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Abstract. For the Poisson equation posed in a planar domain contain-
ing a large number of polygonal perforations, we propose a low dimen-
sional approximation space based on a coarse polygonal partitioning of
the domain. Similar to other multi-scale numerical methods, this coarse
space is spanned by basis functions that are locally discrete harmonic.
We provide an error estimate in the energy norm that only depends on
the regularity of the solution over the edges of the coarse skeleton. For a
specific edge refinement procedure, this estimate allows to establish the
superconvergence of the method even if the true solution has a low gen-
eral regularity. Combined with the Restricted Additive Schwarz method,
the proposed coarse space leads to an efficient two-level iterative linear
solver which achieves the fine-scale finite element error in few iterations.
The numerical experiment showcases the use of this coarse space over the
test cases involving singular solutions and realistic urban geometries.

Keywords: Multi-scale finite element method, Trefftz method, Domain
Decomposition

1 Introduction

Let 𝐷 be an open simply connected polygonal domain in R2, we denote by(
Ω𝑆,𝑘

)
𝑘
a finite family of perforations in 𝐷 such that each Ω𝑆,𝑘 is an open

connected polygonal subdomain of 𝐷. The perforations are mutually disjoint
such that Ω𝑆,𝑘 ∩Ω𝑆,𝑙 = ∅ for any 𝑘 ≠ 𝑙. We denote Ω𝑆 =

⋃
𝑘 Ω𝑆,𝑘 and Ω = 𝐷 \Ω𝑆,

assuming that the family
(
Ω𝑆,𝑘

)
𝑘
is such that Ω is connected. Note that the

latter assumption implies that Ω𝑆,𝑘 are simply connected.
In this contribution we consider the following model problem

−Δ𝑢 = 𝑓 in Ω,
𝜕𝑢

𝜕n
= 0 on 𝜕Ω ∩ 𝜕Ω𝑆 ,

𝑢 = 0 on 𝜕Ω \ 𝜕Ω𝑆 .

(1)

Our motivation behind this linear problem lies in the applications to urban
flood modeling. In this context 𝑢 would represent the flow potential (pressure
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head) and
(
Ω𝑆,𝑘

)
𝑘
can be thought of as a family of impervious structures such

as buildings, walls, etc. Although the problem (1) is overly simplified to be
directly used for urban hydraulic modeling, the more general nonlinear elliptic
or parabolic models are common in free surface flow simulations. Such models
arise from Shallow Water equations either by neglecting the inertia terms [1] or
within the context of semi-implicit Froude-robust time discretizations [6].

One of the challenges of the numerical modeling of urban floods is that the
small structural features may significantly affect the flow. Luckily, modern ter-
rain survey techniques allow to acquire high-resolution topographic data, for ex-
ample, the data set used in this article provided by Métropole Nice Côte d’Azur
allows for the infra-metric description of the urban geometries [2].

Depending on the geometrical complexity of the computational domain, the
numerical resolution of (1) may become increasingly challenging. In this regard,
we propose two main approaches to efficiently solve the model problem. Both
methods consider two “levels” of space discretization (see Figure 1). The first
level will be based on a coarse polygonal partitioning of Ω, while the second one
is associated with the fine-scale triangulation and is designed to resolve the small
scale details of the model domain. The coarse polygonal partitioning is first used
to decompose the solution of (1) into the sum of a locally harmonic function
combined with local subdomain contributions that can be efficiently computed
in parallel. This splitting leads to a system that can be seen as a continuous
version of the Schur complement problem. We then introduce a low-dimensional
space that serves to approximate the locally harmonic component of the solution.
This coarse approximation space, called here Trefftz or discrete Trefftz space, is
built upon basis functions that satisfy the local Laplace problems either exactly
or via a finite element approximation. Here, the basis functions have piecewise
linear traces along the edges of the coarse mesh. We note that this coarse space
can be readily extended to use higher-order polynomials on the coarse edges.

