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Abstract: The accurate prediction of significant wave height (SWH) offers major safety improvements
for coastal and ocean engineering applications. However, the significant wave height phenomenon
is nonlinear and nonstationary, which makes any prediction work a non-straightforward task. The
aim of the research presented in this paper is to improve the predicted significant wave height
via a hybrid algorithm. Firstly, an empirical mode decomposition (EMD) is used to preprocess
nonlinear data, which are decomposed into several elementary signals. Then, a least squares support
vector machine (LSSVM) with nonlinear learning ability is adopted to predict the SWH, and a
particle swarm optimization (PSO) automatically performs the parameter selection of the LSSVM
modeling. The results show that the EMD–PSO–LSSVM model can compensate for the lag in the
prediction timing of the prediction models. Furthermore, the prediction performance of the hybrid
model has been greatly improved in the deep-sea area; the prediction accuracy of the coefficient of
determination (R2) increases from 0.991, 0.982, and 0.959 to 0.993, 0.987, and 0.965, respectively. The
prediction performance results show that the proposed EMD–PSO–LSSVM performs better than the
EMD–LSSVM and LSSVM models. Therefore, the EMD–PSO–LSSVM model provides a valuable
solution for the prediction of SWH.

Keywords: wave prediction; significant wave height; empirical mode decomposition; particle swarm
optimization; least squares support vector machine

1. Introduction

Massive maritime operations increase the requirement for improved wave forecasting
techniques. Understanding accurate wave conditions allows for more efficient and safer
maritime activities and coastal management, for instance, the installation of marine struc-
tures, ports and docks, marine transportation and navigation, and shoreline protection,
especially to prevent coastal erosion and more [1,2]. Furthermore, wave research can
further develop ocean wave resources, and the use of wave energy converters can convert
wave energy into electrical energy [3]. Wave prediction data can help to provide motion
compensation, which may prevent the crash of cargo in cargo transfer, improve the firing
accuracy of ship-borne weapon systems, and performance of the motion control systems [4].
Significant wave height (SWH) is an effective feature of ocean waves. However, most
researchers have only focused on predicting the height of the wave and not on predicting
the pair of values of the significant height of the wave and its period, which will make the
maritime activities and coastal management more efficient and safer. Therefore, the purpose
of this paper is to achieve the efficient prediction of ocean waves by predicting SWH.

Many factors affect wave formation, including air pressure, temperature, wind speed,
wind direction, and so on. Over the past few years, several numerical methods have been
developed to predict the SWH, such as the Sverdrup, Munk and Bretschneider (SMB), and
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Pierson–Neumann–James (PNJ) manual-based methods, and the numerical calculation
model is based on differential equations [5]. These methods calculate wave height from
the wind information based on wind–wave relationships. However, they need to compute
elaborate meteorological and oceanographic data sets and thus involve an enormous
amount of computational effort. In addition, due to the uncertainty of the wind–wave
relationship, there may be some uncertainty when converting wind energy into wave
energy, and the predicted results have not always been very accurate [6]. The complicated
coastal geomorphology, coastal erosion, and structure conditions make wave forecasting
very difficult.

Later, artificial intelligence methods based on linear and nonlinear models, or hybrid
models were applied to predict the SWH [7–10]. The observations based on historical data
are often used as the input to predictive models in artificial intelligence. The wind speed is
an important parameter for wave prediction. Many scholars had used the wind speed as
the input to the prediction model to predict the SWH [11]. Deo pointed out that providing
wave information on certain locations should be carried out based on the sea and/or
meteorological measurements in that location, or as near to it as possible [12]. Mahjoobi
used the wind speed as the model input to predict the SWH, which further illustrated that
the hysteresis of wind speed can increase the error of the predicted SWH [13]. Compared
with numerical analysis, those methods had achieved good prediction results, and the
prediction accuracy had been improved. However, uncertain factors such as wind speed,
direction, and wind propagation distance can affect the generation and development of
waves; the correlation coefficient of the results between the observed and the predicted
data is not always satisfactory. In recent years, many scholars have used the data of past
waves as the input of the model to predict the waves at a future moment [14]. Jain only
used the effective wave height as the input of the model when studying local wind, which
has a good prediction effect [15]. Through the above analysis, it can be found that the
historical wind and waves contain different information, so the prediction effect is different
when used as the input of the model. Using a wind model as an input works well for
predicting waves at specific locations. However, due to the hysteresis of wind speed and
other unpredictable factors, when we study a local wave using the observed historical
wave data—which contain implicitly all the practical factors, such as the air pressure,
temperature, local geomorphology, wind speed, and wind direction—as the input of the
prediction model, it can have a better prediction effect.

