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Model P(@), Quantum Field Theory
A Nonstandard Approach Based on Nonstandard
Pointwise-Defined Quantum Fields

J. Foukzon

Center for Mathematical Sciences, Technion Israel Ingtitute of Technology City, Haifa 3200003 Israel
jaykovfoukzon@list.ru

Abstract. A new non-Archimedean approach to interacted qumafiiteids is presentedin proposed approach, a field operator
¢(x,t) no longer a standard tempered operator-valuedhditbn, but a non-classical operator-valued fiorctWe prove using
this novel approach that the quantum field theaith WamiltonianP (¢), exists and that the correspondifig algebra of
bounded observables satisfies all the Haag-Kastiems except Lorentz covariance. We prove thaftge), quantum field
theory model is Lorentz covariant.
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§1. INTRODUCTION

Extending the real numbeRsto include infinite and infinitesimal quantitiesginally enabled D. Laugwitz [1] to
view the delta distributiofi(x) as a nonstandard point function. IndependentliRdbinson [2] demonstrated that
distributions could be viewed as generalized patyiabs. Luxemburg [3] and Sloan [4] presented aeralte re-
presentative of distributions as internal functiarithin the context of canonical Robinson's themfirponstandard
analysis For further information on nonstandard real analysie refer to [5]-[6].

Abbreviation 1.1.1In this paper we adopt the following notationst &standard sét we often writeF,. For a set
Eg let°E, be a s&tE,, = {*x|x € E4}. We identifyz with °z i.e.,z = °z for allz € C. HencelEy = E if E € C,
e.g..°C=C,°R=R,°P =P, °L}, = L, etc. Let'R. "Ry "Rgn, "Ro,, and*N,, denote the sets of infinitesimal
hyper-real numbers, positive infinitesimal hypeatneumbers, finite hyper-real numbers, infinite éspeal
numbers and infinite hyper natural numbers, re$pegt Note thatRg, = "R\*'R,,, "*C = "R+ i'R, "Cq, =

*]Rfin + i*Rfin .

Definition 1.1Let {X, 0} be a standard topological space andXebe the nonstandard extensiorXofLet 0, de-
note the set of open neighbourhoods of peiatX. The monadnon, (x) of x is the subset of X defined by



mong(x) =N {*0|0 c 0,}.The set of near standard points'¥fis the subset ofX defined bynst (*X) =U
{mon, (x)|x € X}. Itis shown thafX, 0} is Hausdorff space if and onlyxf# y impliesmon,(x) N mon,(y) =
@. Thus for any Hausdorff spdcg 0}, we can define the equivalence relatignonnst (*X) so thatx =, y if and
only if x € mon,(z) andy € mon,(z) for somez € X.

Definition 1.2 The standard Schwarspace of rapidly decreasing test function®®3mm € N is the standard
function space is defined b§(R™, C) = {f € C*(R",C)|Va, B € N"[|fll4p < |}, where

Ifllap = supzenn [x* (DPF(O)].
Remark 1.1 If f is a rapidly decreasing function, then foraak N™ the integral 01|x“D5f(x)| exists
f]Rn|x“D5f(x)|d”x < o0,

Definition 1.3 The internal Schwartzpace of rapidly decreasing test functionsi®b, n € *N is the function space
defined by "SC'R™, *C) = {*f € "C* ('R, *C)|Va, B € "N"[*||"fllop < "]}, where

Wfllas = sup {x* (DPf()) Ix € R7}

Remark 1.2 If f is a rapidly decreasing functiofi,€ S(R™, C), then for alla, § € *N™ the internal integral of
*x*DP*f (x)| exists

*f*]Rn

*x“Dﬁ*f(x)| d™x < oo,

HereD#*f(x) = (D £(x)).

Definition 1.4 The Schwartspace of essentially rapidly decreasing test fonstion*R™, n € *N is the function
space defined by

“Sein("R™, "C) =
{'f €eC=CRY " OV(a B)(@ B € NY)3cap(cap € "Ren )Vx(x € R [[x* ("D £ ()| < cap]}-

Remark 1.3 1f *f € *Sg, ("R™, *C), then for alla € *N™ the internal integral df x*D#*f (x)| exists and finitely
bounded above

*J;]Rn *x“DB*f(x)| d™x < daﬁ'daﬁ € *Rfin .

Abbreviation 1.2 The standard Schwarspace of rapidly decreasing test function®Rdnwve will be denote by
S(R™). Let’'S("R™), n € *N denote the space 8€-valued rapidly decreasing internal test functionsR",n € *N
and let'Sg, (*R™), n € "N denote the set dfCs, -valued essentially rapidly decreasing test funstioriR™, n € *N.
If h(w,x):R x R® andf: R" - C are Lebesgue measurable BA" we shall write{*h, *f) for internal Lebesgue

integral*f*w *h*f d™x with *f € *S, ("R™). Certain internal function&(w, x): "R x *R™ — *C define classical

distributiont(f) by the rule [3][4]:

7(f) = st({("h, *f ). (1.1)



Herest(a) is the standard part afandst((*h, *f)) exists [5].

Definition 1.5 We shall say thath(w, x) withw = @ € *R,, is an internal representative to distributiqf) and
we will write symbolically (x4, ..., x,) = "h(w, x4, ..., x,,) if the equation (1) holds.

Definition 1.6 [6] We shall say that certain internal functioh§w, x): *R X *R™ — *C is a finite tempered
distribution if *f € *Sg, ("R™) implies|*h, *f| € °R = R. A functions*h(w, x): "R X *R™ — *C is called
infinitesimal tempered distribution iff € *Sg, ("R™) implies|*h, *f| € 'R, .The space of infinitesimal tempered
distribution is denotedyb*S. (*R™).

Definition 1.7 We shall say that certain internal functidh§w, x): *R x *R** - *C is a Lorentzs -invariant
tempered distribution if f € *Sg, "R™) andA € oLl implies (*h, *f (Axy, ..., Ax,)) = (°h, *F (X1, ooo) X))

Example 1.1 Let us consider Lorentz invariant distribution

D(x) = ﬁfm elhr S22 g3 = — §(r? — t2)sign(t). (1.2)

Here w = |k| = ki + k3 + k3 and r = (x;,x,,%3), 7 = y/x{ + x5 + x3. It easily verify that distributio® (x)
has the following internal representative

gikr SOt g3y (1.3)

1
D(x,w) = (2m)3 flkliw %)

Herew € "R,,. By integrating in (1.3) over angle variables we ge

1
8m2r

D(x,®) =

*fom{eiw(r—t) + e—iw(r—t) _ eiw(r+t) _ e—iw(r+t)} do. (14)

From (1.4) by canonical calculation finally we get

D(x, ’(I)') ~ 1 [sinw(r—t) __sin @o(r+)] _ SG-t)-8(r+t) _

r—t r+t am2r

%5@2 — t2)sign(t). (1.5)

am2r

Example 1.2 We consider now the following Lorentz invarianstdibution:

_ 1 ‘kcoswt3_ii
D;(x) = (Zn)sf]R3 uer d*k =T (1.6)
It easily verify that distributio® (x) has the following internal representative
_ 1 ikr COSWt .3
D, (x, @) = a? fllewe‘ T—=d%k. (1.7)
Herew € "R,,. By integrating in (1.7) over angle variables we ge
i * w . _ i — . —i
Dl(x, ’(IS) a~ — p— fo {ezw(r t) _ p-iw(r-t) + elwlr+t) _ o lw(r+t)} dw. (1.8)
From (1.8) finally we get
— i -2 -2 2cosw(r—-t) , 2cosw(r+t) L 11
Dy(x, @) ~ -5 [i(r—t) ir+t) ir-0) iret) 1 2mZx? (1.9)
Example 3.We consider now the following Lorentzariant distribution
@)(_; 2
=t iter—sciole € __ m 11 (cim 171)
AC (x) 2(21.[)3 f]R3 e E(k) 81 m |X2| . (1'10)



Here—x? < 0, e(k) = /| k2| + m? andHfZ) is a Hankel function of the second kind. It easgyify that
distributionA, (x) has the following internal representative

1 pillr—e()t]) £k (1.12)

A(x, @) = 2(2m)3 flklsw e(k)

From (1.10)-(1.11) it follows*A.(x) = A.(x, @) + A.(x) where

K ()= L * i(kr—e(i)t]) 4K
Ac(x) = 2(2m)3 flkl>wel T elk) (1.12)

Note that for alA € °L',, A.(Ax) € *S.(*R™) and therefore for al\ € °L!, A, (Ax, @) =~ A.(x, @), i.e.,A.(x, @)
is a Lorentz= -invariant tempered distribution, see definitionThus we can set= 0 in (1.11).By integrating in
(1.112) over angle variables and using substitutiovariables k| = m sinh(u) we get

A(x, @) = 8:—2” *f_hllfw exp(imrsinh(w))du. (1.13)
Note that
«p7(2) _mlw . : _ =
H7(x) = ?f_*w exp(tmrsmh(u))du—Ac(x, o)+ E(x, ), (1.14)
E(x,w) = ?f__};:m exp(imrsinh(w) )du + flf; exp(imrsinh(w) )du. (1.15)

From (1.13)-(1.15) finally we obtain.(x, @) ~ H® (x) , sinceE(x, @) € *S.("R™).
Example 1.4 Let us consider Lorentz invariant distribution

A(x —y) = [{exp[—ip(x — ¥)] — exp[ip(x — )]} §(p* — m*)I(p°)d*p. (1.16)

From (1.16) one obtains(x — y) = Z,(x — y) — Z,(x — y), where

:(x =) = [{exp{lip(x - )] - iw®) (x° — y)}) 5, (117)
E,(x —y) = [{exp{[-ip(x = Y] + iw(P) (x° - y°)}} J% (1.18)

w(p) = +/p? + m2. It easily verify that distribution (1.17) and I8) has the following internal representatives

81 (x = 3,0) = Sy fexp(lip(x = )] - @) — YN . ()19
220 = 3,) = [y pfexp|lin(x = Y] + 0@ G — ¥} s (1.20)

Note that “A(x —y) = [E,(x — ¥, @) + E,(x — ¥, ®)] + [E,(x — y,®@) + E,(x — y,@)], where

512 = 3,0) = fysplexpllipCe = )] - 0 ®) (x° — )} s, (1.21)

5= 3,0) = fyspl-exp[ipCe =] + w®) ° ¥} s (1.22)



Note that for alA € °LY,, Z;(A(x — ), @) + £, (A(x — y),w) € *S.(*R™) and therefore for all
A€ LY, "A(A(x —y)) = AA(x — ¥), @) = E,(A(x — ¥), @) + E,(A(x — ), @), i.e.,A(x — y,w) is a Lorentz
~-invariant tempered distribution, see definitiod.1lxrom (1.20) by replacemept— —p we obtain

21 = 3,@) = = [ o fexp{li - Y] + 0@ ° — )} T (1.23)
From (1.19) and (1.23) we get

Ax —y,@) = E1(x — y,@) + E,(x —y, @) = [, sin[o(@)(x° = yO)]exp[ip(x - y)] J% (1.24)

Thus for any pointg andy separated by space-like interval from (1.24) wiaiolthat
Alx —y, @) = 0, (1.25)

sinceA(x — y,w) is a Lorentzz-invariant tempered distribution. From (1.25) foyaointsx andy separated by
spacelike interval we obtain that{A(x — y,@)) = 0.

Definition 1.8 [8] Let for eachn > 0: H,,, = {p € R*|p - p = m%, m >,p, > 0}, wherep = (p°, —p?, —p?, —p3).
Here thesetsH,,, which are standard mass hyperboloids, are invianiager®L, . Let j,, be the homeomorphism of
H,, ontoR3 given by j.,: (po, P1, P2, P3) = (1,02, p3) = p. Define a measurg,, (E) onH,, by

d3
Qi (E) = f]'m(E)mez :
The measur@,,(E) is °L%. -invariant [8].
Theorem 1.1[8] Let u is a polynomially bounded measure with suppo#tinif u is °L, = L', - invariant, there
exists a polynomially bounded measpr@n[0,0) and a constantso that for any € S(R*)

f(\/Wpl.pz,ps)d3p> . (1.26)

JIplZ+m?

[pafdu =cfO)+[,"dp(m) (JW
Theorem 1.2 Let u is a polynomially boundet!, - invariant measure with supportifp. Let F(f) be a linear
x-continuous functiondF: *Sg, (*R*) - *Rg, defined by*f*]R4 *f d uand there exists a polynomially bounded

measurg on[0,0 ) such tha!f(:oo d *p (m) € "R, and a constant€ “Rg,. Then for anyf € *S . ("R*) and for
anyx € "R, the following property holds

*f(‘/|p|2+m2.P1.p2,p3)d#3p> (127)

FCF) = f(0) + foood » (m) < flpls;f JIplZ+m?
Definition 1.9 Let y (%, p) be a function such thay (s, p) = 1 if |p| <, (¢, p) = 0if |p| > x, x € *R,,.Define
internal measurg,, ,, on*H,, by

Quf(E) = [, Zxpde (1.28)

"Hm |/IpI2+m?’

Theorem 1.3 [8] Let W, (x,, x,) be the two-point function of a field theory sagisfy the Wightman axioms and the
additional condition thafy,, ¢ (f),) = 0 for all f € S(R*). Then there exists a polynomially bounded positive
measurep(m) on [0,00) so that for all for alf € S(R*)

WL (f) = (1,1’0' ‘P(f—)@(f)ll’o) = ff_(x1)f(xz) Wo(xq — xz)d4xd4y = fooo (me fdﬂm) dp(m). (1.29)



Theorem 1.4 Let W, (x,, x,) be the two-point function of a field theory memtéal in Theorem 1.3. Then for all
f € Sun CR*) and for anys € *R., the following property holds

Wof) = J," ("L fds)dpm), (1.30)

Definition 1.10 (1) Let L(H) be algebra of the all densely defined linear dpesan standard Hilbert spadé.
Operator-valued distribution oR™, that is a mapp: S( R™) — L(H) such that there exists a dense subspace

D c H satisfying:

1. for eaclf € S(R™) the domain ofp containsD,

2. the induced mapS — End(D), f = ¢ (f), is linear,

3. for eachh, € D andh, € H the assignmenf — (h,, p(f)h,) is a tempered distribution.

(2) Certain operator-valued internal functipr(*f, @): *S( *Rn) - *L(*H) is an internal representative for standard

operator valued distributiop (f) if for each near standard vectats € *D and h, € *H the equality holds

(ha, 9(f)hy) = st(*(hy, @ Cf, @)hy)), (1.31)
whereh, ~ h, andh, =~ h,.
Definition 1.11[9] Let H be a Hilbert space and denoteH then-fold tensor produci™ = HQ H® --- QH. Set
H® = Cand definegF(H) = H". F(H) is called the Fock space over Hilbert spHcéoticeF (H) will be
separable iff is. We set now! = L,(R?) then an elemenp € F(H) is a sequence o€ -valued functions
Y = {0, Y10x1), Yo (31, x2), Yo (x4, %2, %3), «or, Wi (X4, ..., )}, n € N and such that the following condition holds

|¢0|2 + ZTLE N(fll)bn(xlﬂ '-"xn)|2d3nx) < .
Definition 1.12 [8] Let us define now external operatdip) onF, with domainDg by
(a(@)P)™ = Vn+ 1™+ (p, ky, ... k,). (1.32)

The formal adjoint of the operatafp) reads
(@ W™ = =T, 6D = k™D ko, ra, K, o k) (1.33)

Definition 1.13 [8] Letyfi™ be a vectorfin = {1/;(")}::1 for whichy™ = 0 for all except finitely many: is

called a finite particle vector. We will denote thet of finite particle vectors . The vectorQ, = (1,0,0, ...) is
called the vacuum.

Definition 1.14 We let now'D-s = {"y|"y € *F, "™ € *S ("R®"),n € *N} and for eactp € "R*" we define an
internal operatota(p) on*F, with domain*D«s by

Ca@P)™ = Vn+ 1P (p, ky, k). (1.34)
The formal«-adjoint of the operatdiz reads
Cat@P™ = ZT, 8PP~ k) YD ey e ki K e, - (1.35)

We express the free internal scalar field andithe zero fields with hyperfinite momentum cut-offe "R, in
terms of*a’ (p) and*a(p) as quadratic forms o+ by

*q)m,n(x' t) =



@02 [, J(epm®)t = ) 'at (1) + (exp(up)t + i) "a ()} s, (1.36)

P8 = @07 [ [(exp(=ip)) at () + (exp(ipx))"a ()} s (L37)

Mo (X, 1) = (2m) /2 *flpls;f{(exp(—ipx))*af(p) + (exp(ipx))*a (p)}\/% ) (1.38)

Theorem 1.5 Let®,,(x, t) and @,,(x, t), m,,(x,t) be the free standard scalar field and the time fielas
respectively. Then for any € *R,, the operator valued internal functions (1.35)-{) Gives internal
representatives for standard operator valued bligtans @, (x, t) and @,,,(x, t), 1, (x,t) respectively.
Definition 1.15 Let{X, ||:||} be a standard Banach space.#ear*X ande > 0, e = 0 we define the open-ball
aboutx of radiuse to be the seB,(x) = {y € *X|*||lx — y|| < &}.

Definition 1.16 Let {{X, ||-||} be a standard Banach spae; X, thus'Y c *X and letx € *X.Thenx is anx-

accumu-lotion point ofY if for anye € *R.. there is a hyper infinite sequer{o&,\L};‘:lin *Y such that{xn};‘:1 n
(B:CO\{x} = ).

Definition 1.17 Let {{X, ||:||} be a standard Banach spaceYlet *X,*Y is * -closed if any--accumulation point of
Y is an element ofY.

Definition 1.18 Let {{X, ||-||} be a standard Banach space. We shall say thahahteyper infinite sequence
{xn};‘zlin *X is*-converges ta € *X asn — *oo if for anye € "R, there isN € *N such that for any >

N:¥lx —y|l < e.

Definition 1.19 Let {{X, |I'l|x}, {{Y, lI'lly} be a standard Banach spaces. A linear internahtipel: D(4) € *X —
Y isx*-closed if for every internal hyper infinite sequelﬁjz,n};"i1 in D(A) = -converging toc € *X such that
Ax, - y € *Y asn — *o one hasx € D(A) andAx = y. Equivalently A is *-closed if its graph is -closed in the
direct sum'X @ *Y.

Definition 1.20 Let H be a standard external Hilbert space. The grapiheofternal linear transformatidh *H —
*H is the set of pairf(p, Te)|@ € D(T)}. The graph of, denoted by (T), is thus a subset 6f x *H which is
internal Hilbert space with inner produto,, 1), {®,, ¥,)) = (@1, ¢2) + (P41, ¥,).The operator is called a
*-closed operator if"(T) is ax* -closed subset of Cartesian produ€tx *H.

Definition 1.21 Let H be a standard Hilbert space. [gtandT be internal operators on internal Hilbert spdaée
Note that ifT (T;) o I['(T), thenT; is said to be an extension®fand we writel; o T. Equivalently,T; o T if and
only if D(T;) © D(T) andT,¢p = T for allp € D(T).

Definition 1.22 Any internal operatof on*H is *-closable if it has a-closed extension. Everyclosable internal
operatorT has a smallestclosed extension, called isclosure, which we denote byT.

Definition 1.23 Let H be a standard Hilbert space. [ebe ax-densely defined internal linear operator on irgérn
Hilbert spaceH. Let D(T*) be the set op € *H for which there is a vectdre *H with (T, p) = (¢, &) for all

Y € D(T), then for eaclp € D(T*), we defineT*¢ = £. T* is called the--adjoint ofT. Note thatS c T implies

T cS™.

Definition 1.24 Let H is a standardiilbert spaceA x-densely defined internal linear operafoon internal Hilbert
space'H is called symmetric (or Hermitian)df c T*. Equivalently, T is symmetric if and only ifT ¢, ) =

(o, TY) for all @, € D(T).

Definition 1.25 Let H be a standard Hilbert spadesymmetric internal linear operatBron internal Hilbert space
*H is called essentially self-adjoint if its x-closurex-T is self =-adjoint. If T is =-closed, a subsé c D(T) is
called ax-core forT if «- (T T D) =T.If T is essentially self-adjoint, then it has one and only one

self «-adjoint extension.

Theorem 1.6 Letn,,n, € N and suppose tha (ky, ...k, , Py, ..., Pn,) € "Ly ("R3M1+m2)) where

W (ky, ... kn,, D1, e, Pny ) is @*C -valued internal function ofR*™1m2). Then there is a unique operafyy on



*F(*L,(*R?)) so that'D-; < D(Ty,) is a* - core forT,, and
(1) as*C-valued quadratic forms o+g X *D+g

Ty = [ sgtnay W (ke oo eny Pas e Py) (T @t (k) (TT12, "a(pi) ) d™skd"2p
(2) As*C-valued quadratic forms aPxg X D+g
TVT/ = *f*R3(n1+nz) W(kl; knl'Pp vpnz) (H?:ll *aT (kl))(l_[?=21 *a(pi))dnlkdnzp

(3) On vectors irfF, the operatordy, and Ty, are given by the explicit formulas

(TW(*w))(l—n2+n1) _
K(l,ny,n,)"S [*flpllsaf *f|pnz|sm W (Kyy o ey D1y ooos Py ) P (Prs oo Py Ky o Ko, )32 p], (1.39)
(T ()" = 0ifn < ny —ny,

(T C9)) " =
K(l,ny,n,)*S [*flpllsw *flpM'Sw W (ky, oo ks P1s oo s Py ) WO (D1, oo s Py Ky oo ki )d>™ k] (1.40)

(TV’,‘,(*I/)))n =0, ifn<n, —ny.

l!(l+n1—nz)!]1/2
(1-nz)?

Proof For vectorsy € D+g we defineTy, (*y) by the formula (39). By the Schwarz inequality dne fact thats is
a projection we get

HereS is the symmetrization operator defined in [9] &(@, n,, n,) = [ ,n,Nny € N, e "N,

2, 5
W% (1.41)

(9)

* 2

< ”(TW(*ll’))(l_nZMl) ) < K(, nl'nz)*
Let us now define the operatB} (*yy) on D+ by the formula (39), then for dlp, " € D+, then one obtains
directly (o, Ty, ) = *(Ty, *@, *¥). Thus,Ty, is = -closable andy, is the restriction of the -adjoint of T, on

D-g. We will useTy, to denotex -T,, andTy;, to denote the -adjoint ofT;, . By the definition ofT},, D+sis a* -core
and further, sincd, is bounded on theparticle vectors iD-swe get'F, ¢ D(Ty,). Since the right-hand side of
(39) is also bounded on tlgparticle vectors, equation (38) represehison alll-particle vectorsThe proof of the
statement (2) abo®@;, is the same.

Definition 1.26 [8] Define standard@ -space by) =x;_; R. Leto be thes-algebra generated by infinite products
of measurable sets R and selt = ®j_, iy With du, = m=*/2exp(—x2/2). Denote the points @f by q =

{91, 92, ---)- Then{Q, p) is a measure space and the set of the all furectibthe formB,(q) = P(q1, 92, > qn),
whereP, (q) is a polynomial and € N is arbitrary, is dense ik, (Q, du). Remind that there exists a unitary map
S:F,(H) - L,(Q,du) of Fock spac&;(H) ontoL,(Q, du) so thaSe(f;,)S™* = q, andSQ, = 1. Here{f, }5, is

an orthonormal basis féf. Then by transfer one obtains internal measureesig@cu) = (*Q, *u) and internal
unitary map'S: F(H) - *L,(*Q,d*u) so that'Se(£,)*S™! = q,, v € *N and*SQ, = 1. Here{fr};‘f1 is an
orthonormal basis foiH.

Theorem 1.7 Let "¢, (x,t) be internal free scalar boson field of masat timet = 0 with hyperfinite momentum



cutoff x in four-dimensional space-time. Lgtx) be a real-valued internal functiorfIn (*R?) n *L; (*R?). Then
the operator

Hipe(9) = 200 e 9(0): "9, (x): dx (1.42)

is a well-defined internal symmetric operatordng,, . Here: “p ¥ (x) := “¢ } (x) + d, () (*(pi(x)) + d,; ().
where the coefficientd, (») andd, (x) are independent af LetS denote the unitary map 8f(H) ontoL,(Q, du)
considered in [8]. Thel = *S*H,,,(9)*S™* is multiplication by internal functioH; ,,(q) which satisfies:

(@) Vi (@) € "L, ("Q.d") for allp € 'N, (b)exp (—tV;,.(q)) € "Ly ("Q,d"y) for all t € [0,00).

Proof Note that for each € *R3, the operatotS(*¢, (x))*S~! is just the operator on internal measurable space
*L,(*Q, d*w) on which this operator acts by multiplying by faection Z;‘Zl ¢ (x, %) qy, Wherecy (x, %) =

(2m)3/? (fk, (u@))" Zexp(ipx)). FurthermoreX, 2, |c, (x, )2 = (2m)%/2" H(p)1/2||z s0's ("¢ (x)) 's"and

*S (*¢i(x)) *S~1 are in*L,(*Q, d*u) and the correspondirig, (*Q, d*u)-norms are uniformly bounded in

Therefore, sincg € *L, (*R?) the operatofS (*H,_,{(g)) *S~1 is just the operator on internal measurable space

"L, ("Q, d"u) on which this operator acts by multiplying by ttig(*Q, d “u)-function which we denote b, ;(q).
Let us consider now the expression iy, (g)*Q, obviously this is a vectd0,0,0,0,%*,0, ...) with

T 260900 T L Gep)] exp(~ix i p;)ddx
4 _ =1 =1
Y (D1, P2 P2, D) = f*Ra @32 TIL, 2] /2 . @)4

=1

Herex(»,p) = 1if |p| < x, x(¢,p) = 0 if |p| > #, x € *R,,. We choose now the paramefier 1(x) ~ 0 such
2 * 2
that*[|li*||3 € R and therefore we obtaif "H,,;,,l(,{)(g)ﬂo||2 € R, since || *H,,K,A(K)(g)ﬂonz = *||y*||%. But,

since’S*Q, = 1, we get the equalities

*11 % I *Q—1 _*
M - M, * * * - %2 :
| “H, A(;{)(g)ﬂouz IS Hy o200 (@S~ Ly (") Ve 100 (@) (1.44)

LA W)

From (1.43) we get théﬂv,,m(x)(q)

l. Codw € R and it is easily verify, that each polynomPg, g5, ..., 4,),
L(CQ.d

isn € *N in the domain of the operatdf; , ;) (q) and*S *H; ,, 10 (9)*S™" = Vi 26 (q) on that domain. Since
*Q, is in the domain OTHPHM(K)(g),p € "N, 1 is in the domain of the operatiéf, ,, 5, (q) for allp € *N. Thus,
forallp € "N V;, 100(q) € "Ly, ("Q,d "), since’u (*Q ) is finite, we conclude thdf ,, ;. (q) € "L, ("Q, d"u) for
allp € *N.

(b) Remind Wick's theorem asserts thap?, ,,(x) = X/2(—1)i ﬁcﬁ*(pg;ﬂ) (x) with
O (X) *QO||2. Forj = 4 we get-0(c}) <: “¢p,,(x): and therefore — ("LR3 g(x) d3x) 0(cy) <

*

Cy =

"H 200(9)- Finally we obtainf*Q exp <—t (: *f*u@ gx) *om () d3x: )) d*u < exp(0(c2)) and this inequality

finalized the proof.

Theorem 1.8 [8] Let (M, u) be as-measure standard space wilfM) = 1and letH, be the generator of a hyper-
contractive semigroup aiy, (M, du). LetV be aR-valued measurable function ¢M, i) such thaV’ € L,(M, du)
for allp € [1,) andexp(—tV) € L,(M,dp) for allt > 0. ThenH, + V is essentially self-adjoint o68* (H, ) N
D(V) and is bounded below. Hel®” (Hy ) = N,y D(HY).

Theorem 1.9 Let (M, u) be as-measure space with(M) = 1land letH, be the generator of a hypercontractive
semi-group ori., (M, du). LetV’ be a"R-valued internal measurable function{©m, “u) such thav € "L,("M,d"u)



for allp € [1,*) and*exp(—tV) € *L,(*M,d*w) for allt > 0. Assume that a s&t®(*H, ) n D(V) is internal.
Then operatotH, + V is essentially self--adjoint internal operator o6 " (*H, ) n D(V) and it is hyper finitely
bounded below. Her€ (*Hy ) = N,y D(*HY).

Proof. It follows immediately by transfer from theorem 8.

Remark 1.4 LetV; ,, ; be operator on internal measurable sgég€", d*u) on which this operator acts by
multiplying by the*L, (*Q, d “u)-functiorV/;,, , , see proof to Theorem 1.7. Note that for this apera set

C(*Hy) N D(V,M) is not internal and therefore Theorem9 no longddd But without this theorem we cannot
conclude that operatoH, + V; ,, ; is essentially self--adjoint internal operator 08 *(*Hy) N D(V,,M). Thus
Robinson’s transfer is of no help in the case apoading to operatdf;,,; considered above. In order to resolve
this issue, we will use non conservative extensitthe model theoretical nonstandard analysis[E&le[14].

82. NON CONSERVATIVE EXTENSION OF THE MODEL THEORETICAL

NONSTANDARD ANALYSIS

Remind that Robinson nonstandard analysis (RNA)ynai@weloped using set theoretical objects callgdsu
structures [2]-[7]. A superstructut&S) over a sef is defined in the following way,(S) = S, V,,.,1(S) = V,,(S) U
P(Vn(S)), V(S) = Unen Vns1(S). Making S = R will suffice for virtually any construction necesy in analysis.
Bounded formulas are formulas where all quantifeasur in the formvx (x €y - - ), Ix(x €y = -+ ). A
nonstandard embedding is a mappind/(X) — V(Y) from a superstructur&(X) called the standard universe,
into another superstructuv€Y) called nonstandard universe, satisfying the folfmapostulates:

1LY="X

2. Transfer Principle For every bounded formuth(x;,, ..., x,) and elements,, ..., a,, € V(X) the property

®(ay, ...,a,) istrue foray,...,a, inthe standard universe if and only if it isdfor *a,, ..., *a,, in the
nonstandard univerd&(X) k ®(x,, ..., x,) © V(Y) Fo(*ay, ..., *a,).