The first approach that we are going to investigate involves approximating
the locally harmonic component of the solution (or the solution itself) within
the coarse space. In a way our methodology is similar to MsFEM [8], VEM [5]
or methods combining boundary elements end finite elements (BEM-FEM) [9].
Compared to VEM, the major difference is that we do compute the approxi-
mation of the locally harmonic basis. By doing so, we manage to incorporate
into the coarse space the singular functions corresponding to the corners of the
domain. We are also able to deal with very general polygonal cells (not star-
shaped, not simply connected, etc.), which differs our approach from both VEM
and BEM-FEM. Additionally, we willingly avoid using a method of fundamental
solutions of any kind, because of our long-term motivation in problems more
complex than (1). In comparison to the classical MsFEM, the resonance error is
avoided thanks to a priori geometrical fitting of the coarse degrees of freedom.
Finally, our coarse approximation strategy can be interpreted as a primal version
of the MHM method [3].

The second approach combines the coarse approximation with local subdo-
main solves in a two-level Domain Decomposition method. This results in an
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efficient iterative solver for the algebraic system resulting from the fine-scale fi-
nite element method. The obtained algorithm can also be thought as a way of
improving the precision of the original coarse approximation in the spirit of iter-
ative multi-scale methods (see e.g. [7]). We note that alternatively, the discrete
Trefftz coarse space can be used as a component of a two-level preconditioner for
a Krylov method. This approach has been investigated in our previous article
[4].

2 Schur complement problem and Trefftz approximation

We begin with a coarse discretization of Ω which involves a family of polygonal
cells

(
Ω 𝑗

)
𝑗=1,...,𝑁 , the so-called coarse skeleton Γ, and the set of coarse grid

nodes that will be referred to by V. The construction is as follows. Consider a
finite nonoverlapping polygonal partitioning of 𝐷 denoted by

(
𝐷 𝑗

)
𝑗=1,...,𝑁 and

an induced nonoverlapping partitioning of Ω denoted by
(
Ω 𝑗

)
𝑗=1,...,𝑁 such that

Ω 𝑗 = 𝐷 𝑗∩Ω. We will refer to
(
Ω 𝑗

)
𝑗=1,...,𝑁 as the coarse mesh over Ω. Additionally,

we denote by Γ its skeleton, that is Γ =
⋃

𝑗=1,...,𝑁 𝜕Ω 𝑗 \ 𝜕Ω𝑆.
Based on the coarse partitioning and with the problem (1) in mind, we split

𝐻1 (Ω) into a direct sum of its subspaces 𝐻1
Δ
(Ω) and 𝐻1

Γ
(Ω). Here, 𝐻1

Γ
(Ω) is a

subspace of functions vanishing at Γ and 𝐻1
Δ
(Ω) its 𝐻1−orthogonal complement

made of locally harmonic functions. Using the orthogonal decomposition intro-
duced above we can express the weak formulation of (1) as the following Schur
complement problem: Find 𝑢 = 𝑢Δ + 𝑢𝑏 with 𝑢Δ ∈ ∩𝐻1

𝜕Ω\𝜕Ω𝑆
(Ω) and 𝑢𝑏 ∈ 𝐻1

Γ
(Ω)

satisfying {
(𝑢Δ, 𝑣)𝐻1 (Ω) = ( 𝑓 , 𝑣)𝐿2 (Ω) ∀𝑣 ∈ 𝐻1

Δ
(Ω) ∩ 𝐻1

𝜕Ω\𝜕Ω𝑆
(Ω),

(𝑢𝑏 , 𝑣)𝐻1 (Ω) = ( 𝑓 , 𝑣)𝐿2 (Ω) ∀𝑣 ∈ 𝐻1
Γ
(Ω). (2)

We remark that the local “bubble” component of the solution 𝑢𝑏 can be
computed from (2) locally (and in parallel) on each Ω 𝑗 , while the problem for
𝑢Δ is globally coupled over Ω.