However, accurate SWH prediction requires a large amount of sensor-based data
and high-performance computations, so wave height predictions are often not always
very accurate [16–18]. With the development of machine learning, time series analysis
provides computationally alternative solutions mainly based on historical wave height
data [19,20]. Such modeling approaches have the advantage of being based on previous
data and wave patterns, thus avoiding heavy computational resources. Early combinations
of wave prediction based on machine learning apply classical time series models, such as
the auto-regressive (AR) model, auto-regressive moving average (ARMA) model, and an
autoregressive integrated moving average (ARIMA) model [21–23]. Soares applied AR
models to describe the SWH time series in two Portuguese coast locations. Later, the AR
models were further generalized from the application of univariate models of long-term
SWH time series to SWH bivariate series and mean periods [24,25]. However, predictions
based on a single AR model in harsh conditions have poor performance. To further improve
the prediction performance, Agrawal applied ARMA and ARIMA models to predict the
wave heights for 3, 6, 12, and 24 h of offshore location in India, respectively [26,27]. Despite
the high efficiency and adaptiveness of classical time series models, the prediction results
in severe sea conditions are far from being accurate enough. Since waves are always
nonstationary, the linear and stationary classical time series models’ assumptions are not
rigorously valid. Consequently, these approaches are not suitable for predicting nonlinear
and nonstationary waves.
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To address the nonlinear component of ocean waves, intelligent-technique-based
nonlinear models such as artificial neural networks (ANNs) models have been extensively
studied. Such methods can carry out nonlinear simulations without a deep understanding
of the relationships between the input and output variables. Deo and Sridhar Naidu were
amongst the first to apply an ANN to predict, in real-time, the wave in the next 3–24 h
using past wave data [28]. To estimate the large wave height and average wave periods,
Deo used wind velocity and fetched data [12]. Tsai applied an ANN-based on data from
three wave graph stations in areas with different physical characteristics for short-term
estimation of the wave height [29]. Makarynskyy used ANN for substantial wave height
prediction and for the subsequent 1–24 h forecast times [30]. Mandal and Prabaharan used
a recurrent neural network (RNN) for wave height prediction in Marmugao, west coast
of India [31]. They showed that the wave prediction using RNN provides better results
than the other neural network-based methods. One of the limitations of the neural network
approach is that it needs to find network parameters such as the number of hidden layers
and neurons by trial and error, which is time-consuming. Mahjoobi and Adeli Mosabbeb
applied support vector machine (SVM) to predict the wave height; the analysis showed that
the SVM model had a reasonable precision compared to ANN-based methods, which took
less computation time [32]. Different experiments on the prediction performance in Lake
Superior were carried out by Etemad-Shahidi and Mahjoobi, and they compared the model
trees and feedforward backpropagation ANNs [13]. Their findings revealed that the model
tree system was the most precise. Dixit found the phenomenon of prediction time lag while
using ANNs to predict the ocean wave height. They used a discrete wavelet transform to
enhance the predicted values and to remove the lag in the prediction timing [33]. Akbarifard
and Radmanesh introduced a symbiotic organisms search (SOS) to predict the ocean wave
heights. Their findings showed that the SOS algorithm performed better than that of the
support vector regression (SVR), ANN [34]. Fan proposed a long short-term network for the
quick prediction of the SWH with higher accuracy than the convolutional neural network
(CNN) [35].

SWH is impacted by various components in a nonlinear, dynamic way [36]. The time
series prediction of non-stationary data by ANN methods can lead to the homogenization
of the different characteristics of the original input data, which can affect the prediction
accuracy. Accordingly, the non-stationarity of the time series of the SWH and input variables
should be reduced. To handle the nonstationary features, the inputs of the corresponding
data-driven models should be appropriately preprocessed. Hybrid models combining
preprocessing techniques with single prediction models are possible alternatives. The
wavelet analysis can be used for nonstationary data [37]. Deka and Prahlada developed
a wavelet neural network model by hybridizing ANN with a wavelet transform, and
the prediction results suggested that the hybrid models outperformed single models [38].
Kaloop designed the wavelet-PSO–ELM (WPSO–ELM) model for estimating the wave
height belonging to coastal and deep-sea stations. The results showed that the WPSO–ELM
outperforms other models for wave height prediction in both hourly and daily leading
times [39]. Essentially, a linear and nonstationary solution is based on wavelet transform.
It represents a signal through a linear combination of functions of the wavelet base. For
nonlinear data, it may not be suitable [40]. The other issue with wavelets is that they
require a well-suited mother wavelet transform a priori [41]. This is still an unresolved
issue and generally requires a lengthy trial and error process [42]. In hybrid prediction
models, a more effective decomposition technique is needed to overcome the nonlinearity
and non-stationarity instantaneously.

When considering nonlinear and nonstationary data sets, a data-driven methodology
known as empirical mode decomposition (EMD) is efficient and adaptive [43]. The EMD
multiresolution utility offers self-adaptability by avoiding the need for any basis function
and mother wavelets. It functions as a dyadic filter that divides a large frequency band
complex signal into relatively essential, time-scale components [44]. Duan proposed
EMD–SVR for the short-term prediction of ocean waves. The result showed the EMD–SVR
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model shows good model performance and provides an effective method for the short-term
prediction of nonlinear and nonstationary waves [44].

Based on the above analysis, we introduce an EMD and particle swarm optimization
(PSO) and least-squares SVM (LSSVM) based model whose objective is to improve the SWH
prediction performance. The LSSVM with nonlinear learning ability can be used for signal
prediction, while EMD provides an empirical analysis tool for processing nonlinear and
nonstationary data sets. Preprocessing with EMD can reduce the prediction complexity;
PSO is a swarm intelligence optimization algorithm, and by updating the distance between
the current and best locations, the important parameters of LSSVM are optimally adjusted
by PSO to improve the prediction accuracy of a single LSSVM.

The remainder of this paper Is organized as follows. The proposed EMD–PSO–LSSVM-
based prediction model is described in Section 2. The wave data and prediction measures
are presented in Section 3. The performance of the proposed method is assessed in Section 4.
Finally, the conclusion is highlighted in Section 5.