3. Non-triviality For every infinite setd in the standard universe, the §&tt|a € A} is a proper subset 4.
Definition 2.1 A setx is internal if and only ifc is an element of A for somed € V(R). Let X be a set and

A = {A,;};¢; a family of subsets ok .Then the collectiord has the infinite intersection property, if anyimite sub
collection] c I has non-empty intersection. Nonstandard universe-saturated if whenevéd, },c, is a
collection of internal sets with the infinite inseiction property and the cardinality bis less than or equal to
Remark 2.1 For each standard univerge= V(X) there exists canonical langualgeand for each nonstandard
universel = V(Y) there exists corresponding canonical nonstandagliage*L = Ly, [5].[7]

4 Therestricted rules of conclusion If Let A andB well formed, closed formulas so thgtB € *L. If W E A, then
—A Wryp B. Thus, if a statememt holds in nonstandard universee cannot obtain from formulanA any formula
B whatsoever.

Definition 2.2 [10]-[14] A setS c *N is a hyper inductive if the following statementdwinV (Y):

NAgen(@ €S - at €5).
Herea* = a + 1.0bviously a setN is a hyper inductive.
5. Axiom of hyper infiniteinduction
VS(S € "N){VB(B € "N)[A1zq<p(a €S > a* € 5)| » S = "N}

Example 2.1 Remind the proof of the following statement: stmme (N, <, =) is a well-ordered set.
Proof. Let X be a nonempty subset &f. Suppose X does not have deast element. Then consider the SgX.
CaselN\X = @. ThenX = N and sd) is a< -least element but this is a contradiction.



Case2N\X # @. Thenl € N\X otherwisel is a< -least element but this is a contradiction. Assumw that
there exists some € N\ X such that # 1, but since we have supposed tkiatoes not have & -least element,
thusn + 1 ¢ X. Thus we see that for allthe statement € N\X implies thath + 1 € N\ X. We can conclude by
axiom of induction that € N\ X for alln € N. ThusN\X = N impliesX = @. This is a contradiction t§ being a
non-empty subset &f. Remind that structur€N, <, =) is not a well-ordered set [5]-[7]. We set ndyw= *N\N
and thusN\X; = N. In contrast with a séf mentioned above the assumptiog *N\X, implies tham + 1 €
*N\X; if and only ifn is finite, since for any infinita € *N\N the assumption € *N\X; contradicts with a true
statemen? (Y) £ n ¢ *"N\X;=N and therefore in accordance with postulate 4 waagobtain frorm € *N\X, any
closed formula whatsoever.

Theorem 2.1]14] (Generalized Recursion Theoreb@t S be a set¢ € S andg: S X *N — S is any function with
dom(g) = S x *N andrange(g) < S, then there exists a functidft *N — S such that: 1lom(F) = *N and
range(F) € S; 2)F(1) =c; 3) forallx € 'N,F(n + 1) = g(F(n), n).

Definition 2.3 [12]-[14] (1) Suppose thdtis a standard set on which a binary operat{ors-) and(-x-) is defined
and under whicl§ is closed. Lefx, },c-y be any hyper infinite sequence of termsSofFor every hyper natural
n € *N we denote b¥xt- Y-, x, the element ofS uniquely determined by the following canonical ditions:
(Q)Ext-Yi_ix; = x1; (0)Ext-YH1x, = Ext-Y}_; x + x4 foralln € *N.

(2) For every hyper natural € *N,, we denote b¥xt-[]i-; x; the element ofS uniquely determined by the
following canonical conditions: (&xt- [15_, x, = xq; (b) Ext- [[F11 x, = (Ext- 151 %) X x4, for alln € *N.
Theorem 2.2. [14] (1) suppose thatis a standard set on which a binary operatien-) is defined and under
which S is closed and thdt + -) is associative on S. L&t }re+y be any hyper infinite sequence of termssf
Then for anyn, m € *N we haveExt- YT x, = Ext- Yoy Xx + Ext-Ype; X5

(2) suppose that is a standard set on which a binary operatien) is defined and under whichis closed and that
(-x-) is associative on S. L&t },c+y be any hyper infinite sequence of terms%fThen for any, m € *N we
have:Ext- [[}T x, = (Ext- 121 ) X (Ext- 17, x1); (3) for anyz € *S and for anyh € *N,, we have:

z X (Ext-Yp-q1 %) = Ext-Y -1 2 X Xi.

§2.1. External non-Archimedean Field *R¥ by Cauchy Completion of the I nternal

Non -Archimedean Field *R.

Definition 2.4 A hyper infinite sequence of hyperreal numbersff® is a functiomz: "N — "R from the hyper-
natural numbersN into the hyperreal numbet®.We usually denote such a function hy- a,, , so the terms in
the sequence are writtes {a,, a, ..., a,, ... }.To refer to the whole hyper infinite sequence, vilbwrite {an};‘il
or {an}ne*N-

Abbreviation 2.1 For a standard sétwe often writeE,, let °FE, = {*x|x € Es.}.We identifyz with 7z i.e.,z = %z
forallz € C. HencelEy = Ey if E € C, €.9.,°C = C, °R = R, etc.Let'RE, "R ., *RE ., ,"RE 5, "R¥,,*N,, de-
note the sets of Cauchy hyper-real numbers, Caindimtesimal hyper-real numbers, Cauchy positingnitesimal
hyperreal numbers, Cauchy finite hyper-real numb@esichy infinite hyper-real numbers and infiniygérnatural
numbers, respectively. Note tH& ;= "R¥\"R¥ ..

Definition 2.5 Let {an};‘:l be a hyper infinitéR- valued sequence mentioned abd¥e shall say tha(an}:[’:1
#-tends td) if, given anye € "R, , there is a hyper natural numbére *N such that for alln > N, |a,| < . We
denote this symbolically by, —4 0.

Definition 2.6 Let {an}:ﬁl be a hyper infinitéR-valued sequence mentioned above. We shall sa;{mgi‘;
#-tends tag € "R if, given anys € "R, , there is a hyper natural numlkére *N such that for ath > N,

la, — q| < € and we denote this symbolically by -, g or by #-lim,,_+, a, = q.

Definition 2.7 Let {an}:ﬁl be a hyper infinitéR-valued sequence mentioned above. We shall sagéqaience



{an};":1 is bounded if there is a hyperrddle *R suchthat for anyn € *N, |a,| < M.

Definition 2.8 Let {an};‘il be a hyper infinitéR-valued sequence mentioned above. We shall say{ﬁ;lgffil is
a Cauchy hyper infinitéR-valued sequence if , given an¥ *R. ., there is a hyper natural numbeégs) € *N
such that for anyn,n > N, |a, — a,,| < &.

Theorem 2.3 If {an};‘il is a#-convergent hyper infinitéR-valued sequence, i.e., thatdas, -4 q for some hyper-
real numberg, q € "R then {an};"i1 is a Cauchy hyper infinitéR-valued sequence.

Theorem 2.4 If {an};‘:l is a Cauchy hyper infiniteR-valued sequence, then it is finitely bounded quemfinitely
bounded; that is, there is some finite or hypetditd € *R, such thaia,| < M for alln € *N.

Definition 2.8 Let S be a set, with an equivalence relatibn~ -) on pairs of elements. Fore S, denote byl[s]

the set of all elements fthat are related ta Then for any, t € S, eithercl[s] = cl[t] orcl[s] andcl[t] are dis-
joint.

Remark 2.2 The hyperreal numbet®¥ will be constructed as equivalence classes of Bahgper infinite’R-
valued sequences. LE{*R} denote the set of all Cauchy hyper infiriiRevalued sequences of hyperreal numbers.
We define the equivalence relation on aBER].

Definition 2.9 Let {an};‘il and{bn}:fi1 be inF{*R}. Say they arét-equivalent if a,, — b,, -4 0 i.e., if and only if

the hyper infinite¢’'R-valued sequendgt,, — bn};:l #-tends ta0.

Theorem 2.5 [14] Definition above yields an equivalence relationeosetF{*R}.

Definition 2.10 The external hyperreal numbeR? are the equivalence classéia,,}] of Cauchy hyper infinite
“R-valued sequences of hyperreal numbers, as panitilefiabove. That is, each such equivalence ¢tass

external hyperreal number.

Definition 2.11 Given any hyperreal numbere *R, define a hyperreal numbegfto be the equivalence class of the
hyper infinite*R-valued sequende,, = q};‘ﬁlconsisting entirely of € *R. So we view'R as being insidéR¥ by
thinking of each hyperreal numbgrE *R as its associated equivalence cldtdlt is standard to abuse this notation,
and simply refer to the equivalence class as gedls w

Definition 2.12 Lets, t € *R¥, so there are Cauchy hyper infinti-valued sequencésn};‘il, {bn};‘ﬁl of hyper-

real numbers witlh = cl[{a, }] andt = cl[{b,}].

(a) Defines + t to be the equivalence class of the hyper infisdguencéa,, + bn};‘ﬁl.

(b) Defines x t to be the equivalence class of the hyper infisdguencé¢a,, + bn};‘il.
Theorem 2.6 [14] The operations-,x in definition above by the requirements (a) andafle well-defined.
Theorem 2.7 Given any hyperreal numbeiE *R#, s = 0 there is a hyperreal numbee *R¥ such that x t = 1.

Theorem 2.8 If {an};‘ﬁl is a Cauchy hyper infinite sequence which does#rtend tdd, then there is somé € *N
such that, for ath > N,a,, # 0.

Definition 2.13 Lets € *R¥. Say that is positive ifs # 0, and ifs = cl[{a,}] for some Cauchy hyper infinite
sequence of hyperreal numbers such that for 96meN, a,, > 0 for all n > N. Thenfor a given two hyperreal
numberss, t, say that > t if s — t is positive.

Theorem 2.9 Lets, t € *Rﬁ be hyperreal numbers such thats > t,and let r € *]Rfjf, thens+r>t+r.
Theorem 2.10 Lets, t € *R¥ be hyperreal numbers such that > 0. Then there isn € *N such thaim x s > t.
Theorem 2.11 Given any hyperreal numbere *R#, and any hyperreal number> 0, ¢ = 0, there is a hyperreal
numberg € *R¥ such thatr — q| < e.

Definition 2.14 LetS & *R¥ be a nonempty set of hyperreal numbers. A hypem@aberx € *R¥ is called an
upper bound fof if x = s for all s € S. A hyperreal numbet is the least upper bound (or supremunpS) for S if
x is an upper bound fa&r andx < y for every upper bound of S.

Remark 2.3 The order< given by definition above obviously {incomplete.

Definition 2.15 Let S ¢ "R¥ be a nonempty set of hyperreal numbers. We wylttsat:



(1) S is < -admissible above if the following conditions aggisfied:

(a) S is finitely bounded or hyper finitely bounded abov

(b) letA(S) be a set such thatx[x € A(S) © x = S] then for any > 0,¢ = 0 there arex € S andf € A(S) such
thatf — a < £ = 0.(2) S is < -admissible belov if the following conditions areisted:

(a) S is finitely bounded or hyper finitely bounded belo

(b) letL(S) be a set such thatx[x € L(S) & x < §] then for any > 0,¢ = 0 there arex € S andf € L(S) such
thata — f < e = 0.

Theorem 2.12 [14] (a) Any<-admissible above subsg= *R¥ has the least upper bound property.

(b) Any <-admissible above subset *R# has the greatest lower bound property.

Theorem 2.13 [14] (Generalized Nested Intervals Theore\;nﬂt’{In}:f:1 = {la,, bn]}:f;l, [a,, b,] C *Rf be a hyper
infinite sequence of-closed intervals satisfying each of the followoanditions: (@), 2, 23,221, 2

(b) b, — a,, =4 0 asn - *o0, Then n;‘ﬁl I,consists of exactly one hyperreal numbpez "R¥.
Theorem 2.14 [14] (Generalized Squeeze Theordm) {an};‘zl, {cn}:[’:1 be two hyper infinite sequenc#scon-

verging toL, and {bn};‘il a hyper infinite sequence.Wh > K, K € "N we havea,, < b, < c,, thenb,, also#-con-
verges td..

Theorem 2.15 [14] If #-lim,, s, | an| = 0, then#-lim,,_,+ , a, = 0.

Theorem 2.16 [14] (Generalized BolzandNeierstrass Theorem)ny finitely or hyper finitely bounded hyper
infinite *R# -valued sequence h#sconvergent hyper infinite subsequence.

Definition 2.16 Let {an};":l be*R¥-valued sequenc&ay that a sequen({an};‘:l #-tends td0 if, given any

£ >0, £ = 0, there is a hyper natural numhbére *N,,, N = N(¢) such that, for ath > N, |a,| < e.

Definition 2.17 Let {an};";’1 be*R#-valued hyper infinite sequendéle call {an};‘il a Cauchy hyper infinite
sequence if given any hyperreal number R ., , there is a hypernatural numbér= N(¢) such that for any
m,n >N, |a, —ap| <&.

Theorem 2.17 If {an};‘ﬁlis a#-convergent hyper infinite sequence i®,,—4 b for some hyperreal numbkre
“R¥, then{an};"i1 is a Cauchy hyper infinite sequence.

Theorem 2.18 If {an};‘zl is a Cauchy hyper infinite sequence, then it isroted;that is, there is som¥ € *R¥
such thata, | < M for alln € *N.

Theorem 2.19 [14] Any Cauchy hyper infinite sequen{mﬂ}:{’z1 has a#-limit in *R¥; that isthere existd € *R#
such thatr,, =4 b.

Remark 2.4 Note that there exists canonical natural embeddRg> *R¥.

Remark 2.5 A nonempty set S of Cauchy hyperreal numbBR{sis unbounded above if it has no hyperfinite upper
bound, or unbounded below if it has no hyperfitgiger bound. It is convenient to adjoin to Cauclpérreal
number systemiR¥? two points+oo® = (*+0)#  (which we also write more simply ag' ) and—«*, and to
define the order relationships between them andCauchy hyperreal numbere *R¥ by —oo# < x < 0¥,
Definition 2.18 We will call —o* andeo* are points at hyper infinity. § ¢ *R¥ is a nonempty set of Cauchy
hyperreals, we writsup(S) = oo” to indicate thas is unbounded above, antf(S) = —oo* to indicate thas is un-
bounded below.

Definition 2.19 That is(e, §) definition of the#-limit of a functionf: D — *R¥ is as follows: leff (x) is a

*R#- valued function defined on a sub®et= *R¥ of the Cauchy hyperreal numbers. kdie a#-limit point of D
and letL € *R¥ be Cauchy hyperreal number. We say thalim,,,. f(x) =L ifforeverye ~ 0,& > 0 there
existsad =~ 0,8 > 0 such that, forallx € D,if 0 < |x —c| < §, then |f(x) — L| < &.

Definition 2.20 [13] The functionf: *R¥ - *R¥ is a#-continuous (or micro continuous) at some poiof its
domain if the#-limit of f(x), asx #-approaches through the domain df, exists and is equal to

fe):#-limye,, o f(x) = f(c).



Theorem 2.20 [14] Let{an};":1 and {bn};‘:l be*R#- valued hyper infinite sequences. Then the follonéqgalities
hold for anyn, k,l,j,m € *N:

b x (Ext-Yi-;a;) =Ext-Yi-. b X a; (2.2)
Ext-)7,a; + Ext- Y-, b; =Ext-%i-,(a; + b;) (2.2)
Ext- z{.‘;ko(Ext- T a ,.) = Ext-3, (Ext-$i2, a;)) (2.3)
(Ext-Y -, a;) X (Ext- Xi=1 bj) = Ext- Z?=1(Ext- Xi=1a; X bj) (2.4)
(Ext-TI7=q a;) x (Ext-TIi=, by) = Ext-[[{=, a; X b; (2.5)
(Ext-TIeia)™ = Ext-TI-, a™ (2.6)

Theorem 2.21 [14] Let{a,}, and {b,}, be R¥- valued monotonically non-decreasing hyperfiniteusates.
Suppose that; < b;, 1 < i < n, then the following equalities hold for anye *N :

Ext-T[{L, a; < Ext-T[72, b;. 2.7)

Theorem 2.22 [14] Let{a,}", and {b,}* , be*R¥- valued hyperfinite sequences. Then the followiregjinalities
hold for anyn € *N :

(Ext-TT%, a; X b)? < (Ext-[L; a?) x (Ext-[]%, b?). (2.8)

Definition 2.21 [13] Assume tha{an};"i1 is a*R#- valued hyper infinite sequence, the symBet- Z;‘:l a,isa
hyper infinite series, ang, is the n-th term of the hyper infinite series.

Definition 2.22 [13] We shall say that a seriEst- Z;‘Zl a, #-converges to the sume *R¥, and write

Ext- 2;021 a, = A if the hyper infinite sequencbﬁln};"i1 defined by4,,, = Ext- Y7, a, #-converges to the sum
The hyperfinite sund,, is then-th partial sum ofxt- Z;ﬁl a,,. If #-limA,, = oo or—oo®, we shall say that

m-*oo,
Ext-Y, 2. a, #-diverges tao* or to—oo¥,
Theorem 2.23 [13] The hyper infinite sun@’xt- Z;‘il a, of a#-convergent hyper infinite series is unique.

§2.2.Hyper infinite sequences and series of *R#- valued functions

Definition 2.23 [13]If £, f2, oos fios fiew1s s [ -7t € *N are*RZ- valued functions on a subgetc *R? we say
that{fn}:f:1 is a hyper infinite sequence 6R¥- valued functions ol.

Definition 2.24 [13] Suppose tha{tfn};"i1 is a hyper infinite sequence @¥- valued functions o® c *R# and the
hyper infinite sequence of valuéﬁ(x)};":1 #-converges for eachin some subset of D. Then we say that
{fn(x)};":1 #-converges pointwise anto the#-limit function f, defined byf (x) = lim,,_ =y, f, (x).

Definition 2.25 [13] If {fn(x)};":1 is a hyper infinite sequence @¥- valued functions o c *R#, then

Ext- 2;021 fn(x) (2-9)

is a hyper infinite series of functions fn The partial sums of (1), are definedByx) = Ext- Y7-; fn(x). If hyper
infinite sequencéFn(x)};fl#-converges pointwise to thelimit function F(x) on a subsef c D, we say that



{Fn(x)};‘:l#-converges pointwise to the sufix) onS, and writeF (x) = Ext- Z;‘ilfn(x).
Definition 2.26 [13] A hyper infinite series of the forifixt- Z;‘ﬁl(x —xo)™, n € *N is called a hyper infinite
power series i — x;.

§2.3.The #-Derivatives and Riemann #-Integral of *R¥-Valued Functions f: D - *R¥#"

Definition 2.27 [13] A functionf: D — *R¥ #-differentiableat an#-interior pointx € D of its domainD c *R# if
the difference quotienft(x) — f(x,)/x — x, has a#-limit: #-lim,._, ., (f(x) — f(xo)/x — x,)- In this case the
#-limit is called the#-derivative off at interior pointx,, and is denoted b (x,) or byd*f (x,)/d*x.
Definition 2.28 If f is defined on a®-open sef c *R¥, we say that f igt-differentiable ors if f is
#-differentiable at every point f If f is #-differentiable ors, thenf# (x) is a function or§.We say thaf is
#-continuously#-differentiable ors if £#(x) is #-continuous or§.

Definition 2.29 If f is #-differentiable on a-neighbourhood ofy,, it is reasonable to askff’(x) is
#-differentiable at,. If so, we denote thi-derivative off *'(x) atx, by f#'(x,) or by f#*®(x,) and this is the
second#-derivative off atx,. Continuing inductively by hyper infinite inductipii f#~ (x) is defined on a
#-neighbourhood ofx,, then then-th #-derivative off atx, denoted by *™ (x,) or byd*™f (x,)/d*x", where
n € *N.

Theorem 2.24 [13] If f is #-differentiable al, thenf is #-continuous ak,.

Theorem 2.25[13] If f andg are#-differentiable at,, then so ar¢ + g andf x g with:

@ £9)%(x0) = f*(x0) £ 9% (x0), (b) (f X g)* (xo) = f*(x)g (x0) + g* (x0) f (xo).

#1 _ A #I
(c) The quotienf /g is #-differentiable at, if g(xy) # 0 with (f/g)* =L ("°)~"(Xg"()x~‘;2 (o) (o)
0

(d) If n € *N andf;, 1 < i < n are#-differentiable atr,, then so ar&xt- Y., f; with:

(Ext-T O (x0) = Ext-X% 1 i (x).

(e) Ifn € "N and f*™(x,), g*™ (x,) exist, then so do&§ x g )*™ (x,) and

(F X 9)*®(x0) = Ext- X o()f " (0)g D (xp)

Theorem 2.26 [13] (The Chain Rule) Suppose thats #-differentiable atc, andf is #-differentiable ajg(x,).
Then the composite functidn= f o g defined byh(x) = f(g(x)) is #-differentiable atx, with h*' (x,) =
f*(9(x0))g* (xo)-

Theorem 2.27 [13] (Generalized Taylor's Theorem) Suppose fif&t (x ), n € *N exists on ar-open interval
I aboutx,, and letx € I. Let B,(x, x,) be then-th Taylor hyper polynomial of aboutx,, B, (x, x,) =

40 (xp)

_ r
Ext-Y"_, ,(x %) Then the remaindé(x, x,) = f(x) — P,(x, x,) can be written as

T

D) (x—xg)™

R(x, x0) = (n+1)!

(2.10)
Herec depends upor and is betweem andx,.

Definition 2.30 [13] Let[a, b] c *R¥. A hyperfinite partition of[a, b] is a hyperfinite set of subintervals

[x0, %11, [Xn—1, Xn], Withn € *N,, wherea = x, < x; ... < x,, = b. A set of these pointg), x;, ..., x, defines a
hyperfinite partitionP of [a, b], which we denote b® = {x;}I-,. The pointsx, x4, ..., x,, are the partition points of
P.The largest of the lengths of the subinteryals,, x;], 0 < i < nis the norm oP = {x;}I-, denoted by|P||;

thus, |[P|| = max; <<, (x; — Xx;-1)-

Definition 2.31 Let P andP’ are hyperfinite partitions dt, b], thenP’ is a refinement of if every partition point



of P is also a partition point ¢f'; that is, ifP’ is obtained by inserting additional points betwd®se ofP.
Definition 2.32 Let f be*R#- valued functiory: [a, b] = *R¥, then we say thaixternal hyperfinite sura®*¢
defined by

o = Ext- 37y f(e) (o — xi-1), X121 < ¢ < x, @1

is a Riemann external hyperfinite sumfabver the hyperfinite partitio® = {x;}7,.

Definition 2.33 [13] Let f be*R¥- valued functiorf: [a, b] - *R¥, thenwe say thaf is Riemanr#-integrable on
[a, b] if there is a numbel € *R¥ with the following property: for every =~ 0, > 0, thereis & ~ 0,8 > 0 such
that|L — oE*t| < § if o*t is any Riemann external hyperfinite sumyadver a partitiorP of [a, b] such that

[|P]| < 6. In this case, we say thatis the Rieman#-integral off over[a, b], and we shall write

L = Ext- [} f(x)d*x. (2.12)

Thus the Rieman#-integral of*R#- valued functionf: [a, b] — *R# over[a, b] is defined ag-limit of the
external hyperfinite sums (55) with respect toigiarts of the intervala, b]:

Ext- fabf(x)d#x = #-limy, - (Ext- 1 £ () (6 = xi-1))- (2.13)

Definition 2.34 A coordinate rectangl® in *R#*, n € *N is the external finite or hyperfinite Cartesian guot ofn
#-closed intervals; that i® = Ext- X[-; [a;, b;]. The content oR isV(R) = Ext-[[~,(b; — a;). The hyperreal
numbers; — a;, 1 < i < n are the edge lengths Bf If they are equal, theR is finite or hyperfinite coordinate
cube.lf a; = b, for somer, thenV(R) = 0 and we say that is degenerate; otherwis,is nondegenerate.
Definition 2.35 If R = Ext-x{_; [a;, b;] andP, = a,y < a,; << a,.,,, iS an external hyperfinite partition of
la,,by],1 <7 < n, then the set of all rectanglesRf™ that can be written avt- X[, [a;;,_,a;;,], 1 < j, <m,,
1 <r < nis a partition oR. We denote this partition By = Ext- X}, P. and define its norm to be the maximum
of the norms oP;, 1 < i < n; thus,||P|| = max;{P;|1 < i < n}.

Definition 2.36 If P = Ext- x]—, P, andP’ = Ext- x]—, P; are partitions of the same rectangle, théis a
refinement of? if P; is a refinement oP;, 1 < i < n as defined above.

Definition 2.37 Suppose thaf is a*R#- valued function defined on a rectanglén *R#™, n € *N, P = {P,}*_,is a
partition ofR, andx; is an arbitrary point i®;, 1 < j < k. Then a Riemann external hyperfinite safi® of f over
the partition P is defined by

o™ = Ext-3iL, fF () V(R) (2.14)

Definition 2.38 Let f be a'R¥- valued function defined on a rectanglén *R¥™, n € *N. We say thaf is Riemann
#-integrable orR if there is a number L with the following properfgr everye = 0,& > 0, thereis & = 0,6 > 0
such thalL — ¢E*| < § if oE*t is any Riemann external hyperfinite sunyafver a partitior? of R such that

[|P]] < 6. In this case, we say thatis the Rieman#-integral off overR, and write

L = Ext- [, f(x)d*"x. (2.15)

Thus the Rieman#-integral of*R#- valued functionf defined on a rectanglin "R is defined ag-limit of the
external hyperfinite sums (58) with respect toigiaris of the rectangl@:

Ext- [, f(x)d*x = #-lim (Ext- 2, F () VRD), @1



§2.4.The *R#-Valued #-Exponential Function Ext-exp(x) and

*R#-Valued Trigonometric Functions Ext-sin(x), Ext-cos(x)

We define thet-exponential functiortxt-exp(x) as the solution of th#-differential equation

) =fx),f(0) =1 (2.17)
We solve it by settingf (x) = Ext- Z;‘ZO x™, f*(x) = Ext- Z;‘ﬁo nx™. Therefore

Ext-exp(x) = Ext- Y-, % (2.18)
From (1) we ge(Ext-exp(x))(Ext-exp(y)) = Ext-exp(x + y) for anyx,y € *R¥.

We define thet- trigonometric functiongxt- sin x andExt- cos x by

. _ Yo . i n x2n+ _ n x2
Ext-sinx = Ext-),,_,(—1) iy Ext-cosx = Ext- Z o=1) (Zn)" (2.19)

It can be shown that the series #1yonverges for alt € *R# #-differentiating yields
(Ext-sinx )# = Ext-cosx, (Ext-cos x )* = —(Ext-sinx ). (2.20)

§2.5. *R¥ -Valued Schwartz Distributions

Definition 2.39 [13] LetU be an#- open subset diR#" andf: U — *R¥. The partial derivative of at the point
x = (xq, %3, .., X;, .-, X, ) With respect to théth variablex; is defined as

a*r #- lim f(x1,x2,-0X iR X0) — f (X1,X2, X0 Xn)
*x; h=40 h )

Definition 2.38 A multi-index of sizen € *N is an element ifiN", the length of a multi-index = (a4, ...,a,) €

*N™ is defined agxt-Y,[-; a; and denoted bj|. We introduce the following notations for a givaulti-index
a#a

. #
a=(ay,..,a,) €N x*=Ext-[[L x;*; 0% = Ext-[]l-, pr ul or symbolicallyg#* = Ext- a1 ——am--
T gl

Definition 2.40 The Schwartspace of rapidly decreasirig?- valued test functions oiR#" ,n € *N is the function
space defined by

SHCRE, *CE) = {f € C°CRI, *CH|V(a B)(a, B € NVa(x € "RED[|x% D £(x)| < oo*]}.
Remark 2.6 Note that iff € S*("R¥™, *C#) the integral ofc®| D*# f(x)| exists
Ext- f*]R#"| x*D*B f(x)|d#" < oo,

Definition 2.41 The Schwartapace of essentially rapidly decreasi@fj- valued test functions oiR*™ ,n € *N is
the function space defined by

SYCRE™, *CH) = {f € C° (R, *CH)|Va(a € NMVER(B € "NYVx(x € "RIM)[|x® D*F f(x)| < ).

Remark 2.7 Note that iff € S*(*R¥", *C#) the integral ofc®| D*# f(x)|,a € N™, B € *N" exists and



Ext- [.pum| x*D* f(x)]|d* < o0,
C

Definition 2.42 The Schwartspace of rapidly decreasiig - valued test functions o"rRC fin 1 € "N is the
function space defined by

S*(REL,, CH) = {f € C"°('R¥L,, “CH)|V(a, ) (a, B € "NM)Vx(x € “REE)[|x* D f(x)] < oo*]}.
Remark 2.8 Note that iff € S*(*R¥E,, *C) the integral ofc®| D*# f(x)|,a € *N™, B € *N™ exists and

Ext- LR#?_ | xD*E £ (x)|d*" < oo* .
c,Iin

Definition 28.43 The Schwartspace of essentially rapidly decreasififi- valued test functions o‘r]IRC fin 1 €N
is the function space defined by

§#in ( cfln' *(C#) =

{f ec 00( IRc fin’ *(C#)|V((X .8)(“ € N, .8 € Nn)acaﬁ(caﬁ € Rcﬁn)vx(x € *Rcﬁn) [|xa (D#'B f(X))| <
cap]}

Remark 2.9 Note that iff € S{, ("R#", *C¥) the integral of *“D*# f(x)| exists and finitely bounded above
Ext- f*Rf‘,rflin| an#‘B f(x)|d#" < daﬁ! daﬁ € *Rﬁ,ﬁn'

Abbreviation 2.2 1) The Schwartspace of rapidly decreasing test functionsR§* we will be denoting by
S*(*R#™) and letSE, ("R¥#™ ) denote the set dfC#-valued essentially rapidly decreasing test funstion'Rf™ .

2) The Schwartgpace of rapidly decreasingf- valued test functions o*rRC %n We will be denoting by
S*(*RE%, ) and letSE, ("RE%, ) denote the set oft#-valued essentially rapidly decreasing test function
*Rc fin -

Definition 2.44 A linear functionak: S*(*RE™) — *C¥ is a#-continuous if there exigt, k € *N and constants,

such thatu(¢)| < C(Ext- 34, IBl<k Cap)- Here Vx(x € "RE™) [|x“(D#5 <p(x))| < caﬁ].

Definition 2.45 A linear functionak: S*(*R¥7%,,) — *Cf is a strongly#-continuous if there exigt, k € *N and
constants,s such thatu(p)| < C(Ext-¥|q<k 1<k Cap) € Rifin-

Definition 2.46 A generalized function € S* (*R#") is defined as #-continuous linear functional on vector space
S*(*R#M), symbolically it written asi: ¢ — (u, ¢). Thus spacs* (*R#™) of generalized functions is the space dual
to S#(*R#n)

Definition 2.47 A generalized function € S* (*R¥7%,) is defined as a strong#continuous linear functional on
vector spacs*(*R¥%, ), symbolically it written asi: ¢ — (u, ¢). Thus spac§* (“R%, ) of generalized functions

is the space dual & ("R¥7%,).

