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VARIETIES COVERED BY AFFINE SPACES, UNIFORMLY
RATIONAL VARIETIES AND THEIR CONES

I. ARZHANTSEV, S. KALIMAN AND M. ZAIDENBERG

Abstract. It was shown in [KZ23b] that the affine cones over flag manifolds and
rational smooth projective surfaces are elliptic in the sense of Gromov. The latter
remains true after successive blowups of points on these varieties. In the present note
we extend this to smooth projective spherical varieties (in particular, toric varieties)
successively blown up along smooth subvarieties. The same also holds, more gener-
ally, for uniformly rational projective varieties, in particular, for projective varieties
covered by affine spaces.

1. Introduction

We work over algebraically closed field K of characteristic zero. All the varieties in
this paper are algebraic varieties defined over K; Pn and An stand for the projective
resp. affine n-space over K; Gm and Ga stand for the one-dimensional algebraic torus
and the one-dimensional unipotent algebraic group over K, respectively. “Ellipticity”
below means “Gromov’s ellipticity”.

1.1. Gromov’s ellipticity. The notion of Gromov ellipticity appeared first in analytic
geometry where it serves in order to establish the Oka-Grauert Principle in the most
general form, see [Gro89] and [For17]. Gromov considered as well an analogous notion
of ellipticity in the setup of algebraic varieties. It is known that an elliptic smooth
algebraic variety X of dimension n admits a surjective morphism from An+1 which also
is smooth and surjective on an open subset of An+1, see [Kus22a]. This implies that the
endomorphism monoid End(X) is highly transitive on X, see [KZ23b, Appendix A].
Furthermore, for K = C the fundamental group π1(X) is finite, see [Kus22b].

Recall that a smooth algebraic variety X is called elliptic if it admits a dominating
Gromov spray (E, p, S) where p : E → X is a vector bundle with zero section Z and
s : E → X is a morphism such that s|Z = p|Z and s is dominating at any point x ∈ X,
that is, the restriction s|Ex to the fiber Ex = p−1(x) is dominant at the origin 0x ∈ Ex.
The image Ox = s(Ex) ⊂ X is called the s-orbit of x.

According to [Gro89, 3.5.B] if the ellipticity holds locally on an open covering of X,
then it holds globally. Moreover, the ellipticity of X holds if X is subelliptic, that is,
there is a dominating collection of sprays on X instead of a single spray, see [For17]

Key words and phrases. Gromov ellipticity, spray, uniformly rational variety, toric variety, spher-
ical variety, affine cone.
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2 I. ARZHANTSEV, S. KALIMAN AND M. ZAIDENBERG

and [KZ23a]. In other words, one can always replace a dominating collection of sprays
on X by a single dominating spray.

1.2. Ellipticity of cones. Let X ⊂ PN be a smooth projective variety of dimension n.
The affine cone cone(X) in AN+1 blown up at the origin gives rise to a line bundle
F = OX(−1) on X whose zero section ZF is the exceptional divisor of the blowup.
The associated principal Gm-fiber bundle Y → X with fiber A1

∗ = A1\{0} is isomorphic
to F \ ZF and so, to the punctured affine cone over X that is, the affine cone with its
vertex removed:

Y = F \ ZF ≃X cone(X) \ {0}.
Our aim is to establish the ellipticity of Y provided X is elliptic, under certain

additional assumptions on X. In [KZ23b] the second and the third authors suggested
criteria of ellipticity of Y based on the so called curve-orbit property for some families
of smooth rational curves and sprays on X. In particular, it was shown in [KZ23b]
that the punctured affine cones over a flag variety G/P blown up in several points
and infinitesimally near points are elliptic and the same holds for any rational smooth
projective surface, see [KZ23b, Theorem 0.1]. In the present note we develop further
the technique of [KZ23b]. This allows us to establish similar facts for uniformly rational
varieties, in particular, for varieties of class A0, therefore, for smooth projective toric
and, more generally, spherical varieties. Recall that a spherical variety is a normal
G-variety which contains an open B-orbit, where G is a reductive algebraic group and
B is a Borel subgroup in G. A flag variety G/P and a normal toric variety are spherical
varieties. For G/P the latter follows from the Bruhat decomposition G = BWB, and
for a toric T -variety it suffices to choose G = B = T .