We now proceed with the approximation of the locally harmonic compo-
nent 𝑢Δ. For this, we introduce the Trefftz coarse space, a finite-dimensional
subspace 𝑉𝐻 of 𝐻1

Δ
(Ω) that is spanned by the functions that are piecewise lin-

ear on the skeleton Γ. Let (𝑒𝑘 )𝑘=1,...,𝑁𝑒
denote a nonoverlapping partitioning of

Γ such that each “coarse edge” 𝑒𝑘 is an open planar segment, and we denote
𝐻 = 𝑚𝑎𝑥𝑘=1,...,𝑁𝑒

|𝑒𝑘 |. We note that a straight segment of Γ may be subdivided
into multiple edges (see Figure 4). The set of coarse grid nodes is given by
V =

⋃
𝑘=1,...,𝑁𝑒

𝜕𝑒𝑘 .
The coarse nodal basis is defined by the following set of boundary value

problems. For all Ω 𝑗 and for all 𝑠 = 1, . . . , 𝑁V , find 𝜙
𝑗
𝑠 ∈ 𝐻1 (Ω 𝑗 ) such that 𝜙

𝑗
𝑠 is

the weak solution to the following problem
Δ𝜙

𝑗
𝑠 = 0 in Ω 𝑗 ,

𝜕𝜙
𝑗
𝑠

𝜕n
= 0 on 𝜕Ω 𝑗 ∩ 𝜕Ω𝑆 ,

𝜙
𝑗
𝑠 = 𝑔𝑠 on 𝜕Ω 𝑗 \ 𝜕Ω𝑆 ,

(3)
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where 𝑔𝑠 is a skeleton “hat” basis function, that is 𝑔𝑠 : Γ → R is continuous on
Γ, linear on each edge 𝑒𝑘 and satisfies 𝑔(x𝑖) = 𝛿𝑖𝑠 for all nodes x𝑖.

Let 𝑉𝐻,0 = 𝑉𝐻 ∩𝐻1
𝜕Ω\𝜕Ω𝑆

(Ω). The Galerkin method based on the coarse space

reads as follows: find 𝑢𝐻 ∈ 𝑉𝐻,0 such that

(𝑢𝐻 , 𝑣𝐻 )𝐻1 (Ω) = ( 𝑓 , 𝑣𝐻 )𝐿2 (Ω) ∀𝑣𝐻 ∈ 𝑉𝐻,0. (4)

Combining best approximation property of the coarse approximation 𝑢𝐻 , clas-
sical finite element interpolation theory in one dimension, and an interpolation
inequality we obtain the following error estimate for the approximation of 𝑢Δ.

Proposition 21 Assume that there exists a finite nonoverlapping partitioning
(𝛾𝑙)𝑙=1,...,𝑁𝛾

of Γ such that the traces of 𝑢 belong to 𝐻2 (𝛾𝑙) for all 𝑙; assume in
addition that the set of coarse edges (𝑒𝑘 )𝑘 is a subdivision of (𝛾𝑙)𝑙. There exists
𝐶 > 0 depending only on (Ω 𝑗 ) 𝑗 and (𝛾𝑙)𝑙 such that

‖∇(𝑢Δ − 𝑢𝐻 )‖𝐿2 (Ω) ≤ 𝐶𝐻
3
2
©­«
𝑁𝛾∑︁
𝑙=1

‖𝑢‖2
𝐻2 (𝛾𝑙)

ª®¬
1
2

. (5)

We remark that the broken 𝐻2 norm in the right-hand side of (5) involves
only the traces of the solution along the sections of the coarse skeleton. There-
fore, this estimate is valid for 𝑢 having low general regularity that is due, for
example, to corner singularities. As a matter of fact, the estimate (5) provides
an a priori criterion for the adaptation of the coarse mesh: one has to ensure that
the edge norm in the right-hand side is small. For 𝑓 regular enough, this can be
achieved by moving the coarse edges away from the “bad” perforation corners.
We further note that this estimate is especially valuable for a so-called space
or edge refinement, which is a procedure that involves splitting the edges of an
otherwise fixed coarse grid. In that case, one observes the superconvergence of
the error with a rate of 3/2.