Definition 2.48 Convergence of a hyper infinite seque{n@};‘zl of generalized functions ' (*R#") is defined

as weak#-convergence of the hyper infinite sequence of fonets inS* (*R#*) that is u,, —4 0, asn - *oo, in
S#(R¥™) means thatu,, ¢) -4 0, asn —» *oo, forall ¢ € S#(*IR{#”)

Definition 2.49 Convergence of a hyper infinite sequem,e} , of generalized functions m#'( ]RC fm) is

defined as weak-convergence of functionals ' (*R¥%, ) that isu, >4 0, asn - “o, in S¥(*R¥% ) means

that (u,, @) -4 0, asn - *oo, for all € S*("R¥,).



Definition 2.50 1) Letu € S* (*R¥") and letx = Ay + b be a linear transformation oR*" onto*R#". The
generalized function(4y + b) € S* (*R¥™) is defined by

(u(Ay +b),p) = (u, 2C0), (2.21)

|detA|

Formula (1) enables one to define generalized fonstthat are translation invariant, sphericallsngyetric,
centrally symmetric, homogeneous, periodic, Lorémiariant, etc.
2) Let the functiom(x) € C*1(*R¥) have only simple zeros, € “R¥ k € "N, the functions(a(x)) is defined by

Yo 8(x—xg)
§(a(x)) = Ext-Zkzlﬁ . (2.22)

3) Letu € S* (*R#"), the generalized (weak)-derivatived**u of u of ordera is defined as
(0%*u, ) = (1) (w, a%%¢). (2.23)
4) Letu € S* ("R¥) andg(x) € C**°("R¥"), The produciyu = ug is defined by
(gu, ¢) = (w, gp). (2.24)
5) Lety, € S¥ ("R*™) andu, € S* (*R¥™) then their direct product is defined by the foranul
(U X Uz, @) = (W () W), 9)), @(x,y) € S* CRE x "RE™). (2.25)
6) The Fourier transformxt-F[u] of a generalized functiom € S#'(*R{f”),n € *N is defined by the formula
(Ext-Flul, ¢) = (u, Ext-F[e]), (2.26)

Ext-F[p] = Ext- f*Rﬁn @ (x)(Ext-exp[i(§, x)])d*"x. (227

Since the operatiop(x) — Ext-F[¢](§) is an isomorphism ¢ (*R#™) ontoS# ("R¥™), the operatiom —
Ext-F[u] is an isomorphism of* (*R#") ontoS* (*R¥") and the inverse ofxt-F[u] is given by:Ext-F~1[u] =
(2m) ™Ext-F[u(—£)]. The following formulas hold for € $# (“R#"):

(a) 0% (Ext-Flu]) = Ext-F[(ix)*u],
(b) FLo**u] = (i&)“F[ul,
(c) If the generalized functiom, € S#'(*R’g”) has#-compact support, then

Ext-Fluy * uy] = (Ext-Flu,]) (Ext-Flu,]).
7) If the generalized functiom is periodic withn-periodT = (T, ..., T;,), thenu € S#'(*IR{’C*”), and it can be
expanded in a hyper infinite trigonometric series

u(x) = Ext-Zrszo ¢ (W) (Ext-expliCkw, x)]), lcp,(w)| < AL + |k)™ . (2.28)

The series (1}-converges tau(x) in S* ("R¥™), herew = (2—", 2—") andkw = (Z”kl, ...,Z"k").
Ty Ty Ty Tn

8) Generalized Plancherel formula on the sg3¢eR#") reads



Ext- [gon[Ext-f ())][Ext-g()] "¢ = Ext- [.pon f(x)g(x) d*"x, (2.29)
wnere an x denoten- dimensional Lebesgue-measure onR:" and we denote Fourier transform
here d*"¢ andd*"x d dimensional Leb AR#" and we d Fouri f

Ext-F[u](§) = Ext- f*uggnu(x)(Ext-exp[i(E, x)Ddx

by
Ext-0i(§). (2.30)

83. A NON-ARCHIMEDEAN METRIC SPACESENDOWED WITH

*R¥ -VALUED METRIC

Definition 3.1 A non-Archimedean metric space is an ordered @4jtl*) whereM a set andl” is a#-metric onM
i.e.,"R¥, - valued functioni”: M x M — *R¥,_such that for any triplet, y, z € M, the following holds:

1.d%(x,y) =0 = x =y.2.d*(x,y) = d*(y,x). 3.d%(x,2) < d*(x,y) + d*(y, 2).

Definition 3.2 A hyper infinite sequenc{ecn};"i1 of points inM is called#-Cauchy in(M, d*) if for every hyperreal
£ € "R¥, there exists som& € *N such thati”(x,, x,,) < e if n,m > N.

Definition 3.3 A pointx of the non-Archimedean metric spa@dé¢, d*) is the#-limit of the hyper infinite sequence

{xn};fl if for all € € *R¥,, there exists som& € *N such thatl*(x,, x) < e if n > N.
Definition 3.4 A non-Archimedean metric spacetisccomplete if any of the following equivalent condits are

satisfied: 1.Every hyper infinité-Cauchy sequenc{excn};f1 of points inM has a#-limit that is also inM.

2.Every hyper infinitgt-Cauchy sequence M, #-converges irM that is, to some point af.

For any non-Archimedean metric sp&é& d*) one can construct#complete non-Archimedean metric space
(M', d*) which is also denoted &#-M, d") and which containdf a#-dense subspace.

It has the following universal property:Af is any#-complete non-Archimedean metric space And — K is any
uniformly #-continuous function fronM to K, then there exists a unique uniforriycontinuous functiorf’: M’ —
K that extendg.The spaceé-M is determined up té-isometry by this property (among #licomplete metric
spacest- isometrically containing non-Archimedean metricap@#-M,d"), and is called thé-completion

of (M,d").

The #-completion ofM can be constructed as a set of equivalence cla§§ichy hyper infinite sequendasV.
For any two hyper infinite Cauchy sequen{:e,s};fl and{yn}:[f1 in M, we may define their distance &% = #-
lim,,_, .+ d* (x,, y,,). This #-limit exists because the hyperreal numi&$ are#-complete. This is only a pseudo
metric, not yet a metric, since two different hypdmite Cauchy sequences may have the distanBait having
distance 0 is an equivalence relation on the sall tifyper infinite Cauchy sequences, and the setjoivalence
classes is a metric space, theompletion of M. The original space is embeddethis space via the identification
of an element of M’ with the equivalence class of hyper infinite seges il #-converging tox i.e., the
equivalence class containing a hyper infinite saqaeavith constant value This defines #-isometry onto a
#-dense subspace, as required.

Example 3.1 Both*R and*C are internal metric spaces when endowed with igtante functiord (x,y) = [x — y|.
Definition 3.5 About any point € M we define thet-open ball of radius € *R?, aboutx as the seB, (x) =

{y € M|d*#(x,y) < r}. These#-open balls form the base for a topologyMn

Definition 3.6 A non-Archimedean metric spat#, d*) is called hyper finitely bounded if there existsre



7 € "R fins SUCh thatl*(x,y) < r for allx,y € M.

Definition 3.7 A non-Archimedean metric spat¥, d*) is called finitely bounded if there exists some *R_ o
such thatl* (x,y) < r for allx,y € M.

Definition 3.8 A non-Archimedean metric spat#, d*) is called hyper finitely bounded if there existsre

7 € "Ry SUCh thatl(x,y) < r for allx,y € M.

Definition 3.9 Let (M,d*) be a non-Archimedean metric space. Adset X is called finitely bounded if there
exists some € "R, g, such thatd c B, (a), a€ X.

Definition 3.10 A non-Archimedean metric spat¥, d*) is called#-compact if every hyper infinite sequence
{xn};‘ﬁl in M has a hyper infinite subsequence thatonverges to a point iM. This sort of compactness is
known as hyper sequential compactness and, in-d\rdrimedean metric spaces is equivalent to theltapcal
notions of hyper countablke-compactness.

Definition 3.11 A topological spac# is called hyper countably-compact if it satisfies any of the following
equivalent conditions: (a) every hyper countableropoverU of X (i.e.,card(U) = card(*N)) has a finite or
hyperfinite sub-cover.

For a functioryf: M; - M, with a non-Archimedean metric spa€es,, d¥) and(M,, d¥) the following definitions
of uniform #-continuity and (ordinaryj-continuity hold.

Definition 3.12 A function f is called uniformly#-continuous if for every € *R¥_, there exist$ € *R.., such
that for every, y € M, with d¥(x,y) < § we getd}(f(x),f(y)) < .

Definition 3.13 A function f is called#-continuous atx € M, if for everye € *R¥_, there exist$ € *R¥., such
that for everyy € My with d¥ (x,y) < & we getd}(f(x),f()) < &.

84. LEBESGUE #-INTEGRATION OF *R# -VALUED FUNCTIONS

Let C¥ (*R#™) be the space of alR#-valued#-compactly supporte#f-continuous functions ofR#". Define a
#-norm onC# by the Rieman-integral [13]:

Iflls = Ext- [1f()]d*"x, (4.1)

Note that the Rieman##-integral exists for ang-continuous functiorf: *R#* — *R# | see [13]. Thed# ("R¥™) is a
#-normed vector space and thus in particular, itns@-Archimedean metric space. All non-Archimedswetric
space, have a non-Archimede&completion(#-M, d*). Let L} be this#-completion. This spadk is isomorphic

to the space of Lebesgéeintegrable functions modulo the subspace of funstiwith#-integral zero. Furthermore,
the Riemann integral (1) is a uniform#ycontinuous linear functional with respect to thaorm onC§ (*R¥™)

which is#-dense inL%. Hence the Rieman# integralExt- [ f(x)d*"x has a unique extension to alll§f This
integral is precisely the Lebesgtientegral.

Definition 4.1 Suppose that < p < *co, and[a, b] is an interval ifR{. We denote byL¥ ([a, b]) the set of the all

functions f:[a, b] = *R¥ such thaExt- fflf(x)lpd#x < *oo. We define theL, -#-norm off by
b P g# 1/p
fllep = (Bxe- J1f GOIPd¥x) . (4.2)

More generally, iff is a subset dfR¥", which could be equal tiR}" itself, thenL’ (E) is the set of Lebesgue
#-measurable function: E - *R¥ whosep-th power is Lebesgu-integrable, with thét-norm

Iflp = (Ext- [,1fCOPd*mx)""™. (4.3)

Definition 4.2 A setX c *R#" is #-measurable if there exiskxt- [ 1y d*"x, wherely is the indicator function.
Definition 4.3 A *R# -valued functiorf on*R¥" is a#-measurable if a sk|f (x) > t} is a#-measurable set for



all t € *R#",

Remark 4.1 To assign a value to the Lebesgtimtegral of the indicator functiohy of a#-measurable sét
consistent with the give#--measure:”, the only reasonable choice is to it [ 1,d u* = p*(X).

Definition 4.4 A hyperfinite linear combination of indicator furmts f = Ext- Y-, a, 1x, where the coefficients
a, € *R¥ andx, are disjoint#-measurable sets, is called-aneasurable simple function.

Definition 4.5 When the coefficients,, are positive, we séxt- [ fd u* = Ext-Yr_, a, u* (X, ). For a non-

negativet#t-measurable functiofi, let {fn(x)};flbe a hyper infinite sequence of the simple fundifyix) whose
values isZ% Wheneverzin <fx)< % for k a non-negative hyperinteger less td&nThen we set

Ext- [ fd u* = #-lim,_ - (Ext- [ fod u®). (4.4)

Definition 4.6 If f is a#-measurable function of the geto the reals including-oo”, then we can writg = f+ —
f~,where: 1)f*(x) = f(x) if f(x) >0andf*(x) =01if f(x) <0;2)f~(x) = f(x) if f(x) <0andf~(x) =0
if £(x) = 0. Note that botty * andf ~ are non-negativé-measurable functions aff| = f* + f~.

Definition 4.7 We say that the Lebesg#eintegral of thett-measurable functiofi exists, or is defined if at least
one ofExt- [ f*d u* andExt- [ f~d u* is finite or hyperfinite. In this case we define

Ext- [ fdu* = (Ext- [ f*d u*) + (Ext- [ f~d u*). (4.5)

Theorem 4.1 Assuming thaf is #-measurable and non-negative, the funcfiem) = {x € E|f(x) > t} is
monotonically non-increasing. The Lebesguimtegral may then be defined as the improper Rienéaimtegral of

f(x): Ext- J fdu* = Ext- foxwf(x)d#x.

Definition 4.8 Let X be any set. We denote BY the set of all subsets &fA family F c 2% is called a#-o-algebra
onX (oro*-algebra orX) if: 1) @ € F. 2) A family F is closed under complements, idec F impliesX\A € F.

3) A family F is closed under hyper infinite unions, i.e{4f, },,c+y is a hyper infinite sequence fhthen

Upern4n € F.

Theorem 4.2 If F is a#-g-algebra orX then: (1)F is closed under hyper infinite intersections, ifefA,, },e*y iS @
hyper infinite sequence A thenN,,exy 4, € F. (2) X € F.3) F is closed under hyperfinite unions and hyperfinite
intersections.(4F is closed under set differences. $5)s closed under symmetric differences.

Theorem 4.3 If {4,},¢; is a collection ot*-algebras on a s&t, then N,¢; 4, , iS also anc*-algebras on a s&t
Theorem 4.4 If K c L thena®(K) c ¢*(L).

Definition 4.9 (Borel o #-algebra) Given a topological spakgthe Borelo#-algebra is the#-algebra generated by
the #-open sets. It is denoted B (X). We call sets irB¥(X) a Borel set. Specifically in the cake= *R#" we

have thaB*(*R#") = {U|U is #-open set}. Note that the Boret*-algebra also contains aftclosed sets and is the
smallesio#-algebra with this property.

Definition 4.10 (#- Measures) A paifX, F) whereF is anc*-algebra orX is call a#- measurable space. Elements
of F are called a&-measurable sets. Givertaneasurable spa¢&, F), a functioru®: F — [0, *o] is called a
#-mea-sure oiiX, F) if: 1) u*(@) = 0. 2) For all hyper infinite sequencgs, },.cy Of pairwise disjoint sets i

1 (UnZy An) = Ext- 3,2, 1 (4,). (4.6)



85. A NON-ARCHIMEDEAN BANACH SPACESENDOWED WITH

‘R# -VALUED NORM

A non-Archimedean normed space Wilk{’ -valued norm#-norm) is a paitX, ||||4) consisting of a vector space
X over a non-Archimedean scalar fiel? or complexfield *C# = *R¥ +i*R¥ together with a norm|:|[4: X —
*R¥. Like any norms, this norm induces a translatiofariant distance function, called the norm indiioen-
ArchimedeariR? -valued metriai®(x, y) for all vectorsy,y € X, defined byd®(x,y) = |lx — yllx = lly — x|l
Thusd®(x,y) makesX into a non-Archimedean metric spagg d*).

Definition 5.1 A hyper infinite sequenctﬁxn};"i1 in X is calledd” - Cauchy or Cauchy i(¥, d*) or ||-||s -Cauchy
if for every hyperreals € *R¥, there exists som@& € *N such thatl* (x,,, y,,) = llx, — yulls < €if n,m > N.
Definition 5.2 The metriad® is called a#-complete metric if the paitX, d*) is a#-complete metric space, which

by definition means for every- Cauchy sequenc{an};f1 in (X,d"), there exists some€ X such that
#-lim,_ o ||x, — x|y = 0.

85.1. Semigroups on non-Archimedean Banach spaces and their generators

Definition 5.3 A family of bounded operatof§'(t)|0 < t < "o} on external hyper infinite dimensional non-
Archimedean Banach spakeendowed witifR¥ -valued#-norm||-|| is called a strongls-continuous semigroup
if: @) T(0) =1, (0)T(s)T(t) = T(s +¢t) for alls, t € *RE ,, (c) For eachp € X,t — T(t) is #-continuous map-
ping.

Definition 5.4 A family {T(t)|0 < t < *oo} of bounded or hyper bounded operators on extéyr infinite
dimensional Banach spa&eis called a contraction semigroup if it is a sgiyn#-continuous semigroup and
moreovel|T ()|l < 1 for allt € [0, *).

Theorem 5.1 Let T(t) is a strongly#-continuous semigroup on a non-Archimedean Banaatesf) letAp =
#-1im, o A,¢ whered, = r~1(I — T(r)) and letD (4) = {p|3(#-lim,_,, A, ¢)}, then the operatot is #-closed
and#-densely defined. Operatdris called the infinitesimal generator of the semig T (t).

Definition 5.5 We will also say thatl generates the semigrofift) and writeT (t) = Ext-exp(—tA).

Theorem 5.2 (Generalized Hille -Yosida theorem) A necessany sufficient condition thak-closed linear operator
A on a non-Archimedean Banach sp&ogenerate a contraction semigroup is that({&)o, 0) c p(4),

) I(A+A4) Y, <A tforalla>o0.

Definition 5.6 Let X be a non-Archimedean Banach space€ X.An element € X* that satisfiedl{||; = [l¢oll4 ,
andl(¢) = ||¢|l3 is called a normalized tangent functionaptdBy the generalized Hahn-Banach theorem, each
@ € X has at least one normalized tangent functional.

Definition 5.7 A #-densely defined operatdron a non-Archimedean Banach sp&de called accretive if for
eachp € D(A), Re(I(Ap)) = 0 for some normalized tangent functionaltoOperatot is called maximal
accretive ifA is accretive and has no proper accretive extension.

Remark 5.1 We remark that any accretive operato#islosable. The#t-closure of an accretive operator is again
accretive, so every accretive operator has a sshéHelosed accretive extension.

Theorem 5.3 A #-closed operatad on a non-Archimedean Banach sp&ds the generator of a contraction
semigroup if and only ifl is accretive an®an(4, + A) = X for somei, > 0.

Theorem 5.4 Let A be a#-closed operator on a non-Archimedean Banach spatken, if both4 and it adjoint4*
are accretived generates a contraction semigroup.

Theorem 5.5 Let A be the generator of a contraction semigron@ non-Archimedean Banach spAcéet D be a
#-dense set) c D(A), so thatExt-exp(—tA): D — D. ThenD is a#-core for4, i.e.#-A T D = A.

85.2. Hyper contractive semigroups



In the previous section we discus:{édcontractive semigroups. In this section we givela# adjointness theorem
for the operators of the fora+ V, whereV is a multiplication operator atigenerates H,-contractive semigroup
that satisfies a strong additional property.

Definition 5.8 Let (M. u*) be a#-measure space wifl (M) = 1 and suppose thdis a positive self-adjoint
operator o4 (M, d*u*). We say thaExt-exp(—tA) is a hyper contractive semigroup if: @t-exp(—tA) is

L, -contractive; (b) for somk > 2 and some constagf, there is & > 0 so that||[Ext-exp(—tA)]@llup < l@ll4,
forallg € LA(M,d*u®).

Remark 5.2 Note that the condition (a) implies thatt-exp(—tA) is a strongly#-continuous contraction semi-
group for allp < “co. Holder's inequality shows thil|s, < ||"[l4, if p = g. Thus thel};-spaces are a nested family
of spaces which get smalleragets larger; this suggests that (b) is a veryngtimndition. The following
proposition shows that constanplays no special role.

Theorem 5.6 Let Ext-exp(—tA) be a hypercontractive semigroupId(M, d*u*). Then for allp, q € (1, *) there
is a constant, , and at, , > 0 so that it> t,,, , then||[Ext-exp(—tA)@|lu, < Cp4ll@lluq. for allp € L.

Theorem 5.7 Let (M, u¥) be as#-measure space wiflf (M) = 1and letH, be the generator of a hypercontractive
semi-group orl, (M, d*u*). LetV be a'R} -valued measurable function M, u*) such thav’ € L% (M, d*u*) for

all p € [1,*) andExt-exp(—tV) € L¥(M,d*u*) for all t > 0. ThenH, + V is essentially self-adjoint on
C"°(Hy) N D(V) and is bounded below. He@* (H, ) = Npesn D(H(’J’).

§ 5.3. Strong #-conver gencein the generalized sense
Let X be a non-Archimedean Banach space over figld

Let T € B(X). A complex numbed € *C# is called an eigenvalue (proper value, charadiensalue) ofT if there is
a non-zero vectar € X such that

Tu = Au. (5.3.1)

Such vectow is called areigenvector (proper vector, characteristic vector) Bfbelonging to (associated with, etc.)
the eigenvalud. The seiV, of all u € X such thaf'u = Au is a linear sub manifold d&f; it is called the (geometric)
eigenspace df for the eigenvalu@, anddim(N,) is called the (geometric) multiplicity df N; is defined even
when2 is not an eigenvalue; then we have= @. In this case it is often convenient to say liats the eigenspace
for the eigenvalug with multiplicity zero, though this is not in sttiaccordance with the definition of an
eigenvalue.

Remark 5.3.1 It can easily be proved that eigenvectorgdbelonging to different eigenvalues are linearly
independent.

Definition 5.3.1 The set of all eigenvalues df is called the spectrum &f we denote it b(T).

LetT € B(X) and consider the inhomogeneous linear equation

(T-Sdu=w, (5.3.2)

wheref € *C# is a given complex number,€ X is given and: € X is to be found. In order that this equation have
a solutionu for everyw, it is necessary and sufficient tifat- ¢ be non-singular, that i§,be different from any
eigenvaluel; of T. Then' the invers€T — &)1 exists and the solutianis given by

u= (T -8t (5.3.3)
Definition 5.3.2 The operator-valued function

REO=RET)=T-" (5.3.4)



is called the resolvent df.

Definition 5.3.3 The complementary set of the spectizifi) (that is, the set of all complex numbers
different from any of the eigenvaluesTfis called the resolvent set &f,and will be denoted bR(T).
The resolvenr (¢, T) is thus defined fo§ € P(T).

LetT,, n € *N be a hyper infinite sequenceibfclosed operators in a non-Archimedean Banach spalcethe
present section we are concerned with general dergions on stronfj-convergence of the resolveg(¢) =
(T,, — §)~1.The fundamental result on tieconvergence i#-norm of the resolvents is given by theorg®1.

Definition 5.3. (i) Let us define theegion of boundedness, denoted bw,,, for the hyper infinite sequence

R, (&),n € "N as the set of all complex numbérs *C# such tha€ € P(T,,) for sufficiently largen € *N and the
hyper infinite sequendgR,,(é)|lx, n € *N is bounded fon € *N so large that thg, (¢) are defined.

(ii) let A be the set of af € *C# such thak-lim,,_+, R, (§) =R’ () exists. A sef\; will be called the region of
strong#-convergence foR,,(¢),n € *N.

(i) Similarly we define the regioa,, of #-convergence if-norm forR, (¢),n € *N.

Remark 5.3. Note thatobviously we hava,,c A,c A,.

Theorem 5.3. If R,(§),n € *N #-converges if-norm to the resolve (§) = (T — &)~! of a#-closed operatdF
for some¢’ € P(T), then the same is true for eveérg P(T).

86. A NON-ARCHIMEDEAN HILBERT SPACESENDOWED WITH
*C¥ -VALUED INNER PRODUCT

Definition 6.1 Let H be external hyper infinite dimensional vector spager complex fieldC# = *Rf + i*Rf. An
inner product o is aC#-valued function{-,-): H x H - *C¥, such that (1jax + by, z) = {ax, z) + (by, z),

2) (x,¥) = (7, x). 3) lIx]I> = (x, x) = 0 with equality(x, x) = 0 if and only ifx = 0.

Theorem 6.1 (Generalized Schwarz Inequality) e, (-,-)}be an inner product space, then for@ll € H:

[{x, )| < lIx|lllyll and equality holds if and onlyif andy are linearly dependent.

Theorem 6.2 Let {H, (-,-)}be an inner product space, afid||s = /{x,x) . Then||‘||» is a*R¥ -valued#-norm on a
spaceH. Moreover(x, x) is #-continuous on Cartesian prodétix H, whereH is viewed as thé&-normed space

{H, 1 M13-



Definition 6.2 A non-Archimedean Hilbert spaékis a#-complete inner product space.
Two elements andy of non-Archimedean Hilbert spaékare called orthogonal ifx, y) = 0.

Example 6.1 The standard inner product 8&™,n € *N,, is given by external hyperfinite sum
(x,y) =BXt-XiL1 %, i (6.1)

Here x = {x;}",, v = {y;}, , withx;,y; € *C¥,1 <i <n, see [14].
Example 6.2 The sequence spateconsists of all hyper infinite sequences {zi}:fl of complex numbers itC#
such that the hyper infinite series EX¥-, |z;|* #-converges. The inner product Bhis defined by

(z,w) =BExt-3, %, Z, w;. (6.2)
Herez = {zi}Z:’l, w= {Wi};:)l and the latter hyper infinite seri#sconverging as a consequence of the generalized
Schwarz inequality and theconvergence of the previous hyper infinite series.
Example 6.3 Let C*[a, b] be the space of tH€? - valued#-continuous functions defined on the interialb] c
*R¥, see [14]. We define an inner product on the sig4¢e, b] by the formula

(f.g) = Ext- [ F()g(x) d*x. 6.3)

This space is nat-complete, so it is not a non-Archimedean Hilbegcp Thet-complettion ofC#[a, b] with
respect to thét-norm

Il = (Exe- [PIFGOR a%x) (6.4)

is denoted by [a, b].
Example 6.4 Let C*®[q, b]be the space of tH€?- valued functions wittk € *N #-continuous#-derivatives on
[a, b] c *R¥, see [14].We define an inner product on the sd€e [a, b] by the formula

(f,9) = Ext-3ly (Ext- [} FFOG)g"O ) dx). (6.5)

Heref*® and g*® denotes théth #-derivatives off andg respectively.The correspondi#ignorm is

Iflly = (Ext- Bl (Ext- 7| f#O@)| d#x))l/z. .

This space is nat-complete, so it is not a non-Archimedean Hilbeecgp The non-Archimedean Hilbert space
obtained by#-complettion ofc#®)[a, b] with respect to thé&-norm (1) is non-Archimedean Sobolev space, denoted
by H**[a, b].

Definition 6.3 The graph of the linear transformatiBni — H is the set of pair§(¢, T¢)|(¢ € D(T))}. The graph
of the operatoF, denoted by (T), is thus a subset &f x H which is a non-Archimedean Hilbert space with the
following inner product(¢,, 1), (¢,,P,)). OperatorT is called a #-closed operatof'fT) is a #-closed subset of
H X H.

Definition 6.4 Let T, andT be operators on H. [f(T;) o T'(T), thenT; is said to be an extension @#fand we
write T, D T. Equivalently,T; o T if and only if D(T,) > D(T) andT,¢p = T¢ for all¢ € D(T).

Definition 6.5 An operatofT is #-closable if it has #-closed extension. Eve#jclosable operator has a smallest
#-closed extension, called iisclosure, which we denote By T.

Theorem 6.3 If T is #-closable, thed (#-T) = #-I'(T).



Definition 6.6 Let D(T*) be the set op € H for which there is aé € H with (Ty, ¢) = (i, &) forally €
D(T).For eachp € D(T*), we defineT*¢ = £.The operatol* is called thet-adjoint of T. Note thatp € D(T™) if
and only if|(Ty, )| < C||Y|l4 for allyp € D(T). Note thatS < T impliesT* c S.

Remark 6.1 Note that fof to be uniquely determined by the conditi@y, ¢) = (i, £) one need the fact that
D(T) is #-dense irH. If the domainD (T*) is #-dense irH, then we can defingd** = (T*)".

Theorem 6.4 Let T be a#-densely defined operator on a non-Archimedean Hikgace{. Then: ()T~ is
#-closed. (b) The operat@ris #-closabie if and only iD(T*) is -dense in which cage=T"*. (c) If T is
#-closable, theif#-T)* = T*.

Definition 6.7 Let T be a#-closed operator on a non-Archimedean Hilbert spad® complex numbek € *C# is
in the resolvent set(T), if AI — T is a bijection of D(T) ontoH with a finitely or hyper finitely bounded inverse.
If complex numbed € p(T), R; = (Al — T)™! is called the resolvent Gfat .

Definition 6.8 A #-densely defined operat@ron a non-Archimedean Hilbert space is called sytrimer
Hermitian ifT < T*, that is,D(T) c D(T*) andT¢ = T*¢ for all ¢ € D(T) andequivalently,T is symmetric if and
only if (Te,y) = (¢, TY) for allp,p € D(T).

Definition 6.9 A #-densely defined operatdr is called self#-adjoint if T = T*, that is, if and only if" is
symmetric and (T) = D(T").

Remark 6.2 A symmetric operatdF is always#-closable, sinc® (T) #-dense ird. If T is symmetricT* is a
#-closed extension of’ so the smallest-closed extensiofi** of T must be contained iR*. Thus for symmetric
operators, we have c T** c T~, for #-closed symmetric operators we hdve- T** c T* and, for self#-adjoint
operators we have = T** = T*. Thus a#-closed symmetric operat@ris self#-adjoint if and only ifT* is sym-
metric.

Definition 6.10 A symmetric operatdF is called essentially sef-adjoint if its#-closure#-T is self#-adjoint. If T
is #-closed, a subsé c D(T) is called a core fof if #-T D =T.

Remark 6.3 If T is essentially self+adjoint, then it has one and only one sefidjoint extension.

Definition 6.11 Let A be an operator on a non-Archimedean Hilbert spic&he seC (4) = n;‘le(A”) is
called theC “®-vectors ford. A vectorg € € *(A) is called ant-analytic vector fod if

Yoo JlA™MIgt™
Ext-X.,.—o n!“ < Yoo (6.7)
for somet > 0. If A is self#-adjoint, thenC " (4) will be #-dense inD (4).

Theorem 6.5 (Generalized Nelson's analytic vector theorem)A_be a symmetric operator on a non-Archimedean
Hilbert space H. ID(A) contains a#-total set offf-analytic vectors, theA is essentially selfadjoint.

Definition 6.12 [15] Operatotd is relatively bounded with respect to operdtof D(T) c D(A) and

lAully < allully + blITully, u € D(T). (6.8)



Theorem 6.6 [15] Let T be self#-adjoint. If 4 is symmetric an@-bounded witi'-bound smaller tham, then

T + Ais also self¢-adjoint. In particulaf + A is self#-adjoint if 4 is bounded and symmetric wilh(T) c
D(A).

Theorem 6.7 [15] (Generalized Kato perturbation theorem) Tdie self#-adjoint. If 4 is symmetric an@’-
bounded witi'-bound smaller tham, thenT + A is also self#-adjoint and its#-closure#-(T + A) is equal

to #-T + #-A.In particular this is true il is symmetric and bounded wit(T) c D(A4).

