
HAL Id: hal-04072322
https://hal.science/hal-04072322v1

Preprint submitted on 18 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving stiff ordinary differential equations using physics
informed neural networks (PINNs): simple recipes to

improve training of vanilla-PINNs
Hubert Baty

To cite this version:
Hubert Baty. Solving stiff ordinary differential equations using physics informed neural networks
(PINNs): simple recipes to improve training of vanilla-PINNs. 2023. �hal-04072322�

https://hal.science/hal-04072322v1
https://hal.archives-ouvertes.fr

Solving stiff ordinary differential equations using physics

informed neural networks (PINNs): simple recipes to improve

training of vanilla-PINNs

Hubert Baty

Observatoire Astronomique, Université de Strasbourg, 67000 Strasbourg, France

hubert.baty@unistra.fr

(Dated: April 17, 2023)

Abstract

Physics informed neural networks (PINNs) are nowadays used as efficient machine learning meth-

ods for solving differential equations. However, vanilla-PINNs fail to learn complex problems as

ones involving stiff ordinary differential equations (ODEs). This is the case of some initial value

problems (IVPs) when the amount of training data is too small and/or the integration interval (for

the variable like the time) is too large. We propose very simple recipes to improve the training

process in cases where only prior knowledge at initial time of training data is known for IVPs.

For example, more physics can be easily embedded in the loss function in problems for which the

total energy is conserved. A better definition of the training data loss taking into account all

the initial conditions can be done. In a progressive learning approach, it is also possible to use

a growing time interval with a moving grid (of collocation points) where the differential equation

residual is minimized. These improvements are also shown to be efficient in PINNs modelling

for solving boundary value problems (BVPs) as for the high Reynolds steady-state solution of

advection-diffusion equation.

1

I. INTRODUCTION

The use of neural networks (NNs) to solve differential equations is revisited in a tutorial

paper (see Baty & Baty 2023 and references therein). Basically, a classical NN can give a non

linear approximation of the whole desired solution by using a dataset of known particular

values. This is a supervised learning method which consists in finding a mapping function

between given inputs values (for example the time variable) and their output values (for

example the solution). This dataset is used to parameterize the NN such that it minimizes

the error between solution predicted by the NN and true known solution from the dataset

during a training procedure. The convergence is achieved by minimizing a loss function which

expression is based on error estimate, using for example the mean squared error. Finding

“good” parameters is achieved by solving an optimization problem using a gradient descent

algorithm that relies on automatic differentiation to back-propagate gradients through the

network (Baydin et al. 2018).

However, the amount of available known solution data (so called training data) is in

general very small. These are typically the initial or boundary values in problems involving

ordinary differential equations (ODEs). In these cases, NN cannot be used as it is a bad

extrapolation tool. An approach called physics-informed neural networks (PINNs), has been

thus proposed in order to tackle the limitations of classical NN (Raissi et al. 2017, 2019). The

basic idea is to provide additional information corresponding to the physics. The method

consists in evaluating the solution at some other set of data points (called collocation points)

at which the equation residual is minimized. A second loss function corresponding to the

physics is thus defined and added to the previous one in the learning process. The training is

penalized by this additional constraint and the space of available solutions is thus restricted,

being partly driven by the original data and also partly driven by the physics.

The use of PINNs to solve ODEs has been clearly illustrated in Paper 1 (Baty & Baty

2023). In particular, it has been shown that data knowledge representing only the initial

conditions can be sufficient when the equations are weakly non linear. However, this not the

case for strongly non linear stiff problems (as for Van Der Pol oscillator for example). As

a consequence, the use of PINNs in the latter cases can be successful under the condition

that a larger set of training data is used. The training procedure can be improved by adding

another physical information like the energy conservation (i.e. an additional constraint) in

2

problems for which it is effectively conserved, but such limitations called failure modes in

the literature remain (Krishnapriyan et al. 2021). Note that we focus on ODEs in this

study for the sake of simplification, but the problems discussed in this paper also concern

the integration of partial differential equations (PDE’s). These difficulties are even worse

when one to integrate over a rather large time interval. Many improvements of these so-

called vanilla-PINNs have been proposed in the literature, that are often based on self

adaptive procedures (of the collocation points, activation function, etc.). However, none

of these methods appears to be effective on all the equations of concern (Karniadakis et

al. 2021, Xiang et al. 2022). In this work, we propose very simple recipes that can be

easily implemented with the vanilla-PINNs in order to ameliorate the training procedure.