1.3. Varieties of class A0. One says that a variety X belongs to class A0 if there is
an open cover {Ai} on X by affine cells Ai ≃ An where n = dim(X). It is well known
that a variety of class A0 is elliptic; see e.g. [Gro89, Sec. 3.5]. The blowup of a variety
of class A0 in a point is again a variety of class A0, see [Gro89, 3.5D]. More generally,
suppose X is a variety of class A0 and Z ⊂ X is a closed subvariety such that the pair
(Ai, Z ∩Ai) is isomorphic for any i to a pair (An,Ak) with n− k ≥ 2; in this case Z is
called a linear subvariety of X. The blowup of a linear subvariety Z in X results again
in a variety of class A0, see [APS14, Section 4, Statement 9].

1.4. Uniformly rational varieties. This class of varieties strictly contains the class A0,
see Examples 4.8.

Definition 1.1. An algebraic variety X is called uniformly rational 1 if for each x ∈ X
there is an open neighborhood X0 of x in X isomorphic to an open subset of An.

In [Gro89, 3.5.E′′′] Gromov asked whether a smooth complete rational variety is
uniformly rational. It seems that this question is still open, see [BB14, Question 1.1]
and [CPPZ21, p. 41]. On the other hand, not every complete uniformly rational variety

1In other terms, regular, plain or locally flattenable, see [Gro89, 35.D], [BHSV08] and [Pop20],
respectively.
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belongs to class A0. For instance, none of the smooth rational cubic fourfolds in P5

and none of the smooth threefold intersections of a pair of quadrics in P5 contains a
Zariski open set isomorphic to an affine space, see [PS88], and [Pro94]. However, these
varieties are uniformly rational, see [BB14] and Examples 4.8 below.

For the following property of uniformly rational varieties see [Gro89, Proposition 3.5E′′],
[BHSV08, Theorem 4.4] and [BB14, Proposition 2.6].

Theorem 1.2. Let X be a uniformly rational variety and X̃ → X be the blowing of X
up along a smooth subvariety of codimension at least 2. Then X̃ is uniformly rational.

1.5. Main results. We prove the following theorem.

Theorem 1.3 (Theorem 3.3). Let X be a complete uniformly rational variety of posi-
tive dimension. Then X is elliptic. Let further X be projective, D be an ample divisor
on X and Y = F \ZF be the principal Gm-fiber bundle associated with a line bundle F
where either F = OX(−D) or F = OX(D). Then Y is elliptic.

Notice that up to isomorphism over X which inverses the Gm-action, Y = F \ ZF

stays the same under replacing D by −D. Observe also that for a trivial line bundle F
the variety Y ≃X X × A1

∗ is not elliptic and π1(Y ) is infinite for K = C.
From Theorems 1.2 and 1.3 we deduce the following fact.

Corollary 1.4. The variety X ′ resulting from a sequence of blowups of a complete
uniformly rational variety X along smooth subvarieties is elliptic.

A closely related result in [LT17, Corollary 7] says that the blowup X ′ with a smooth
center of the complement to a subvariety of codimension at least 2 in a variety X of
class A0 is subelliptic. Hence, X ′ is elliptic by [KZ23a, Theorem 0.1]. See also [KKT18]
for a similar result.

Smooth complete spherical varieties and smooth complete rational T -varieties of
complexity one belong to class A0, see [BLV86] and [APS14]. Hence, these varieties
are uniformly rational. So, we have the following corollary.

Corollary 1.5 (cf. Corollary 4.6). Let a smooth projective variety X be either toric, or
spherical, or rational T -variety of complexity one. Then the conclusions of Theorem 1.3
hold for X successively blown up along smooth subvarieties.

1.6. Generalized affine cones. By Theorem 1.3 the punctured affine cones over
uniformly rational projective varieties are elliptic. Let us mention further examples.