2. Methodology Formulation
2.1. EMD–PSO–LSSVM Prediction Model

Ocean wave time series is a type of complicated nonlinear and nonstationary signal
composed of various oscillation scales. When performing wave predictions, the different
oscillation scales widely impact the quality of the LSSVM model. Combining an EMD
model with the LSSVM model is likely to enhance the wave height prediction. The EMD is
adopted to decompose the wave height series into one residual series and several intrinsic
mode functions (IMFs). Then, the residual series and IMFs are modeled by the LSSVM
model. Finally, wave height prediction can be achieved by summing the prediction outputs
of the subseries. Moreover, a PSO algorithm is employed to optimize the important
parameters in the LSSVM to increase the prediction accuracy. The specific steps of the
EMD–PSO–LSSVM prediction algorithm are displayed in Figure 1. The next part is to
present the hybrid technique separately.
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2.2. Preprocess Data by EMD

Empirical mode decomposition (EMD) is an empirical analysis tool used for processing
nonlinear and nonstationary data sets. The main idea of an EMD is to decompose the
nonlinear and nonstationary time series into a sum of several simple intrinsic mode function
(IMF) components and one residue with individual inherent time scale properties. Each
IMF represents a natural oscillatory mode and has to satisfy the following two conditions:

(a) The number of extremes and the number of zero-crossings should be equal, or differ
by one.

(b) The local average should be null, i.e., the means of the upper envelope defined by the
local maxima and the lower envelope defined by the local minima are null.

With a given SWH time sequence x(t), the EMD processing steps are summarized
as follows:

(1) Identify the local extrema.
(2) Generate the upper envelope u(t) and the lower envelope l(t) via a spline interpola-

tion among all the local maxima and the local minima, respectively. Then, the mean
envelope is obtained as follows: m(t) = [l(t) + u(t)]/2.

(3) Subtract m(t) from the signal x(t) to obtain the IMF candidate, i.e., h(t) = x(t)−m(t).
(4) Verify whether h(t) satisfies the conditions for IMFs, and carry out step (1) to step (4)

until h(t) is an IMF.
(5) Obtain the nth IMF component im fn = h(t) (after n shifting processes) and the

corresponding residue r(t) = x(t)− h(t).
(6) Repeat the whole algorithm with r(t) obtained in step (5) until the residue is a mono-

tonic function.
(7) By implementing these algorithms, the decomposition procedure of a signal is ex-

pressed as

x(t) =
n

∑
i=1

im fi(t) + r(t). (1)

2.3. Least Squares Support Vector Machine (LSSVM)

SVM is a statistical learning theory-based method with a strong capacity to handle
nonlinear problems. Its basic idea is to map nonlinear data into a high dimensional feature
space using a nonlinear mapping function, where linear techniques are available. LSSVM
is the least-squares formulation of a standard SVM. Unlike the inequality constraints
introduced in the standard SVM, LSSVM proposes equality constraints in the formulation.
This changes the solution being transformed from one of solving a quadratic program to a
set of linear equations known as the linear Karush–Kuhn–Tucker (KKT) systems. LSSVM is
a nonlinear prediction model based on SVM theory, widely applied in short-term prediction
problems. LSSVM has been retained thanks to its good generalization ability. It has been
shown that the performance of an LSSVM model in the prediction problem is better than
other nonlinear models. The basic idea of the method can be described as follows.

A training data set of N stations is given {(xi, yi), i = 1, 2, . . . , N} with input data
xi ∈ RN and output data yi ∈ R. A nonlinear mapping function is defined to map the input
data into the high dimensional feature space. In the high dimensional feature space, there
theoretically exists a linear function to express the nonlinear relationship between input
and output data. Such a linear function, namely the LSSVM function, can be defined as

y(xi) = ωTφ(xi) + b, (2)

where ω and b are adjustable coefficients. The corresponding optimization problem for
LSSVM is formulated as Min J(ω, ei) =

1
2‖ω‖2 + 1

2 C
N
∑

i=1
ei

2

y(xi) = ωTφ(xi) + b + ei

, (3)
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where C denotes the regularization constant and ei represents the training data error.
The Lagrangian is represented by

L(ω, ai, b, ei) = J +
N

∑
i=1

ai[yi −ωTφ(xi)− b− ei]. (4)

From the Karush–Kuhn–Tucker (KKT) conditions, the following equations must
be satisfied:

∂L
∂ω

= 0;
∂L
∂ai

= 0;
∂L
∂b

= 0;
∂L
∂ei

= 0. (5)

The solution is found by solving the system of linear equations expressed in the
following matrix form: [

0 1T
v

1 Ψ + C−1 I

][
b
a

]
=

[
0
y

]
, (6)

where y = [y1, . . . , yN ]
T , 1v = [1, . . . , N]T , a = [I., aN ]

T ; I denotes the identity matrix;
Ψij = K

(
xi, xj

)
, i . . . = 1, . . . , N, which satisfies Mercer’s condition.

The LSSVM regression model becomes

f
(
xi, xj

)
=

n

∑
i=1

aiK
(
xi, xj

)
+ b, (7)

where ai denotes the Lagrange multipliers that can be obtained by solving the dual problem;
K
(

xi, xj
)

denotes the kernel function which equals the inner product of φ(xi) and φ
(

xj
)
.

The most frequently used kernel functions are the polynomial kernel function, sigmoid
kernel function, and radial basis function (RBF) kernel. Considering that the RBF kernel is
not only easy to implement but also is an efficient tool for dealing with nonlinear problems,
the RBF function is adopted in this paper. The RBF function is defined by

K
(
xi, xj

)
= exp

(
−
‖xi − xj‖2

2σ2

)
. (8)

The efficiency of the LSSVM generalization (prediction accuracy) depends on the good
collection of meta parameters, C, σ, and parameters of the kernel. When the RBF function is
selected, the parameters (C and σ) must be optimized using the PSO–LSSVM system. The
regularization parameter C and kernel parameter σ of LSSVM have a significant influence
on the classification accuracy. The choices of C and σ govern the model’s complexity
of the prediction.

2.4. LSSVM Optimization by PSO

To avoid the under-fitting and over-fitting issues, the LSSVM model’s hyper-parameters
should be appropriately tuned. The PSO algorithm is used to find the best values of C and
σ in LSSVM. The LSSVM fitting process optimized by the PSO is shown in Figure 2.