Theorem 6.8 [15] LetA be essentially self#adjoint on the domaiD (4) and letB be a symmetric operator on
D(A). If there exists a constaate *R# such that for alip € D(4) and for allg € *R¥ such thad < g < 1 and the
inequality holdg|By || < a||(A + BB)Y ||+, thenA + B is essentially self# adjoint onD(A4) and its#-closure
has domairD (#-A).

Proof Let0 <y <1 anda; > a. Thenya,B is a Kato perturbation of, for any vectory € D(A), B = 0 we
get the inequality

lyar'Bylly < 6,6 < 1.

By Theorem 6.84 + ya; 1B is essentially self#-adjoint onD(4) and the domain of it-closure isD (#-4). Thus
by the inequality| By |4 < al|(4 + BB)Y|s ) with 8 = a7?, we conclude thaya; 1B is a Kato perturbation of the
operatord + a;'B. Hence the operatar+ a71(1 + y)B is essentially self#adjoint onD(4) and its#-closure has
domainD (#-4). Continuing inductively in this manner, for anydgerj € *N satisfya;! < 1, we obtain that
ya; 1B is a Kato perturbation of the essentially séHadjoint operatoA + ja;'B, so thatd + a;*(j + y)B is
essentially self#-adjoint onD(4) and the domain of it§-closure isD (#-4). By choosing the largest sughwe
obtain for somey such thad <y < 1,ja;t =1, and so we have proved the essential #e#fdjointness of the
operatord + B.

Theorem 6.9 [15] LetA andB be the same as in Theorem 6.7. THeandA + B have the sam#-cores. IfA is
bounded from below, thefa+ B is bounded from below.

Proof If B is a Kato perturbation of, the theorem hold3.he proof of Theorem 6.9 exhibifs + B as a finite or
hyperfinite number of successive Kato perturbatiamsl yields the theorem.

Theorem 6.10 [15] Leta > 0 and letg, = [ho]?, g1 = [h1]?, ho, hy € SE,("R¥3), hy = 0,h, = 0, then operator
(see Definition 11.14)

M = aHo, +To(go) + Ti(g1)
is self #-adjoint onD(H,,,) N D(T;(g,)) and is essentially sel#-adjoint onC *(H,,,).

8§ 6.1. The spectral theorem related to bounded in*R# operators. In this section, we will discuss the generalized
spectral theorem in its many aspects.  Thigira theorem is a concrete description of all-8edfdjoint
operators. There are several apparently distimotdtations of the spectral theorem. In some sdmsgdre all
equivalent. The form we prefer in this sectioryssthat every bounded iR¥ self+#-adjoint operator is a
multiplication operator. This means that given armed in‘R? self+#-adjoint operatod on a non-Archimedean
Hilbert spaced®, we can always find #-measure:” on a#-measure spadd and a unitary operatér: H* —
LE(M, d* u*) so thattUAU 1) (x) = F(x)f(x) for some boundetR?-valued#-measurable functiof onM. In
practice, M will be a union of copies diR¥ andF will be x so the core of the proof of the theorem will be th
construction of certaii-measuresOur main goal in this section will be to make seogeoff (4), for f a
#-continuous function. We will consider also #heneasure defined by the functionfle (i, f (A)y), for fixed

Y € HY,

Definition 6.1.1The operato#-norm of a linear operator: H* —» H* is the largest value by whieh stretches an
element o ¥,



IAllsop = IAllz( ey = sup{llAxllylx € H*, llxlly = 1}

An operatotd is called bounded itR if ||All,, < *oo, otherwise operatot is called unbounded itR%. We
often write bounded operator instead bounded®{hand unbounded operator correspondingly.

Definition 6.1.2 A linear operatod: H* — H* is called finitely bounded i1|A||L(H#) = ||All4op € *]Rff_ﬁn i.e., if
lAll4op is @ near standard number.

Definition 6.1.3 Let C*(U) be the linear space 8€#- valued#-continuous functions g¢-compact support

U c "R¥ endowed with the sup-norfif ||« = sup,ey{f(x)}. An functionf in C*(U) is called finitely bounded if
£+ € *Rﬁ'ﬁn i.e., if||f]l-» is @ near standard number.

Definition 6.1.4 We define nowCE, (V) ¢ ¢*(U) by
Cha(U) = {fIIf € C*WIA[lIf o0 € RE ] }-

An functionf is called finitely bounded if € Cf, (V) i.e. if ||f]l-w € "R, Note thalCf, (U) is a linear space

#

over field R gy

Theorem 6.1.1 (#-continuous functional calculus) Latbe a bounded tiR¥ self+#-adjoint operator on a non-
Archimedean Hilbert spade”. Then there is a unique mapC¥(a(4)) — L( H*) with the following properties:

(a) ¢ is an algebraie -homomorphism, that is,

¢ =0(NP@oAN) =290 (oM =Ld ()= &)
(b) ¢ is #-continuous, that igj¢ (f)IIL(H#) < Cllf l*oo -

(c) Letf be the functiorf(x) = x; theng (f) = A.
Moreover ¢ have the additional properties:

(d) If A = Ay, theng (f)y = f (D).

(€)ale (H] = {f(DI1 € 0(A)} [Spectral mapping theorem].

() If f > 0, theng (f) > 0.
@l Pl = 1 e

Remark 6.1.1 The proof which we give below is quite simple, é&ay (c) uniquely determing(P) for any

hyperfinite polynomiaP (x). By the generalized Weierstrass theorem 6.1.3sehef hyperfinite polynomials is
#-dense irC* (o (A)) so the main part of the proof is showing thatA)ll .., = SUP,eq(ay|P (). The existence and
unigueness ap then follow from the generalized B.L.T. theorerth.8. To prove the crucial equality, we first prove
a special case of (e) which holds for arbitraryrmed in*R¥ operators.

Lemma6.1.1 LetP(x) = Ext-YN_,_oc,x™,N € *N. P(4) = Ext-Y_,_, c,A™. Then
a(P(4) = {P(MI1 € a(A)}.

Proof Let A € g(4). Sincex = 4 is a root ofP(x) — P(4), we haveP(x) — P(4) = (x — 1)Q(x), so

P(A) — P(2) = (A — 1)Q(A). Since(4 — A) has no inverse neither dog4) — P(A) that is,P(1) € a(P(4)).
Conversely, lett € a(P(A)) and letd,, ..., 4, be the roots oP (x) — p, that is,P(x) — u = a(Ext-[[i=1(x — 4;).
If Ay,..., 4, € a(A), then(P(A) — u)™t = a Ext- [T, (x — 4;)~1] so we conclude that sonig € o (4) that is,
u = P(A) for somet € a(4).



Definition 6.1.5 Letr(A) = sup;eq(a) |4]-Thenr(4) is called the spectral radius 4f

Theorem 6.1.2 LetX be a non-Archimedean Banach spate, L(X) Thenlim,,_+, /|14 |4, €Xists and is equal
tor(A). If X is a non-Archimedean Hilbert space ahis self#-adjoint, thenr(4) = [|All ;)
Lemma6.1.2 Let A be a bounded seif-adjoint operator. Then

”P(A)”#op = Supleo'(A)lp(A)l-
Proof By Theorem 6.1.2 we obtain
”P(A)”?top = ”P(A)*P(A)”#op = ”(pP)(A)”#op = SUPjeq((PP)(A)) [A].

By Lemma 6.1.1 we obtain

— 2
SUPeq(PPy(ay) 1A = SUPaes(a) PP = (supseqcay IPI)".

Notation 6.1.1We often writepp, (f) or f(A) for ¢ (f) in order to emphasize the dependence on opetator
Definition 6.1.6 (Hyperfinite Bernstein Polynomials) For eacle *N, then-th hyperfinite Bernstein Polynomial
Bj(x, f) of a function f € C*([a, b], *R¥) is defined as

B Cx f) = Ext-Tioo f (5) ()x*(1 =" %.

Theorem 6.1.3 (Generalized Weierstrass approximation theoremyLletC#([a, b], *R¥), [a, b] c *R¥. Then there
is a hyper infinite sequence of polynomigjgx),n € *N that#-converges uniformly t¢ (x) on[a, b].

Proof. Consider firsif € C*([0,1], *R¥). Once the theorem is proved for this case, themgdtheorem will follow
by a change of variables. Sin@ 1] is #-compact, thef-continuity of f implies uniform#-continuity. So, given

€ > 0, there exist$ > 0 such thatvx, y(x,y € [0,1]D[|x — y| < § = |f(x) — fW)| < &/2].

Now, letM = ||f||- Note that¥ exists since is a#-continuous function on #-compact set. Now, fix € [0, 1].
Then, if|x — | < &, then the inequality holdg (x) — f(£)| < &/2 by #-continuity. Alternatively, ifix — | =
6, then

x—=¢ 2
f@) = fOI < 2 < 2M (55) + e/2.

From the above two inequalities, we obtain that

a2
veGee 0D [IF@ - 1 < 2 (555) + &2
The hyperfinite Bernstein Polynomials can be usealiproximateg (x) on|[0, 1]. First, note that
BEGef = f(§) = Bi(xf) =~ FOBI(x1)
and for alln € *N
Bi(x,1) =Ext-Tp_o()x*(1—x0)" "= (x + (1 — x))" = 1,
where the generalized Binomial Theorem was usdideisecond equality. Thus,

&

1B G f = £ED! < B (x.2M (55) +2) = 2Bl (x - 9 + 22,

2



where in the second step the fact that B#(x, f) for0 < f andB}(x,g) < B¥(x,f) if g < f were used. Both
can be proven directly from the definition®f(x, f). It can also be shown that

Bi(x,(x — ) =x* + n 1 (x — x?) —2&x + &2,
So

2M (x-x?%)
né?

1B, f - FE)] < £+ 220
In particular,

IBEGEf — FE)] < & +2MEE),

né2
A simple calculation shows that §@, 1], the maximum of — z? is1/ 4 . Thus,

2M

BE(Ef - FO) <+

So, takeV > —=—, forn > N we get
262¢

1B2(&.1 = FO)....
This proves the theorem fércontinuous functions of9, 1]. Now we letg € C*([a, b]). Consider the function

¢ : [0,1] - [a,b] defined by ¢ : x » (b — a)x — a, ¢ is clearly a homeomorphism. Thus, the compositetfan
f = g ° ¢ is a#-continuous o010, 1]. By application of the theorem for functions[@n1], the case for an arbitrary
interval[a, b] follows.

Theorem 6.1.4 (Generalized B.L.T. theorem) Suppose thé a non-Archimedean normed spacés a non-
Archimedean Banach space, @hd Z is a#-dense linear subspacedfif T:S — Y is a bounded iR? linear
transformation (i.e. there exisfs< oo such thaf|Tz||; < C ||z||4 for all z € S), thenT has a unique extension to
an element of(Z,Y).

Definition 6.1.7 (Unital Sub-algebra, Separating Points). Kete a#-compact metric space. Consider the non-
Archimedean Banach alget®4(K, "R¥) = {f : K - *R¥ | f is #-continuous} equipped with the sup-norm,

Ilf I Then, (1)A < C* (K, *R¥) is a unital sub-algebraif € A andiff,g € A,a,f € *R¥ implies that

af + Bg € Aandfg € A. (2)A c C* (K,"R¥) separates points of K if for al]t € K withs # t, there exists
f € Asuchthaf(s) = f(t).

Proof of the Theorem 6.1.1 Let ¢(P) = P(A). Then|| ¢ (P)||L(H#) = |IPll¢c# (s (ay SO has a unique linear

extension to thét-closure of the polynomials & (a(A). Since the polynomials are an algebra contaihing
containing complex conjugates, and separating oihis#-closure is all of#(a(A). Properties (a), (b), (c), (g)
are obvious and ip obeys (a), (b), (c) it agrees wighon polynomials and thus Bicontinuity onC*(a(4). In
order to prove (d), note thet(P)y =P(1)y and apply#-continuity. To prove (f), notice that ff = 0, thenf = g2
with g is *R¥-valued andy € C*(a(4). Thuse (f) = ¢ (g)* with ¢ (g) self#-adjoint, sop (f) = 0.

Remark 6.1.2 Notice that in addition the following statementdch

Q) ¢(f) =0ifand only iff > 0.

(2) Sincefg = gf forall f, g, {f(A)|f € C*(a(4))} forms an abelian algebra closed under adjoints.

3) Sincellg (Ml x#) = lIf - andC*(a(4)) is #-complete{f (A)|f € C*(c(4))}

is #-norm+#-closed. It is thus a non-Archimedean an abeliaalgebra over fieldC# of operators.

(4) Ran(¢) is actually the non-Archimede#&i-algebra generated by A that is, the smallegt*-algebra over field



*C# containingA.
(5) Notice thatC#(a(A)) and the non-Archimededii-algebra generated byyare#-isometrically isomorphic.
(6) The statement (b) actually follows from (a) &vdposition 6.1.1. Thus (a) and (c) alone deteemimniquely.

Proposition 6.1.1 Suppose thap: C*(X) — L(H*) is an algebraie-homomorphismy a#-compact metric space.
Then:(a) if f = 0, theng (f) 20, (0) lp (F)lc(#y < If e

8§ 6.2. The spectral #-measures. We are now going to introduce thkemeasures corresponding to a boundéikin
self+#-adjoint operators. Let be bounded inR? self+#-adjoint operator. Lep € H*. Then

f= b, fAY)y

is a positive'R¥-valued linear functional oﬁ#(a(A)). Thus, by the generalized Riesz-Markov theorem, see
Theorem6.2.2there is a uniqu#-measurezfj, on the#-compact setr(4) with the property

b, fAP)y = Ext- [, fF(D)d* ],
Definition 6.2.1.The#-measurezfj, is called the spectréi-measure associated with the veapog H*.
The first and simplest application of tp% is to allow us to extend thecontinuous functional calculus
to B*(*R¥ ), the bounded ifiR¥ #-Borel functions orfR?. Let g € B*(*R¥ ). It is natural way to defing(4) so
that(y, g(A)y), = Ext- fa(A) gDd# uf}‘,. The polarization identity lets us recovér, g(4)y), from the functional
(¥, g(A))4 and therthe Generalized Riesz lemma lets us consygé).
Theorem 6.2.2 (Generalized Riesz-Markov theorem) Lebe a locally#-compact non-Archimedean metric space
endowed with'R#-valued metric. Le€#(X) be the space df-continuoust#-compactly supportetC*-valued
functions onX. For any positive linear functiondl onC¥(X), there is a uniqué-measurezf;, onX such that

Vf € CHX): O(f) = Ext- [, f()d* ().

Theorem 6.2.3 (Generalized Riesiemma) LetY” be a#-closed proper vector subspace éf-aormed space
X, 1l - l») and lete € *R¥ be any real number satisfyifg< a < 1.Then there exists a vectore X of unit
#-norm|ju|lz = 1 such thatjlu — y||z = aforally e Y.

Theorem 6.2.4 (spectral theorem-functional calculus form) Uebe a bounded itR? self+#-adjoint operator on
non-Archimedean Hilbert spa¢g’. There is a unique mag: B*(*R¥ ) —» £( H*) so that:

(a) ¢ is an algebraie -homomorphism.

(b) P is #-norm#-continuousﬂ(ﬁ(f)||£(H#) < N1f llco-

(c) Letf be the functiorf (x) = x; thend(f) = A.

(d) Supposé,(x) —4 f(x) for each x ag —, *oo and hyper infinite sequendig, ||« is bounded itiR?.
Theng(f,) =« ¢(f), asn -, *oo strongly.

Moreoverg has the properties:

(e) If Ay = 2y, thend(f) = f (D).

() If f=0,theng(f) = 0.

(g) If BA = AB theng (f)B = Bo(f).

8 6.3. The spectral projections

Definition 6.3.1 Let A be a bounded itR¥ self#-adjoint operator anfl a#-Borel set of R¥. P, = yo(4)

is called a spectral projection &f

As the definition suggestsy, is an orthogonal projection singg = x4 = 1pointwise. The properties of the family



of projectiong P, |2 an arbitrary#-Borel se} is given by the following elementary translatidrttee functional
calculus.

Proposition 6.3.1 The family{P,} of spectral projections of a boundedR{ self#-adjoint operatord, has the
following properties:

(a) EachpP,, is an orthogonal projection.

(b) Py = 0; P_qq) =1 for somea € *RE, .

© IfQ = Ext-U,”, Q, withQ, nQ, =@ foralln # m then

P = s-#-limy_, o (Ext- ¥_4 Py )
(d) Pnlpnz = Pnlnnz-
Definition 6.3.2 A family of projections obeying (a)-(c) is called @jection-valuedt-measure (p.w#-m.).
Remark 6.3.1 Note that (d) follows from (a) and (c) by abstraeshsiderations. As one might guess, one can
integrate with respect to a pivm. If P, is a p.v#-m., then(p, Po@); is an ordinary-measure for any. We will
use the symbal*(¢p, P,¢)» to mean integration with respect to thisneasure. By generalized Riesz lemma
methods, there is a unique operaawith (¢, Bo); = f*u@g F(D)A¥ (@, Pap)y.

Theorem 6.3.1. If P, is a p.v#-m. andf a bounded iriR# #-Borel function orsupp(P,,), then there is a unique
operatorB which we denottf*m#f(/l)d#«p, Pyp)4 so that

(@, Bp)y = f*Rgf(/l)d#(% Prp)y.

8§ 6.4. The spectral theorem related to unbounded in *R¥ self-#-adjoint operators. In this section we will show
how the spectral theorem for boundedRf self+#-adjoint operators which we developed in § 6.3 caexiended
to unboundedh *R? self+#-adjoint operators.

Proposition 6.4.1 Let (M, u*) be a#-measure space witft a hyperfinite#-measure. Suppose thats a
#-measurable’R? -valued function oM which is finite or hyperfinitg:#-a.e.. Then the operatff: ¢ - f¢ on
LE(M,d*u*) with domainD(T;) = {¢|fe € L4(M, d*u*)} is self#-adjoint ands(T}) is the essential range Bf.
Proposition 6.4.2. Let f and T; satisfy the conditions in Proposition 6.4.1. Suggpm addition that

f € LE(M,d*u*) for 2 < p < *oo. Let D be any#-dense set i}y (M, d*u*), whereq™ + p* = 1/2. ThenD isa
#-core forTy.

Theorem 6.4.1 (spectral theorem-multiplication operator form)} Uebe a self#-adjoint operator on a

*o0- dimensional a non-Archimedean Hilbert spaéé with domainD (4). Then there is #-measure spad@/, u*)
with u# a hyperfinite#-measure, a unitary operatér H* - L§(M,d*u*) and a'R¥ -valued functiorf on M
which is finite or hyperfinitei#-a a.e. so that

(a) ¥ € D(A) if and only if f () (UY)(-) € LE(M, d*u*).

(b) Ifp € U[D(A)], then(UAU *p)(m) = f(m)p(m).

Remark 6.4.1There is a natural way to define functions of & #eadjoint operator by using the Theorem 6.4.1.
Given a bounde#-Borel functionh on*R# we define

h(A) = UTyy U™ (6.4.1)

whereTy, s, is the operator obf (M, d*u*)) which acts by multiplication by the functidugf (m)).

Using this definition the following theorem follovessily from Theorem 6.4.1.

Theorem 6.4.2. (spectral theorem-functional calculus form) Uebe a self#-adjoint operator ori#. Then there is
a unique mayp from the bounded-Borel functions on

*R¥ into L( H*), so that

(a) ¢ is an algebraie-homomorphism.



(b) ¢ is #-norm#-continuous, that iglg (Al ) < lIll+e-
(c) Leth, (x),n € *N be a hyper infinite sequence of boundedR{i #-Borel functions
with #- lim,,_,«, h, (x) = x, for eachx and|h,, (x)| < |x| for allx andn € *N. Then, for anyp € D(4),

#- limn—>*oo (@ (hn)lp) = All)

(d) If h, (x) =4 h(x) pointwise and if the hyper infinite sequenidg, (x)|+, n € *N is bounded ifR¥, theng
(hy) =4 G(h) strongly.
In addition:

(e) If Ay = A theng (h) = h(A).
(A If h =0, thend(h) = 0.

The spectral theorem in its projection-valdedheasure form follows directly from the functionalaulus. LetP
be the operatar, (A) wherey,, is the characteristic function of tilemeasurable st ¢ *R¥.The family of
operatorgP,} has the following properties:

Proposition 6.4.1 The family{Py} of spectral projections of aboundedR{ self+#-adjoint operatord, has the
following properties:

(a) EachP, is an orthogonal projection.

(b)Py = 0; P(_vco o0y = 1.

© IfQ = Ext-U,2>, Q, withQ,nQ, =9 foralln # m then

Pq = s-#-limy_, o, (Ext- ¥_; Py )
(d) Pq, Pa, = Pa,na,-
Definition 6.4.1 A family of projections obeying (a)-(c) is called @jection-valuedt-measure (p.y#-m.).
Remark 6.4.2 This is a generalization of the notion of boundeajgxtion-valued#-measure introduced in § 6.2.
In that we only requir@ _-., -, = I rather tharP_, ;) = I for somea € *R¥,. Forp € H*, (¢, Po¢)y is a well-
defined Borel#-measure oriR¥ which we denote by, P;¢). as in § 4.3. The complég#-valued#-measure
d*(p, PyY)« is defined by polarization. Thus, given a bounietR? #-Borel functiong we can defing (4) by

(9,9(A) @)y = Ext- [,y g™ (@, P)y. @x.

It is not difficult to show that this magp +— g(A) has the properties (a)-(d) of Theorem 6.4.1g&d) as defined by
(6.4.2) coincides with the definition gf(4) given by Theorem 6.4.1. Now, supp@sis an unboundetC?-valued
#-Borel function and let

Dy = {pIExt- [.py gA* (0, Prgp)y < “oo}. (@
Then,D, is #-dense ifd* and an operatgy(4) is defined oD, by
(9,9(A) )y = Ext- [.ga g(D)d p, Pro)y. (Bip
As in § 6.2, we write symbolically
g(A) = Ext- f*Rgg(A)d#PA. (6.4.5)

In particular, forp,y € D(4),



(0, 9(A) )y = Ext- [.gs gD, Prip)y. (6.4.6

if g is "R -valued, thery(A) is self#-adjoint onD,. We summarize:
Theorem 6.4.3 (spectral theorem-projection valugeémeasure form).There is a one-to-one correspondegteesen
self+#-adjoint operatord and projection-valuel-measure§P,} on H* the correspondence being given by

A= Ext- [, Ad"P. (6.4.7)

We use now the functional calculus developed almmweeder to defindxt-exp(itA).

Theorem 6.4.4 Let A be a selft-adjoint operator and defiig(t) = Ext-exp(itA). Then

(a) For eactt € *R¥,U(t) is a unitary operator arld(t + s) = U(t)U(s) for all s, t € *R¥.

(b) If ¢ € H* andt —y to, thenU ()¢ —u U(to)d.

(c) Forany € D(A): (U(®)Y —)/t) =4 iAP ast —4 0.

(d) If #-lim,, ., ((U(®)y — P)/t) exists, thenp € D(A).

Proof (a) follows immediately from the functional calcsland the corresponding statements for@fe valued
function Ext-exp(itd). To prove (b) observe that

|Ext-exp(itA)y — Pll§ = Ext- [.p4|Ext-exp(ith) — 112d*g(D)d* (P, )y

Since|Ext-exp(itd) — 1| is dominated by th&-integrable functiory (1) = 2 and since for each € *R#
|Ext-exp(itd) — 1|2 -4 0 ast -, 0 we conclude thatU(t)y — ) -4 0 ast -, 0, by the generalized Lebesgue
dominated#-convergence theorem. Thus»> U(t) is strongly#-continuous at = 0, which by the group property
provest — U(t) is strongly#-continuous everywhere. The proof of (c), again tkeslominated-convergence
theorem and the estimdt@xt-exp(itx) — 1|2 < |x|. To prove (d), we define

D(B) = {1,b| #-lim,_, (U(t)w_w) exists}

t

and letiBy = #-lim,., o (“22

Definition 6.4.2 An operator-valued functioti (t) satisfying (a) and (b) is called a stronghcontinuous one-
parameter unitary group.

Definition 6.4.3 If U(t) is a strongly#-continuous one-parameter unitary group, then thefisadjoint operatoA
with U(t) = Ext-exp(itA) is called thet-infinitesimal generator df (t).

Theorem 6.4.5 Let U(t) be a strongly-continuous one-parameter unitary group on a nomiAredean Hilbert
spaceH*. Then, there is a se#f-adjoint operatod on H# so thatl/ (t) = Ext-exp(itA).

Theorem 6.4.6 Let U(t) be a one-parameter group of unitary operatorstoypar infinite dimensional non-
Archimedean Hilbert spadé”. Suppose that for afi,y € H*, (U(t)y, ¢)« is #-measurable. Thebi(t) is strongly
#-continuous.

Theorem 6.4.7 Suppose thdt/ (t) is a strongly#-continuous one-parameter unitary group. Rdie a#-dense
domain which is invariant undér(t) and on whichJ (¢) is strongly#-differentiable. Theri™* times the strong
#-derivative ofU(t) is essentially selft-adjoint onD and its#-closure is thet-infinitesimal generator off (t).
Theorem 6.4.8 Let A be a self-adjoint operator ¢fi* andD be a#-dense linear set containediifA). If for all

t, Ext-exp(itA): D — D thenD is a#-core forA.

Remark 6.4.3 Finally, we have the following generalization oféitem 6.4.5. 1§ (1) is a*R#-valued#-Borel
function on*R#, theng(4) = Ext- f*Rg g(A)d*P,. defined onD, (6.4.3) is selfit-adjoint. If g is boundedy(4)

coincides withp(g) in Theorem 6.4.2.
Theorem 6.4.9 Let U(t) = U(ty,...,t,) be a strongly-continuous map ofR#™ into the unitary operators on a

).A simple computation shows thatis symmetric. Byd), B 2 A, soB = A.



hyper infinite dimensional Hilbert spaé’ satisfying U(t + s) = U(t)U(s) Let D be the set of hyperfinite linear
combinations of vectors of the form

0 = Ext- [ n f(OU(DA™, (6.4.8)

whereg € H#,fecg‘*w(*IR{ff") ThenD is a domain of essential setfadjointness for each of the generatdref
the one-parameter subgroupg,o, ..., t;,..,0), eachd; : D » D and thed; commute; = 1,...,n. Furthermore,
there is a projection-valugtfmeasure?, on *R#" so that

(0, UO)Y)y = Ext- f*Rgn E[xt-exp(i(t, A)] d*(p, P)y (&
for all ¢,y € H.
Remark 6.4.4.Suppose that andB are two unbounded se#f-adjoint operators on a non-Archimedean Hilbert
spaceH* We would like to find a reasonable meaning forgtstement: 4 andB commute." This cannot be done
in the straightforward way since the operatbe= AB — BA may not make sense on any veepog H* for
example one might hay&an(4)) N D(B) = @ - in which cas&A does not have a meaning. This suggests that
we find an equivalent formulation of commutativity bounded sel#-adjoint operators.The spectral theorem for
bounded selft-adjoint operatord andB shows that in that cage® — BA = 0 if and only if all their projections,
P4 andP§, commute. We take this as our definition in theaumded case.
Definition 6.4.3 Two (possibly unbounded iR¥ self+#-adjoint operatord andB are said to commute if and only
if all the projections in their associated projentivalued#-measures commute.
Remark 6.4.5.The spectral theorem shows that iindB commute, then all the bounded'Rf #-Borel functions
of A andB also commutes. In particular, the resolverjté4d) andR,(B) commute and the unitary groups
Ext-exp(itA) andExt-exp(itA) commute The converse statement is also true and this sttmtshe above
definition of "commute" is reasonable.
Theorem 6.4.10 Let A andB be self#-adjoint operators on a non-Archimedean Hilbert sg&tThen the
following three statements are equivalent:
(@) Pg, ) andPf ;) commute.
(b) If ImA andImy are nonzero, theRy, (A)R,(B) — R,(B)R,(4) = 0.
(c) Foralls,t € *R¥, [Ext-exp(itA)] [Ext-exp(itA)] = [Ext-exp(itA)][Ext-exp(itA)].
Proof The fact that (a) implies (b) and (c) follows frahe functional calculus. The fact that (b) impl{e} easily
follows from the formula which expresses the sggrojections ofi andB as strongt-limits of the resolvents
together with the fact that#-lim,_, o ie Ry1i:(4) = P{‘,‘l}. To prove that (c) implies (a), we use some sinfgtés
about the Fourier transform. LEte S*(*R¥), then, by generalized Fubini's theorem,

Ext- [ £ (£) {[Ext-exp(itA)]p, )y =
= Ext- [0y f (0 (Ext- [ (Ext-exp(=itD)]) df (P'g, P)y) d*t =
= V2myExt- [ f ) df(PL 0, ) = 21, f ().
Thus, using (c) and generalized Fubini's theoreainag

(o, GBIy =

= Ext- f*nx’g Ext- f*Rgf(t) g(8){@, [Ext- exp(—itA)][Ext- exp(isB)|Y)s =

= (@, GBI (D)s.



so, for allf, g € S*(*R¥), f(A)§(B) — §(B)f(A) = 0. Since the Fourier transform mags(*R#) ontoS* (*R¥)

we conclude thaf(4)g(B) — g(B)f(4) = 0 for all f, g € S*(*R¥). But, the characteristic functiop, ) can be
expressed as the pointwi#dimit of a hyper infinite sequengg, n € "N of uniformly bounded functions such that
f. € S¥(*R¥),n € *N. By the functional calculus we get

s-#-limy_ e f,(A) = Pl p)-
Similarly, we find uniformly boundeg,, € S*(*R}),n € *N #-converging pointwise t@ 4, and therefore
s-#-1imy_+co gn(B) = PE ).

Since thef,, andg,, are uniformly bounded itR# andf,,(4)g,,(B) = g,,(B)f,,(4) for eachn € *N, we conclude
thatP{,‘l'b) andP(‘f:_d) commute which proves (a).

