈ P P .

Hence, we have proved that P ⋆ ∈ conv (P θ ) ∩ P P .

The following Lemma allows to find a condition for a vector of conv(F) to be in F. This result relies on the tree structure of the network.

Lemma 4 Let us suppose that assumption A 1 holds. Let F ⋆ ∈ F and F ∈ conv(F) such that for every i ∈ S, we have k∼i

F ik ≤ k∼i F ⋆ ik . ( 29 
)
Then, we have F ik = F ⋆ ik , for every (i, k) ∈ E.

Proof We fix arbitrarily a root r of the tree Σ. Let us notice that for a vertex i ∈ S\{r}, of parent k, relation ( 29) writes

F ik -F ⋆ ik ≤ n child of i (F ⋆ in -F in ) . (30) 
First, we show by a bottom-up induction, that for every vertex i ∈ S\{r}, of parent k, we have

F ik ≤ F ⋆ ik . Let i ∈ S \ {r}, of parent k. -If i is an external vertex of Σ (i.e. i has no child), then (30) implies directly that F ik ≤ F ⋆ ik .
-If i is an internal vertex of Σ (i.e. i has at least one child), such that for every child n of i, we have

F ni ≤ F ⋆ ni , then Lemma 2 ensures that F in ≥ F ⋆ in . Relation (30) then implies that F ik ≤ F ⋆ ik .
The property is then true for every vertex i ∈ S \ {r}. Next, we show by a top-down induction that for every internal vertex i ∈ S and for every children n of i, we have

F in = F ⋆ in and F ni = F ⋆ ni . -If i is the root r of Σ, relation (30) writes n child of i (F ⋆ in -F in ) ≥ 0.
From the above, we know that for every child n of i, we have F ni ≤ F ⋆ ni . Therefore, according to Lemma 2, we have F in ≥ F ⋆ in . We deduce that

F in = F ⋆ in . Lemma 2 then implies that F ni ≥ F ⋆ ni , therefore F ni = F ⋆ ni .
-If i is not the root and its parent k satisfies F ki = F ⋆ ki , then according to Lemma 2, we have F ik ≥ F ⋆ ik . From the above, for every child n of i, we have

F ni ≤ F ⋆ ni , therefore according to Lemma 2, F in ≥ F ⋆ in . Relation (30) then writes 0 ≤ F ik -F ⋆ ik ≤ n child of i (F ⋆ in -F in ) ≤ 0 We deduce that F in = F ⋆ in . Lemma 2 ensures that F ni ≥ F ⋆ ni , hence F ni = F ⋆ ni .
We have thus proven that for every (i, k) ∈ E, we have

F ik = F ⋆ ik .
Thanks to these lemmas, we can now prove that the feasible set P θ ∩ P P and its convexification conv (P θ ) ∩ P P share the same Pareto-front, provided the set P θ ∩ P P is non-empty.

Theorem 5 We suppose that Assumption A 1 holds. If P θ ∩ P P ̸ = ∅, then we have O(P θ ∩ P P ) = O (conv (P θ ) ∩ P P ) .

Proof If O (conv (P θ ) ∩ P P ) ⊂ P θ ∩P P , then Proposition 4 ensures that O(P θ ∩ P P ) = O (conv (P θ ) ∩ P P ) . As a consequence, it is sufficient to prove the first inclusion.

Let P ∈ O (conv (P θ ) ∩ P P ) and F ∈ conv(F) such that P = AF . By absurd, we suppose that P / ∈ P θ ∩ P P . The proof will consist in constructing a vector P ′ ∈ conv (P θ ) ∩ P P such that P ′ ≺ P , which will contradict the assumption.

Since P / ∈ P θ , there exists an edge that we note {1, 2} = ψ(1) ∈ E, such that (F 12 , F 21 ) / ∈ F 1 . Let us notice that Lemma 3 ensures that P 1 = P 1 and P 2 = P 2 .

By removing the edge {1, 2} of the graph Σ, we obtain two connected components. We note S 1 and S 2 the set of vertices of the connected component containing the vertex 1 and 2, respectively.