3 Discrete Trefftz space and two-level Schwarz method

Let us consider the triangulation of Ω which is assumed to be conforming with
respect to the polygonal partitioning

(
Ω 𝑗

)
𝑗=1,...,𝑁 (see Figure 1). We denote

by 𝑉ℎ the space of piecewise linear continuous function over this triangulaiton,
where ℎ denotes the maximal element diameter. The associated “fine-scale” finite
element discretization of (1) results in the linear system Au = f . Because the
triangular mesh resolves the fine-scale structure (the perforations), the latter
system may be quite large; moreover the size of the triangular elements may
vary by several orders of magnitude. As a result the matrix A is expected to be
poorly conditioned. Below, we will show how the coarse space introduced in the
previous section can be combined with RAS to construct a simple yet efficient
iterative linear solver for the fine-scale finite element method.
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Fig. 1: Left: coarse (thick lines) and fine (thin lines) discretizations, with the
coarse nodes shown by red dots. Right: finite element solution with 𝑓 = 1.

Let us begin with the coarse space component. In most practical situations,
the coarse basis functions defined by (3) cannot be computed analytically. There-
fore, we consider the finite element approximation of 𝑉𝐻 denoted by 𝑉𝐻,ℎ. The
basis of the discrete Trefftz space is obtained through the finite element approx-
imation of (3). Let R𝐻 be a transition matrix from the discrete Trefftz basis
of 𝑉𝐻,ℎ toward the standard finite element nodal basis of 𝑉ℎ. The finite ele-
ment counterpart of (4) can be expressed algebraically as u𝐻 = 𝑀−1

𝐻
f , where

𝑀−1
𝐻

= R𝑇
𝐻
(R𝐻AR𝑇

𝐻
)−1R𝐻 .

Let
(
Ω′

𝑗

)
𝑗=1,...,𝑁

denote the overlapping partitioning of Ω such that Ω 𝑗 ⊂
Ω′

𝑗
. In practice, each Ω′

𝑗
is constructed by propagating Ω 𝑗 by a few layers of

triangles. Consider classical boolean restriction matrices R′
𝑗
associated to the

family
(
Ω′

𝑗

)
𝑗=1,...,𝑁

. We introduce the following iterative procedure

u𝑛+1/2 = u𝑛 + 𝑀−1
𝐻

(f −Au𝑛)
u𝑛+

1
2 = u𝑛+

1
2 + 𝑀−1

𝑅𝐴𝑆
(f −Au𝑛+

1
2 ) (6)

where 𝑀−1
𝑅𝐴𝑆 =

𝑁∑︁
𝑗=1

(
R′

𝑗

)𝑇
D 𝑗 (A′

𝑗 )−1R′
𝑗 and A′

𝑗
= R′

𝑗
A

(
R′

𝑗

)𝑇
, while D 𝑗 denote the

partition-of-unity matrices.

4 Numerical Results

In this section, we illustrate the performance of the discrete Trefftz space within
two different scenarios involving either a standalone Galerkin approximation (4)
or an iterative approach (6). In particular, we will provide numerical evidence of
the error estimate (5) over the case involving a solution with a corner singularity.
The numerical investigation of the iterative algorithm (6) shows that the fine-
scale finite element error can be achieved in few iterations.
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Fig. 2: Coarse and fine discretizations of the L-shaped domain with varying de-
grees of edge refinement.

Convergence of discrete Trefftz approximation method: We begin with a
test case involving a classical L-shaped domain with a reentering corner (Figure

2). The domain is defined by 𝐷 = (−1, 1)2, Ω𝑆 = (0, 1)2 and Ω = 𝐷 \ Ω𝑆.
We consider the problem (1) with zero right-hand side and a non-homogeneous
Dirichlet boundary condition on 𝜕Ω\𝜕Ω𝑆 provided by the singular exact solution
𝑢(𝑟, 𝜃) = 𝑟

2
3 cos( 23 (𝜃 − 𝜋/2)).