Recall that an effective Gm-action λ : Gm × Ȳ → Ȳ on a normal affine variety Ȳ
is called good if there exists a point y0 ∈ Ȳ which belongs to the closure of any
λ-orbit. The structure algebra A = OȲ (Ȳ ) of such a Gm-variety Ȳ is positively graded:
A =

⊕
k≥0Ak where A0 = K and Ak for k > 0 consists of λ-homogeneous elements of

weight k. Let Y = Ȳ \ {y0} and X = Proj(A) = Y/λ. Then X is a normal projective
variety, see [Dem88, Proposition 3.3]. According to [Dem88, Theorem 3.5], see also
[Dol07, Theorem 3.3.4], there exists an ample Q-Cartier divisor D =

∑
i pi/qiDi on X,

where the Di are prime divisors and the integers pi, qi are coprime, such that

Ak = H0(X,OX(⌊kD⌋)) for every k ≥ 0.
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Furthermore, the Gm-action λ on Y is free if and only if D is a Cartier divisor that is,
qi = 1 ∀i, see [Dem88, Corollaire 2.8.1].

Conversely, given a smooth projective variety X and an ample Cartier divisor D on
X one can consider the generalized affine cone

Ȳ = Spec

(
∞⊕
n=0

H0 (X,OX(nD))

)
.

This is a normal affine variety equipped with a good Gm-action, see [Dem88, Sec. 3]
or [Dol07, Proposition 3.3.5]. Letting Y = Ȳ \ {y0} where y0 ∈ Ȳ is the unique
Gm-fixed point, one gets a morphism π : Y → X = Y/Gm. Every fiber of π is reduced,
irreducible and isomorphic to A1

∗, see [Dem88, Proposition 2.8] and [Dol07, Proposition
3.4.5]. Furthermore, the Gm-action on Y is free and π is locally trivial, see [Dem88,
the proof of Proposition 2.8].

Consider also the line bundle F = OX(−D) → X equipped with the associated
Gm-action. We have a birational morphism F → Ȳ contracting the zero section ZF to
a normal point y0 ∈ Ȳ , cf. [Dem88, 3.4]. It restricts to an equivariant isomorphism of
smooth quasiaffine varieties

F \ ZF ≃ Ȳ \ {y0}
equipped with free Gm-actions, see [Dem88, Corollaire 2.9], [Dol07, Sec. 3.4, p. 49]
and [KPZ13, Sec. 1.15]; cf. [Pin77, p. 183].

Notice that while Ȳ above is normal, for X ⊂ PN the affine cone cone(X) is normal if
and only if the embedding X ↪→ PN is projectively normal, that is, for every d ≥ 1 the
linear system cut out on X by the hypersurfaces of degree d is complete, see [Har04,
Chap. II, Example 7.8.4]. Thus, if D is a hyperplane sections of X ⊂ PN then Ȳ as
above is the normalization of the affine cone cone(X). In particular, the punctured
cone cone(X) \ {0} is Gm-equivariantly isomorphic to Ȳ \ {y0}.

2. The curve-orbit property

We need the following more general analog of the curve-orbit property (∗) for Ga-
sprays defined in [KZ23b, Definition 2.7].

Definition 2.1. Given a smooth variety B of dimension n− 1 consider the Ga-action
on the cylinder V = B × A1 by shifts on the second factor:

sV : Ga × V → V, (t, (b, v)) 7→ (b, v + t)

along with the associated Ga-spray (EV , pV , sV ) on V where EV = V × A1 and
pV : EV → V is the first projection.

Let X be a smooth variety of dimension n. Assume that X admits a birational
morphism ψ : V → X biregular on an open dense subset V0 ⊂ V with image X0 ⊂ X.
Consider the spray (E0, p0, s0) on X0 with values in X conjugate to (EV , pV , sV )|V0

via ψ. That is, E0 = X0 × A1, p0 : E0 → X0 is the first projection and

s0 : E0 → X, (x, t) 7→ ψ(sV (t, ψ
−1(x))).
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Extend (E0, p0, s0) to a rank 1 spray (E, p, s) on X; the latter spray exists due to
Gromov’s Extension Lemma, see [Gro89, 3.5B], [For17, Propositions 6.4.1-6.4.2] or
[KZ23b, Proposition 6.1]. We call (E, p, s) a Ga-like spray on X. This spray is associ-
ated with the birational Ga-action on X conjugate via ψ to the standard Ga-action on
the cylinder V , see [Dem70, Chap. 1].