Finally, since P θ ∩ P P ̸ = ∅, there exists P ⋆ ∈ P θ ∩ P P and F ⋆ ∈ F such that P ⋆ = AF ⋆ . Fig. 8: Example of graph Σ and the feasible paths 1st step: there exists a vertex i ∈ S such that P i > P i . Let us suppose this is not the case, in other words that every vertex i ∈ S satisfies P i = P i . Since P i ≤ P ⋆ i , we deduce that for every i ∈ S, we have k∼i

F ik ≤ k∼i F ⋆ ik .
Lemma 4 then ensures that F ik = F ⋆ ik for every oriented edge (i, k) ∈ E. Therefore, we have (F 12 , F 21 ) = (F ⋆ 12 , F ⋆ 21 ) ∈ F 1 , which is impossible. 2nd step: determination of the part of the graph where we will modify P . We call a feasible path every path of vertices q 1 ∼ • • • ∼ q r such that q 1 ∈ {1, 2}; q 2 / ∈ {1, 2}; -P qr > P qr ; for all 1 ≤ i ≤ r -1, we have P i = P i .

We consider the sub-graph Σ = ( S, E) of Σ, connected and maximal, such that every vertex i ∈ S satisfying P i > P i belongs to a feasible path in Σ. In other words, by browsing the graph from 1 or 2, as soon as we meet a vertex such that P i > P i , we remove all its descendants. The feasible paths and the construction of the graph Σ is illustrated for a simple example in Figure 8.

Let us notice that Σ admits two types of leaves:

the leaves i satisfying P i = P i , in which case, this is a leaf from the original tree Σ; the leaves i satisfying P i > P i , in which case, this is not necessarily a leaf of the original tree Σ; according to the first step and by maximality of Σ, there exists at least one leaf of this type in Σ.

The vertices i ∈ Σ which are not leaves necessarily satisfy P i = P i . We now prove that there exists a feasible path q 1 ∼ • • • ∼ q r in Σ such that for all i = 1, • • • , r -1, we have F qiqi+1 < F ⋆ qiqi+1 . By absurd, let us suppose that for all feasible path in Σ, there exists s ∈ {1, • • • , r -1} such that F qsqs+1 ≥ F ⋆ qsqs+1 . We consider then the subgraph Σ = ( S, E) of Σ in which we have removed all the vertices beyond q s+1 in the feasible paths.

Let us consider a leaf i in Σ, whose only neighbor is noted by k. We have two possibilities:

either i corresponds to a q s+1 described previously and then satisfies F ki ≥ F ⋆ ki ; or i is also a leaf of Σ satisfying P i = P i . It is therefore a leaf from the original tree Σ. As a consequence, we have

P i ≤ P ⋆ i , thus F ik ≤ F ⋆ ik . Lemma 2 then ensures that F ki ≥ F ⋆ ki .
We consider now the vertex 1 as the root of Σ. For an internal vertex i ∈ S ∩ S 2 , of parent k, we prove by a bottom-up induction that F ik ≤ F ⋆ ik .

-If all the children of i are external vertices of Σ: since i is an internal vertex of Σ different from the root, it is not a leaf of Σ. Therefore, we have P i = P i , thus

F ik + n child of i F in ≤ F ⋆ ik + n child of i F ⋆ in ,
and then

F ik -F ⋆ ik ≤ n child of i (F ⋆ in -F in ) .
A child n of i, which is an external vertex by assumption, and therefore a leaf of Σ, satisfies according to the above F in ≥ F ⋆ in , thus we have

F ik ≤ F ⋆ ik . -If all the children n of i satisfy F ni ≤ F ⋆ ni , then Lemma 2 ensures that F in ≥ F ⋆
in and we deduce in the same fashion that

F ik ≤ F ⋆ ik .
The result is then true for all the vertices of S ∩ S 2 and in particular for the vertex 2, therefore F 21 ≤ F ⋆ 21 . The same result can be obtained by considering the vertex 2 as a root and the set S ∩ S 1 . We deduce that F 12 ≤ F ⋆ 12 . Lemma 2 then ensures that

F 21 ≥ F ⋆ 21 and F 12 ≥ F ⋆ 12 , therefore (F 12 , F 21 ) = (F ⋆ 12 , F ⋆ 21 ) , which contradicts the fact that (1, 2) / ∈ F 1 . It follows that there exists a feasible path q 1 ∼ • • • ∼ q r in Σ such that for all i = 1, • • • , r -1, we have F qiqi+1 < F ⋆ qiqi+1 and thus F qi+1qi > F ⋆ qi+1qi
according to Lemma 2. We will modify P on the vertices of this feasible path. Now, we conclude this section with a result allowing to connect the solutions of the convexified problem (OPF 2 ) to the solutions of the physiscal problem (OPF 1 ). This result has direct numerical applications, since it allows in practice to solve the convex problem (OPF 2 ) and obtain either a solution of Problem (OPF 1 ), or the non-existence of solutions for this problem.