PSO uses the velocity–position search model. The iteration formula adjusting the
position and speed of a particle is as follows:

Vt+1
i = wVt

i + c1r1
(

pbest − Xt
i
)
+ c2r2

(
gbest − Xt

i
)
, (9)

Xt+1
i = Xt

i + Vt+1
i , (10)

where w denotes the inertial weight; c1 and c2 denote the cognition and social learning
factors, respectively; r1 and r2 are two random numbers; t denotes the tth iteration; Xt

i
denotes the position of particle i in d-dimensional space, which denotes the current value
of LSSVM parameters C and σ; Vt

i denotes the velocity of particle i in d-dimensional space,
which decides to update the direction and distance of the next generation of C and σ;
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pbest denotes the best position that every particle can be obtained during the execution of
the PSO method; gbest denotes the best situation that particles have obtained during the
implementation of the PSO method.
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Some parameter descriptions and parameter settings of the PSO algorithm are listed.
The iteration t is set to 50; the default values of c1 and c2 are set to 1. These default
values can ensure that particles are more affected locally or globally; r1 and r2 are two
random numbers in the range [0, 1]. w is the weight factor. The inertial weight determines
the influence of the previous velocity on the current one. A considerable inertia weight
facilitates global exploration, while a small one tends to facilitate local exploration. A
suitable value of the inertia weight usually provides a balance between the global and
regional exploration abilities. We use a linearly decreasing inertia weight, which starts at
0.9 and ends at 0.4. The performance of PSO can be significantly improved. TIe inertial
weight can be expressed as follows:

w = wmax −
wmax − wmin

tmax
× t, (11)

where wmax and wmin denote the initial and terminal weights, respectively; tmax denotes
the maximum iteration counter. New fitness values of the particles are calculated after
the velocity and position updating if required. pbest and gbest are also updated, and the
same procedure is performed continuously until the stop criteria are satisfied. Usually, the
velocity of each particle is restricted to a maximum value within the interval [−0.01, 100],
which is defined according to the bounds on decision variables.
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3. Descriptions of the Wave Data and Prediction Accuracy Measures
3.1. Raw Data

Two North Atlantic Ocean areas have been selected to predict the SWH. The SWH
and meteorological series were downloaded from National Data Buoy Center (NDBC)
(https://www.ndbc.noaa.gov (accessed on 26 October 2020)). To study the prediction
performance of SWH in different water areas, the data from the offshore area and deep-sea
area, respectively, are studied. Two stations are utilized in this study (see Figure 3), where
Station A denotes Station 41025 at 35◦1′30′′ N 75◦21′47′′ W in the offshore, while Station B
denotes Station 41048 at 31◦49′53′′ N 69◦34′23′′ W in the deep-sea area. These stations are
selected as they have an unimpaired and long series of recorded SWH and meteorological
data. The SWH data set used in this study is gathered from the actual marine environment,
which contains implicitly all the practical factors, such as the air pressure, temperature,
local geomorphology, wind speed, wind direction, etc.
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Figure 3. Location map of the stations. Station A denotes the offshore area, while Station B denotes
the deep-sea area. The map has been downloaded from © Google Maps, and we have added two
marks for our studied locations.

There are three parts of the used SWH data, corresponding to the date of the years
2014, 2015, and 2016, with 1500 h of sample points for each year. Data from the years
2014 and 2015 are used as the training data, and data from the year 2016 are used as the
testing data. Figure 4 shows the SWH records of both stations. Table 1 shows the minimum,
maximum, and average values of different training parameters and testing data sets.

Table 1. Specific information on the two stations.

Station ID Water Depth (m) Year SWH Average (m) SWH Range (m)

A 59.4
2014 1.2287 [0.37,3.53]
2015 1.1938 [0.45,2.81]
2016 1.3141 [0.50,3.27]

B 5309
2014 2.0715 [0.63,8.01]
2015 1.9668 [0.66,5.04]
2016 2.2987 [0.67,6.34]

From Table 1 and Figure 4, it can be concluded that the average SWH at Station A,
located near the coast, is around 1.2 m, with the maximum SWH being around 3 m. The
sea state is relatively stable. The average SWH at Station B, located in the deep-sea area, is
about 2 m, and the maximum SWH is about 6.5 m. The sea conditions are relatively rough.
Therefore, it is difficult to predict the SWH in the deep-sea area.

https://www.ndbc.noaa.gov
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The SWH data for the years 2014 and 2015 are used as the input variables for model
learning. The relevance of each feature with the SWH needs to be determined before
choosing the input features. The autocorrelation coefficient is used to study the dependence
between the instantaneous values of the same signal at two time instants. The correlation
coefficient rx,y can be calculated as

rx,y =
1
n ∑n

i=1(xi − x)(yi − y)√
1
n ∑n

i=1(xi − x)2
√

1
n ∑n

i=1(yi − y)2
, (12)

where rx,y denotes the correlation coefficient between data sets x and y; i (i = 1,2,3 . . . n).
|r| ≥ 0.8 indicates that there is a high correlation between the two features. The correlation
coefficient between the input features and the output feature is shown in Table 2. H-i in
the table represents the SWH data from ith hours ago; H-2 represents the SWH data from
two hours ago as an example. In the H-2 test, rx,y is equal to 0.9435, and rx,y means the
correlation coefficient between the data sets from the previous two hours and the data set at
the selected time. From the table, it can be seen that the correlation coefficient is lower than
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0.8 at H-6, so the data from the previous five hours are used as the input in the proposed
prediction model.

Table 2. Correlation coefficient of the input features with the output feature.