Remark 2.2. The closure Cx = Ox in X of the s0-orbit Ox of a point x ∈ X0 is
a rational curve. By construction, the intersection Cx ∩ X0 is smooth and (E, p, s)
restricts to a dominating spray on Ox ∩ X0, cf. Lemma 2.4 below. Moreover, the
morphism s : Ex ≃ A1 → Cx admits a lift A1 → P1, and the latter morphism to
normalization is an embedding.

However, the curve Cx can have singularities off X0. Thus, the setup of Definition 2.1
does not guarantee that X verifies on X0 either the curve-orbit property (∗) of [KZ23b,
Definition 2.7], or the enhanced curve-orbit property (∗∗) of [KZ23b, Proposition 3.1].
Indeed, the latter properties postulate the smoothness of Cx for x ∈ X0, which occurs
to be a rather restrictive condition for our purposes. The question arises whether
any smooth complete variety of class A0, or even every complete uniformly rational
variety, verifies the curve-orbit property (∗) of [KZ23b] with smooth rational curves;
cf. Corollary 2.7 and Lemma 3.1 below. Notice that this property holds for smooth
complete rational surfaces and for flag varieties G/P , see [KZ23b].

In order to use a criterion of ellipticity of cones over projective varieties from [KZ23b,
Corollary 2.9] we introduce the following objects.

Definition 2.3. Let X and B be as in Definition 2.1. Consider a P1-cylinder W =
B × P1. Assume that X admits a birational morphism φ : W → X biregular on an
open dense subset W0 ⊂ W with image X0 ⊂ X. Given a point u ∈ P1 consider the
cylinder Vu := B × (P1 \ {u}) ≃ B × A1, the birational morphism ψu = φ|Vu : Vu → X
and the open dense subsets Vu ∩W0 ⊂ Vu and Xu = ψu(Vu ∩W0) ⊂ X0. Thus, the
data (W,φ,X0) yields a one-parameter family of Ga-like sprays (Eu, pu, su) on X where
u ∈ P1, see Definition 2.1.

Lemma 2.4. Under the setup of Definition 2.3 let for x ∈ X0,

(1) w = φ−1(x) = (b, ux) ∈ W0 and Cx = φ({b} × P1) ⊂ X.

Then Cx is a complete rational curve in X through x such that Cx ∩ X0 is smooth.
If x ∈ Xu, that is φ(b, u) ̸= x, then the su-orbit Ou,x of x is one-dimensional and
(Eu, pu, su) restricts to a spray on Cx dominating at x and such that su|Eu,x : Eu,x →
Ou,x is a birational morphism étale over x.

Proof. The Ga-like spray (Eu, pu, su) inherits a kind of the composition property of a
Ga-action. Namely, for any x′ ∈ Ou,x ∩X0 the su-orbits Ou,x′ and Ou,x coincide. This
implies that (Eu, pu, su) restricts to a spray on Cx. The rest of the proof is easy and is
left to the reader. □
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Definition 2.5. Modifying [KZ23b, Definition 2.7] we say that a complete rational
curve C on a smooth variety X verifies the strengthened two-orbit property at a smooth
point x ∈ C if

(∗) there exists a pair of rank 1 sprays (Ei, pi, si) (i = 1, 2) on X such that C is
covered by the one-dimensional si-orbits Oi,x, si : Ei,x → Oi,x is a birational
morphism étale over x and (Ei, pi, si) restricts to a spray on Oi,x dominating
at x.

If for any x ∈ X there exists a curve C = Cx as above, then we say that X verifies the
strengthened curve-orbit property.

Remark 2.6. In fact, to show ellipticity of cones over an elliptic variety the following
weaker condition could be used:

• for each point x ∈ X there exists a rational curve C in X and a pair of sprays
{(Ei, pi, si)}i=1,2 on X such that x ∈ C is a smooth point, C = O1,x ∪O2,x and
si : Ei,x → Oi,x is a birational morphism étale over x.

However, in the setup of the present paper the stronger property (∗) holds for each
x ∈ X.

We have the following corollary.