Theorem 6.4.11

87. GENERALIZED TROTTER PRODUCT FORMULA

Theorem 7.1 Let A andB be self-adjoint operators on non-Archimedean Hilbpaced”. Suppose that the opera-
tor A + B is self#-adjoint onD = D(A) n D(B), then the following equality holds

s-#-lim,,_,+o [(Ext-exp (%)) <Ext-exp (%))]n = Ext-exp[it(4 + B)]. (7.2)

Theorem 7.2 Let A andB be self-adjoint operators on non-Archimedean Hiflspacei®. Suppose that the opera-
tor A + B is essentially self#-adjoint onD = D(A) n D(B), then the following equality holds

s-#-1lim,,_,+ 0 [(Ext-exp (%)) <Ext-exp (%»]n = Ext-exp[it(A + B)]. (7.2)

Theorem 7.3 Let A andB be the generators of contraction semigroups orAtohimedean Banach
spaceB*.Suppose that thie-closure of(4 + B) I D(A) n D(B) generates a contraction semigroup®h Then the
following equality holds

s-#-lim,,_+e, [(Ext-exp (— %)) (Ext-exp (— %))]n = Ext-exp[—t(#-A + B)]. (7.3)

88. FOCK SPACE OVER NONARCHIMEDEAN HILBERT SPACE

Definition 8.1 Let H* be a complex hyper infinite-dimensional non-Archilean Hilbert space over fiel@* and
denote byH*™ then-fold tensor producttf*™ = Ext-®}_,H* n € *N. SetH*(® = *C# and defineF (H*) =
Ext-@ncy(H*™). F(H*) is called the Fock space over non-Archimedean Hikgaceti#. SetH* = L§(*Rf3),
then an elemenp € F(H#) is a hyper infinite sequence #-valued functiong) = {1, P, (x1), P, (x1, x5),

Y, (1, X9, X3), oo, W (x4, ., X))}, n € *N and such that

IYlls = 1Yol® + Ext- Tpen(Ext- [ 19 (21, ..., %) [2d*"x) < oo,

Actually, it is notF (H*) itself, but two of its subspaces which are usegtiantum field theory. These two hyper
infinite-dimensional subspaces are constructedlisfs: Let B, be the permutation group @ane "N elements and



let {<pk};°:1be a basis for a spa#. For eaclv € P, we define an operator (which we also denote)gn basis
elements of*™ by o (Ext-®L1¢y,) = Ext-®L1¢y,,- The operator extends by linearity to a boundetatpr

(of #-norm one) orH* and we can defing! = (%) (Ext- Yep, 0). It is easily to show by definitions that

S#2 = §# and S$#* = §# so0S is an orthogonal projectiofihe range o$! is called the:-fold symmetric tensor
product ofH*. We now defingF (H* ) = Ext-@®,,cyS¥H*™. Non-Archimedean Hilbert spacg? (H* ) is called

the symmetric Fock spaoger non-Archimedean Hilbert spadé” or the Boson Fock space over non-Archimedean

Hilbert spacei*.
89. SEGAL QUANTIZATION OVER NONARCHIMEDEAN HILBERT SPACE

Let H* be a complex non-Archimedean Hilbert space owsd fic# and letF (H*) = Ext-@,c-n(H*™), where
H*™ = Ext-®7_, H* be the Fock space ovBf'and letF,(H") be the Boson subspacef®fH*). Let f € H* be
fixed. For vectors it *™ of the formm = Ext-Q™,1;,n € *N we define a map~(f): H* ™ — H#"-1 py

b=(f)n = (f, Y1) (Ext-®7,¥;) andb~ (f) extends by linearity to finite and hyperfinitedar combinations of such
7, the extension is well defined, afpb~ ()nll+ < lIf llxlInll4- Thusb™(f) extends to a bounded map fhorm
lfll4) of H*™ into H*®~D Since this holds for eash€ *N (except fom = 0 in which case we define

b=(f): H*© - {0}), b~(f) is a bounded operator #fnorm||f|| from F(H*) to F(H*). It is easy to check that
operatom* (f) = (b~(f)) takes each subspa#é™into H*(**Dwith the actiorb* (f)n = f®Ext-®%,1; on
product vectors. Note that the mAp> b*(f) is linear and the maj —» b~ (f) is antilinearLet S,, be the
symmetrization operators introduced in previousiseand then the operatsf = Ext-@®,,cyS¥ is the projection
onto the symmetric Fock spag(H") = Ext-@,c-y5 " H* ™, we will write §#H#™ = H*™and callH*™then-
particle subspace 6t (H*). Note that operatdr~(f) takes spac;,(H¥) into itself, but the operatdr* (f) does
not. A vectonp = {1,0(")};0:1 with ™ = 0 for all except finite or hyperfinite set of nunmbeis called a finite or
hyperfinite particle vector correspondingly. Welwdiénote the set of hyperfinite particle vectorgpyThe vector
Q, = (1,0,0, ...) is called the vacuum vector. Létbe any self-adjoint operator & with domain of essential self-
#-adjointnes = D(A). LetD, = {y € F,|p™ € Ext-®}-,D,n € "N} and define operatatl'*(4) onD, n HI™
bydlr*(A)=AQI - QI+IQRAR-RI++QI--Q 1R A Note thatdI'*(A)is essentially self-adjoint on
D, . OperatoddI'#(4) is called the second quantization of the opetatdior example, let = I, then its second
quantizationV# = dI'*#(I) is essentially self<adjoint onF, and fory € H'™, N#y = mp. N* is called the number
operator. IfU is a unitary operator on spaké, we definedI'# (U) to be the unitary operator Gh(H*) which
equalsExt-®7, U when restricted tﬂf(")for n > 0, and which equals the identity ﬂij'(o). If Ext-exp(itA) is a
#-continuous unitary group di*, thenl“#(Ext-exp(itA)) is the group generated BY#(4), i.e., that expressed by
the formulal'*(Ext-exp(itA)) = Ext-exp(itd'*(A)).

Definition 9.1 We define the annihilation operator () onF,(H*) with domainF, by the formula

a=(f) =VN + 1b=(f). 9.1)

Operatora™(f) is called an annihilation operator because itsaachn + 1)-particle subspace into tmeparticle

subspace. For eaghandn in Fy, (VN + 1b=(f)y,n) = (¢, S*b*(F)VN + 1), then we get
(a(f)) M Fo=S*p*(f)VN + 1. (9.2)

The operatofa™(f)) is called a creation operator. Bath(f) and(a™(f))  #-closable; we denote their
#-closures bya™(f) and(a‘(f))* also. The equation (1) implies that the Segatifgeratod¥(f) onF, defined



by ®%(f) = % [a=(f) + (a=(f))"] is symmetric and essentially seka#joint. The mapping frori* to the self-

#-adjoint operators off,(H*) given byf — ®#(f) is called the Segal quantization o¥&f. Note that the Segal
guantization is a real linear map.

Theorem 9.1 Let H* be hyper infinite dimensional Hilbert space ovemplex field*C* = *R# + i*R¥ and®# (f)
the corresponding Segal quantization. Then:

(a) (self#-adjointness) for each € H* the operato(f) is essentially self+adjoint onF,, the finite and
hyperfinite particle vectors;

(b) (cyclicity of the vacuum) the vect@l, is in the domain of all hyperfinite produdist- [[~, ®#(f;),n € *N and
the sef{Ext- [, ®4(f) |f; € H*,n € *N} is #-total inF,(H*);

(c) (commutation relations) for eaghe F, andf, g € H:

[@E(H)@¥(g) — (P PEN]Y = iIm(f, g)y#¥; 9.1)
(c") (generalized commutation relations) assuming @fiag) ,+ = 0 andy € F is a near standard vector we get

[@F()PE(g) — PE(g)PE(]Y ~ 0 and thereforet([0F(f)PE(g) — PF(g)PE () = 0;
(d) LetW (f) denotes the external unitary operdigt-exp (i(I)é‘(f)) then

W(f + g) = |Ext-exp (= 1m(f, @) )| W ()W (9); (9.2')
(e) @#-continuity) if{fn};‘i1 is hyper infinite sequence such#gim,,_,«, f, = f in H* then:
1) #-1im,_, -, W(f, )y exists for allp € F,(H*) and#-1lim,,_,«,, W(£)p = W ()Y
2) #-lim, o PE(f) exists for alkp € Fy and#-lim,,_+, ¥ (£ = OE(F)y
(e) For every unitary operatoron H*, T*(U): D (#-®¥(f)) - D(#-®f(Uf)) and for alp € D(#-®Z(Uf)),
T*(U) (#-0F (N))T* 1 (U)Y = #-dEUS)y for all ¥ € F, andf € H*.
Proof Lety € HS#(”). Since®(f): F, - F,, we conclude thatp € C'® (¢§(f)). Further, it follows from
(9.1)-( 9.2), and the fact thdth~()|l4 = lIf]l4, that

@) |, < (Ext- T, PP+ DI 1,
wherea® (f) represents eithen™ (f) or (a~(f))". Therefore,
(O ll, < 252((m + )2 UFIE NIl

Since Ext-Z;‘:O thk2K2((n 4+ I))Y2|f 1% |l4 < *oo for all t,y is an#-analytic vector fod# (f). SinceF, is
#-dense irff,(H¥) and is left invariant byp#(f) is essentially sel#-adjoint on k by generalized Nelson's analytic
vector theorem, see Stheorem 6.5.

The proof of (b) is obviously.

To prove (c) we first compute thatjif € F;, then

a~(N(a () ¥ - (a=(9) a (fy=0

the identity (91') follows immediately. Although (2!) and (92') are formally equivalent, (9') by itself does not
imply (9.2") We sketch a proof of (®) which uses special properties of the vectog inety € HS#(”)

@A @i (™|, < 202 (Ext- TTE" o + DIFIENGIF Il



which implies that external hyper infinite series
Ext- Z:L°=°O,m=0 (llq)?(f)nq)?(g)mll)”#/n!# m!#)

#-converges for alt € *R¥. Sincey is an#-analytic vector fob#(g),
Ext- 2o (02 (g)™)/mi* ) = (Ext-exp (i04(9)) ) .
Further, for each € *N, is in the domain 0(#-%)” since any finite and external hyperfinite sum
Ext-Th o (08 (g)™ /m!* )y

with M € *N is in it and®# (f) [Ext- LN ((icbg(g)m)/m!#) w] #-converges adl — “oo. Thus the estimate
[Ext- Zn(io,m:o (llq)?(f)nq)g(g)mll)”#/n!# m!#)] ttm < *oo

shows that(Ext-exp (id)f(g)))lp is an#-analytic vector fob# (f) and therefor&xt-exp (itbf(f)) can be

computed by the external hyper infinite power serighus

<Ext-exp (id’? (f))) (Ext-exp (iCD? (9))) Y = Ext- Z;ﬁo_mzo (—¢§(f)n¢§(g)m) Y.

ni*mi#

Similarly one obtains

<Ext-exp (—glm(f, g)H#)> <Ext-exp (itCD?(f + g))) Y =

*o0 1

it m . #
= Ext-2n=0,m=0m[(—TIm(f,g)H#) itds(f + g)] Y,
where the hyper infinite series in RHS of the idtgnt-converges absolutely. Direct computations by ugtht)

now show that (2') holds by a term-by-term comparison of theonvergent external hyper infinite power series.
Remark 9.1 Henceforth we usab#(f) to denote thét-closure #-®%(f) of ®#(f).
Definition 9.2 For eachn > 0,m € *R g letH, = {p € "RE¥*|p - p = m?,p, > 0}, where
p = (p°, —pt, —p?% —p3), the setdd#, are called mass hyperboloids, are invariant undeonical Lorentz
grouf’L%.. Letj,, be the#t-homeomorphism o}, onto*R#3 given byj,,: (po, P1, P2, P3) = (P1, P2r P3) = P-
Define a#-measuré)?, onH} for any#-measurable sé& c H} by

O (E) = Ext- [, 2P 9.3)

m(E) JiplEem?

Theorem 9.2 Let u* be a polynomially bounde#-measure with support iV, . If u* is °L, = L' - invariant, there
exists a polynomially boundetimeasurg® on[0,.0*) and a constantso that for any’ € S*(*R#*)

f(v|p|2+m2.p1.pz,p3)d#3p>. (9.4)

Ext- [ f d*u* = cf (0) + Ext- [ d*p*(m) (Ext- Jogpe Jipam?

Definition 9.3 Let F(f) be a linea#-continuous functionaf: S &, CR**) - “R¥. FunctionalF isL',- ~ - invariant
if for any A € L', the following property hold® (f(Ax)) ~ F(f) for all f € S £, ("RE).



Theorem 9.3 Let u* be a polynomially boundeld, - invariant#-measure with support -V, . Let F(f) be a linear
#-continuous functionaf: S £, "R#*) - "R, defined byExt- Jogra f d*u* and there exists a polynomially
bounded¢-measure® on[0,00%) such thau_;f(;oo d*p*(m) € "R¥g, and a constante “R¥ g, so that (1) holds.
Then for anyf € S £, ("R#*) and for any € *R¥ ., the following property holds

N Yo w4 F(VIpZ+mZ p1,p; p3)d*p
F(f) = cf(0) + Ext- [~ d*p*(m) (Ext- flple T . (9.5)
Definition 9.4 Let y(», p) be a function such thayy (s, p) = 1 if |p| < x», y(»¢,p) = 0if |p| > ». Define a
#-measured, , onH} by
# _ i xCGep)d*3p
O (B) = Ext- [, o ek (9.6)

We use the Segal quantization to define the freenitian scalar field of mass. We taket* = L§( Hf, d*Q% ).
For eachf € Sf, ("R#*) we defineEf € H* by

E*f = 2n(Ext-f) I Hf,
where the Fourier transforfixt-f is given by (2.27) but is defined in this sectiorierms of the Lorentz invariant
inner producp - X:

1

Ext-f = F(Ext- f*nx’g‘* Ext-exp[i(p - J?)]d#“x).

If &%, () is the Segal quantization ovigi( Hf,d*Q% ), we define for eachR?- valuedf € S*(*R¥#*):
7 (f) = ©F,(E*f)

and for eachC{- valuedf € S*(*R%*) we defined’ . (f) = @}, . (Ref) + i®}, . (Imf).

Definition 9.5 The mapping - ®% ,.(f) is called the free non-Archimedean Hermitian scfiéd of massn.
Definition 9.6 On L% ( H#,d*Qf ,) we define the following unitary representatiortieé restricted Poincare
groupL'.: (U,,,(a, Ny)(p) = (Ext-exp[i(p - @)])(A~'p) where we are using to denote both an element of the
abstract restricted Lorentz group and the corredipgrelement in the standard representatiofiRh

Remark 9.2 Note that by Theorem 9.1(e) for all € F, andf € Li( H}, d* k) we get

T (U (a, D) (#-2F, . (N)T# 2 (Un (@, D) = T*(Up(a, A)) (#-PE(E*))T# (U (a, D)) =

#- 0 (U, (a, NE* .
A change of variables for afl € S£ (*R¥#*) gives that
Um(a; A)E#f ~ E#Um(a! A)f

Therefore for ally € Dgs < Fy such thafli|l, € “RE i) ||#-d>$n,{(f)¢||# € "R? .., and forR¥;;_-valued
in ’ ”

¢ fin ¢ fin
functionf such thaf € S (*R#*) we obtain that

T*(Up(a, ) (#-@F  (D)T*H(Un(a, M)y = #-&F, (Unp(a, V). 9.7)



Definition 9.7 The#-conjugation on a non-Archimedean Hilbert spHées an antilinea#-isometryC* so that the
following equality hold<#? = 1.

Definition 9.8 Let H* be a non-Archimedean Hilbert space over fi@lfl ®Z(-) the associated Segal quantization.
Let Hy = {f|C*f = f}. For eaclf € H z# we definep®(f) = OX(f) andr®(f) = OE(if), the mapf — ¢*(f)
is called the canonical free field over the douligt, C*) and the mayf — =#(f) is called the canonical conjugate

momentum.

Theorem 9.4 Let H* be a non-Archimedean Hilbert space over fi@fi with #-conjugationC*. Letp#(-) andm#(+)
be the corresponding canonical fields. Then:

(a) Foreaclf € H *c‘#,go#(f) is essentially self#-adjoint onF,.

(b) {<p#(f)|f €EH ﬁ#} is a commuting family of self-adjoint operators.

(c) Q is a#-cyclic vector for the familp* (f)|f € H f4}).

(d) If {fn};‘il is hyper infinite sequence suchtadim,,_+, f,, = fin H ﬁ#, then#-lim,_+ @"(f,)y exists for all
P € Fy and#-lim,,_-o, 9*(f)¥ = * (.

(€) #-lim,,_,+o, (Ext-explio*(f,)1y) = Ext-explip®(f)]y for ally € F(H®).

(f) Properties (a)-(e) hold with* (f) replaced byr* (f).

(@)1t f,ge HE  then

[* (N (9) — n* (@ (DY = i(f, 9) y# (97"

forally € F, and
(Ext-explig*(F)D (Ext-explin*()]) =

(Ext-exp[i(f, 9) y]) (Ext-explin® (F)]) (Ext-explip* ()]). &)

Proof (a)-(d) follow immediately from the correspondingperties ofb# () proven in Theorem 9.1. To see that
{o*(PIf € H {4} is a commuting family, notice that 29) implies

(Ext-explite® (f)]) (Ext-explisp*(9)]) =

(Ext-exp[—itsIm(f, g);#]) (Ext-expliso*(g)]) (Ext-exp[ite* ().

where we have used the fact thdt(-) is real linear. Iff, g € H i#, then it follows from polarization th&f, g),+ =

(C*f,C*g)yr = (g, f)y#,s0Im(f, g)y#+ = 0. Thus
(Ext-explitp* (f)]) (Ext-exp[isp*(g)]) = (Ext-exp[is@p*(g)]) (Ext-exp[ito* ()])

for all s, t € *R¥. Therefore, by Theorem 6.4.10, the operagdtéf) ande®(g) are commute. The proof of (f) is
similar to the proof of (a). The identity (8) and identity (8B') are follow immediately from (2!) and (92'), and

the fact that iff, g € H . thenIm(f, ig);# = Re(f, @)y = (f, ) y#-

Definition 9.9 We set nowd* = LE( H¥,d*Q% ) and we writef € LE( Hf,d*Qk ) asf (po, p) and define the
#-conjugationC* by C*(f) (po, ») = f(po, —p) . Note thatC* is well-defined orf € Li( H,d*Qf, ) since
(po,p) € H} if and only if(py, —p) € Hf,.

Definition 9.10 We denote the canonical fields correspondingltﬁ» = {H*,C*} by ¢* () andn® (-) and define

P (f) = 9" (E*f)



and

T (f) = 7% (WPE*f), u(p) = {p? + m?

for “R¥- valuedf € L(*R¥*), extending to all of L4 (*R#*) by linearity. In terms of~(f) (a~(g))"
omx () = 5{(a”(B*) +a (C*E* )},
i () = H{(a” W@E'N) - a~ (€ u®E" )},

The mapy - @i, (f) andf - n ,, (f) are complex linear angl, ,, (), .. (f) are self#-adjoint if and only
if Ef € H .

Because of the projectidhwe can extend the class of functions on wiiéh, (f) and 7};, ,, (f) are defined to
include distributions of the fordi® (t — to)g (x4, x2, x3) Where g € S*(*R#3). In particular, ift, = 0, g is *R#-
valued, andExt-§ is the Fourier transform is defined by (2.27)s86*R#3), then

(C#E#(Ext-S/#\g)) (po, —p) = (2my)"Y2Ext-g(—p) = (2my)"V?(Ext-G(—p)) = E*(Ext-5%g).

ThusE (6% g) andu(p)E(6%g) are inH }4. Thereforepf . (6% g) andn, ., (6% g) are self#-adjoint if

g € S*(C’RE?) is "RE- valued. For obvious reasons, the maps ¢/ ., (6%g) andg - =}, ,, (6% g) are called the
non-Archimedean time-zero fields. From now on wi evily use test functions of the foréy in ¢}, (-) and
i, () and writep) ,, (9) andr}, ,, (9) if g € S*("R%®) instead ofpf , (6%g) andnf, (6%g).

If £ andg are*R¥- valued functions is#*(*R#3), then (97') implies that fonp € F,,

[Pl P b @] = 1 (Ext- [ (B3t @) (Ext-0)) @b Ot ). (@)

For convenience we now transfer the fields we fawestructed from the Fock spaBgH*) built up from H* =
L8( Hf, d*Qk ) to the Fock space built up fralf = L4(*R¥?). For notational simplicity, we define fgre
L ( H, d*af,)

a'(f) = (a~(N)" and a(f) = a~(C*/).

First notice that each functigi(p) € L§( Hf, d*Qf,,,) is in a natural way a functigf(p) = f(u(p), p) on"RE3.
For eachf € L{( Hf, d*Qf ), we define

UNm® = f (@), p)/y up).

Notice thay is a unitary map ofL%( H, d*Qf ) ontoL§ ("RE3, x(», p)d**p) sol'*(J) is a unitary map of
F, ( LY( HE, d#Q,’;’,{)) ontoF, (Lg(*Rﬁ3,X(z, p)d#3p)). The annihilation and creation operators on
F, (Lg(*R§3,)((K, p)d#3p)), a(),at(), are related ta(-) anda’(-) by the formulas

(L@ _ p# #o\y-1 ~+<f(p) _r# + #e\-1
a(£2) = r*@ar* () andat (L) = r* (et (OI*0)
We use the unitary mdpf (J) to carry the Wightman fields over t6 (L§(*IR§’§3,X(;{, p)d’“p)) by defining:



0) for "R ,-valuedf € S§ ("RE)

~ p— “1_ 1 (s E'r ~t (_E'f

(D) = ' DA = fa (¢ £5) + at (£5)]
(ii) for "R ,-valuedf € Si ("RE)

~ _ -1 _ A [~ zuE*(ro") ~+ (E*(r5%)

Tl () = T Db (OI D = fa (€ 5L+ at (S

whereC* = JC#*]~* acts by(C*g)(p) = g(—p). Having established this correspondence, we now the ~ and

the bold face letters; from now on we will only tedth the fields onF, (L§(*R§3,)((x, p)d“p)) and three-

dimensional momenta. Further, we recall that tisériction of the four-dimensional Fourier transfotimat we have
been using in this section to functions of the fdrfixy) g(x1, x2, x5) the usual three-dimensional Fourier
transform. Notice thaff = Ext-h,h = C*(Ext-f) soC*(Ext-f) = Ext-f if and only iff is *R#-valued. Foif and
g *Rf-valued, (9') becomes

[0fse ()l (@] = i (Ext- | (Ext-F (@) (Ext-g(p))a**p). (20')

Assume now thaf, g € S#, and|ly |y € *R¥ g, then (910") becomes

[@hhe () s (@] ~ i (Ext- [ F(0)9(2)d" x) . @)

Notice that (911")) is the space form of the canonical commutat@ations (CCR). As a final topic before turning
to interacting fields we will show how the struesrdeveloped above are related to the "fields™andihilation
and creation operators" introduced in physicsdiige. We let now

Dgs = {wlw € Fo,p™ € sk, CREM)

and for eaclp € *R#3 we define the operatar(p) onF, (L*Z*(*Rﬁ3)) with domainDgs by (a@)Y)®™ =+Vn+1
Y™+ (p, k,, ... k,,) and therefore the formé&tadjoint of the operatar(p) reads(a’ (p)y)™ = \%Z?ﬂ §®(p -
kY™ D(ky, .., k;_1, k141, ..., k). Note that the formulas

a(g) = Ext- [.gss a(p)g(—p)d*™p, (9.8)
a'(g) = Ext- [gwa a’(0)g(p)d*p (9.9)

hold for allg € S, ("R#3) if the equalities (9.8)-(9.9) are understoodhi@ $ense of quadratic formEhat is, (9.8)
means that fop,,y, € Dgs : W1, a(@),) = Ext- [.4:(1, a(p)p,) g(—p)d**p and similarly (9.9) means that

for y.,%; € Dgx = (Y, at(@)y,) = Ext- [ s (1, at (p)p;) g(p)d**p. The particles number operator reads
No, = Ext- [ _ a'()a(p)d*p. (9.10)
The generator of time translations in the freeasci@ld theory of masau is given by

Hoy = Ext- [ u(@)a’ (p)a(p) d*p. (9.11)



We express the free scalar field and the time felds in terms ot (p) anda(p) as quadratic forms orDS;g X

D by

Sti
(Dg,m,x (x,t) =

(2m)=32Ext- [, {(Ext-exp(u(p)t — ipx))a’ (p) + (Ext-exp(u(@)t + ipx))a (p)} /—223;) ’

(Dg,m,x (x ) =

d#3p

@) 2Ext- fi, . A (Ext-exp(=ipx))a’ (P) + (Ext-exp(ipx))a ()} s

T[g,m,x x) =

(2m)3/2Ext- flplsu{(Ext-exp(—ipx))a*(p) + (Ext-exp(ipx))a (p)} /—Z:)p/z .

(9.14)

(9.12)

(9.13)

Abbreviation 9.1 We shall write for the sake of brevity through thaperdf ,, (x, t), ®§, (x) andmf , (x) instead

of . (x,0), Pf . (x) andmf . . (x) correspondingly.

Theorem 95 Letn,,n, € N and suppose thé (ky, ... ky,, Py, ..., Pn,) € L (*RZ‘““”"Z)) where

W (ky, oK,y D1y o) Dy, ) iS @°CHg, -valued function ofiRY*™+*"2) Then there is a unique operafyr on
F, (L*Z‘(*Rﬁ3)) sothatDgs < D(Ty) is a#- core forTy, .

(1) As*C#-valued quadratic forms dmsén X Dsgn

TW=

Ext- f*R3(n1+nz) W(kl, wkn 1 ,pnz) (Ext- 12, at (ki))(Ext- 12, a(pi))d#3”1 kd*3"2p. (9.15)

(2) As*C¥-valued quadratic forms dmsén X Dsgn

Ty, =

Ext- [.psnying W(Kas oo Knys Das ooes Py ) (Ext-T172, af (k) (Ext-TT}2, a(py))d*™kd*3m2p.
(3) If m; andm, are nonnegative integers so thgt+ m, = n; + n,, then
11+ N® /2T (14 N2 < CCmy,m) W s
(4) On vectors inF, the operatordy, and Ty, are given by the explicit formulas

(T ) =

(9.16)

(9.17)

K(l, nl,n2)§[Ext- flplls;f .. Ext- fpn2|SKW(k1, wikn 1y s Pry) WO (Prs oo Dy gy o i, )d#372 p], (9.18)

(Ty Y)*=0ifn < ny —ny,



(T ) mtme =

K(l,nz,n1)§[Ext-flk1|SK Ext-fknlls}{W(kl, wikny D1y s Pry) WO (D1 ooy Dy Ky o K )dH3™ k] (9.19)
(Ty ()" = 0if and only if n < n, — n,. HereS is the symmetrization operator.

(5) W, -, WinL% (*R§3(”1+"2)) thenTy,, —~4 Ty, strongly on domaid .
Proof For vectorgp in DS# , we definel, () by the formula (9.18). By the Schwarz inequalityl ahe fact tha$
is a projection we obtain

- 2
(T ) 2™ 1 < K ny, n) || @[ IW I (9.20)

If we now define an operat@y, 1, on domairDS# by using the formula (9.19) then for all Y € Ds;f we obtain
that(ep, Ty, ) = (Tyy @, ). Thus, Ty, is #-closable andy;, is the restriction of the adjoint df,, on domairDS# .
From now on we will us&,, to denote#- T, andT;;, to denote theé#-adjoint of the operatdf,,. By the definition of

the operatofy,, DS# is a#-core and further, sincg,, is bounded on thkparticle vectors inDS# , we have
n n

Fy, c D( Ty,). Since the right-hand side of (9.18) is also baghdn thd-particle vectors, (9.18) represeffis on
all I-particle vectors. The proofs of the statement@)raboutly, are the samd.o prove (3), let) € DS?_ .Then by

the canonical computation we obtain

l-ny+nq

[[(cx+ Ny, (14 N#ymr2)

2
2
e[ T o

(1+l-ny+nq) 2 (1+1) 2

And therefore finally we get

- 2
(@ + Nyl (14 N2 T < CCma m) Wl
HereC(m,,m,) = sup;e+y < K(l'nlﬁf) m2> < *oo sincem, + m, = n; + n,. In all the sup's only so that
(1+l-nz+nq) 2 (1+1) 2

[ —n, +ny > 0 occur since the other terms are annihilated byathien ofT,,. Thus,(1 + N#)=™/2T,,(1 +
N#)~m2/2 extends to a bounded operatorfotH*) with #-norm less than or equal & m,,m,). If m; = n, and
m, = ny, thenC(m,,m,) = 1.
In order to prove (5) one needs only note that # (0, ...,0,9?,0,...) € Dgs and Wy, =, W in
mn
14 ("RE™D), then||Ty,, = T ||, = ITwu-wll, < K@y n)IW, = Willlplly = 8, where #-1im, e, 6, =
0. SinceDS# consists of finite and hyperfinite linear combinat of such vectors, we have shown tiig{
n
#-converges strongly on domaﬂ)}# to operatofTy, if W, », W in L% (*IR{’;“”“"Z)).
mn
In order to prove (1) lapy, 1, € Dg# wherey, = (0,...,0,p 24,0, ) andy, = (0,...,0,9®,0,...). Then,
if W = (Ext-TI;2, f(k)))(Ext-T1;2, g(py)) by the canonical definition of the foriExt- [1;2, at(k;)) x
(Ext-T1:2, a(p,)) one obtains

(W1 Twa) = Ext- [ sinssng W (Kpy o Ky Py s Py) X 19)

W1, (Ext-TI12, a’ (k) (Ext- T2, a(p) )iz )d* "1 kd* " 2p.



Since both sides of (9.21) are linea#lin the relationship continues to hold for the altlsi/ that are finite or
hyperfinite linear combinations of such produciscg

Wy, (Ext-TTE, @ (k) (Bxe- 12, a(p) ) € L ("RE™+2)

and since statement (5) holds, both the right-tsashels and left-hand sides of (9.21) #ireontinuous linear
functionals on.% (*Rf3("1+"2)). Since they agree ontiadense set, they agree everywhere. Finally, (9.2€nes
by linearity to all ostg X DS# . This proves (1); the proof of (2) is similar.

Now we go to estimate monomials in creation andralation operators in terms of the operatts defined by

Nf, = Ext- [

|k|<x

at(k)a (k) u(k)*d*3k . (9.22)

For first estimate we consider the following bilméorm, where the kernel(k, p) is #-measurable anjv(k, p)|
is symmetric.