The improved results obtained in this study are illustrated by directly comparing to some

benchmark results shown in Paper 1.

The paper is organized as follows. In Section 2, we give a short summary of the PINNs

technique. Two recipes based on modifying the loss function in two ways are investigated in

Section 3. In Section 4, we investigate a third recipe where the grid of collocation points is

modified along with the progression of the training process. Finally, conclusions are drawn

in Section 5.

II. PHYSICS-INFORMED NEURAL NETWORKS

A. The basics of neural networks for ODEs

We first consider the desired solution u(t) of an ODE (see below) with uθ ' u being

the approximated solution at different t values, where θ is a set of model parameters. For

IVPs, the variable t would generally be a time parameter and should be replaced by a spatial

coordinate parameter for boundary value problems (BVPs). Using a classical neural network

approximating the desired solution, we can write,

uθ(t) = (N L ◦ N L−1... N 0)(t), (1)

where the operator ◦ denotes the composition and θ = {W l, bl}l=1,L represents the trainable

parameters (with weight matrices and bias vectors) of the network (see Paper 1 for more

details on the N l functions). The network architecture schematized in Figure 1, is organized

in L + 1 layers with neurons connected in adjacent layers. A single input layer containing

3

FIG. 1. Schematic representation of a structure example for a standard NN. The input layer has

one input variable (i.e. one neuron noted σ01) representing for example a time coordinate. Three

hidden layers with four neurons per layer are connected with the input and the output layer (one

neuron noted σ41), where the latter has a single variable (one neuron) representing the desired

solution uθ.

the input variables t is connected to L − 1 hidden layers (two layers with four neurons in

the schematic example of Figure 1), and finally to an output layer for the solution uθ. The

goal is to calibrate its parameters θ such that uθ approximates the target solution u(t). An

activation function is also necessary in order to to introduce non-linearity into the output

of each neuron. In this work, the most commonly used hyperbolic tangent tanh function is

chosen.

The optimization problem is based on the minimization of a loss fonction that can be

expressed as,

Ldata(θ) =
1

Ndata

Ndata∑
i=1

∣∣uθ(ti)− uidata∣∣2 , (2)

where a set of Ndata data is assumed to be available for the known solution at different times

ti that are called the training data (i = 1, Ndata), which includes the initial and/or boundary

conditions.

B. The basics of vanilla-PINNs for ODEs

Let us now introduce an ODE in the following residual form

F
(
t, u,

du

dt
,
d2u

dt2
, ...

)
= 0, t ∈ [t0, T] , (3)

4

FIG. 2. Schematic representation of the structure for a vanilla-PINN modelling an ODE solution.

The previous NN architecture (see previous figure) is used to evaluate the residual of the ODE

equation (via uθ and corresponding derivatives). The two partial loss functions (Ldata and LF) are

used to form a total loss function with associated weights (see text) that is finally minimized.

with imposed initial conditions and/or boundary conditions depending on the problem con-

sidered. The exact number of initial/boundary conditions necessary to solve the equation

obviously depends on the order of the equation. Note that in case of an ODE with an order

n higher or equal to two, an equivalent system of n equations can be also used (see below).

In the original form, the basics of vanilla-PINNs is based on the use of a second loss function

defined as

LF(θ) =
1

Nc

Nc∑
i=1

|F [uθ(ti)]|2 , (4)

that must be evaluated on a set of Nc points generally called collocation points that are not

necessarily coinciding with the training data points. Note that one can evaluate exactly the

differential operators at the collocation points in LF and F by using automatic differentia-

tion. This same technique of automatic differentiation is also used to compute derivatives

with respect to the network weights (i.e. θ), that is necessary to implement the optimization

procedure (see below). Note that contrary to the use of standard numerical schemes, the

derivatives can be obtained at machine precision. In this work, we use Pytorch Python open

source software libraries facilitating thus the latter operations.