Corollary 2.7. Let X be a smooth projective variety, and let (W,φ,X0) be a data
as in Definition 2.3. For x ∈ X0 let Cx be a curve as in (1). Then Cx verifies
the strengthened two-orbit property (∗) at x with a pair of Ga-like sprays. If for each
x ∈ X there exists a data (W,φ,X0) such that x ∈ X0 then the strengthened curve-orbit
property holds on X with pairs of Ga-like sprays.

Proof. Let φ−1(x) = (b, ux) ∈ W0. Pick two distinct points u1, u2 ∈ P1 different from ux
and consider the corresponding Ga-like sprays (Ei, pi, si) = (Eui

, pui
, sui

), i = 1, 2, see
Definition 2.3. Due to Lemma 2.4 these sprays fit in Definition 2.5 of the strengthened
two-orbit property. This yields the first assertion. Now the second is immediate. □

Using Definitions 2.1 and 2.3 we can generalize the ellipticity criterion for cones in
[KZ23b, Corollary 2.9] as follows. The proof repeats verbatim the proof of Corollary 2.9
in [KZ23b] with minor changes.

Proposition 2.8. Let X be a smooth projective variety and ϱ : F → X be an ample
line bundle. Suppose that X is elliptic and for any point x ∈ X there exists a data
(W,φ,X0) as in Definition 2.3 such that x ∈ X0. Then Y = F \ ZF is elliptic.

Proof. A dominating spray (E, p, s) on X lifts to a spray (Ê, p̂, ŝ) of rank n = dim(X)

on Y where Ê fits in the commutative diagrams

(2)
Ê

p̂−→ Y
↓ϱ̂ ↓ϱ|Y
E

p−→ X

and
Ê

ŝ−→ Y
↓ϱ̂ ↓ϱ|Y
E

s−→ X

see [KZ23b, Lemma 2.3].
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Given y ∈ Y we let x = ϱ(y) ∈ X and let Cx be a rational curve on X passing
through x which is smooth at x and such that (Cx, x) satisfies the strengthened two-
orbit property with a pair of Ga-like sprays (Ei, pi, si) on X, i = 1, 2, see Definition 2.5
and Corollary 2.7. Due to [KZ23b, Lemma 2.3] these sprays admit a lift to a pair of
rank 1 sprays (Êi, p̂i, ŝi) on Y .

We will show, following the lines of the proof of Proposition 2.6 in [KZ23b], that the
triplet of sprays (Ê, p̂, ŝ) and (Êi, p̂i, ŝi), i = 1, 2 is dominating at y. This implies the
assertion.

Notice that the tangent space at y to the ŝ-orbit is a hyperplane H ⊂ TyY such that
dϱ(H) = TxX. We claim that the pair of tangent vectors at y to the ŝi-orbits Ôi,y on
Y span a plane P in TyY such that dϱ(P ) = TxCx. Accepting this claim, there exists
a nonzero vector v ∈ P such that dϱ(v) = 0. Hence v /∈ H and so, span(H,P ) = TyY ,
which gives the desired domination.

To show the claim, consider a morphism of normalization φx : P1 → Cx and the
pullback line bundle F̃ = F̃ (x) = φ∗

x(F |Cx) → P1. Since F → X is ample one has
[F ] · [Cx] ̸= 0. Hence, F̃ → P1 is nontrivial and so is the associated principal Gm-fiber
bundle Ỹ = Ỹ (x) = φ∗

x(Y |Cx) → P1. For i = 1, 2 consider the pullback p̃i : Ẽi → Ỹ of
the line bundle p̂i : Êi → Y via the induced morphism Ỹ → Y |Cx .

According to the second diagram in (2) we have

ϱ(Ôi,y) = ϱ ◦ ŝi(Êi,y) = si(Ei,x) = Oi,x ⊂ Cx.