Ext- flplsx Ext- flklsx at(B)wk,p)a (p)d*3k d*3p (9.23)
Note that forr > 1
Nf, < H§, and Nf% < HES,. (9.24)

We introduce now thé&-normsM, ,,(7) andM,, () on the kerneiv(k, p), which may be finite or hyperfinite
My, () = (suppeen () ™) (Ext- [ (1w, p)I}d*3p*?), (925

My (r) = (supigeet(6) %) (Ext- | {Iw(l, p)lu(p)™} d¥p). (9.26)

Proposition 9.1 Assume thator somer, M, ,,(t) < *oo, thenW is a bilinear form on the domain
D(N?) x D(NJY?), andN) *wN]; /% is a bounded operator on Fock spéewith

NG PWNE2 < My (D). (9.27)

Note that: (a) the operat *’_:1/2 is defined on the orthogonal complement of thegauicle vector. Sinc#/ equals

#-1/2

zero on the no particle vector, we defitiV;,,*/“ to be zero on the no particle vector; (b) & 1, then from (9.22)

follows that N,ff;T/ZWfo;T/Z is a bounded operator withnorm less thai, , (7).
Proof Since the bilinear forri/ commutes with the projection onto vectors withatlan particles, it is sufficient

to prove that fon particle vectors, it is sufficient to prove that f particle vectorg) € D(N:f;/z), the following
inequality of forms holds

[, Wip)| < My, () [, N (9.28)
By definition one obtains
(Y, Wy)=n (Ext- Jip1x EXt- flklsxlﬂ(p, Ky, ok YW@, O¥(q, Ky, o ky )d*3k d*3p d#3q).

By using the generalized Schwarz inequality iandg, we obtain



I, W)l < n (Ext- [ Ext- ||

Iplsx

Ext- [ _ W, k)w(p, )| d¥k d¥p d*q)

qlsx

and by (9.25) finally we get

[, Wip)| < nMy, (2) (Ext- f, _ Ext- [ 192 (o, k)| n(p)*d*p d*3k).

The existence of a bounded operator satisfyingrjat#en follows by the generalized Riesz represiemtaheorem.
Theorem 9.7 (Generalized Riesz Representation Theoreffi)i$fa bounded linear functional on a non-
Archimedean Hilbert spadé then there exists songee H such that for every vectgre H we have thal'(f) =

(frgdandil T lly =11 gl

Proposition 9.2 Assume thator somer, M, ,,(t) andM, ,(7) are finite or hyperfinite, theW determines an
operator orD(N/,) such that the operaté Nj;* is bounded with

I WNE 14< [My () + My, (D] < M3, (0). (9.29)

Note that sincéw(p, q)| is symmetricN/ ;W is also bounded with #norm less thaM;, (7). If T = 1, WN/ ™
is bounded with &-norm less tha; ,, (7).
Proof As in Proposition 9.1, it is sufficient to proveattforn particle vectorg) € D(N{.‘f;,)

I W lly < My, (2) I| NEa llg. (9.30)
We define now the quantity
Gl = Ext-f,, A%k, . Ext- [\ d*k, X 39)
{Ext-flpjlﬂd“pjv_v( D)Wk, ka0 kjrs ok ) X
Ext- [ A" pw (e, pOP(ky, o kioy P e, k)

Note thatl Wy Il 2= Ext-Y}, ¢y and forj = | = 1, andk = (q,k,, ...k, )d*?, we get

2
¢fy = Ext- [, d®k Ext- [ d®q(|f _ d"pw(qpp@ b)) <

2
Ext- [, d®kExt-[__ d*q ( [ e AP IW(a, )PP, k)|) . (9.32)
By the generalized Schwarz inequality we get
Cfy < Ext- [ d"k [Ext- [ d*3q(Ext-[ _ 1w(q.p)ld*®p (Ext- [ _ W@, kow(r, )ld®r))|. (9.33)
From (9.33) by (9.25) we get
Cfy < My, (D) [Ext- [ d®k [Ext- [ d®q (Ext- [ d®ru@) 7y ¢ lowa, )] (9.34)

From (9.34) by (9.26) we get

Gl < My, (DM, (0) [Ext- f _ d"k [Ext- [ d*pu(@)* 1 (p, k)12



We estimate no@-ﬁ for j # . Suppressing all but the essential variakleg; , k;, andp, we get

|Cfi| < Ext- Jij1ee @7 Ky % (9.3

{Ext-f d*k, IExt-f d*p; (Ext'f d#3pz> lw(ky, p)w (pj, ki) w e, pOY (Pl'kj)|”
[yl |pj|<x [p1l=<s
By the generalized Schwarz inequalitypinand (9.25 we get

(G| < My (@ {Ext f, |, d by [ Bxt- o, 4% Kinte) 2]} (9.36)

kilsx

1/2 1/2
(Ext-f|p1.|s,,|vv(k,-,pj)¢2 (o k)l d* p;) " (Ext- f,, _ Jwle, p)w? (po k) |d* py)

By the generalized Schwarz inequalitykifirom (9.36) we get
|Cfi| < My, () {Ext- S @ K [Ext- f e @ ( o @™ piulezlw(l,p w2 (o k)] 937
From (9.37) by (9.25) we get
|chi| < M2, () [Ext- S @72 let (Ext- [ by (o)1 (o3 k)]
Finally by (9.35)-(9.37) we obtain
I WY I < My [My, + M, b, NEZAD),

And therefore (9.30) is proved.

We now let

W = Ext- flpllszf d*p,...Ext- prSISK d*® ps x .39)

[Ext- iy @ ke e Extf d® prat(ky) = al (kp)w(ky, ooy ki Py, s ) a (1) - a(ps) ]
Herew(ky, ..., k,; py, --., 0s) IS a#-measurable kernel. Let< r, and define; (kq, ..., k) by
Ec(ky, oo ko) = (k) - p(ky). (9-39)
Let B < s and defingZ,(p,, ..., pp) by

Ey(p1, . pp) = u(p1) = u(pp). (9.40)

Let M, , () be

w(ky,...kq;D1,-Dg)
2
Ec(ky k) /2E A(p1,pp)”!

My, (1) = (9.41)

#op



| w(kl, e Kas D1y e 'pB)
|Ec(k1'--- k)"2Ex (P, - Pp)

/2

where |[v(ky, ..., ka; Dy, ...,p5)||#0p denotes the operatérnorm of the kerneb(ky, ..., kq; Py, ..., pg) as an integral

operator fromL5 ("R*) to L5 ("RE"). The#-norm||-|l4,, Op is dominated by the generalized Hubert Schmidt
#-norm ||| 4.
Proposition 9.3 Assume thad,, (7) is finite or hyperfinite for some, £ as above and for somgthenW is a

bilinear form oD (N2> N1%/*) x D(NSE/*N1/?), wherea + & = 7,8+ e = 5. Also
W, = N2 OPNE O PwNg Pl e (9.42)
is a bounded operator and
| Wy, < M, (7). (9.43)

Proof Let Q,1) be vectors with a finite or hyperfinite numberpairticles and wave functions in Schwartz spgike
ThenifAc(k) = a(ky) - a(k,) andA,(p) = a(p,) = a(ps),

(Q, Wip) = Ext- [

Iplsx

dBp|Ext- [, dPKAQw(k,p)A@)P)].
By the generalized Schwarz inequality we get
2
0 wyl? < (Bxt- [ d"p [Ext- [, dPKIA(OQl, - wlp)l - 1A G)Yl]) < (9.44)
M2, (T) {Ext )

1o @7 [Ext- [ dPKEE (OIACGOQI - EX() - 142 (p)wli3]} <

M42»,}t (_[) ”N#a/z #S/ZQ” ”N#B/Z #a/le”

The last inequality (9.44) is proved as follows

Ext- [, A"KEZ (OIIAc (Ol =
Ext-Z o Ext- flk | d*3k, ... Ext- f|k1|5x AP kner (M + 1) = (0 + P)plky)" = p(k)T| Q™ (ky, oo, k)| <
2
Ext-Z o Ext- flk |<Hd#3k1 .Ext- flk e d*kpyr (Ext- Z"*ru(k) ) (n+ )| (ky, o, k)| =

|NFe/2n #S/ZQ” , since| QM (ky, ..., kyyp)|” is symmetric and the product

)
(Ext-X747 u(ky) )a X (Ext- Z}”{u(kj)o) when expanded, haxt- [T}_,(n + ) terms with all variables distinct.

The existence of the bounded operator W now follbwthe generalized Riesz representation theoreen, s
Theorem 9.7.
Proposition 9.4 Assume thatr < r, § < s and for some, ¢

_ w(k,p)
Ms (7, 0) = ||Ec(a,r)EA(,B,cr)

< *oo. (9.45)

#op



Thenw isabilinear form orD(N/2/*N%%/?) x D(NE/*N /%), for anys,e suchthatt + B + 6 + & = r +
s. Furthermore

Wy = (1 + NDPNLPWNG 21+ N2 (9.46)
is a bounded operator with#fanorm such that
| W, 14< cMs,, (D). (9.47)

Where ¢ € *R¥ is constant.
Proof Similarly as proof tgroposition 9.3 above.

The energy-momentum density tenggy, (x, t) for theA(¢,), theory with hyperfinite momentum cutoffis a
bilinear form on non-Archimedean Fock spaG€d*) . The energy momentum vectr,, u = 1,2,3 is formally
related tdly, . (x, t) by the following formula

B = Ext- [Lons Topse(x, ) d*3x, 0 = 0,1,2,3. (9.48)
The generatoraf$* of pure Lorentz transformations is formally rethte Ty (x, t) by the following formula
MR* = Ext- [._#s Too (%, 0) x*d*x, k = 1,2,3. (9.49)

The expression for the operafy, ., (x, 0) is a Wick ordered polynomial in the time zero aainal fieldse,

andm,. In this case the Hamiltonidh = P,,, defined by (9.48) is a bilinear form on Fock sp&g@’*). In this
section we show that for ti€¢;), theory the integration in (9.48) can be restridted bounded domain to yield a
local energy or momentum operator on Fock sgfatg#). The local version of (9.49) can be handled siryilat

is customary to write the operafy, ,.(x, 0) as the sum of a free field part and an interagtian. Explicitly, we
write the energy density as

To0,¢(x,0) = T (%) + Ty, (). (9.50)
Here
Tose () = Ho () = 21 (1300 + (V)" + m202(0)) (9.51)
Ty () = AG @300 )s (9.52)

For the momentum density vect®y,, u = 1,2,3 we set

Bupe(x) = Topu(x,0) = (nu(x) i Px(X) + 55— %(x)n”(x)> (9.53)
In order to avoid problems caused by sharp spatiahdaries, we consider
T,(g) = Ext- f*IR*f T,(x)g(x) d*x = To,x(g) + Tl,n(g)' (9.54)

Puse(9) = Ext- [.gus Bupe(x)g(x) d"x,p = 1,2,3. (9.55)
Remark 9.3 Hereg(x) is a*R¥- valued function irs# (*R#%) i.e.,g(x) is rapidly#-decreasing.
For the local free field energy we $&t,(g) = T;,,(9) + T, (9), where



1 _ #3 431, Al 11 L2 L2 13 33 | Rk uks)+H(ky kp)+m?
Ti(9) = ciBxt- [ | d¥ kaExt- [ ¥ kog(kd — kb, kF — I, k3 kz){ b } (9.56)

aT(k1)a(k2);

A —u(k ko) +(kq,kz)+m?
T(9) = CoExt- [ L, AP RyBxt- [, d" oGk — Kb — K3, I — k) [Pttt (g 57)
x {a®(k)at(=k;) + a(—ky)a(k,)}.

Herek, = (ki, ki, k), ky = (k3, k3, k3), (ky, kz) = Xy ki k5, G(p) = Ext- [ s (Ext-[i(p, x)]) g (x) d®x.
Similarly, for the components of the local momentwmsetp, ,, (g) = Pﬁf) (g9) + P#(",? (9),u = 1,2,3 where

Pk (@) = ciBxt- [\ d* ks Ext- [ d* kg — ki, kE — I3,k — k3) x (9.58)

ky|<x

(kf)ll(kz)"'(kg)ﬂ(h)} +
Yol tU )m)l ot (k) a(k,),
x{ Tatoriy )@ tealks)

P2 (9) = coExt- [ | A" kyExt- [\ d* kog(kl — k3, ke — k3, I — k3) x (9.59)

(404 )utk)
x (Ll Lol it (kyat (—ke) + a(—ko)atky))

Theorem 9.8 The bilinear formd,,,(g) andp,,,(g) define symmetric operators m(H(’fﬂ). The following
operators are all bounded

Tow (@) (HE + 1) Piu(g) (H +1) " u =123, (9.60)
(HE,+ 1) 2Ty (@) (HE + 1), (9.61)
(Hy+ D) R (HE + 1) =123, (9.62)
T (PNE, + 1), andB2 ()N + 1) = 1,23, (9.63)

Proposition 9.5 The kernel ofofx(g) and the kernels d?,(f,),(g),u = 1,2,3 areL} functions even without

hyperfinite momentum cut-offk,| < x, |k;| < x.
Proof First notice that

ulleplhy) = ey, bey) = 2 (ey = kp)? = > [u(key) — u(k)]? +m? < 2 (g — kp)? +m?, 50 the
following inequality holds

uk)p(ky) — (ky, ky) < clu(k; — kz)]z- (9.64)

Using now the inequality (9.64) we can estimatekiérmel of the operatdi;,, (g) in (9.57) by

2
pehey) (k) +(key Ko )+m } < (9.65)

vl u(kz)

const| (it — I}, K = 13, — k) |

const|g(ki — k3, kf — k3, kf — k)| [nlhey — k)17 (ko)) 712,



Note that (9.65) is squakeintegrable sincg € S (*R#?) i.e.,§ is rapidly#-decreasing. Similarly, we bound the
kernel ofPZ,(g), u = 1,2,3 by using the following inequalities:

| (ks )uky) — (k5 )ulky)| < 2ulk)u(k,) < 2[uk; — k;)]* , whereki'ky <0, (9.66)
|(kiYulky) — (k) uky)| < ulkdplky) — kKb, wherekd kb > 0. (9.67)

The inequality (9.66) is clear, while froftk! )u(k,)| < u(k)u(k,) and| (k4 )u(ky)| = |k¥kk| one obtains (9.67)
when|(ki )u(ky)| > (k5 )uky)|, and by symmetry it is valid in general case. Thy$9.64) and (9.66)-(9.66), we
get

| (k4 ) Cky) — (k5 )uky)| < const[u(k, — ky)]?. (9.68)

Therefore the kernels o‘l’ﬂ":},(g) in (9.59) are bounded above by the functions

u 2
G(kl — k1'k2 _ kz,k3 — k3 {(k1)ﬂ(k2)_(k2 )H(kl)} <
g (ky 2,1 2,1 2) T oty

const

const|g(ef — k3, kf — k3, kf — kD) [ulley — ko)1 [u(ky)u(k;)1 2.

These functions are squatdntegrable.

Proposition 9.6 The kernellj,,(g) and the kernels d§},.(9), u = 1,2,3 have finiteM, , () and finiteM, ,, (1)
T > 1 defined above in (9.25)-(9.26).

Proof Both the kernel of,,(g) and the kernels df},(g), 4 = 1,2,3 are dominated by the function

const|g(kt — kb, k? — K3,k — k)| [uCe ) Cher)] 2.
Therefore
My, (1) < constsupygs [0O] ™ (Ext- [l g0 = pL, k2 = 2,k = p)I[uCk u(p) 2" p).
Since [u(p)]% < [u(k)H)u(k — p)]% and sincgj € Si, ("R#3) i.e., § is rapidly#-decreasing, one obtains
My, (1) < constsup,c.gss (Ext- f*Rﬁglg(kl —pL k%2 —p% k3 —pd)|[utk—p )]%d#3 p) < const. (9.69)
Similarly, M, ,,(7) is finite fort > 1. This completes the proof of the proposition 9.6 tmedproof of Theorem 9.8.

Definition 9.11 We define now a specified hyperfinite momentumaftioperatorT, ,, . and we establish properties
of T, that will be useful later. We assume that

g(x) = h?(x),h(x) = 0,h € SE ("R¥3) (9.70)
And we use the specified cut-off function

G (ki ky) =c (Ext-f

Ip sk

h(p — kh(p — k2)d*p) (9.71)
c € "REg,. Fork < oo, G (ky, k) € S§ ("RE®), and

G*Oo(kll k2) = g(kl - kz), (9.72)



*

for k= *o0, *oo

Definition 9.12 We define now the operators
To 0,k (9) = zo,x,x 9) ’10,14,;( 9) (9.73)

using replacingg(k, — k,) in the kernels ofl‘o(_Q (g9), i =1,2 defined above in (9.56)-( (9.57) 6y(k,, k). If

K = oo, then the operatorfsfz_x(g),i = 1,2 withk < *o haveL§ kernels and s, (g) is essentially self
#-adjoint onD(Héf;,) since vectors with finite or hyperfinite numbémparticles aregt-analytic vectors. We note
that Ty, 0 (9) = Ty (g) and we set now

To,u(g) = To,x,x(g) + 5T0,x,rc(g) (9.74)

Defining 67, ,,(g) and similarly we definéTo(IQ(g), i=12.
Theorem 9.9. 1) The bounded operators

1/2

STL (1 +HE)™ and (1 + He,) 7 *6TD () (1 + HE,)” (9.75)
#-converge strongly to zero as- *o.
2) The kernel oﬁT(f'QK(g) hasLf #-norm that is0 (k%) for all e < 1/2. Thus
||5T(§2K(g)(1 + No,},)'1||# <0(K™%), e < 1/2. (9.76)
3) Ask — "o
(1 + 1) 7 6T (D1 + HE) ™|, < 00, \ 9.77)

Proof 1) Note that the kernel oL (g) has bounded-norms (9.25)-(9.26) for = 1, and these bounds are

0,,Kk
uniform forx < *co. Thus the operators (9.75) are uniformly boundedl, it is sufficient to prové-convergence on

a total set of vectors, namely vectorﬂ(ﬂ(’{K) with exactlyn particles. It is sufficient to prove the strong
#-convergence o872, (g) on this domain. Fap € D(H{,,) asn € *N particle vector irD(H,,) we obtain

o
(672 )y, o k)| =
Ext-S)_, Ext- [, d*pExt-f__ d*qh(p — k) h(p — @) % x (9.78)
X P(ker, o ki1, @ s de)|* <
2
< const{Ext- S1 Ext- [ d¥pExe- [ d%q|R(p — k)AG — )| Ju(l (@ [0 (ke o by 1,0, ...,kn)|} |

The right side of (9.78) is monotonically decregsiisk — *oo, since



consty'u(q) < \ulp — Il — O ulk)
and sincéh is #-rapidly decreasing, i.eh, € Sf ("R#3)
w(k,q) = Ext- [,p4s 4" p|a(p — ORGP — @[V 1(@)

is a kernel with finite#-norms (9.25)-(9.26) for = 1. But the right side of (9.78) has the fo(i#f ||)?, where
operatoiV is given by

W = Ext- [

|p1l>x

d® p,...Ext- [

sl d*? pg x 19)
[Ext'f|k1|su d*k, ...Ext- flkrlﬁ}f d® piat(ky) - at(kIw(ky, o, kp; pry o Do) (1) = a(ps) ],

herew(ky, ..., ky; Py, ..., ps) is a#-measurable kernel argh| € D(HE,,) sincey € D(HE,,). Hence by Proposition
9.2, the functio || € L§ so that (9.78) is uniformly bounded by Ehfunction. By the generalized dominated
convergence theorem, the integral in RHS of (9t@Bjls to zero as —» *co, which completes the proof of strong
#-convergence.

2) Note that the kernel @, .(g) is bounded above by

w(k,p) = constu?(k = p)[(K)p()]/2Ext- [ [hlq — K)h(q — p)|d**q. (9.80)
By (9.67) we obtain

[u(k)]™® < const[u(p)]~*[u(k — p)]®,

[uCk = p)I** < const[u(q — kK)1***[u(q — p)I**2, 9.81)

[#(k)]_%ﬁ = const[y(q)]‘%*e[u(q — k)]‘%*f,

From (9.80) and (9.81) we obtain
Iw(k, p)| < constlu(k — p)] ™ [u(p)] 2 x (9.82)
x {Ext-f,. |h(q = K)h(q = p)]luCq — ] 2[u(q - PP *[u(@)] 2d* g} <
< const[u(k)] = [l — ) ()] 27 x

x {Ext- [ k(q — k(g p)|[u(q — )2 ulq - pI*d*q),

From (9.82) by using the generalizef Schwarz inétyia g and the rapid decrease/ofo bound the integral over
q by a constant we get

Wk, p)| < const (1x]73*7) (uCk = )] [w()] 5 (9.83)

1
Note that RHS of (9.83) for arey> 0 obviously inL% and has ah¥ #-norm that isD (|k|'5+8) for anye > 0. This
proves statement (2) of the theorem.
3) The proof of this estimate is carried out byreates on the kernels 6?&12 (9) andSTo(fB (g). The estimate on



the kernel oféTo(fB (g) is similar to the above. Now we estimate the#-norm ofw (k, p) [u(k)]'%[u(p)]'% for the

3
functionw(k, p) of (9.80). We then get ai§ #-norm that isD (lkl'?g), and by Proposition 9.3 in the case- 2,
B = 0,7 =1 for the creation part ar= 0, = 2,7t = 1 for the annihilation part we obtain

|1+ 18, 6T ) +HE) | <0 (Il %), (9.84)

The estimate on the kernel&f(fi) (g) will be made with theét-norm (9.25). We find that, ,,(t = 2)~0(|k|™) ,
so that by Proposition 9.3 following it

(|1 5 To (D HEM, < 0l ™). (9.85)
We now prove this estimate on the kerne&ﬁ(ﬂt) (g)- The kernel oﬁTo(,Jl{) (g) is dominated by the function
Wss (k,p) = [GOu(@TV?Ext- [, |h(p — OR(p — @)|d*p.
Note that

Ext- [ ws, (k,p)d*q <

const? (DExt- [ |h(p — K)A(p — |[u(p — ()] d*p d*3q <

Ip|>n

const{u()] " w (R Ext- [, |h(p — )R — )|[ulp - Tl — ) 1d*p d*q.
By the generalized Schwarz inequality we get
Ext- [ ws, (k,p)d*q < const[u(k)] ™ 2 (k).
Thus finally we obtain the inequality
sup,[u? () Ext- [ ws, (k, p)d®q] < 0(|x|™)

which completes the proof of (9.85) and the prdahe theorem.
Definition 9.13 It is convenient to writ&,, (g) andéT,,,(g) in another form. We define the following operators

with L% kernels on the domaib(H{,,)

Bi(p) = s {Bxt- [, A0 — O [u(OTrat)d i), (9986
Ba(p) = o {Ext-f, L, A — DIKI(O] Fa(k)d" k), (9.87)
Ba(p) = s {Ext- f, L A — Kymlu(0)] Za(k)d* k), (9.88)

Then forg = h? , andx < o0, on the domaiD(H§,,) we get

T (9) = 3Ext-f Y3, B (0)Bi(p)d*p, (9.89)



875 (9) = S Ext- ., Tiy Bf (D)Bi()d"p. (9.90)
Definition 9.14 We also define now following operatads(p), i = 1,2,3 on the domaiﬁ)(N&f) by

A(p) = 3 {B,(p) + B; (-p)}. (9.92)

Remark 9.4 Note that
[4: (), A ()ID(No,,.) = 0. (9.92)
The operatord; (p), i = 1,2,3 are related to the operathy,,(g) without Wick ordering.
Definition 9.15 For» < oo we define
Ton(9) = Zisy [Ext- [ o, A7 (0 A:(p)d"*p] = 0. 99)
Direct calculation shows that

To,x(g) = To,x(g) —{Qy, 7Awo,;:(g)ﬂo>- (9.94)

Here(), is the no-particle vector. Since
(Q0, To,e(9)Q0) = Ext- [ s Ge(p, PIu(p)d*p. (9.95)
HereG, (k,, k) is defined in (9.71), we have far< *o thatT,,(g) is bounded from below and

Tox(9) + Ext- [ G, (p,p) u(p)d*p = 0. (9.96)

Theorem 9.10 Let¢ > 0 andg, g, be positive as mentioned above in (9.70). Therettsea finite constarit such
that onD(H{,.) x D(HE,)

5T (g) 2 0, forall 0<x < w (9.97)
eNg, + To(g) +b =0, (9.98)

eNy, +T;,(9) +b =0, (9.99)
eNg, + To(g) + T, (g) + b = 0. 9.100)

The inequalities (9.97)-(9.100) are also valid witf), in place ofN,,.
Proof The positivity odeo(j) (g) is a consequence of the representation (9.89xder to prove (9.98) we let

eNo + To(g) = eNo,, + 6T () + 6T (9) + T (9)-

Since TO(}) (g) is positive by (9.97) anﬁo',{(g) is bounded from below by (9.96), we need onlyprthate N, ,, +

872 (g) is bounded from below. By Theorem 9.9 (2)#-norm of the kernel 0872 (g) is 0(»~*/?) and
therefore



¢+ Now) 25T2 () (I + Noy)™"* ||# <0 (|x|‘§). (9.101)

For sufficiently larger, (9.101) is less than HencesN,,, + 67’"0(:‘2 (g) + € =0 and (9.98) is proved.

§10. SECOND ORDER ESTIMATES

In this section we consider a second order estimigperators of the form

Hg,u + To,,(g0) + T1,.(g1)- (10.1)

Hereg, andg, are spatial cutoffs satisfying (9.70). Fdkp*) , model such an estimate was proved in [18].
Theorem 10.1 Letc > 1. Then there is a constat< *co such that foralg, 0 < g <1,

(o + D) + B2[Tox(@0)]” + [T1e(90]” < c[HE, + BTo(90) + Tyne(g) + b, (102)
as a bilinear form o®(H§2) x D(HE2).
Proposition 10.1 Letc > 1 ande > 0. Then there is a constaimt< *co such that
To,u(go)Hg,u + Hg,;:To,x(go) = _SH(’J#,;Z{ —b (10.3)
And forallg, 0 < <1,
(G + 1) + B2[To,x(90)]” < c[HE, + BTo,x(g0) + ] @ap

as bilinear forms o®(H{,,) x D(HE,,).
Proof First notice that

2 2
[H e + BTo,(g0) + b]” = (HE, + 1) +B*TE, (go) + (10.5)
+2(b—1) (Hg,x + 1+ B1To,(g0) + % (b - 1)) + ﬁ(ngTo,x(go) + To,x(go)Hg,x) +%(b - 1)

where B; = Bb(b — 1)~ For b sufficiently large, H, + B1To,.(90) + %, for the proof of Theorem 9.10 gives an
estimate that is uniform fdr < g, < 2. Hence it is sufficient to prove (10.3) to establ{10.4), for if

ngTo,x(go) + To,u(go)Hg,u 2 —48H§i =Y (&p.
we have chooseandb such thatte < 1and %bz >y — 1.We write now
Ty = Ty, + 8Ty + 6T, (10.7)
We prove (10.6) separately for each term in (10J8)ng (9.91)(9.96) we obtain

HE, To + To.cHE, = —2HE, [Ext- [ G, (k, k) u(k)d*3k| + HE, To . + To,c HE, = (10.8)



> —eH{Z — const+ HY , To + To, HE =

= —¢eH{% —const+ 2Y7_; [Ext- flk 1o AL (p)Hé‘_,fAi(p)d“p] +

+3¥, [Ext- Sy 15 HE 00 AL (0] Ai(p)d“p] +35, [Ext- [ HOIHHG) d#3P] :

Note that the kernels occurring4q(p), A; (p), [HE... A: ()], [HE.., A; (p)] all belong taSE, ("R¥3) for fixed p. The

L% #-norms of these kernels are uniformly bounded on#angmpact set ip € *R¥3. Thus each of these operators
is defined on domai®(N;,?) and mapD(H{,) into D(H,,/*). As a consequence, each term in (10.8) is well
defined. Since

Ext- |,

|k |>n

A; (P)HE,Ai(p)d™p 2 0 (10.9)

one needs only bound the commutator terms. Byltbgearemarks ol #-norms of the kernels, the operators

(H + D)7 Ext- f,  [HE0 45 0)] A)A"p + Ext- [ AL [Hio AP)] 47 (HE, +1)
are bounded for any < *oo, so that
o [Ext- f o HE 0 AL D)) 4i0)d™p] + B2y [Ext- [ Ai(0)[HE 0 4, ()] a¥p| = (10.10)
> —const(H§, + 1) = —eH{,, — const.
Thus by (10.8(10.10) we obtain
HE . To, + To, HE,. = —eHY,, — const , (10.11)

which is the contribution of’,, to (10.6). By Theorem 9.@), the kernel oST(f? has L% #-norm that isO(;f‘l/Z)
Hence

| (He+ 1) 7 (HESTE) + STERH,) (HE, + 1) ||, < 06e2)

Fis
and for sufficiently larger € *R# we get

HE, 0T + ST HE, > —e(HE2 + 1),

M

which is the contribution oﬁTo(_i) to (10.6). Finally, fozSTo(;f) we write

HE, ST + STy HE, = 2Hy 6T Hy ) + [ (1), o1iY]] (10.12)
By Theorem 9.10, the first term on the right of.(0) is positive, and we now study the double cotatou. Since
neithersT,,) norHy./?

0,%x

n € *N particles. Lett(k,, k,) be the kernel OrﬁTo(;)(g), then

changes the particle number, we restrict attertborectorsy € D(H(’,’f,z{) with exactly

W, [Hﬁ/ 2, [Hg2 815 (g)]] P) = (10.13)

n(Ext_ f 1[’("1' ey kn) lzb(p' kZ! ey kn)6t(k1l p)ﬂ'(p' kl! ey kn)d#3pd#3k1 d#3kn)!



where

A, kq, o k) = (10.14)

[(Ext- 2y u(k)) 2 — (up) + Ext- X1y u(k V] =

1/2 2
< () =p(ky) ) 1
(Bxt- X1, u(kp)/?

If u(p) — u(k,) = 0, we use the inequalitfd + x)*/? — 1 < %x, for x = 0 to prove the inequality

= (Ext- Xz p(k)

A,k k) <3 (u(0) — u(ky)). (10.15)

SinceA(p, kq, ..., kn) = A(kq,p, ..., ky), the bound (10.15) is valid for all k4, ..., k,,. Sincelu(p) — u(k,)| <
constu(p — k,) we get the inequality

A(p, ky, ..., k) < const X u?(p — ky). (10.16)

Suppressing the variablés, ..., k,, in (10.13) we have by (19.16), the Schwarz inétyand the symmetry of
lw(k, p)I,

W, [Ho!?, [He /2, 0733 ()] ) < const x n(Ext- [ 12 (ky)6t ey, p) K2 (ky — p)dHpd*key),

where the kernelt(k,, p) is dominated byonst x |§(k; — p)|[u(k,)u(p)]*/? and therefore we have the estimate
Ext- [ |85t (ky, p)|u?(ky — p)d™p < const x u(k,),

and so, by Proposition 9.1 we obtain

W, [Hé‘}/z, §i/2,6T(1) (g)]] P) < const x n(Ext- [ |2 (ky)|u(k,) d*3k;) = const X (i, HE ., ) <

< (¢, (eH¥2 + const), ).
Thus for (10.12) we obtain
HOKST(D + 6T(1)H0K > ZH#I/ZdT(l) (g)Hm/2 eH{% — const > —eH{2 — const.