H-1 H-2 H-3 H-4 H-5 H-6

rx,y 0.9707 0.9435 0.9093 0.8710 0.8039 0.7680

3.2. Models Evaluations

To evaluate the performance of the models, some statistical and standard metrics are
used. The mathematical formulations of the adopted metrics are given as follows:

(1) Root mean square error (RMSE) is expressed as follows:

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2, (13)

(2) Mean absolute error (MAE) is expressed as follows:

MAE =
1
n

n

∑
i=1
|xi − yi|, (14)

(3) Mean square error (MSE) is expressed as follows:

MSE =
1
n

n

∑
i=1

(xi − yi)
2, (15)

(4) Coefficient of determination (R2) is expressed as follows:

R2 = 1− ∑n
i=1(xi − yi)

2

∑n
i=1(xi − x)2 , (16)

where x and y denote the observed and the predicted values, respectively; x denotes
the mean value of the observed values; n denotes the number of observations. The
lower the values of RMSE, MAE, and MSE are, the better the accuracy of the models
is. The parameter R2 ranges between 0 and 1, where 1 indicates a perfect prediction
performance, and 0 shows the prediction fails totally.

4. Results and Discussion
4.1. Prediction of Single Models

We first consider a single model to predict the SWH. The models LSSVM, ELM, and
ANN are used individually to predict the SWH. The prediction time is a set parameter in
the system, which can be modified according to different environmental conditions. We
consider an input time of 5 h and the prediction times of 1 h and 3 h as examples. In the
same station, the data from the years 2014 and 2015 are used as the training set, and the
data from the year 2016 are used as the testing data to predict the wave height of the year
2016 for 1 h and 3 h, respectively. The specific parameters of various model networks are
shown in Table 3, where IN denotes the number of input layer units; H denotes the number
of hidden layer units; O denotes the number of output layer units; σ denotes the confidence;
C denotes the penalty coefficient. With the SWH for the five previous hours as the input,
the SWH at the next time is the output in the prediction model. For example, the input is
the SWH of the previous 5 h, and the output is the SWH at the next moment (means at the
sixth hour). Next, the SWH from the second to sixth hour is taken as the model input, and
the SWH at the seventh hour is predicted.
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Table 3. Parameter of three single models.

Model Initial Settings

LSSVM IN = 5, O = 1, σ = 10, C = 100, kernel function = Radial Basis Function (RBF)
ELM IN = 5, H = 10, O = 1, activation function = Sigmoid
ANN IN = 5, H = 10, O = 1, training algorithm = Levenberg–Marquardt

Figures 5 and 6 show the prediction of the SWH of Stations A and B by the three
compared single models, respectively. Table 4 shows the numerical analysis of specific
evaluation indicators. It can be seen from Table 4 that for the wave height prediction of A
near the coast, R2 can be kept above 0.8 when the 3 h prediction is made. For Station B in
the deep-sea area, R2 can be maintained above 0.9 during the 3 h prediction, and there is a
high correlation between the predicted SWH and the observed SWH. In general, the three
algorithms have achieved satisfactory results in predicting the SWH, but LSSVM has higher
prediction accuracy than the other two models. This clearly shows that among the compared
models, the proposed LSSVM model can provide the best prediction performance.
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Figure 6. Comparison between the observed and predicted SWH at Station B. (a) one hour prediction,
(b) three hour prediction. The wave prediction is performed during 1500 h on different predicted
models. Comparing (a) and (b), it can be seen that as the leading time increases, the prediction timing
lag problem becomes greater.

Table 4. Analysis of the prediction results of three single models.

Station Model Leading Time RMSE MAE MSE R2

A

LSSVM
1 0.115 0.082 0.013 0.942
3 0.200 0.141 0.040 0.826

ELM
1 0.115 0.082 0.013 0.942
3 0.201 0.141 0.040 0.826

ANN
1 0.116 0.082 0.013 0.942
3 0.201 0.141 0.041 0.825

B

LSSVM 1 0.183 0.126 0.033 0.972
3 0.276 0.184 0.076 0.936

ELM
1 0.184 0.127 0.034 0.972
3 0.279 0.185 0.079 0.936

ANN
1 0.188 0.128 0.035 0.971
3 0.278 0.184 0.077 0.935

It can be seen from Figures 5 and 6 that the observed wave height and the predicted
wave height are slightly misaligned on the time scale axis. It can be seen from the enlarged
view in Figures 5 and 6 that a one-time step significantly shifts the predicted wave heights
of the three single models. These wave forecasting models exhibit lag in the prediction
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timing, making the univariate time series forecasting a futile attempt. As the leading
time increases, these lags become larger. The lag is a type of prediction error that can
also be found in other works on wave forecasting using single models. Dixit found the
phenomenon of prediction time lag while using ANNs to predict the ocean wave height.
They used a discrete wavelet transform to enhance the predicted values and to remove
the lag in the prediction timing [33]. The lag mainly results from the nonstationary data
hidden in the measured wave time series. Modeling a nonlinear and nonstationary data set
by applying a single nonlinear model is very difficult because there are too many possible
patterns hidden in the data. A single model may not be general enough to capture all
the essential features. Even if the nonlinear ANN is used to forecast the nonlinear and
nonstationary wave heights, the lags remain. A single prediction model cannot capture
all the components with different scales simultaneously. Therefore, the ‘lags’ occur in
the forecasting results. These apparent lag phenomena affect the accuracy of prediction,
so the following work content aims to eliminate this lag phenomenon and improve the
prediction accuracy.