A composite total loss function can be consequently formed as

L(θ) = ωdataLdata(θ) + ωFLF(θ), (5)

where an optimal choice of values for hyper-parameters (ωdata, ωF) allow to ameliorate the

5

eventual unbalance between the partial losses during the training process. These weights

can be user-specified or automatically tuned. In the present work, for simplicity we fix the

ωdata value to be constant and equal to unity, and the other weight parameters including ωF

are determined with values varying from case to case. A gradient descent algorithm is used

until convergence towards the minimum is obtained for a predefined accuracy (or a given

maximum iteration number) as

θk+1 = θk − η∇θL(θk), (6)

for the k-th iteration also called epoch in the literature, leading to θ∗ = argminθ L(θ),

where η is known as the learning rate parameter. In this work, we choose the well known

Adam optimizer. A standard automatic differentiation technique is necessary to compute

derivatives (i.e. ∇θ) with respect to the NN parameters (e.g. weights and biases) of the

model (Raissi et al. 2019). A schematic representation of the vanilla-PINNs is shown in

Figure 2. Note that in this schematic figure, a single input neuron representing time or space

coordinate for ODEs must be replaced by two neurons for a partial differential equation

having spatio-temporal (x, t) dependences. Moreover, in cases where a set of n differential

equations is considered, the output neuron must be replaced by n neurons associated with

the n solution variables that need to be learned.

III. MODIFYING THE LOSS FONCTION

A. Adding a constraint and associated partial loss function based on energy con-

servation

In Paper 1, different benchmark tests are investigated mainly based on second order

differential equations like the harmonic oscillator, non linear pendulum, and anharmonic

oscillators. In these cases, the total energy E is conserved and fully determined by the

initial conditions. It is thus possible to add a corresponding additional constraint, with

an associated third loss function called LE. This constraint can be written in a residual

form, E − E0 = 0, with E0 being the total energy at t = 0. The latter residual form and

associated loss function LE are thus evaluated at the collocation points in a similar way as

6

FIG. 3. PINN solutions for the anharmonic oscillator (see text). Left and right panels show cases

using, two training data without the hybrid data loss function and one training data with the hybrid

data loss, respectively. The exact solution is obtained by a classical Runge-Kutta integration (using

a method of order 4 with 1000 uniform time-steps.

for the residual equation and loss function LF . Consequently, one gets

LE(θ) =
1

Nc

Nc∑
i=1

|E(ti)− E0|2 , (7)

The total loss function is consequently modified by incorporating a new term weighted by a

new hyper-parameter ωE,

L(θ) = ωdataLdata(θ) + ωFLF(θ) + ωELE(θ). (8)

It has been shown that the results are considerably ameliorated when compared to a case

without this additional constraint. For example, this is illustrated in Figure 8 of Paper 1

for the harmonic oscillator problem.

B. Using an hybrid loss function for data

Nevertheless, for the following anharmonic equation,

d2u

dt2
+ ω2

0u
3 = 0, (9)

two training data were necessary (see Figure 13 in Paper 1 and left panel of Figure 3 in

present paper). This is not a complete surprise as two conditions are necessary to integrate

such second order equation using analytic or classical numeric methods. Another option

would be to solve an equivalent system of two first order differential equations, as done for

7

FIG. 4. Histories of the total loss function L and MSE corresponding to the two cases of the

previous figure respectively. The MSE is evaluated using the standard expression, MSE =

1
Neval

∑Neval
i=1

∣∣uθ(ti)− uieval∣∣2, where the evaluation uθ(ti) is done on Neval = 1000 points uniformly

distributed within the whole time interval, and where uieval is the expected exact solution at t = ti.

the non linear pendulum (Figure 12 in Paper 1). Indeed, in the latter case the NN is learning

the solution and also the first order derivative on the whole time interval.