This establishes (10.6) as inequality on don{ii2) x D(HE2),it extends by#-closure taD(HE, ) x D(HE,,),
and this completes the proof of the proposition.

Remark 10.1 Notethat these methods can be used to provelthét, n) = (adHé‘_If (6T0(;2 (g)) ,T<1,ne'Nis

an operator o®(H¢,,), and thaW (r,n) H¢ ;! is bounded.
Proposition 10.2 Lete > 0 andx < *oo. Then there exists a constant *oo such that oD (HE2) x D(HE2

TyoTos + TisTose = —& (HE: + T2, ) = b. (10.17)
Proof Using (9.91)(9.95), we obtain the identity

TI,HTO,}{ + TI,HTO,J{ = —COHStTI'H + TI,HT'O,}{ + TI,J{TO,J{ = (1018)



= —constT},, + Xi_; [Ext-f| A; ()T, ,A;(p)d*p + Ext- flp o Ai )T A}‘(p)d#e‘p] +

plsxn
+353, [Bxt- f (4@ [4i ), T | dPp) + 288 [Exe- | [410), [4i0), Tie] | d72p)]
Notethat (10.18) follows from the identity
B(A"A+ AA") + (A"A + AA")B = 2ABA" + 2A"BA + [A,[A", B]| + [4",[4, B]].
We obtain a lower bound on each term on the riglet of (10.18). Clearly for any, > 0, we have
—constT;,, = —&, T/, — const.
Furthermore, by (9.99), fay, > 0,
Ai(P)T1Ai(p) +A(P)T1 Ai(p) 2
= —constA | (p)A;(p) — e2{A ] (PINo,cAi () + Ai(PINo, AT(P) } (10.19)

By the remarks following (10.10) on thi nature of the kernels occurringdn(p), we have folp| < % < "o, and
anye; > 0,

—const(4;(p)A;(p)) = —const(Np, + 1) = — e3H§Z — const, (10.20)
* % 2 # 2
- SZ{A i(®IN A (p) +A;(P)Ny, Ai(p) } > — ezconst(NO',f + I) > — ezconst(HOIK + I) . (10.21)

Thus we can choosg,, &,, &5 sufficiently small so that after summing (10.12p21) overi and integrating over
|p] < » we obtain for (10.18),

TyoTose + TyaTos = —5& (H{% + T3, ) — const +
+338 [Bxe- f o |4 [4i @), T | 40 + 5 8 [Bxe- ) [4i @) [40), Tk | @] (10.22)

Note that| 4;(p), | A; (p), T; ,.|| and its#-adjoint are sums of second order monomials in imeand annihilation
L »

operators withL% kernels that have uniformly boundéd #-norms for|p| < , in this 3-dimensional region pf
we get

[4:0). [4;0), T,,]] + [4: @), [4:(0), Ty ]| = —const(No + 1) = —&;Ng, — const.
Thus by choosing@i sufficiently small, we obtain from (10.22) thdléwing inequality
1 #2 2
TisTose + TrocTon = =3 & (HZ + T3, ). (10.23)

The inequality (10.23) is the desired inequalit§.{I7) and completes the proof.
Proposition 10.3 Givene > 0 there exists a hyperfinite constaqtsuch that foe >

Tyo8T + 8T, Ty = —& (HEL + T2, +1), (10.24)



as bilinear forms o®(H{,,) x D(HE,,).
Proof For anye > 0 we have

[ 71,672 @] < Tl 1672 oyl < ENTepll} + 2 N67.2 o2 (10.25)
By Theorem3.2.4 b, STO(;) has anL§ kernel with#-normo0(»~%/2) and therefore for givea> 0,
L6729, < o[ (Nos + DllE = oIl + 0] < £ (bl + 1153)
for » > x,(g). Thus forx > x, we get the inequality
TyoBTes + 0T T, = —e (HE + TR, ) —

which completes the proof.
Proposition 10.4 Givene > 0 there exists a hyperfinite constaptsuch that for >

Ty 0TS + 8T T, = —e(HEZ +1), (10.26)

as bilinear forms o®(H2) x D(HE2).
Proof We considetSTo('}{) as @.2.39) and write

Ty, TS + 8T T, = Ext- Jipio Bi@®)T1,Bi(P) d*p + (10127

1 * 1 *
+233 Ext- [ (T B 0)]| Bip) a%p + 258, Ext- [ Bi@)[Bi@). Ty |dp.

The integrals ovep in (10.27) are absolutel§-convergent as weak integrals of bilinear form@(m{(ﬁi) X
D(H§2). Note that for any; > 0 by using 8.2.48) the inequality holds

YiiExt-f o Bi®)T;.Bi(p) d¥p = —& T, Ext- [, Bi(®)No,Bi(p) d**p — boTy). (10.28)
By Theorem 3.2.4c we get
—bTY > —00 ) (HE, + 1) = —e5(HE, + 1), (29)

for x sufficiently infinite large. Since the right sidé (4.28) commutes with the projection onto vectwith n
particles, it is sufficient to bound it below oncbuwectors. By Theore®2.1, or Lemma 3.2.3 we get

Yy Bxt- f o (b, B {(0)NosBi(P)Y) d¥p = 2(n— 1) (¥, 6T, ¥) < const(n — D, HY,p) < (10.30)
< const(y, H{Z).
Inserting the bounds (10.29)-(10.30) into (10.28),get for sufficiently smalt; ande, ,

i Ext- [ Bi(0)T;,Bi(p) d¥p = —> (HZ% +1). (10.31)

pI>n

We now use Lemma.1.4 in order to obtain bound for the commutator term@&0.27). We write out now

Tie = S0 i (10.32)



Troer = Ext-f b(ky, ..., ky) a*(ky) -+ a*(kp)a(=kyi1) = a(=ky)d*3ky - d*3k,, (10.33)

_ J1(kq+--+ky)
b(ky, ... ky) = C—[H(k1)---#(k4)]1/2 (10.34)

for a constant. Let us writeB;(p) of (3.2.35)-(3.2.37) as

B;(p) = Ext- [ h(p — k) b;(k)a(k)d**k, (10.35)
1,01 < k(O (10.36)
Let W;,-(») be the expression
Wiy () =5 (Ext- [0, B i(®)[B(P), Trer]d*p = 30)

Ext- [ wi,(ky, o, ka3 %) a*(ky) - a* (k) a(=kpyq) -+ a(—ky)d"ky - d*3k,.
Herew; . (kq, ..., ky; %) is the symmetrization iRy, ..., k, of
~(Oreb; (k) [l - (k)] /2 x (10.38)
Ext- [ d*p Ext- [ d®qb,(q) [u(@)] 2R — k)R — 0)g:(q + ky + ks + k).
Thus using (10.31) we write for (10.27)
Ti8Tos + 8To3 T = —2e(HEZ + 1) + Ty Btoo(Wir GO + (Wi G0))'). (10.39)

We will use nowLemma 3.1.4 in the case aof creators(4 — r) annihilatorsg = min(2,7),8 = min(2,4 — r),
T =1 ando = 1 to prove that

||Nj‘(Z—a)/ZHét'}—ta/ZM/ir(K)Hé*’;ﬁ/ZN::—(Z—ﬁ)/Z ||# < 0(}{_6), 5 < % (10.40)
Assuming (10.40), we have for alandr that, ” (HE + 1) Wy Go) (HE, + I)_1||# <0(x7%),6< %

Exchangingx andp gives a similar bound fC(ﬂ/Vir(}{))*. Thus for sufficiently infinite large, we conclude from
(10.39) that,

Ty, 8Toy) + 8T T, = —e(HEZ +1), (10.41)
which is the desired bound (10.26). We now estirtfatekernely; ,. of (10.38). Note that by (10.36)
|Ext- J,.,, a%p Ext- [ d*qby(@) [n(@)]™/2h(p — k)A(p — 0)u(q + ko + ks + k)| < (10.42)
< Ext- f|p|>x d*p Ext- [ d*q|h(p — k)h(p — )91(q + ky + ks + ky)| <
< Ext- [, d"p|h(p — k)hi(p + ks + ks + k).

Here hy(p) = Ext- [|h(p — )§1(q)| d*3q is a rapidly decreasing functiondrf, ("R#?). Since for0 < & <1,
1 < const X [u(p — k)1¥[u(p)]~¢[u(k,)]¢ and therefore we have by (10.42)



|Ext- Jipisse @p Ext- [ d®qby(@) k(@) /*h(p — kDR — 0)51(q + ky + k3 + k4)| < (10.43)

const X [u(k)I*Ext- [\ d¥plu@] (ke — k)1° |h(p — k) Gi(q + ka + ks + ky)| <

< const X [#(kl)]e[#(%)]"gExt-f d®plup = k)1® |h(p — k)1 (g + ka + ks + k)|

Ip|>

< const X [p(k)¥[uGO] 592 (ke + ky + k3 + ky),
g2(k) = Ext- [ d®p[u(p)]® |h()|hi(p + k). 0(a4)

Note thatg, (k) is a rapidly decreasing functiondrf,, ("R#?) independent of. Therefore fow; ,., the
symmetrization of (10.38), we have by (10.36) at@l43) that

Wiy Gt e, ey 20| < comst x [uG] ™ (SdoaluCl)]™) (ko) = 1)) ™ gl + ki + ks + k) (10.45)

By applyingLemma 3.1.4 with « = min(2,r) andf = min(2,4 —r), we hav& < a + f < 4.

SinceE -(a,1) E 4(B8,1) is a homogeneous polynomial of degeee S in the u(k;) 's, the most favorable bounds
occur witha +p = 4 and the least favorable bounds occur with = 2. In any case we get

E = sup iz [,u(ki),u(kj)] < const X E o(a,1)E 4(B, 1). (10.46)
1<i,js4
Note that
[u(k)]? < const X Eu(ky + ky + ks + ky) < const X E (&, DE 4B, Du(ky + ky + ks + ky). (10.47)

Thus by (10.45) we obtain

|wir (... k450 1/2

(£ c@DE A 1))1/2 < const X [u()]” (Z 1[.“(" )] )(ﬂ(’ﬁ) ,U(k4)) (10.48)

Sinceg, (k) is a rapidly decreasing functionsrf,, "R#3), the right side of (10.48) is squatentegrable for
&€ < 1/2, and therefore

Wi (kq,.kq;)
i

<S0(x7%),e< %
(E claE aBD)?||,,

Tus by Lemma 3.1.4, (10.40) is valid. This cometes proof of the proposition.
Proof of the Theorem 10.1.We expand now

[H0x + BTo,(go) + T (91) + b [HOH + BTo,.(go) + ] + Tl}f(gl)] (10.49)

b [H0x + BTy,.(go) + 2T;,,(91) + -tz bz + Tl,x(gl)[Hg,u + ﬁTo,x(go)] + [Hg,u + ﬁTo,x(go)]Tl,x(gl)-

Givene > 0 andb sufficiently large, proposition 10.2 ensures that first term on the right of (10.49) is
greater than



1-9 [H +B? (To,{(go)) ] (10.50)
Furthermore, fob sufficiently large, the proof ofheorem 3.2.5 ensures that fay < 8 < 1,
HE,e + BTo,(g0) + 2T1,(g1) + % = 0. (10.51)

Hence to prove the theorem it is sufficient to grélvat forb sufficiently large, the last three terms of (10.48tisfy
2
252+ T, (g0 [H + BTos90)] + [H + BTou(o0)]Trno0) = =2 [ + 57 (Tonle)) | (1052)
We set nowl, = T, + 6T0(§2 + 6T0(,}2. Then by propositions 10.3-10.5, fasufficiently large we obtain

B4 Ty (g0 To(00) + To(G0)Tin(92) = e [HIL + B2 (Tos(g0)) | (1053)
Hence we need only prove that for laige
= b2+ Ty, (gD HE, + Hi Ty (g1) = —H2. (10.54)
We expand now
TyscHl s + HY Ty = 2Hg 2Ty Hos? + [Ho 2 [ T |

Using 3.2.48) we get

TyscHl + HinType = —eHEZ — const + [Ho% [T, | (10.55)
Note that
[H(’fj/z. [Hg_,l{/Z,T,K]] > —eH{% — const. (10.56)

Obviously from (10.55) and (10.56) one obtains 34).
Alternatively, a proof of (10.54) could be obtairtadusing the equality

Ty HE e + HE Ty = 2Ext- [ a* (k)T ,alk)u(k) dk +
+Ext- [{[T1,0 a*(k)]alk) + a*(k)[Tp, alk) | Julk) d*3k
and using the methods of the proof of Propositior 1
811. FOURTH ORDER ESTIMATES
In this section we study the operaddy = aH,, + Ty, (go) + T;(g1)-
Theorem 11.1 [15] Leta > 0 and letg, = [ho]?, g1 = [h1]?, ho, by € SE, (R#3), hy = 0,h, > 0, then operator

M, = aHg, + T, (go) + Ti(g1) (11.1)



is self #-adjoint onD(H,,) N D(T,(g;)) and is essentially sel#-adjoint onC " (H,,, ).

Proof We leta = 1,4 = H,,, + T;(g1) + b andB® = T, ( g,). We choose sufficiently large so that > I. Note
thatA is self #-adjoint onD(H,,.) N D(T;(g1)) and thatd is essentially self-adjoint onC (H,,, ). LetD(4) =
C*°°(H0,;,). The inequality| By || < al|(4 + BB)y||4 is proved as follows: By Theorem 9.8, namely the
boundedness of (9.60), we hai& ( go)wlly < const||(Hg, + )y, By Theorem 10.1, ié > 1 andb is
sufficiently large, we obtain

(Hes + D, < cll[Hx + BTosx(g0) + Tine(g) + bl
forall 8,0 < g < 1. Thus fory € D(A) = € *(H,,) we obtain
ITo(go)¥lls < cl|[Hex + BTon(g0) + T1pe(g1) + b]lp"#-

By Theorem 6.8M is essentially sel-adjoint on domair€ (H,,.) andM is self#-adjoint on domairD(H,,.) N

D(T;(g1)) = D(#-A).
Theorem 11.2 [15] The operatoM £ M, defined by (11.1) has the sa#eores as the operatti§;,, + T;,,(g1)-
Proof Directly from Theorem 11.2 and Theorem 6.9

Theorem 11.3 [15] LetM denote the se#-adjoint operatoM = aH, ,, + T,( go) + T;(g,) with & andg,, g;as
above. TheD(M?) c D(H{,N;), and there are constamts< *oo, ¢ < *oo such that as forms d(M?2) x D(M?)

Proof We need to prove th@(NjM) c D(N#H§, ) and that there are constahts such that, foyy € D(N M)
||N;fH§,x¢||# < clld + NHM + bl (11.3)

The inequality (10.2), see Theorem 18xtends t@ (M ) x D(M ) since by Theorem 11.T,® (HO,K) is a#-core
for M and the operators involved ateclosable. Henc®(M ) c D(H§,,), so

D(M?) c D(H¥, M) c D(NjM) c D(N}HE,)
and by (11.3) for new constartsc, , b; and i € D(M?)
INZHS W, < clltd + NDM + bYplly < co(M + by)*. (1.4

As a first step to prove (11.3), we prove tﬁ&f’(HM) is a#-core for$ = (I + N;))(M + b), whereb is

sufficiently large so tha¥ + b is positive. It is sufficient to show that the ganof$ I ¢ (Ho,x) is #-densefor

this operator has #-continuous inverse. Hence theclosure of its inverse is the inverse of#tglosure. LetD§
denote vectors in Fock spag&(H* ) with a finite or hyperfinite number of particles.

Remark 11.1 Note thatl) €' (HO',{) N D¢ is a#-core foraHy, + T;,(g,). Hence by Theorem 11.2, it istacore
for operato, so thaDf = (M + b)(C *(H,,) N D¥) is #-dense. 2) Every vector By is an#-analytic vector
for the operatoN;?, and henc®;§ is a#-core for the operatay;.

Thus we conclude th&v} + 1)Df is #-dense; s& *(H,,,) is a#-core for(I + Nf)(M + b).

Note that it is sufficient to prove (11.3) fgrbelonging to &-core for(I + N;})(M + b), so we show that as forms
on D(H{, ) x D(HY,,)



HENE? < c(M + b)) + NH2(M + b). (11.5)

Remark 11.2 Note that it is sufficient to prove (11.5) fer= 1, since the constamt may be absorbed ingg, , g, b
andc.

Remark 11.3 Now we letT;} = T, ,, + T;,,, and note that (11.5) is equivalent to showing the following operator
is positive

HEZ( + N2 — ¢ T HEEN? + TR+ ND? TF + T + Nj)?HE, + (11.6)
+HE, I+ ND2TE+ b(HE, + TH)U + NH2+ b1+ NH2(HE, + TF) + b2 + NjH? =

HEZ(+ NiD? = T HENS + TH + ND? T + 200 + NJ) (B + T +2) U+ N +

+2b[NE [N, TA + THT + ND2HE, + HE, (1 + ND? T + ”2—2(1 +NH
For sufficiently largeb we get

THU + ND? T + 26U+ N (HE e + T +3) (1 + Nf) 2 0
as a sum of positive terms and if %We get
%H{;ﬁi(l + N2 — cTUHEZN}? > 0.
Thus (11.6) is positive for lardeif the following inequalities hold:
%b(l +NH2 + [N NS, T = o, (11.7)
SHELU + NP + T+ NiYPHE, + HE, (1 + NPT + b2 + Nf)? = 0, (11.8)

In order to prove (11.7), we note tHat?, T¢,.| = 0, therefore N}, [N)#, T;¥]] is a sum of Wick ordered monomials
of degree two or four with} kernels. Thus the operat@r+ N;) ™[N, [N, T,/1](1 + N;)~* is bounded and
(11.7) is positive for largk. To prove (11.8), we note that

T (T + NE)HG, + Hyo (I + NX? T =
= (1 + NO(TEHG, + HE, T + N + [[TENEL U+ ND2HE,| =

= I+ NO(THHE, + HE THU + N + 201+ NOHSY? T HE? (1 + Nf) + (11.9)

0, 0,

U+ NG [H? [HE T O+ NS + ([T N NETHE  + (1 + N [T N HE,
By Proposition 10.1, we have for the first tern{14.9)
U+ N (TEHE, + H T U + N = =~ HEZU + Nf)? = by (1 + N)? (11.10)

for anye > 0 and for somé; < *co. The second term in (11.9) is bounded below sirycasing(3.2.48) we get

20+ NOHS THHD (U + N > = HEZ(+ N2 — by HE, (I + N2 > (11.11)

0,



> ——e H{Z(+ Nj)? = b HY, (I + Nj)?

for anye > 0 and for somé b(e).
Remark 11.4 Note that for any > 0 there is @& such that

1oy (a2 T ]| = =S e HEZ — b,
And therefore we obtain the inequality
U+ N [Ho 2 [ T U+ NE) = =2 HELU + NiD? = b HE, (I + N2, (11.12)
Since[ T,#, N;#] contains second or fourth order Wick monomialdwi kernels,
3L =U+NOTITENA N U+ NDT?
is a bounded operator. Thus for apy ¢ (H{,.) we obtain the inequality
[, [T, NEL NE THo )| = (U + NDY, SEU + NHHE )| < (11.13)

< constl| (1 + Nl || (1 + N)OHS, |, < ;e |HE,.( + N,’f)1p||i+const||(1 + NHylIz.

Finally we consider the operat@r+ N,¥) [[ T, N, Hé‘,,{]. We write T, = T, . + T;,, and consider these two terms
separately. Let

[T NE] = 91+ H2.

Here$, and$, are respectively terms of the fo1.14) with r = 2,s = 0 and withr = 0,s = 2 and each such
term had$ kernel. Applying.emma 3.1.3, we have thatif;;*[$,, H,.] and[$,, HE, |HE:! are bounded forms on
D(HE, ) x D(HE, ) and therefore we obtain the inequality

|, (1 + N[ T NEL HE )| < [(HE U+ NiYw, HE S0, HE,Jw) | + (11.14)
(U + N, [ HE JHEZ HEab)| <
< const (|| Ho, (1 + NI I lls + 1+ N[l Hol],) <
< 2e||Hou (I + N[ +constl| (1 + NI

The remaining part of the expressi@nt+ N,¥) [[ T}, N,?],H(’f,%] consists of the contribution fropf},, Nj]. Let

T} = T}, + 8 T}, where T/, is defined as itt4.32)~(4.34), but the kerne{4.34) is multiplied by the characteristic
function of{k;||k;| < »,i = 1,2,3,4}. Then[[ T} N,f],Hg_,f] is consists of Wick monomials wiil§ kernels. As in
(11.13), we have

|, [T, NAL NEHo,p)| = (U + NDY, SEU + NDHG, )| < (11.15)

< constl|(I + ND || + NOHS, ||, < 35 |HE, (1 + N,f)1p||i+const||(1 + NHYIIZ



UsingLemma 3.1.4, we analyze the high hyperfinite energy contriuits T/%,. It is a sum of Wick monomials of
degree four, and at least one variable kt is gréass K in magnitude. By Lemngal.4, and(4.47),

o = (1+HE) " [[8 T NELHE] (1 + HE) ™

is a bounded operator, and an estimate of the Iseom[a[d T N;‘;‘],H(’j,{] shows that|g|l, < 0(x7 %), < 1/2.
Thus for sufficiently infinite larger we obtain the inequality

(v (1 + N2 [[8 T NEL HE )| < 0G|+ MO+ HE I + HE)wll, < (11.16)
< e ||HE (U + N, + 11U + NI,

The inequalities (11.13)-(11.19) dominate the vasiterms in (11.12). Added together, they show (hhtl?2) is
bounded by

TH(I + HE) HE, + HE, (1+HE) T = —eHE2 (1+ HE,)” — const (1 + HE,)®
Thus (11.11) is valid fob sufficiently large and the proof of the theorencasnplete.
812. Q#-SPACE REPRESENTATION OF THE FOCK SPACE STRUCTURES

In this section the construction of a non-Archime@®-space and’ (Q#, d¥u®) , another representation of the
Fock space structures are presented. In analogitiétone degree of freedom case W€ R? ) is isomorphic
to L4("R#, d*x) in such a way thab# (1) becomesnultiplication byr, we will construct a*-measure
spaceQ¥, u*), with u#(Q*) = 1, and a unitary map*: F (H* ) - L%(Q#, d*u") so that for eacli € Hf, S*¢# ()
S#=1 acts onLE (Q#, d*u*) by multiplication by au*-measurable function. We can then show that irctise of the
free scalar field of mass in 4-dimensional space-tind}, V = S*H}, (¢)S*~* is just multiplication by a function
V(q) which is inL%(Q#, d*u*) for eachp € *N. Let {gn};‘:l be an orthonormal basis ff* so that eacly € Hf

and let {g,,}'_,, N € *N be a finite or hyperfinite subcollection of the Sﬁ};oil .Let Py be a set of the all external
finite and hyperfinite polynomialBxt-P[uy, ..., uy] andF; be the #closure of the set

{Ext-PlpZ(g.),..., 0k (gy)]1IP € Py} in F#(H*) and define a sét)’ = F§ n F,. From Theorem 55 it follows that
©(gy) andri(gy), for all1 < k,1 < N are essentially self-&djoint onFY¥ and that

(Ext-expl[itp};(g,)]) (Ext-explitr}(g)]) =
(Ext-exp|—ist8y,; |)(Ext-explitn}i(g)]) (Ext-explitpf(gi)]) -

Therefore we have a representation of the genethlieyl relations in which the vectdl, satisfies the equality
(lef(g))? + [ (g)]? — 1DQ, = 0 and is cyclic for the operatof (g,)}4-,. Therefore there is a unitary map

— — #
SHM: Ff - L5(RFY) such that: 1)5*M e (g,)(S* M) = x,, 2) S* M (g,)(S*™) ™ = =24 and

id#xk

2
3)s*q, = g~N/4 [Ext-exp (—Ext-Zﬁzl%)]. It is convenient to use the non-Archimedean Hitlspace

2 2
Lt (*]RE”V, T N/4 <Ext-exp (—Ext- Zﬁ=1%)>> d*Nx instead oL ("R#M) so we letd” uji= Ext-exp (— XZ—") d*x;

2
and define the operat6ff)(x) = mV/* <Ext-exp (Ext- Z’,lez—k)), ThenT is a unitary map off (*R#*") onto



L5 ("REV, Ext-TTY-, d*uf ) and if we let ST = TS*™ we get: 157™: ) > L5 ("R, Ext-TT)-, duf),
d#

-1 -1
2) St Mel(g)(SI™) = x0 3) STV (g (1) T = -2+ lﬁ and 4)s¥™q, = 1, wherel is the

function identically one. Note that ea#hmeasurg:; has mass one, which implies that
{Qo, (Ext- HI}X=1 Py (‘P:ﬁ(gk)))ﬂo) = f*RgN(EXt' HI};I=1 P (x)) (EXt' l'Iﬁ:l d##}?) = (12.1)
= Ext-[Ii= RAN P (i) d* i = Ext-Tli= fx]RgN(Qo' P (95(91)Q0))-

HereP,, ..., Py are external finite and hyperfinite polynomialsaswe can to construct directly thé-measure

*o0

spacgQ*, u*). We define a spad@” =x,”, *RE. Take thes*-algebra generated by hyper infinite products of
#-measurable sets iR? and sep* =®;\,_‘:1 uk. We denote the points @@* symbolically byg = (g, g5, ... ), then
(Q*, u*y is ac*- measure space and the set of functions of tme gy, g5, ... ), whereP is a polynomial and

n € *N is arbitrary, is¢-dense in% (Q#, d¥u®). Let P be a polynomial inN € *N variablesP(xy, x5, ..., xy) =

Ext-Y, 1y cll_____le,l:l x,lc’l"V and defines*: P ((p,’f(gkl), ...,<pf§(gkN)) Qo = P(4k, Qiyr > diy )- Then we get

li+my In+tmy

(0£(9u)s - 05 (9iy) ) R0 = Ext- Ty 18 (20, 05(91,) "™ s 05 (G1y) ™ " 0) =

_ 2
Ext- Yy m CiCm f*u&ﬁ” q,lj:ml X .. X qllVNerN(Ext- [T, d*uf,) = Ext- fQ#|P(xk1,xkz, v Xiy )| APt

By the equation (99) and the fact that each meaéj.gfrms mass one. Sin€x is cyclic for polynomials in the
fields, S*extends to a unitary map 8§ (H* ) onto LE(Q*, d*u*).

Theorem 12.1[15] Let ¢}, ,,(x), » € *R¥ ,be the free scalar field of mass(in 4-dimensional space-time) at time
zero. Letg € L{('RY®) n LE('RE) and define) 160 (9) = A6¢) (Ext- Lo 9GO @ () d#x),

whered(x) € *R¥ .. Let S* denote the unitary map*: F¥ (H* ) - L5(Q*,d*u*) constructed above. Théh=
S*H,,,1(g)$"*is multiplication by a functio, ;(¢) which satisfies: (alf,, ,(q) € L} (Q*, a*u*) for all p € *N.

(b) Ext-exp (—tV,M(q)) € LE(Q*, d*u™) for all t € [0, *).

Proof (a) Note thatgp;:, , (x) is a well-defined operator-valued functiormo& *R#3. We define now ¢/%, (x): by
moving all theat’s to the left in the formal expression o, (x). By Theorem 59: /%%, (x): is also a well-
defined operator for eache *R%3. Notice that for each € *R#3 operator ¢f*, (x): takesF, into itself. Thus for
eachx € "R¥3 operator gt (x): reads @t (x) = @it (x) + d, () @i, (x) + d1 (3) where the coefficients
d,(x) andd, (x) are hyperfinite constant independenkoFor eachx € *R%, S/ (x)(g)S* tis the operator on
#-measurable spadd (Q*, d*u*) which acts by multiplying by the functidft- Z;‘:l i (x, ) q Wherecy, (x, #) =
(2m)~3/%( gy, (Ext-exp(ipx) )x (¢, p)u(p) ~/2) andy (3¢, p) = 1if |p| < x, (3¢, p) = 0if |p| > x. Note that

Ext- Y2 e, 0|2 = (2m) /2| x Go, pu@) |2, (12.2)

so the function§* gt (x)(9)S*~* andS* %, (x)(g)S*~* are inL{(Q*, d*u*) and thel} (Q*, d*u*) norms are
uniformly bounded irx. Therefore, sincg € L{("RE?), S*H, ,, 1, (9)S* *operates o4 (Q*, d*u*) by
multiplication by some4 (Q*, d*u*)-function which we denote bi; ,, 1,1 (q). Consider now the expression
for Hy . 160 (9)Qo. This is a vecto(0,0,0,0,1%4,0, ...) with

200g(0xGep)(Extexp(~ix £t p) Ja®x 260 Tlizy xGep) (Ext-9(SiZ 4 pi))
(m)*/2IE [2p()] /2 T @I (2uep]

Y** (D1, 02,03, Pa) = Ext- f*Rgs (12.3)



Here|p;| < x,1 < i < 4. We choose now the paramelex A(») ~ 0 such thaf|)**||2, € R and therefore we
obtain|| Hy 160 (9)|l.,, € R, SINCe|| H 1100 (9)[;,, = 112, But, sinces*, = 1, we get the equalities

” HI.x,A(u)(g)QOH#Z = ”s#HI,}{,A(}{) (9)5#_1||L§(Q#’d#”#) = ”Vl,x,/l(u)(GI)|IL¢2¢(Q#’d###)- (12.4)

From (12.3)-( 12.4) we get thi¥, ,, 160 (@)]| € R. Itis easily verify that each polynomial

Li(e* a*u¥)
P(41,qz, -, qn),n € "N is in the domain of the operatidr,, ;) (q) andS*H; ,, 10 (9)S* ™ = Vi,.200(q) on that
domain. Sincdl, is in the domain off?,, ;.,,(g),p € "N, 1 is in the domain of the operati6f, ,, ;,,(q) for all
p € *N. Thus, for allp € *N V;,, 100 (@) € L5,(Q*, d*u*), sinceu®(Q*) is finite, we conclude thaf ,, 1, (q) €

LE(Q*,d*u*) for allp € *N. (b) RemindWick's theorem asserts that
o) 1= S D L el 0 ) with o, = [[9f(Dl,,- Forj = 4 we get-0(c3) <
: @it (x): and therefore — (Ext f]R#g g(x) d*3x ) 0(c?) < Hy, 200 (g)-Finally we obtain

Ext- [ 4 Ext-exp( t(: it (x): )) d*u* < Ext-exp(0(c2)) and this inequality finalized the proof.