Theorem 6 We suppose that Assumption A 1 holds. Then we distinguish three cases:

1. if (OPF 2 ) admits a solution W of rank 1, then there exists v ∈ C m such that W = vv * and arg(v) is a solution of (OPF 1 ); 2. if (OPF 2 ) admits a solution W of a rank at least 2, then (OPF 1 ) is infeasible; 3. if (OPF 2 ) is infeasible, then (OPF 1 ) is infeasible. Proof 1. If (OPF 2 ) admits a solution W of rank 1, then there exists v ∈ C m such that W = vv * and Proposition 5 ensures that P = P (arg(v)) is a solution of (OPF 3 ) and that P ∈ P θ . Therefore, we have P θ ∩P P ̸ = ∅ and according to Theorem 5, we have O(conv(P θ ) ∩ P P ) = O(P θ ∩ P P ).

Since the cost function J is strictly increasing, we have P ∈ O(conv(P θ ) ∩ P P ) and therefore P ∈ O(P). We deduce that P is a solution of (OPF 3 ) and thus arg(v) is a solution of (OPF 1 ). 2. If (OPF 2 ) admits a solution W of rank greater than 2, by absurd, let us suppose that (OPF 1 ) is feasible. Then (OPF 3 ) is also feasible, therefore P θ ∩ P P ̸ = ∅. Theorem 5 ensures that O(conv(P θ ) ∩ P P ) = O(P θ ∩ P P ).

In other words, every solution of (OPF 3 ) belongs to P θ . It follows from Proposition 5 that every solution of (OPF 2 ) is of rank 1, which contradicts the assumption. 3. If (OPF 2 ) is infeasible, by absurd, let us suppose that (OPF 1 ) is feasible.

Then (OPF 3 ) is also feasible. As a consequence, we have P θ ∩ P P ̸ = ∅. Since P θ ∩ P P ⊂ conv(P θ ) ∩ P P , we have conv(P θ ) ∩ P P ̸ = ∅, thus (OPF 3 ) is also feasible. It follows from Proposition 5 that (OPF 2 ) is feasible, which is a contradiction.

Numerical tests

We present here some numerical examples to highlight Theorem 6 proved previously and to test if this theoretical result can be extended to take into account reactive powers.

IEEE 37 node test feeder

We consider the distribution network of 37 nodes whose structure is given in Figure 9. The network and the line data are provided in [START_REF] Schneider | Analytic considerations and design basis for the ieee distribution test feeders[END_REF]. The admittance matrix is computed using the code provided in [START_REF] Group | Distribution test feeders[END_REF]. In order to make our tests more relevant, we we provide data values of the lower (upper) bound of the injected active powers, thermal constraint and of the voltages, displayed in Table 1. The F ℓ are chosen so that assumption A 1 holds. For every line {i, k}, we compute the angle α ik defined by ( 16) from admittance y ik . We then set the thermal constraint as F ℓ = F ik (α ik ) + F ki (α ki ). Note that we then have θ ik = α ik .

The computations for Problem (OPF 2 ) are carried out by the primal-dual interior points method, with the function Mosek using Yalmip toolbox on Mat-lab®, see [START_REF] Löfberg | Yalmip : A toolbox for modeling and optimization in matlab[END_REF]; ApS (2019). To solve Problem (OPF 1 ), we use the function FMINCON which relies on a SQP-BFGS type algorithm (see Waltz et al. (2006)). i=1 P i , which represents the total active power losses in the network. This function is strictly increasing with respect to P , in the sense of Definition 2.

Illustration of Theorem 6

In order to highlight Theorem 6, the values of P i , i ∈ {1, • • • , 37} \ {15} are set as in Table 1 and the value of P 15 varies from 0.6 to 2.8, in an increasing manner, in order to make this constraint more and more tight. Also, we set P 15 = 3. The obtained results are displayed in Table 2. We remark that up to the value P 15 = 0.9, the matrix W solution of (OPF 2 ) is of rank 1 and both problems share the same optimal value. For the values between P 15 = 1 and P 15 = 2.6, the matrix W is of rank greater than 1 and in this case the algorithm used for solving Problem (OPF 1 ) fails to find a feasible solution. Finally, for the values P 15 = 2.7 and P 15 = 2.8, the respective algorithms of both problems do not find a feasible solution. These results are consistent with the three cases of Theorem 6.

Consideration of the reactive power constraints

In many practical OPF problems, the consideration of reactive powers constraints is essential. We want to know if Theorem 6 can handle these additional constraints or if more assumptions are required. In this paper, we did not study this case theoretically. However, we will include these additional constraints in the following numerical experience.