The birational morphism si|Ei,x
: Ei,x = A1 → Cx admits a lift to normalization

s̃i,x : A1 → P1. In fact, s̃i,x is a birational morphism smooth at 0. Hence, s̃i,x sends A1

isomorphically onto Ui := P1 \{ui}, the notation being as in the proof of Corollary 2.7.
By Lemma 2.4 (Ei, pi, si) restricts to a Ga-like spray on Cx. It is easily seen that

there is a pullback φ∗
x((Ei, pi, si)|Cx) to a Ga-like spray (E ′

i, p
′
i, s

′
i) on P1 dominating

at x and such that the s′i-orbit of x coincides with Ui. Now, the pullback of (E ′
i, p

′
i, s

′
i)

to Ỹ via Ỹ → P1 gives a Ga-like spray (Ẽi, p̃i, s̃i) on Ỹ with p̃i : Ẽi → Ỹ as above.
There are trivializations Ỹ |Ui

∼=Ui
Ui × A1

∗, i = 1, 2. The standard Ga-action on
Ui ≃ A1 lifts to a Ga-action on Ỹ |Ui

whose orbits are the constant sections. Since any
morphism A1 → A1

∗ is constant, the one-dimensional s̃i-orbits in Ỹ also are constant
sections. Since the Gm-fiber bundle Ỹ → P1 is nontrivial, it admits no global section.
In an appropriate affine coordinate z on U1 ∩ U2 the transition function equals zk

with k ̸= 0. It follows that the constant sections over U1 meet transversally the ones
over U2.

The normalization morphism φ : P1 → Cx is étale over x. Hence, also the morphism
Ỹ → Y |Cx is étale over y. Finally, the ŝi-orbits Ô1,y and Ô2,y meet transversally at y.
This proves our claim. □

3. Uniformly rational varieties

In order to apply Proposition 2.8 to uniformly rational smooth projective varieties
we need the following Lemmas 3.1–3.2.
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Lemma 3.1. Let X be a uniformly rational smooth complete variety. Then for any
point x ∈ X there exists a data (W,φ,X0) as in Definition 2.3 such that x ∈ X0.

Proof. Since X is uniformly rational there are open subsets x ∈ X0 ⊂ X, V0 ⊂ An

and an isomorphism h0 : V0
≃−→ X0. Embed An ↪→ Pn and let H = Pn \ An. Let also

h : Pn 99K X be the rational extension of h0. Shrinking V0 and X0, respectively, we
may assume that D = Pn \ V0 is a divisor which contains H as a component.

Let v = h0(x) ∈ V0. Fix a general linear projection τ : An → An−1 and an open
subset B ⊂ An−1 which contains τ(v). Consider the cylinder Π = τ−1(B) ≃ B × A1

in An. Embed Π in W = B × P1. The closure in Pn of each ruling lb = {b} × A1 of
Π passes through the same point w ∈ H. Hence the embedding Π ↪→ Pn extends to a
morphism ψ : W → Pn which contracts B×{∞} = W \Π to w, where {∞} = P1 \A1.

We claim that after shrinking B appropriately, the composition φ = h◦ψ : W 99K X
becomes a birational morphism.

Indeed, consider the normalization X̂ of the closure of the graph Γ(h) ⊂ Pn × X.
The canonical projections to the factors yield proper birational morphisms f and g
fitting in the commutative diagram

X̂

Pn X
h

f g

W

ψ φ

Since X̂ is normal the codimension of the singular locus of X̂ is at least 2 and the
same holds for the codimension in Pn of the indeterminacy locus of h : Pn 99K X. By
the Zariski Main Theorem, see [Har04, Corollary III.11.4], for a general point p of
a component of D there is a point p̂ ∈ X̂ such that f(p̂) = p and f−1(f(p̂)) = p̂.
Furthermore, h extends regularly to p and h(p) = g(p̂).

Since τ is a general linear projection, the point w is general in the hyperplane H
and the ruling lτ(v) ≃ A1 of Π passing through v ∈ Π meets D in general points of the
corresponding components of D. Shrinking B appropriately we may suppose that each
point in Π∩D is a general point of a component of D and so, h is regular on Π∪{w}.
Since ψ(W ) = Π ∪ {w}, the map φ = h ◦ ψ is regular on W , as desired. □

Lemma 3.2. A uniformly rational smooth complete variety X is elliptic.