In this study, we propose another strategy. Indeed, we can choose the value of the first

order time derivative evaluated at the first collocation point, in order to constrain it to

converge towards its true initial value du
dt

(t = 0). Thus, the previous loss fonction Ldata that

contains only the initial data value on y(t = 0) = y0 can be modified to include a second

term,

Ldata = |uθ(t = 0)− u0|2 + ωd |u′θ(t = 0)− u′0|
2
, (10)

where u′0 = du
dt

(t = 0) and ωd is a new weight parameter not necessarily equal to one. This

is an hybrid loss fonction as the first term involves the training data and the second term

the first collocation point (also used to evaluate the loss fonctions on equation residual and

total energy residual). This is illustrated in Figure 3 for the anharmonic oscillator with

initial conditions u0 = 1.5 and u′0 = 0, using also ω0 = 15.5 with an integration over the

time interval t ∈ [0, 1]. Indeed, we have obtained two PINN solutions choosing the following

hyper parameters, η = 1.1 × 10−3, ωdata = 1, ωF = 1 × 10−5, and ωE = 1 × 10−6 for

the two cases. The NN architecture is made of 5 hidden layers with 32 neurons per layer.

As explained above, in left panel of Figure 3 is plotted the converged PINN solution for

the method without the improvement using two training data points (i.e. at t = 0, and

t = t1 > 0) and Nc = 44 collocation points. In right panel, one can see the second PINN

8

solution for the method using the improvement (i.e. with the hybrid data loss function)

with only one training data point and Nc = 32 collocation points. In the latter case, the

chosen additional weight is ωd = 1× 10−3. The corresponding histories of the total loss and

mean squared error (MSE) that are plotted in Figure 4, show similar convergence during

the training processes. Note that, this is important to also examine the MSE, as it is a

direct measure of the error contrary to the total loss that is a composite function in PINNs.

We can conclude that this first recipe using the hybrid data loss not only allows to reduce

the training data set to the sole initial condition on u (that is u0, as the initial derivative is

imposed using the first collocation point), but it also allows to reduce the minimum number

of collocation points.

IV. APPLYING A MOVING GRID WITH A GROWING COLLOCATION IN-

TERVAL

In Paper 1, it has been shown that when the differential equation is particularly stiff,

the use of vanilla-PINNs requires a minimum number of training data that is significantly

higher than unity, and which is distributed over the time integration interval. This is indeed

the case for Van Der Pol oscillator.

A. Initial value problem - Van Der Pol oscillator

The Van Der Pol oscillator equation is

d2u

dt2
+ ω2

0u− εω0(1− u2)
du

dt
= 0, (11)

where ω0 is a normalized angular velocity, and t ∈ [0, T]. Finally ε is a parameter having a

value which determines the amplitude of a limit cycle in the phase space, and consequently

determines the stiffness of the equation. PINN solutions obtained in Paper 1 for ε = 0.33, 1,

and 5, show that 3, 7, and 16 training data points respectively were necessary for convergence

of the training process. One must note that, in this case the total energy is not conserved

and therefore it is not possible to use the loss energy constraint.

We have found that vanilla-PINN, even when using the previous improvement strategy

(with hybrid data loss), fails to train when the integration interval covers a few periods of

9

FIG. 5. PINN solution for the Van Der Pol equation (see text), obtained using the moving grid

procedure with a growing collocation interval. The different snapshots from top to bottom and

left to right panels corresponds to the progression of the process as a function of the training step.

The time at which the collocation points are defined are visible with the green circles.

FIG. 6. Histories of the total loss function L and MSE corresponding to the case of the previous

figure.

the oscillator. This is however not the case when the integration is done on a restricted

time interval that is typically smaller than one period. A strategy has been proposed to

overcome PINNs failures in long time integration for PDE’s, consisting in learning progres-

sively sequence-to-sequence until the entire space-time solution is obtained (Krishnapriyan

10

et al. 2021). In this strategy, the data set of collocation points is progressively increased in

order to finally invade the whole integration domain. New points are added along with the

progression of the training process, but they remain at fixed position in time once created.

Hence, a considerably high number of points is necessary at the end of the training process.

We propose a variant of the latter strategy which requires a moderate and fixed number

of collocation points. Indeed, we propose to start the training process with Nc collocation

points uniformly distributed in a subdomain [0, T1] (with T1 < T and being typicaller smaller

than one oscillator period) of the whole time interval. In this way, our PINN algorithm can

first learn the initial times. As the training progresses, we make the right uppermost bound

of the collocation data set interval moving towards the final time T . In other words, all the

collocation points are redefined (except the one imposed at t = 0) and moving while the

collocation interval is expanding. The speed of progression must be of course adapted to

the rate of the training process. This is done manually in this work, but it can probably be

adapted in a more automatic way.