The reactive power flow equation is given by

G ik = V 2 i b ik -V i V k g ik sin(θ ik ) + b ik cos(θ ik ) , (31) 
where θ ik is the phase angle. The injected reactive power can be defined from (31) by

Q i = k∼i G ik .
The reactive power constraints of interests write:

Q i ≤ Q i ≤ Q i , for all nodes i.
In the following, we set the values of Q i , i ∈ {1, • • • , 37} \ {2} as in Table 1 and we vary the value of Q 2 between 0.03 and 0.48 in an increasing manner. The value of Q 2 is set to 0.6. All the other parameters are set as in Table 1. The obtained results are displayed in Table 3. For the values between Q 2 = 0.03 and Q 2 = 0.06, the solution W of (OPF 2 ) is of rank 1 and both problems share the same optimal value. For the values Q 2 = 0.09 and Q 2 = 0.10, the matrix W is of rank greater than 1 and the algorithm used to solve Problem (OPF 1 ) fails to find a feasible solution. Finally, for the values Q 2 = 0.47 and Q 2 = 0.48, the algorithms of both problems do not find a feasible solution.

These results shows a similar behavior as Theorem 6. However, to prove it theoretically, some additional assumptions may be required. For instance, in Zhang et al. (2014) a study that takes into account the constraints on the reactive power was carried out, but the amplitudes of the voltages were all equal to 1 and the Q i were assumed to be small enough.

Conclusion

We have presented an AC-OPF problem with fixed voltage magnitudes in a distribution network. This problem is known to be non-convex because of the power flow equations. In order to make it convex, we applied the method used in [START_REF] Bai | Semidefinite programming for optimal power flow problems[END_REF] which consists in reformulating the cost function and the constraints in terms of traces of semi-definite matrices. This leads to a new formulation of the problem in which the non-convexity appears as a rank constraint. By removing this rank constraint, we obtain a convex relaxation of the main problem.

In order to find the conditions under which this relaxation can be exact, we used the notion of Pareto-optimality which is a very adapted tool for our study. We started by studying the problem in the case of a one transmission line network, then extended our results to the case of a whole network.

The main result we have proved is that the constraint set of the problem of interest share the same Pareto-front of its convexified relaxation. Since the cost function is strictly increasing, the relaxation is exact. We then proved a theorem which allows to exploit the convex relaxation in practice to solve the main problem on interest. We concluded by giving some numerical tests to highlight the last theorem of this work.

Some interesting extensions of this work could be:

to extend the main result in the case of variable voltages magnitudes. Some additional assumptions might be required in order to obtain a theorem similar to Theorem 6. reactive powers constrains, i.e. to add the constraints Q i > -∞ and Q i < +∞. In the case of fixed voltage magnitudes, authors of Zhang et al. (2014) shows that the feasible set of the injected reactive power constrains is a simple linear transformation of the feasible set of the injected reactive power. Therefore, by adding an assumption equivalent to Q i = -∞, they showed in this case that Theorem 6 holds.

Waltz RA, Morales JL, Nocedal J, Orban D (2006) An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical programming 107(3):391-408 Zhang B, Lam AY, Domínguez-García AD, Tse D (2014) An optimal and distributed method for voltage regulation in power distribution systems. IEEE Transactions on Power Systems 30(4):1714-1726
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 1 Fig. 1: Example of the graph of a distribution network of 34 nodes

  we have x ⋆ ∈ B. This contradicts x ∈ O(B) and therefore we have A ∩ O(B) ⊂ O(A). 2. Since O(B) ⊂ A, the statement 1. reformulates as O(B) ⊂ O(A). Conversely, let x ∈ O(A) and let us suppose by absurd that x / ∈ O(B). We introduce the set C = B ∩ {y ∈ R n , y ≤ x} , which is compact as an intersection of a compact and a closed set. Let f : C → R be the function defined by f (y) = n i=1 y i . The function f is continuous on C, therefore there exists x ⋆ ∈ C such that x ⋆ = arg min y∈C f (y).
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 2 Fig. 2: Network of one transmission line
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 3 Fig. 3: (a) : the set A, (b) : the set F, (c) : the set O(F)
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 5 Fig. 5: Some possible cases for the set F ∩ F P ; the orange surface corresponds to conv(F) ∩ F P ; the green curve corresponds to F ∩ F P
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 7 Fig. 7: (a) : the relation O(F ∩ F P ) = O(conv(F) ∩ F P ) holds, (b) : the set F ∩ F P is empty