Proof. We use the notation from the proof of Lemma 3.1. Recall that the embedding
h0|Π∩V0 : Π∩V0 ↪→ X extends to the morphism φ : W → X. Via the conjugation with φ,
the Ga-action on Π by shifts along the rulings of Π yields a rank 1 Ga-like spray (E, p, s)
on X, see Definition 2.1. The restriction of this spray to lτ(v) is dominating at v ∈ lτ(v).
Since τ : An → An−1 is a general linear projection, the tangent vector at v to the orbit
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lτ(v) of v under the Ga-action on Π is a general vector in TvV0. Hence, the differential
ds sends T0xEx to a general line in TxX. In this way one can find n different rank 1
sprays (Ei, pi, si), i = 1, . . . , n on X such that the lines dsi(T0i,xEi,x) span the tangent
space TxX. The composition of these sprays gives a rank n spray on X dominating at
x, see [KZ23a, Corollary 1.2]. This implies that X is subelliptic and hence, elliptic, see
[KZ23a, Theorem 0.1]. □

We can now deduce our main result.

Theorem 3.3. For a complete uniformly rational variety X the following holds.
(i) X is elliptic.
(ii) Assume that X is projective and let F → X be an ample or anti-ample line

bundle on X with zero section ZF . Then Y = F \ ZF is elliptic.

Proof. Statement (i) follows from Lemma 3.2 and (ii) follows from Proposition 2.8 due
to Lemma 3.1. □

In Corollary 3.7 below we slightly generalize statement (i). Let us introduce the
following notion.

Definition 3.4. We say that a variety X is stably uniformly rational if for some k ≥ 0
the variety X × Ak is uniformly rational.

Remark 3.5. There exist non-rational stably rational varieties, see [BCTSSD85].
However, we do not know whether every stably uniformly rational variety is uniformly
rational. One may also ask whether there exists a non-rational stably uniformly ratio-
nal variety.

On the other hand, we have the following lemma suggested by Làrusson, see [KKT18,
Proposition 1.9].

Lemma 3.6. If the product X = X1 × X2 of smooth varieties X1 and X2 is elliptic,
then the Xi are elliptic.

For the reader’s convenience we sketch the proof.

Proof. let (E, p, s) be a dominating spray on X. Pick a point P ∈ X2 and consider the
restriction p1 : E1 → X1 of p : E → X to X1 × {P} ⊂ X. Letting now

s1 = pr1 ◦ s|E|X1×{P} : E1 → X1

yields a desired dominating spray (E1, p1, s1) on X1, cf. the proof of Proposition 1.9 in
[KKT18]. □

Corollary 3.7. A complete stably uniformly rational variety X is elliptic.

Proof. Let X×Ak be uniformly rational. Then also X̂ = X×Pk is. By Theorem 3.3(i)
X̂ is elliptic. By Làrusson’s Lemma 3.6 X is elliptic too. □
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4. Examples

We start with the following well known example. For the reader’s convenience we
provide an argument.

Lemma 4.1. A smooth complete toric variety X belongs to class A0.

Proof. Let N be a lattice of rank n = dim(X) and Σ be the complete fan in NQ =
N⊗ZQ associated withX. SinceX is smooth every n-cone σ ∈ Σ is simplicial generated
by vectors v1, . . . , vn ∈ N which form a base of N . The corresponding affine variety
Xσ is isomorphic to An and the affine charts Xσ cover X, see e.g. [Ful93, Sec. 1.4]. □

For the proof of the next lemma we address the original paper.

Lemma 4.2 ([APS14, Theorem 5]). A smooth complete rational variety X with a torus
action of complexity 1 belongs to class A0.

Remark 4.3. There is an analog of these results for affine varieties. Namely, every
smooth rational affine variety with a torus action of complexity 0 or 1 is uniformly
rational, see [LP19].

Lemma 4.1 extends to complete spherical varieties. For the reader’s convenience we
sketch a proof.

Lemma 4.4 ([BLV86, Sec. 1.5, Corollaire]). A smooth complete spherical variety X
belongs to class A0.

Proof. Recall first the Local Structure Theorem, see [BLV86, Théorème 1.4]. Consider
a normal G-variety Z and a point z ∈ Z such that the orbit Gz is a projective variety.
Then the stabilizer Gz is a parabolic subgroup. Let P ⊂ G be the opposite parabolic
subgroup with the Levi decomposition P = LP u where P u is the unipotent radical of
P and L = P ∩ Gz is the Levi subgroup in P . The Local Structure Theorem asserts
that there is a locally closed affine subset V ⊂ Z such that z ∈ V , LV = V , P uV is
open in Z and the action of P u on Z defines an isomorphism P uV ∼= P u × V .