4.2. Prediction Based on the Proposed Technique

The non-stationarity and non-linearity of the time series of ocean characteristics (i.e.,
SWH, wave periods) appear in different oscillation scales. The time series prediction of
non-stationary data by using single models can only lead to the homogenization of the
original input data’s various characteristics, which could affect the prediction accuracy
and cause the lag phenomenon. Accordingly, the non-stationarity of the time series of the
SWH and input variables should be reduced. The combination of an EMD model with
the LSSVM model provides an effective way to improve wave prediction. The EMD is
adopted to decompose the SWH series into one residual series and several IMFs. Then,
the residual series and IMFs are modeled by the LSSVM model. Finally, the summation of
the prediction output of subseries SWH is realized. In addition, the PSO is employed to
optimize the LSSVM parameters to increase the prediction accuracy.

In the first step, the wave height time series is decomposed into a couple of meaningful
and straightforward IMFs and one residual by EMD (Figure 7).

Significant wave data sets are decomposed into IMFs and residuals when implement-
ing the EMD-based prediction models. Figure 7 displays the decomposition results of the
wave height time series measured at A; the EMD decomposition decomposes the nonlinear
SWH into 7 IMFs and 1 residual signal, where it is seen that several simple components
can represent the complex wave height time series. This would have enabled the single
model to extract features during the modeling of the SWH effectively. The decomposed
IMF components contain the local characteristic signals of different time scales of the
original signal. The positive and negative values of the IMF represent the characteristic
information of different scales of the original signal, which is a part of the original data.
By superimposing the IMFs, a composite signal equivalent to the original signal is formed.
Next, an EMD-based hybrid model can be used to predict the SWH.

From Figure 8, it can be concluded that the single model LSSVM shows a prediction
timing lag (red dotted line). The other two models have overcome the lag by using the EMD
technique; the prediction results for the nonlinear and nonstationary waves are improved
mainly by combining the EMD technique with the single model.

It can be seen from Figure 8 that the preprocessing method of EMD decomposition has
solved the lag phenomenon. However, the SWH prediction performance using the LSSVM
model is still not very satisfactory. For example, there are errors in predicting the peaks
and troughs of the SWH. The next step is to optimize LSSVM parameters to improve the
prediction accuracy of the model.

Changing the parameter values of a prediction system can have a significant impact on
its performance. Therefore, we should find the optimum parameter values for the prediction
system. These optimal parameters are found typically by using a priori knowledge or
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through human experiences. However, this approach can be subject to human bias. PSO
has emerged as a practical tool for high-quality parameter selection in prediction systems.
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decomposes the nonlinear SWH into 7 IMFs and 1 residual signal, facilitating the following prediction.

PSO is used to optimize the LSSVM parameters. The methodological steps can be
found in the description of the method in Section 2. Figure 8 shows that the EMD–PSO–
LSSVM model can predict the SWH peaks and troughs very well, significantly improving
the prediction accuracy.

Table 5 presents the results obtained by the proposed EMD–PSO–LSSVM method. The
prediction of the SWH is accurate with the proposed method, and the performance of using
PSO to optimize the LSSVM parameters can be seen with an improvement in the prediction
accuracy from R2 = 0.972, 0.945 and 0.888 (EMD–LSSVM) to R2 = 0.972, 0.958, and 0.902
(EMD–PSO–LSSVM) at A, and an improvement in the prediction accuracy from R2 = 0.991,
0.982 and 0.959 (EMD–LSSVM) to R2 = 0.993, 0.987, and 0.965 (EMD–PSO–LSSVM) at
Station B. Correspondingly, the RMSE, MAE, and MSE predicted by EMD–PSO–LSSVM at
the two stations are also the lowest.

There is a good correlation between SWH and the tenth, maximum wave height, and
average wave height, so it can represent the characteristics of ocean waves. Near the
predicted stations, there are seldom large winds; the predicted SHW hasn’t a big variation,
which means that the stations rarely encounter extremely difficult sea conditions. When the
SWH is larger, the fitted data stations are more scattered. Station B belongs to the deep-sea
area; the SWH range is relatively large, and the training data are also relatively large. It can
be seen from Figures 9 and 10 that when the SWH is large, the fitting performance of the
data stations is still better.
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Figure 8. Comparison between LSSVM, EMD–LSSVM, and EMD–PSO–LSSVM. (a) Station A,
(b) Station B. By adding the EMD method to preprocess the data, the proposed hybrid model fixes
the time lag problem of a single model-based prediction. At the same time, the prediction accuracy of
the peak of the SWH has also been improved.

Table 5. Performance results for Station A and Station B.

Station Algorithm Leading Time RMSE MAE MSE R2

A

EMD–PSO–LSSVM
1 0.089 0.062 0.008 0.972
3 0.105 0.079 0.011 0.958
6 0.155 0.112 0.024 0.902

EMD–LSSVM
1 0.097 0.071 0.009 0.972
3 0.125 0.092 0.016 0.945
6 0.169 0.123 0.029 0.888

LSSVM
1 0.115 0.082 0.013 0.942
3 0.200 0.141 0.040 0.826
6 0.287 0.202 0.082 0.645

B

EMD–PSO–LSSVM
1 0.089 0.063 0.008 0.993
3 0.127 0.091 0.016 0.987
6 0.205 0.140 0.042 0.965

EMD–LSSVM
1 0.105 0.074 0.011 0.991
3 0.150 0.104 0.022 0.982
6 0.224 0.154 0.050 0.959

LSSVM
1 0.183 0.126 0.034 0.972
3 0.278 0.184 0.076 0.936
6 0.416 0.277 0.173 0.858



J. Mar. Sci. Eng. 2023, 11, 866 16 of 24

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 18 of 28 
 

 

PSO–LSSVM model is more than 0.902 (see Table 5), while the best-fit line slopes for the 

scatters are better than 0.8973 (see Figures 9 and 11). Correspondingly, the RMSE, MAE, 

and MSE predicted by EMD–PSO–LSSVM at the two stations are also the lowest. 