This other recipe is illustrated in Figures 5-6 for a moderately stiff case with ε = 1. We

have chosen ω0 = 15 and integrated for t ∈ [0, 1.5]. We also take the initial condition u0 = 1

and zero initial derivative. The NN has 4 hidden layers with 42 neurons per layer. The

number of training data and collocation points are Ndata = 1 and Nc = 80 respectively. The

chosen weights are ωdata = 1, ωd = 0.1, and ωF = 1×10−4. The learning rate is η = 7×10−4.

The initial upper bound T1 is chosen as T1 = 0.2. The different snapshots taken at different

training step clearly show how the solution is successfully learned along with the progression

of the training process. This is confirmed by the associated histories of the loss and MSE

plotted in Figure 6. The final convergence after 80000 epochs is also clearly visible on the

figure. Note that the exact solution is obtained by using a classical Runge-Kutta of order 4

with 10000 time steps uniformly distributed over the integration interval.

For completeness, we have also investigated a variant of the previous PINN modelling in

which, instead of using the hybrid data loss function to take into account the initial time

derivative condition, we solve an equivalent system of two equations that is,
du2
dt
− ω0

ε
u1 = 0,

du1
dt
− εω0(1−

u21
3

)u1 + εω0u2 = 0

(12)

The new expected variables are defined as u1 = u, and u2 = u − u3

3
− u′

εω0
(u′ being the

11

FIG. 7. PINN solution of the Van der Pol equation solved as a two-dimensional system (see Equa-

tion 12) for the two variables u1 and u2. The moving grid with a growing collocation domain

procedure is applied. The different snapshots from top to bottom and left to right panels corre-

sponds to the progression of the process as a function of the training step. The time at which the

collocation points are defined are visible with the green circles.

time derivative of u). Contrary to another possible choice where u2 = u′, this choice of

variables called Lienard’s transform is known to lead to values of u1 and u2 that have similar

magnitudes (see below). Note that the initial condition for u′(t = 0) = 0 is translated now

into u2(t = 0) = u0−u30/3, that is u2(t = 0) = 2/3 for the case investigated. The result of the

corresponding PINN integration using our moving collocation grid procedure is illustrated

in Figure 7. We have chosen ω0 = 15 and integrated for t ∈ [0, 1.5]. We also take the initial

condition u0 = 1 and zero initial derivative. The NN has 4 hidden layers with 42 neurons per

layer. The number of training data and collocation points are Ndata = 2 (one per solution

variable) and Nc = 90 respectively. The chosen weights are ωdata = 1, and ωF = 9 × 10−3.

The learning rate is η = 7 × 10−4. Now, we do not need the hybrid data loss function, as

the initial first order time derivative is imposed via the training data set for u2.

However, one must note that our simple recipies have their own limitations. Indeed, when

the stiffness of the system increases too much, one is forced to find another strategy or an

enlarged set of training data.

12

FIG. 8. PINN solution of the steady-state 1D convection-diffusion equation (see Equation 13). The

moving grid with a growing collocation interval procedure is applied. The different snapshots from

top to bottom and left to right panels corresponds to the progression of the process as a function

of the training step. The space coordinate at which the collocation points are defined are visible

with the green circles.

FIG. 9. Histories of the total loss function L and MSE corresponding to the case of the previous

figure.

B. Boundary value problem - steady-state solution of 1D convection diffusion

equation

In partial differential equations of high Reynolds convection-diffusion problems, imposed

boundary conditions involve the formation of strongly localized boundary layers. This is a

13

stiff system associated to BVP’s which is considered to be numerically challenging. In this

section, we only focus on the steady-state solution in one dimension. Hence, we consider the

following equation,

a
du

dx
− ν d

2u

dx2
− 1 = 0, (13)

where a is a constant speed, and ν is a viscosity parameter. The spatial integration domain

is for x ∈ [0, 1], x being a normalized spatial coordinate. The expected exact solution is,

u(x) = x− e−R(1−x) − e−R

1− e−R
, (14)

when the imposed boundary conditions are u(0) = u(1) = 0, with the definition of the

Reynolds number R = a/ν.