Fig. 9 :

 9 Fig. 9: IEEE 37 node test feeder

Table 2 :

 2 Comparison of the optimal values of Problems (OPF 1 ) and (OPF 2 ) for different values of P 15

		(OPF 1 )	(OPF 2 )
	P 15	optimal value	optimal value	rank of W
	0.6	0.2106	0.2106	1
	0.7	0.2711	0.2711	1
	0.8	0.3376	0.3376	1
	0.9	0.4092	0.4092	1
	1.0	infeasible	0.4861	4
	1.1	infeasible	0.5861	24
	2.5	infeasible	1.9861	35
	2.6	infeasible	2.3569	37
	2.7	infeasible	infeasible	-
	2.8	infeasible	infeasible	-

Table 3 :

 3 Comparison of the optimal values of Problems (OPF 1 ) and (OPF 2 ) for different values of Q 1

		(OPF 1 )	(OPF 2 )
	Q 2	optimal value	optimal value	rank of W
	0.03	0.0176	0.0176	1
	0.04	0.0177	0.0177	1
	0.05	0.080	0.080	1
	0.06	0.086	0.086	1
	0.09	infeasible	0.0485	3
	0.10	infeasible	0.0585	3
	0.47	infeasible	infeasible	-
	0.48	infeasible	infeasible	-
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Let us notice that thanks to the hypothesis θ ≤ π 2 , the set conv(F) is actually convex. Indeed, this set is a sector of an ellipse contained in a half-ellipse, see Figure 4. Without this hypothesis, the set conv(F) would not be convex (except in the case θ = π where conv(F) is the entire ellipse). Once again, the study of variations of F 1 and F 2 shows immediately that O(conv(F)) = O(F). This can also be seen in Figure 4. This result will be later extended to the whole network.

Technical results

We present here some technical results which will be used in the following and which are obtained by making a more restrictive assumption on θ.

First, let us notice that according to 17 and 18, if θ ≤ α, we have

Now we present a characterization of the elements of conv(F)\F.

Lemma 1 Let us assume that θ ≤ α. Let (x, y) ∈ conv(F)\F. Then there exists δ > 0 such that (x -δ, y) ∈ F.

In addition, for all ε ∈ [0, δ], we have (x -ε, y) ∈ conv(F).

Proof Since θ ≤ α, we have O(conv(F)) = F. The function F 2 is strictly decreasing on [-θ, θ], therefore there exists a unique θ ∈

The second statement is immediate by convexity of conv(F).

Finally, we prove a property that allows to reverse the sense of inequalities between the two components of vectors of F and conv(F). 3rd step: Construction of P ′ . Without loss of generality, we assume that q 1 = 1. We set

, where δ > 0 and the numbers λ i ∈]0, 1[ will be fixed in the following. For every other line {i, k} of E, we set F ′ ik = F ik and F ′ ki = F ki . We then define P ′ = AF ′ and we have

and for 2 ≤ i ≤ r -1,

The objective is to have P ′ ≺ P and P ′ ∈ P P , thus P i ≤ P ′ i ≤ P i for every i ∈ S. The vertices q i , for 1 ≤ i ≤ r -1, satisfy P i = P i , therefore we must enforce P ′ i = P i . This implies that

Let us notice that for δ small enough, λ i belongs to ]0, 1[ and can be as close to 1 as we want.

Since F ⋆ qrqr-1 -F qrqr-1 < 0, we deduce that P ′ qr < P qr . By construction, all the other vertices i ∈ Σ\ {q r } satisfy P ′ i = P i , thus we have P ′ ≺ P . 4th step: Verification that P ′ ∈ conv (P θ ) ∩ P P . Let ℓ i be such that ψ(ℓ i ) = {q i , q i+1 }. We first notice that by convexity of conv (F ℓi ) , we have

On the other hand, since (F 12 , F 21 ) ∈ conv (F 1 ) \F 1 , Lemma 3 ensures that (F ′ 12 , F ′ 21 ) belongs to conv (F 1 ) at least for δ small enough. Therefore, for δ small enough, we have P ′ ∈ conv (P θ ). To prove that P ′ ∈ P P , it is sufficient to prove that P ′ qr > P qr . We have

We have seen that by choosing δ small enough, we can make λ r-1 as close to 1 as we want. Since P qr > P qr , we have P ′ qr > P qr for δ small enough, thus P ′ ∈ P P .

We have thus proven that for δ small enough, P ′ belongs to conv (P θ )∩P P . Since P ′ ≺ P , the initial assumption is contradicted.