 

(a) 

 

(b) 

 

(c) 

Figure 9. Scatter diagram of the observed and the predicted using the EMD–PSO–LSSVM at Station 

B: (a) one hour, (b) three hours, (c) six hours. The fitting slopes of EMD–PSO–LSSVM to Station B at 

1, 3, and 6 h are 0.9886, 0.978, and 0.9524. Compared with A in the offshore, the combined model is 

more suitable for the deep-sea area, and the fitted slopes are all above 0.95. 

  

Figure 9. Scatter diagram of the observed and the predicted using the EMD–PSO–LSSVM at Station
B: (a) one hour, (b) three hours, (c) six hours. The fitting slopes of EMD–PSO–LSSVM to Station B at
1, 3, and 6 h are 0.9886, 0.978, and 0.9524. Compared with A in the offshore, the combined model is
more suitable for the deep-sea area, and the fitted slopes are all above 0.95.

Figures 9 and 11 show a comparison between the observed and predicted values by
EMD–PSO–LSSVM at stations A and B, respectively. Figures 10 and 12 show a comparison
between the observed and predicted values by EMD–LSSVM at Station A and B, respec-
tively. Referring to the scatter plots, by looking at the distribution of the scatter plot and
the slope of the fitted line, the relationship between the predicted and observed values
can be seen. The denser the scatter plot distribution and the closer the slope of the fitted
line is to 1, the better the prediction result. Through the above comparison, it appears
that the estimation of the EMD–LSSVM time series is more scattered and farther than the
EMD–PSO–LSSVM model. As the leading time increases, the EMD–LSSVM performance
decreases drastically, but EMD–PSO–LSSVM performance decreases gradually, as shown
in Figures 9–12. For example, the best-fit line slopes for the scatter of wave predictions of
six leading hours at stations A and B are 0.8973 and 0.9524, respectively. Comparatively, the
EMD–PSO–LSSVM model performs better than the EMD–LSSVM model. The coefficient of
determination for the wave prediction at all stations using the EMD–PSO–LSSVM model is
more than 0.902 (see Table 5), while the best-fit line slopes for the scatters are better than
0.8973 (see Figures 9 and 11). Correspondingly, the RMSE, MAE, and MSE predicted by
EMD–PSO–LSSVM at the two stations are also the lowest.
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Figure 10. Scatter diagram of the observed and predicted using the EMD–LSSVM at Station B: (a) one
hour, (b) three hours, (c) six hours. The fitting slopes of EMD–LSSVM to Station B at 1, 3, and 6 h are
0.9781 0.961, and 0.9327, respectively. As with the results for Station A, the hybrid model using PSO
has higher accuracy.
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Figure 11. Scatter diagram of the observed and the predicted using the EMD–PSO–LSSVM at Station
A: (a) one hour, (b) three hours, (c) six hours. The predicted value and the observed value are linearly
fitted. The closer the slope of the fitted line is to 1, the better the prediction performance. The fitting
slopes of EMD–PSO–LSSVM to Station A at 1, 3, and 6 h are 0.9613, 0.9475, and 0.8973, respectively.
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Figure 12. Scatter diagram of the observed and the predicted using the EMD–LSSVM at Station A:
(a) one hour, (b) three hours, (c) six hours. The fitting slopes of EMD–LSSVM to Station A at 1, 3,
and 6 h are 0.9467, 0.9248, and 0.8787. Compared with the hybrid model using PSO for parameter
optimization, the accuracy of the model is not as good as the improved model, so the effectiveness of
the PSO method is proved.
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4.3. Prediction Considering Wind Speed as Input

The evolution of waves depends very much on the surface winds. The wind speed
is an important factor creating sea-level fluctuation. To further study the performance of
wind speed on the prediction of SWH, the wind speed is added to the prediction model
as an input parameter and its performance is analyzed. By comparing the prediction
performance of prediction models with wind speed as an input parameter, without the
wind speed parameter, the effect of wind speed on the forecasting model is discussed.

By taking Station A and Station B as examples, whose locations are shown in Figure 3,
WS denotes wind speed. Before using the data, the original data are preprocessed. The WS
records of both stations are shown in Figure 13. Table 6 shows the minimum, maximum,
and average values of different training parameters and testing data sets.
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Figure 13. WS of two stations: (a) Station A, (b) Station B. The wind speed and SWH are the input,
and the predicted next SWH is the output. Data including WS and SWH from the years 2014 and 2015
are used as the training data, and data including SWH from the year 2016 are used as the testing data.
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Table 6. Specific information on Station A and Station B regarding wind speed.

Station ID Water Depth (m) Year WS Average (m) WS Range (m)

A 59.4
2014 6.4192 [0.0,14.3]
2015 6.4140 [0.1,16.5]
2016 7.1163 [0.2,17.8]

B 5309
2014 7.1917 [0.2,18.8]
2015 6.9334 [0.0,16.1]
2016 5.5119 [0.0,14.8]

In the prediction model, we input ten parameters, which included five SWHs and
five WSs. With SWHs and five WSs at five times being the input, the predicted SWH at the
next time is the output. The SWHs are predicted for 1, 3, and 6 h by different models. The
predicted results are shown in Table 7.

Table 7. Performance results for Station A and Station B with WS and SWH as inputs.