In order to illustrate our PINN solution using the previously described moving grid strat-

egy with a growing collocation interval, we have considered a high Reynolds case for R = 50

corresponding to a = 1 and ν = 0.02. For this BVP, the two boundary conditions are

imposed via the training data set at x = 0 and x = 1. The results are plotted in Fig-

ures 8-9. Indeed, one can clearly see that a modest number of only Nc = 27 collocation

points is sufficient to obtain a good training process. We have checked that, without such

improvement recipe, more than 40 collocation points are necessary. Moreover, a classical

numerical integration method also requires an even significantly larger number of points in

the spatial domain for uniform grid. For example, a finite-difference scheme requires a few

points in order to resolve the quasi-singular layer which thickness is of order 1/R. For the

PINN integration, we have chosen 3 hidden layers with 42 neurons per layer. The number

of training data and collocation points are Ndata = 2 and Nc = 27 respectively. The chosen

weights are ωdata = 1, and ωF = 5× 10−1. The learning rate is η = 1× 10−3

Finally, when the Reynolds number is higher, again our simple recipe shows its limitation

and more sophisticated strategy is required.

V. CONCLUSION

In this work, we have presented a few simple recipes with the aim to improve draw-

backs of the vanilla-PINNs for solving differential equations. This is indeed the case of stiff

ODE’s, requiring thus the use of a too large set of data representing the prior knowledge of

the solution. In other words, the sole knowledge of the initial/boundary conditions is not

14

sufficient. Modifying the total loss function in two ways, via an hybrid definition of the data

loss, or adding another partial loss associated to the conservation of the total energy (when

it is possible) is a first possible improvement. Another interesting idea consists in using a

moving collocation grid with a growing interval for the evaluation of the equation residual.

In this way, the training process is made more progressive. More sophisticated methods

based on self-adaptive methods could be also developed (see McClenny & Braga-Neto 2023,

Karniadakis et al. 2021, and Cuomo et al. 2022 for reviews).

Compared to classical numerical integration methods, PINNs still fail in terms of robust-

ness because of these failures inherent to the the training process. However, this technique

using neural networks is relatively recent and many other improvements are probably ex-

pected in the future years. Nevertheless, the PINN formulation offers interesting advantages

over classical methods. Indeed, it is a meshless method, and once trained the solution can

be quasi-instantaneously generated.

ACKNOWLEDGMENTS

The author thanks Léo Baty (CERMICS, ENPC) for his help in Python programming.

Some of the Python codes used to make the figures are available from the Github repository

at https://github.com/hubertbaty/PINNS-EDO2.

[1] Baydin A. G., Pearlmutter B. A, Radul A. A., & Siskind J. M.,

https://doi.org/10.48550/arXiv.1502.05767, 2018

[2] Baty H. & Baty L., https://doi.org/10.48550/arXiv.2302.12260, 2023 (Paper 1)

[3] Cuomo S., Di Cola V.S., Giampaolo F., Rozza G., Raissi M. & Piccialli F., Journal of Scientific

Computing 92, 88, 2022, https://doi.org/10.1007/s10915-022-01939-z

[4] Karniadakis G.E., Kevrekidis I.G., Lu L, Perdikaris P., Wang S., & Yang L., Nature reviews

422, 440, 2021, https://doi.org/10.1038/s42254-021-00314-5

[5] Krishnapriyan A.S., Gholami A., Zhe S., Kirby R.M., & Mahoney M. W.,

https://doi.org/10.48550/arXiv.2109.01050, 2021

[6] McClenny L.D., & Braga-Neto U.M., Journal of Computational Physics 474, 111722, 2023,

15

https://doi.org/10.1016/j.jcp.2022.111722

[7] Raissi, Perdikaris P., & Karniadakis G.E., https://doi.org/10.48550/arXiv.1711.10561, 2017

[8] Raissi M., Perdikaris P., & Karniadakis G.E., Journal of Computational Physics 378, 686, 2019,

https://doi.org/10.1016/j.jcp.2018.10.045

[9] Xiang Z., Peng W., Liu X., & Yao W., Neurocomputing Volume 496, 28 July 2022, Pages 11-34

https://doi.org/10.1016/j.neucom.2022.05.015

16