In order to assess the convergence of the discrete Trefftz method, we consider
two strategies regarding the refinement of the coarse partitioning. The procedure
involving the reduction of the diameter of the coarse cells will be referred to as
mesh refinement. The sequence of such meshes will be constructed as follows:
first the background domain 𝐷 is partitioned into 𝑁 = (2𝑝 + 1)2, 𝑝 ∈ N, squares,
then the coarse cells Ω 𝑗 are generated by excluding Ω𝑆. The choice of 𝑁 being a
square of an odd number ensures the consistency of the mesh sequence in terms
of the shape of the elements. Alternatively, we consider the edge refinement
procedure, which accounts for subdividing the edges of an original “3 × 3 grid”.
This edge refinement approach is illustrated by Figure 2. Let us stress that under
these refinement procedures, none of the coarse grids will have degree of freedom
located at the corner (0, 0). As the result, the corner singularity will be captured
by the basis functions associated with the L-shaped domain. We also note that
in order to improve the precision of the fine-scale finite element method, the size
of the triangles is graded in the vicinity of the corner (0, 0).

Figure 3 reports the error in 𝐿2 and the energy norms as the function of
maximal coarse edge length 𝐻. The black horizontal line represents the typical
fine-scale finite element error. As expected, we observe that the convergence
of the discrete Trefftz method deteriorates as the coarse error approaches this
value. In accordance with the error estimate (5), for the edge refinement, we
observe superconvergence in the energy norm with the rate slightly superior
to 3/2. We note that that the convergence rate in 𝐿2 appears to be superior
to 5/2. In contrast, the convergence resulting from the mesh refinement seams
to be controlled by the low global regularity of the solution. We observe the
convergence rates typical for finite element methods on quasi-uniform meshes.
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Fig. 3: Coarse approximation error for L-shaped domain with edge (blue) and
subdomain (orange) refinement in 𝐿2 norm (left) and the energy norm (right).

Convergence of the two-level iterative method: Next, we examine the per-
formance of the iterative scheme (6) over the L-shaped domain considered pre-
viously and a domain based on realistic urban geometries for which the datasets
were kindly provided by Métropole Nice Côte d’Azur. The domain involving a
small portion of the structural topography of the city of Nice is shown in Figure
1. The dataset contains two kinds of structural elements, namely buildings (and
assimilated small elevated structures) and walls.

We report on Figure 4 the convergence history of the iterative method for
both L-shaped and urban domains; more precisely, we report the convergence
of the full 𝐿2 error, that is the norm of the difference between the intermedi-
ate approximation and some accurate solution of (1). Each figure reports the
convergence history for linear systems based on increasingly refined background
triangulation. The typical width of the overlap in RAS method is of diam(Ω 𝑗 )/20.

For the L-shaped domain, as before, we put 𝑓 = 0 while using the non-
homogeneous Dirichlet boundary conditions. For the realistic data set we solve
(1) with 𝑓 = 1; the fine-scale finite element solution is reported on Figure 1. As
the exact solution is not available for the case based on the urban data, we use
a reference numerical solution obtained on a very fine grid.

We observe that the error of the fine-scale finite element method (black lines)
can be reached relatively fast. Further iterations do not improve the overall pre-
cision of the approximate solution even though the algebraic error may decrease.
For the L-shaped domain, the convergence of the full error is essentially expo-
nential; moreover the decay rate of the full error remains consistent with respect
to the finite size ℎ of the fine-scale triangulation.
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Fig. 4: Convergence of the two-level iterative method for the L-shaped domain
on 3 × 3 subdomains (left) and the urban dataset on 8 × 8 subdomains (right).
The black horizontal lines show the error of the fine-scale finite element method.
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