Station Algorithm Leading Time RMSE MAE MSE R2

A

EMD–PSO–LSSVM
1 0.093 0.066 0.009 0.970
3 0.110 0.083 0.012 0.956
6 0.160 0.117 0.026 0.900

EMD–LSSVM
1 0.097 0.071 0.009 0.996
3 0.125 0.092 0.016 0.993
6 0.169 0.123 0.029 0.888

LSSVM
1 0.294 0.170 0.087 0.642
3 0.338 0.228 0.114 0.508
6 0.397 0.283 0.157 0.341

B

EMD–PSO–LSSVM
1 0.081 0.056 0.007 0.979
3 0.181 0.118 0.033 0.899
6 0.332 0.208 0.111 0.717

EMD–LSSVM
1 0.124 0.084 0.015 0.952
3 0.230 0.141 0.053 0.843
6 0.284 0.184 0.081 0.782

LSSVM
1 0.525 0.332 0.276 0.410
3 0.559 0.382 0.313 0.356
6 0.632 0.464 0.399 0.265

By comparing Tables 5 and 7, it can be seen that the prediction performance is not
improved by adding the WS parameter as the additional input. The prediction of the SWH
is more accurate without the additional wind speed parameter input. The performance
with WS and SWH as inputs can be seen by a decrease in the prediction accuracy from
R2 = 0.972, 0.958, and 0.902 to R2 = 0.970, 0.956, and 0.900 at Station A when the leading

time is 1, 3, and 6 h. The prediction performance is shown in Figure 14.
When the wind is used as an input to the prediction model, one of the reasons that

the prediction accuracy may decrease is because the historic data of SWH implicitly carry
information about wind, and that additional input wind might add some redundant data.
By adding the wind parameters in the input, the models are prone to overfitting, which
reduces the prediction ability of the model. The other reason is that the wind is uncertain or
random. It may be inaccurate to measure the position of the waves with the characteristics
of the wind, and the influence of wind on waves has the characteristics of time delay, so the
prediction accuracy decreases. Therefore, adding wind speed as an input to the prediction
model does not necessarily improve the prediction accuracy in predicting local waves.
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Figure 14. Comparison between the prediction with only SWH as input and with both SWH and WS
as inputs by the proposed hybrid EMD–PSO–LSSVM. (a) one hour, (b) three hours, (c) six hours. It
can be seen that the model prediction performance is the best when only SWH is used as the input.

4.4. Discussion

This section compares the LSSVM and ANN prediction model performance based
on two data sets. The single LSSVM and ANN model will have obvious delay when
predicting SWH, and obvious errors when predicting peak and trough data. In order to
further improve the prediction performance of LSSVM, the original signal is decomposed
by the EMD, and the decomposed value is predicted. Finally, the superimposed composite
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signal is equivalent to the significant wave height. PSO is used to optimize the parameters
of LSSVM, which further improves the accuracy of the proposed prediction model.

Various data from Table 4 show that the proposed EMD–PSO–LSSVM predictor of the
SWH in different locations provides consistent outcomes. The proposed hybrid model can
solve the problem of prediction lag and significantly improve the prediction accuracy. In
the above analysis, we find that the prediction model is better in deep-sea areas than in
shallow water when the wind parameters are not added to all the models. When the wind
parameters are added to all the models, the prediction performance is not improved. One
of the reasons is that the parameters of SWH include already the influence factors of the
wind. By adding wind parameters in the input, the models are prone to overfitting, which
reduces the prediction ability of the model. Compared with other models, it can be seen
that the proposed hybrid EMD–PSO–LSSVM has a good prediction performance. Not only
that, but the hybrid EMD–PSO–LSSVM model is also more stable in the prediction process,
which means that it can be applied to more fields in the future.

5. Conclusions

This paper presents a new prediction method based on the hybrid EMD–PSO–LSSVM
for the nonlinear and nonstationary SWH prediction. The whole approach is investigated
by considering actual forecasting operations on the SWH in the offshore and deep-sea areas
of the North Atlantic Ocean, where single and hybrid models are compared using several
statistical indices for evaluating the accuracy of the predictions. From the obtained results,
due to the nonlinearity and nonstationary data of the SWH, usual single models are prone
to a lagging phenomenon that reduces the prediction accuracy. The PSO algorithm is added
to the original EMD–LSSVM hybrid method, and the critical parameters of LSSVM are
optimized through the PSO algorithm. In this way, a new hybrid model EMD–PSO–LSSVM
is developed. The main results are as follows:

1. When local waves are predicted, the prediction effect can be better when only the past
observation value of the waves is used in the prediction model, rather than the mixed
input of the waves and the wind speed.

2. The proposed hybrid EMD–PSO–LSSVM model has good superiority for the predic-
tion of non-linear and non-stationary waves. EMD is used to decompose the SWH
data into a number of IMF components and one residual signal; then, LSSVM is
used to forecast these IMFs and residual values individually. PSO is implemented
to automatically perform the parameter selection in LSSVM modeling to gain the
optimization parameters of LSSVM.

3. Based on the LSSVM model, the performance study results show that EMD–PSO–
LSSVM performs better than the EMD–LSSVM and LSSVM models, with higher
prediction accuracy in the wave prediction.
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Abbreviations

Abbreviation Definition
SWH Significant Wave Height
EMD Empirical Mode Decomposition
LSSVM Least Squares Support Vector Machine
PSO Particle Swarm Optimization
SMB Sverdrup, Munk, and Bretschneider
PNJ Pierson–Neumann–James
AR Auto-regressive
ARMA Auto-regressive Moving Average
ARIMA Autoregressive Integrated Moving Average
ANNs Artificial Neural Networks
RNN Recurrent Neural Network
SVM Support Vector Machine
SOS Symbiotic Organisms Search
SVR Support Vector Regression
CNN Convolutional Neural Network
WPSO–ELM Wavelet-PSO–ELM
IMFs Intrinsic Mode Functions
KKT Karush–Kuhn–Tucker
RBF Radial Basis kernel Function
NDBC National Data Buoy Center
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