Returning to Lemma 4.4 we let Z = X and we apply the notation above. It suffices
to show that any point x ∈ X whose orbit Gx is closed in X admits a neighborhood in
X isomorphic to An. Indeed, for any y ∈ X the closure of the orbit Gy contains such
a point x.

Since X is spherical, in the setup of the Local Structure Theorem the reductive Levi
subgroup L of P = G−

x acts on the corresponding smooth affine variety V with an
open orbit and with an L-fixed point x. Applying Luna’s Étale Slice theorem, see e.g.
[PV94, Corollary of Theorem 6.7], we deduce that V is equivariantly isomorphic to an
L-module. It follows that x has a neighborhood in X isomorphic to P u × V , which is
an affine space. □

Remark 4.5. A similar argument proves the following fact, see [Pop20, Theorem 3].
Let G be a connected reductive algebraic group and X be a smooth affine G-variety.
Assume that OX(X)G = K and the unique closed G-orbit O in X is rational. Then X
is uniformly rational.
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Due to Lemmas 4.1, 4.2 and 4.4 the following corollary of Theorem 3.3 is immediate.

Corollary 4.6. The punctured affine and generalized affine cones over a smooth pro-
jective toric or spherical variety equipped with an ample polarization are elliptic. This
remains true after successively blowing up such a variety in smooth subvarieties. The
same holds for a smooth projective rational variety X with a torus action of complex-
ity 1.

Remark 4.7. Recall that the normalization of the affine cone cone(X) over a smooth
toric variety X in Pn is a normal affine toric variety with no torus factor. It is
known that such a variety is flexible, see [AKZ12, Theorem 0.2(2)]. It follows that
Y = cone(X) \ {0} is elliptic. However, it is not clear whether the flexibility of cone(X)
survives under blowing-up a point in X.

Let us mention some known examples of uniformly rational smooth Fano varieties.

Examples 4.8. 1. It is known that a smooth rational cubic hypersurface in Pn+1, n ≥ 2
and a smooth intersection of two smooth quadric hypersurfaces in Pn+2, n ≥ 3 2, are
uniformly rational, cf. [Gro89, 3.5.E′′′] and [BB14, Examples 2.4 and 2.5]. According
to Theorem 3.3, such a variety X is elliptic and the punctured (generalized) affine cone
Y over X equipped with an ample polarization is elliptic.

However, for n = 3 the threefolds X as above do not belong to class A0. The latter
follows from the classification of smooth Fano threefolds with Picard number 1 which
contain an open subset isomorphic to A3, see [CPPZ21, Theorem 4.31].

2. It is shown in [BB14, Proposition 3.2] that the moduli space M0,n of stable n-
pointed rational curves is a complete uniformly rational variety. By Theorem 3.3 it is
elliptic, hence is the image of an affine space under a surjective morphism.

3. The same holds for a small algebraic resolution of a nodal cubic threefold in
P4, see [BB14, Example 2.4 and Theorem 3.5]. See also [BB14, Section 3] for further
examples.

4. Any smooth Fano-Mukai fourfold with Picard number 1, genus 10 and index
2 is rational. The moduli space M of such fourfolds is one-dimensional. With one
exception, every such fourfold Xt belongs to class A0, see [PZ23, Theorem 2]. The
exceptional Fano-Mukai fourfold X0 is covered by open A2-cylinders Zi×A2 where the
Zi are smooth rational affine surfaces, see [PZ23, Proposition 7.3]. Since the Zi are
uniformly rational, so isX0. By Theorem 3.3 the punctured affine cones and generalized
affine cones over Xt ∈ M are elliptic. In fact, all these cones over Xt, without any
exception, are even flexible, see [PZ23, Theorem 1].

Acknowledgments. We are grateful to Yuri Prokhorov, who drew our attention to
uniformly rational varieties, to the paper [BB14] and to Example 4.8.1.

2Which is always rational, see e.g. [GH94, p. 796].
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