813. GENERALIZED HAAG KASTLER AXIOMS

Definition 13.1[15] A non- Archimedean Banach algebtais a complext-algebra over fieldC# (or"(CCfm =
*Rcfm +i ]RC fin ) Which is a non-Archimedean Banach space undf avalued -norm which is sub
multiplicative, i.e. [|lxy|ls < |lx|l4|ly|l4+for all x,y € A4. An involution on a non- Archimedean Banach algebra
is a conjugate-linear isometric antiautomorphisrorafer two denoted by - x*, i.e.(x + y)* = x* + y*, and for
allx,y € Au: (xy)* = y*x*, (Ax)* = Ax,(x*)* = x, ||x*||« = x, A € *C*. A Banach#- algebra is a non-
Archimedean Banach algebra with an involution.

Definition 13.2 An C;-algebra is a Banach-algebrad, satisfying theCj-axiom: for allx € A, ||x* x4 = ||x]|3.
Definition 13.3 1) A linear operatom: H; — Hy on a non-Archimedean Hilbert spaigis said to be bounded if
there is a numbert € *R¥ with ||aé|ls < K||€]| for all § € H,. 2) A linear operaton: H, - H, a non-
Archimedean Hilbert spadé; is said to be finitely bounded if there is a numi§es *RC in With ||aé|lx < K|[€]4
for all ¢ € Hy. The infimum of all suclk if exists, is called th&-norm ofa, written||a||.

Abbreviation 13.1 The set of all finitely bounded operatarsd, — H, we will be denoting bB# (H.).
Abbreviation 13.2 The set of all finitely bounded operatardf, — Hy we will be denoting bB, (Hy).

Remark 13.1 Note thatB, (H;) is aCj-algebra over 1‘|eld(CCfln

Definition 13.4If S < B*(H,) (or Bs (H,) ) then the commutasst of S isS’ = {x € B#*(H,)|Va € S(xa = ax )}.
Remark 13.2 The algebr&*(H,) of bounded linear operators on a non-Archimededinelti spacei, is a
C;-algebra with involutio - T*, T € B#(H,). Clearly, any#-closed#-selfadjoint subalgebra @&*(H,) is also a
Cy-algebra.

Remark 13.3 We will be especially concerned withiseparable Hilbert Spaces where there is an orthoaidrasis,
i.e. a hyper infinite sequenc&i}::"1 of unit vectors with(§;, §; ) = 0 for i # j and such thal is the only element
of H, orthogonal to all thé;.

Definition 13.5 1) The topology orB*(H,) (or B, (H) of pointwise#-convergence oH, is called the strong
operator topology. A basis of neighbourhooda & B*(H,) (ora € By (H,) is formed by the following way

N(a,{§i}iz1, &) = bl — a)ills <& Vi(l <i<n)}
2) The weak operator topology is formed by the dasighbourhoods

N(a, {§i}ir, (nidicr, €) = (b — @) M) < &, Vi(l i< n)}.



Theorem 13.11f M = M* is subalgebra o8%(H,) (orBy (Hy) with1 € M, then the following statements are
equivalent: )M = M" ; 2) M is strongly#-closed; 3)M is weakly#-closed.

Definition 13.6 A subalgebra oB*(H,) (or B, (H,) satisfying the conditions of Theorem 61is calletha
Neumann#-algebra.

Theorem 13.2 [15] (Generalized Gelfand-Naimark theorebeX A be aC;-algebra with unit. Then there exist a non-
Archimedean Hilbert spadé; and an#-isometric homomorphisrid of A into B(Hy) such thalx* = Ux™, x€A.

Abbreviation 13.3 We denote by = {*Rﬁ‘*, (-,-)}, the vector spac®#* with the Minkowski product(x, y) =
XoYo — Xi¥i, I = 1,2,3.
Statement of the Axioms [15]. Let M# be Minkowski space over fiel®R¥ of four space-time dimensions.

1. Algebras of Local Observables. To each finitely bounded-épen se0 c M¥ we assign a unitdl; -algebra
0 - By(0)
2.1sotony. If 04 € O, , thenB(0,) is the unitalC; -subalgebra of the unit@l,-algebreB(05) :
By(01) € By(0,).
This axiom allow us to form the algebra of all Ibcbservables

Byioc = Uoch B4(0).
The algebraB,,,. is a well-defined’}, -algebra because given afy, 0, ¢ M, bothB,(0,) andB,(0,) are
subalgebras of thg; -algebr84(0, U 0,). From there one can take theorm completion to obtain
By = #-Byioc »
called the algebra of quasi-local observables. Giviss aC;; -algebra in which all the local observalile-algebras
are embedded.

3. Poincare ~ -Covariance. For each Poincare transformatigre °P] , there is &}- isomorphismz, : By — By
such that

ag(B4(0)) = By(9(0)),
for all bounded¢-open0 c M¥. For fixedg € By , the maygy — a,4(A4) is required to bé-continuous.

3'. For each Poincare transformatip& °P/ , there is &j- isomorphismz, : By — By such that

st (ag(B#(O))) = st (B#(g(O))),
for all bounded¢-open0 c M¥. For fixedg € By , the mayy — a,4(A4) is required to bé-continuous.

4. ~-Causality. If 0; and0, are spacelike separated, then all elemens;; 69,) =~ -commute with all elements of a
C; -algebraBy(0,)

[B4(01),B4(0,)] = 0.

4'. If 0, andO, are space-like separated, then the standard foidue: all elements of}, -algebraB,(0;) commute
with the standard part of the all elementsCaf-algebraBy (0,)



st(By(0,),B4(0,)) = 0.

Definition 13.7 If 0 ¢ M§, we sayx belongs to the future causal shadov@df every past directed time-like or
light-like trajectory beginning at x intersects . Essentially0 separates the past light conexdfikewise, we
sayx belongs to the past causal shadow dff every future-directed timelike or lightlike fectory beginning at
inter-sects witl0. The causal completion or causal envelBpef O is the union of its future and past directed
causal shadows. This definition of the causal cetigiO0 can be reformulated in terms of “causal complesi&n
which are computationally easier to deal with0 Ifc M#, we define the causal compleméXitof O to be the set of
all points with are spacelike to all pointsdn Then0” = 0 is the causal completion 6f One expects the
observables localized @ to be completely determined by the observablealied to0, carrying the same
information.

5. Time Evolution.
B,(0) = B4(0).

6. Vacuum state and positive spectrum. There exists a faithful irreducible representatign B, — B(Hy) with a
unique (up to a factor) vectér € Hy such thaf2 is cyclic and Poincan@avariant, and such that unitary
representation of translations, given by

U@)mo (A)Q = m(ax(4)9,

whereA € B, anda, () is theC;-isomorphism from Axiom 3 associated with transiatbyx € M}, has

Hermitian generatorB*, u = 1,2,3 whose joint spectrum lies in the forward light eoiihe last phrase is the most
physically important here; it simply states thatlewe energy-momentum operators whose spectrusfisati

E? — P2 > 0,i.e, or in other words, that the enef§y 0 and nothing can move faster than the speedluf [The
vector(Q is the vacuum state This axiom does not appelae fmurely algebraic; we have had to introduce ar no
Archimedean Hilbert spad#, . In fact, we can rewrite the axiom in a comphetdbebraic but less transparent way
as follows. We postulate that there exists an vacsiatew, on theC; -algebra (i.e., a normalized, positive,
bounded linear functional) such that the followhads w,(Q*Q) = 0 for all Q € B, of the form

Q(f,A) = Ext-[ f()a,(A) d™*x

whered € B, andf(x) is a#-smooth function whose Fourier transform has boursdggbort disjoint from the
forward light-cone centered at the originVj.

Remind that in a quantum system with a Hamiltortiathe Heisenberg picture dynamics is given by #reoaical
formula

A(t) = {Ext-exp[itH]}A(0){Ext-exp[—itH]}.

ThenA(t) is the observable at tintecorresponding to the time zero observatie). In our model we have hyper
finitely locally correct Hamiltonian& (g) but no hyper infinitely global Hamiltonian, and wenstruct the
Heisenberg picture dynamics nonetheless. We ddshisstricting the observables to lie in the Icalgebras
B4(0) and by using the finite propagation speed impiiciixiom 3.

Definition 13.8 Let ¥ be the space of symmetdig(*R#3") functions defined ofR#3", F¥ = *C# and letF# =
Ext-ea;ioﬂ-}f, Q, =1 € *C! c F*. LetS, be the projection oL} (*R#3") ontoZ and letD, be the#-dense
domain inF# spanned algebraically I8, and vectors of the fori$y, (Ext- [1%_; fi (k,)) where

fi € Sty CR¥3,*R¥#3),n € *N.

Definition 13.9 We set now



H,, = Ext- f :(m2(x) + VHp(x) + m2pi(x)): d*x. (1B
Theorem 13.3 As the bilinear form on the domail, x Dy

Hy, = Ext- |

i 10R) @ (R)a(k)dP k. (13.2)

Theorem 13.4 (1) The operatoH, = H,,, leaves each subdomdqNF, invariant. (2) The operatdf, = H,,, is
essentially sel#-adjoint as an operator on the domajn
Definition 13.10 We set now

@i o(x, ) = Ext-exp(itHy)@j (x) Ext-exp(—itH,) 3(3)

il o(x,t) = Ext-exp(itH,)m} (x)Ext-exp(—itH,) (13.4)
ol o(f,©) = Ext- f*]R*f ol o(x, ) fF(x)d*3x (13.5)
il o(f,t) = Ext- f*Rﬁg o (x,t) f(x)d™x. (13.6)

Heregp#(x) andr(x) is given by formulas (97) and (98) respectively.
Remark 13.4 Note thatp} ,(x, t) andr} o (x, t) are bilinear forms defined dd; x Dy.
Theorem 13.5 As bilinear forms oD, X D,.

@i o(x,t) = Ext- f*u@ﬁ Au(x — y,t) i (x)d*®y + Ext- f*R#g o A# (x —y,t) i (x)d*3y (13.7)

a#
T 0( ) = Ext- s o 8 (x = 3, ) mh(OA*Y + Ext- [, pyo s Ay(x — 3,0 mh(x)d*y (13.8)
Remark 13.5 HereA4(x, t) is the solution of the generalized Klein-Gordon atpn

P , a# 2A#(x t) — a# ZA#(x t) — a# 2A#(x t) + m*Ay(x,t) = 0 (13.9)

with Cauchy datay (x,0) = 0, A#(x 0) = 6%(x).

Ay(x, t) =

(Ext f*R#g(Ext exp(—ip - x) — Ext-exp(ip - %)) \/_+m2>,

2(2

x = (x%x', 2%, x%), ®=(x°,—x',—x2,—x%), p = (p° p"p%%3), B =(p°, —p*,—p? -p?).

Proof From(13.3) by#-differentiation we obtain
a2 4 2 . # .
575 Pho(x ) = (i*)Ext-exp(itH,) [HO'H, [Hoe (p,[(x)]] Ext-exp(—itH,).

[Ho,w (P;‘(x)] =

= Ext-f Ext-f # X
|k|<x [l (27'[#)71/ 2u(l)

x {(Ext-exp[i{l, x)])[at (k)a(k), a(D)] + (Ext-exp[—i{l, x)])[at (k)a(k), at (D]}d*kd*®1 =



(k)
=Ext-f Ext- f — B2 x
|k <2 11532 (Zn#)% D

x {(Ext-exp[i(l, x)]) (—a(k)§*(k — 1)) + (Ext-exp[—i(L, x)Da’ (k)6*(k — D)}d**kd*3l =

gxt- [~ {(Ext-exp[i(k, x)])a(k) + (Ext-exp[—i(k, x)])a’ (k)}d*k=—im (x).
T ryz2

[HO.w [Ho,se @ﬁ(x)]] = Ext- f|k|su%{th'e)(p[i(k' x)a(k) + (Ext-exp[—i(k, x)])a’(k)}d*3k =

- {_ [(3zil) 2 + (aziz) 2 + (az;) 2] + mz}‘l’f:,o(x; t).

Thus

6#2 #
iz Vo, 8) =

Ext-exp(itH,) [((%) 2 + (aziz)

(( ot )2 + ( at )2 N ( FLd )2 B mz) EXt'GXp(itHo)§0§(X)Ext-exp(—itHO) _

a*x, a*x, a%xg

a* \* /ot \? [a*\’
— 2 #
B (6#x1> " (6#x2> " (6#x3> T | P D).

Thusg} ,(x, t) satisfies generalized Klein-Gordon equation

2 2

+ (az;) - mz) ‘Pf:(x)] Ext-exp(—itH,) =

o ohae 0 = () + () + ()~ m?) o) (1)

#
with Cauchy datap} ,(x,0) = @ﬁ(x),;thofw (x,0) = n#(x). Thus (13.7) holds sinca.(x, t) is a fundamental
solution for a linear partiat-differential operator[-]#?

2 2 2
we e [ G G e
o T a#e2 [a#x1 + a*x, + a*x, +m.

Remark 13.6 Note the distributior, (x, t) has support in the double light-copg < |t].
Lemma13.1Letf;, f, € S*("R#3). The operatopf( f,)+mf(f,) is essentially sel-adjoint on the domaif,.
Proof First for 8 € D; we establish the inequality
n
#2]
1/2

a* a* \? a2 . . o . .
where u, = <— [(a#xl) + (a#xz) + (a#x3) ] + m2> . Since Dy is also invariant, 8 is then an #-analytic

vector for (i ( f;) + n#) I D4 Since D, is #-dense, the lemma follows from generalized Nelson's theorem, see
86 Theorem 6.5To prove (13.0'), we expand the-th power on the left as a sum4f terms, each of the form

1

ﬂ?cﬁ

1

+ ﬂ?cfz

Ilef(f) +mi1"lly < [O(Tl!#)]%[
#2
2




[Exe-TTj=1 a® (Ry)]6 ], (13.0)

1
wherea® (h;) = a(h;) ora®(k;) andh; is proportionato 127 £, 1f M i the maximum number of particlesdn
(13.10") is dominated by

Theorem 13.6 Let f;, f, € Si ("R¥3). The operatop} ( f,t) + w o (f,, t) is essentially self-adjoint on the
domainDy.
Proof

Notation 13.1 We letg# ( f) now denote the se¥f-adjoint#-closure () = #-(p#( ) I D) . Let M* be the
non-Archimedean von Neumann algebra generatedfielerC#* by the operators

{Ext-exp(ipf( )))If € Sy CRED }.

By definition, a non-Archimedean von Neumann algsbra *-algebra of bounded iiR¥ operators#-closed under
strong#-limits. It is easy to see tha@k” is also generated by the joint spectral projestioffinite and hyperfinite
families

Ext-TT21 05 (fi), fi € SEaCRE).

Such a spectral projection is a multiplication @per onL% (Q, d#q). In fact it is multiplication by the characteristi
function of a#-Borel cylinder set. Conversely, any such a mulktggiion operator is a spectral projection, and so
these multiplication operators generité.

Proposition 13.1M* = L¥_(Q,d}q).

Proof

Definition 13.11 We introduce now the cIa§s(S”(*]R§3)) of bilinear forms onD, x D, expressible as a linear
combination of the forms

V=300 () Ext- foppan v @t () = a" (ky)a(kys) - ally)d*sme (13.10)

with symmetric kernelg(k) € S*(*R¥#3) having real Fourier transforms.

Theorem 13.7 LetV € 3(S*(*R#%)). ThenV is essentially sel#-adjoint onD.

Theorem 13.8 Let O be a bounde#-open region of vector spad® and letM,(0) be the von Neumann algebra
generated by the field operatdist-exp[ip/(f)] with f € S¥(*R#3, *R#3) andsuppf < 0. Letg(x) = 0 on
*R¥3\0. ThenExt-exp[itH,(g)] € M4 (0) for all t € *R¥.

Definition 13.12 Let 0 be a bounde#é-open region of space and ®8§(0) be the von Neumann algebra generated
by the operatorBxt-exp|i( @i (fy) + m(f,))] with £, f, € S*("R¥, *R¥#3) andsuppf;, suppf, < 0. Let 0, be the
set of points with distance less thahto O for any instant of the time

Theorem 13.9 Ext-exp(itH,)By(0)Ext-exp(—itH,) € By(0,).

Theorem 13.10 If 0, and 0, are disjoint bounded open regions of vector siRtethen the standard part of the
operators iB,(0,) commute with the standard part of the operatoopirators irB,(0,).

Theorem 13.11 Letg € L§((*R%®)), and letg = 0 on open regio®, thenExt-exp[itH,;(g)] € Bx(0)' for all

t € "R¥.

Theorem 13.12 [15] (Free field~-Causality) Letf;, f, € S £, CR**, *R**) with suppf;, < 0,, suppf, < 0,. We set
now ¢f (f1) = Ext- f*u@ﬁ‘* ol o(x,t) fi (x,)d*x andef o (f,) = Ext- f*u@ﬁ‘* @i o(x,t) fo (x, )d*x. If region0,



and regiorD, are space-like separated, thhm‘fj,(, (f, <p§_0(f2)]1/; ~ 0 for all near standard vectgre Hy.
Proof. The commutatofe? o (f1), ¢} o(f,)] reads

[Qofr,o(fl)' Qoﬁ,O(fZ)] = Ext- f*RgA: d*3x,d* t, Ext- f*n&?“ d®3x,d t, A (; — x5, 8 — 6) f1 (g, t1) o (1, ),
Af[(xl — Xy, tl - tz) = El(xl — X3, tl - tz;}f) - Ez(xl — Xy, tl - tz; }f), Where

El(xl — Xy, tl - tz,}f) = Ext- flp|SK

{exp(lipa, — x)] — (@) (6 — )} T,

200 — X3, — ty; %) = Ext- f|p|5,{{_eXp[[ip(x1 —x)] + iw(P)(t, - tz)]}\/% .

[1]

Herex € "Rf,, ,w(p) = \/p? + m2. DefineZ, (x; — x,, t; — t5; %) andZ,(x; — x5, t; — ty; %) by

{expllip(ry — )] — 0B (61 ~ )} 7o

El(xl — Xy, tl - tz,}f) = Ext- flp|>”

- . , d#3p

Ba(xg — x,ty — ty; 1) = Ext- flp|>%{—exp[[1p(x1 —x)] + iw(p)(t; — tZ)]}W'

Note that. (aEl(xl — Xy, tl - tz, }‘f) =0 andEZ (x1 — X, tl - tz, }f) =~ O, (b) El(xl — Xy, tl - tz,}f) and
E,(xy — x5, t; — ty; %) are Lorentze-invariant tempered distribution (see definition gijce the distributions
Ei(xy —xy,t; — t,) and=, (x; — x5, t; —t,) defined by

= = . . d#®
B0 — Xg,ty — t35%0) + E1(x — xp, t; — ty; ) = Ext- [ {exp[[ip(x; — x5)] — iw(p) (t; — tZ)]}pZ\/—+—Zﬂ

- = . . da#3
Ba(y — X9ty —t;20) + 5,001 — Xp,t —tp; ) = Ext'f{eXp[[_lp(x1 - xz)] +iw(P)(t; — tz)]}pzﬁi12

are Lorentz invariant by Theorem 56. From expaessif the distributior®, (x; — x,, t; — t;; %) by replacement
p — —p we obtain

Ep(xy — X, ty — b3 ) = —Ext- flp|>%{exp[[ip(x1 —xz)] + iw(p)(t;, — tz)]}%-

And therefore finally we get

d#3p

Af(xy — Xp,t, — t5) = Ext- [ sin[w(p)(t; — ty)]exp[ip(x; — x)] ToZam?:

[pl=a
Thus for any point§x,, t;) and(x,,t,) separated by space-like interval we obtain Mftc, — x,,t; — t,) = 0,
sinceAf (x; — x,,t; — t,) is a Lorentzz-invariant tempered distribution.

Theorem 13.13 (Time zero free field- -locality) Letf, f, € S f, CR#3, *R¥#3) with suppf,  0,, andsuppf, ©
0, are disjoint bounded open regions of vector sfRe then[e# (f,, 0), ¢} o (f,, 0)] = 0.

Proof. It follows immediately from Theorem 11.12.

Theorem 13.14 Let O be a bounde#-open region of vector spad3, lett € *R? , letg be a nonnegative
function inL¥ ("R#3) n L% ("R#3) and letg be identically equal to one @h.ForA € B,(0), then

0:(A) = {Ext-explitH (g)]}A{Ext-exp[—itH (g)]}



is independent of ando;(A) € B,(0,).

Proof. Let 62 (A) = {Ext-exp[itH,|}A{Ext-exp[—itH,]|} ands] (A) = {Ext-exp[itH;|}A{Ext-exp[—itH,]}.
Notice that generalized Trotter's product formslaalid for the unitary groupxt-exp|it(H, + H,;(g))]. Thus we
get the following product formula for the assoaibéeitomorphism group:

0 (4) = #lim,-oo[ (09m0L )" (A)]. (13.11)

Each automorphism/ maps eactB,(0;) into itself and is independent gfonB,(0;) for |s| « |t|. To see this, let
x(0,) be the characteristic function of a 8etWe assert that

i () = {Ext-exp[i(t/n)H;(x(0,))]}C{Ext-exp[—i(t/n)H,(x(0,))]} (13.12)

for anyC € B,(0,) and thawt{ (C) € B,(0,). In other words the interaction automorphism hapagation speed
zero and is independent gfonB,(0,) for |s| « |t|. The theorem follows from (13.11), (13.14) and diteen 13.9.
To prove (13.11), we rewritd; (g) = H,(x(0,)) + H,(g[1 — x(0,)]) as a sum of commuting settadjoint
operators. By Theorem 13.1Ext-exp|itH,;(x(0s))] € By(0s) and so the right side of (13.3) belongBig0;).

By Theorem 70,

Ext-exp[itH;(g[1 — x(05)])] € B4(0,)’

and (13.11) follows.
Definition 13.13 Let B be a bounde#-open region of spacetindé} and for any time, letB(t) = {x|x,t € B}
be the time time slice ofB. We defineB,(B) to be the von Neumann algebra generated by

Usas (B4(B(D))). (13.13)

Theorem 13.15 The generalized Haag-Kastler axioms (1)-(5) atiel ¥ar all these local algebr& (B).

Proof (Except Lorentz rotations) The axioms (1) anda®) obvious, while (4) follows easily from the fimi
propagation speed, Theorem 11.10, together withirtte zero~-locality, Theorem 11.12. Because the time zero
fields coincide with the time zero free fields, dretause the time zero fields gene®dy Theorem 11.12 and the
definition of the local algebras, the free fielduk carries over to our scalar model with intei@cH, # 0. In the
Poincaré covariance axiom (3), the time translasagiven byo,. Let B + t be the time translate of the space time
regionB c M}. Then(B + t)(s) = B(s — t) and so

0 [Us 0, (Bo(B()))] = Us 0sse (Ba(B()) = Us o (Ba(B(s = 1)) = Us e (Bo(B(s + 1)) (13.14)

Thusat(B#(B)) = B,4(B + t) and axiom (3) is verified for time translationén& the local algebras a#enorm
dense iB, and since automorphisms @f-algebras preserve tlienorm,s, extends to an automorphism of
algebraBy,.

Definition 13.14 To define the space translation automorphignwe set now

P* = Ext- f”p”«% p*at (p)a(p) d*p,u = 1,2,3; 6,(A) = {Ext-exp[—ixP]}A{Ext-exp[ixP]}. (13.15)

Then we get {Ext-exp[—ixP]}@, (x){Ext-exp[ixP]} = @,,(x + y), {Ext-exp[—ixP]}m, (x){Ext-exp[ixP]} =
P(x +y).

The following theorem completes the proof of Theorem 11.16 except for Lorentz rotations.

Theorem 13.16 The automorphism o, (B# (B)) = By4(B + x), st(o,) extends up to Cj-automorphism of By, and
{x, t) - st(o,)st(o,) = = st(o;)st(o,) defines a 4-parameter abelian automorphism group of By.



Theorem 13.17 Let O be a bounded-open region of space and ®B{(0) be the von Neumann algebra generated
by the operatorBxt-exp[i(@, (fi) + m,(f2))] wheref,, f, € Ef,("RE) andsuppf, < B, suppf, < B. Then

Ext-exp(itHy)By;(0)Ext-exp(—itH,) < B4(0,).

Remark 13.7 We reformulate the theorem by saying tHathas propagation speed at most one.

In order to obtain automorphisms for the full Laregroup and to complethe proof of Theorem 11.16, there are
four separate steps.

1. The first step is to construct a séHadjoint locally correct generator for Lorentz radas. This generator then
defines a locally correct unitaproup and automorphism group.

2. The second step is to prove this staterfwrthe fields, by showing that the fiejg,(x, t), considered as a non-
standard operator valued function on a suitableallonand is transformed locally correctly by ouitary group.

3. The third step is to show that the local algel#a&3) are also transformed correctly.

4. The fourth final step is to reconstruct the lmzegroup automorphisms from the locally correeicgs given by
the first three steps. This final step is not difft as in in the case of the two dimensional spiaeai = 2, see [16],
[17],[18].

Let Hy,,(x) denote the integrand in (13.1), where
Hy, = Ext-{ Hy, (x)d*3x = Ext- f% (m2(x) + V¥p2(x) + m2p2(x)): d*3x . (13.16)
The formal generator of classical Lorentz rotatins
MR¥ = MJ% + MPK = Ext- [ x*H,,, (x)d™x + Ext- [ x*: P (¢,,(x)):d"x, k = 1,2,3. (13.17)
The local Lorentzian rotations are
M2 (g{,957) = eHou + Hoe(91) + Hie(, 95°), Hoe(91) = Ext- [ Ho () (X)d*x. (13.18)

We require thab < ¢ and thatg® (x;, x,, x3), g5 (x1, x,, x3), k = 1,2,3 be nonnegativég00 functions. In the

second step we require more, for exampleaha[gik) (1, %5, %3) = x, andggk) (x1,%5,%3) = x5, k = 1,2,3in
some local spacaegion. This region is contained in the Cartesiartpct[e,*) X [g,*0) X [£,"). By using
decomposing H,(g'¥) into a sum of a diagonal and an off-diagonal terenobtainH,,, (g*') =

Ext- [ ugf;(k, Da*(k)a()d®kd** 1 + Ext- [v® (k1) [a*(k)a* () + a(=k)a(=D]d*3kd*31 =

0D,x

= H,.(9{) + HEZ (1),
where

v® (e, 1) = ¢, x (e, L) (O u() + (k, 1) + m?) [u(Ou(DI ™2 g (—ky + L, —k;, + L, —ks + 1),

v® (k1) = cox (e, 1,0) (—p(Ou() — (k, 1) + m) [ pD] 2G50 (—ky — L, —k; — L, —ks — 1),
and wherde = (ky, ko, k3), U= (1,15, 13),{k, 1) = 33, ki 1, x(k, 1,3) =1 if |k| < 3 and|l| < x, otherwise
x(k, 1) = 0.
Theorem 13.18 (a)v (%), € L5("¥). (b) Functiorw 4 is the kernel of a nonnegative operator g6 (k —
D+ [;’vg‘; is the kernel of a positive se#f-adjoint operator, fof = 0, these operators are real in configuration
space.



Proof. The statement (a) is obvious. The statement (bjaged by using a finite sequence of Kato pertuobat
Letvék) = ep(k)(k — 1) + Bv ) and let/z andV), denote the operators with kerneg) andv %)
correspondingly. The operatdy is a sum of three terms of the fodhM,, A in configuration space, whebé, is
multiplication byg, = 0. Thus0 < V,,. Moreover fory sufficiently small, but chosen independentiysofve
obtainyV, < %VO < %(V0 +BVp) = %VB and thereford,,, = V; + yVp is a Kato perturbation, in the sense of

bilinear forms. Consequently if the operakigris self+#-adjoint, so i¥/z,, andD (V;ﬁ,) = D(v/?). Thus

canonical finite induction starting froly = V5 shows thal; is self-adjoint, for alp = 0.

Theorem 13.19 The operatot? (g) is nonnegative aneH, + BHP (9) is selt#-adjoint,for all 8 > 0.
The main purpose of the third step is to give aacawt definition of the local algebr@s (B). Le f € £ (B) be
the *R#3-valued function with support iB. Let {a;}I;,n € *N be finite hyperreal numbers and consider the
expressions

©i(f) = Ext-[ ofi(x,t) f(x,t)d*xd*t (13.19)
Pi(f,t) = Ext-[ o (x, ) f (x,£)d"x (13.20)

R(f) = Ext-EiL, a0 (f, t) (13.21)
i (f,t) = Ext-[ ml(x,t) f(x, t)d*x. (13.22)

Forg =1 on a sufficiently large set (the domain of depamag of the regioR), the time integration in (1)
#-converges strongly, and all four operators aboeesgmmetric and defined (D(H(g)).

Theorem 13.20 The operators (13.19)-(13.22) are essentially#eltijoint on any#-core forH (g)*/?.

Theorem 13.21 The algebra By (B) is the von Neumann algebra generated by finitelynded functions of
operators of the form (13.19).

Proof. Note that if a hyper infinite sequendd,, } of self+#-adjoins operators-converges strongly to a self
#-adjoint#-limit A on a core foAl then the unitary operatoExt-exp(itA,) #-converge strongly t&xt-exp(itA).
Using this fact, one can easily show that the dpesg1) and (4) generate the same von Neumanbral@,, (B)
and thatBy, (B) o B(B). To show thaBy,(B) c B(B), recall that a self#-adjoint operatod commutes with a
finitely bounded operataf providedCD c D(A) andCA = AC onD, for some cor® of A. Equivalently is the
condition that the operatar commutes with all finitely bounded functionsAafAlso equivalent is the relation
CA = AC onD(A). We choosd = D(H(g)). If the operatoC commutes with all operators of the form (13.20),
it also commutes o (H(g)) with all operators of the form (13.21). Hence ve¢®By (B)' < By, (B)' and so
By1(B) = By (B)" « By(B)" = By(B)".

Remark 13.8 The Poincare groufP, is the semidirect product of the space-time tiatimhs grougR>? with the
Lorentz group0(1,3) such thafa, + A,}a, + A,} = {a; + Aya,, A;A,}. Herea € R andA(B): (x;, t) -

(xl- x cosh(B) + t x sinh(B), x; X sinh(B) + t X cosh(ﬁ)),i = 1,2,3. We prove that there exists a representation
o(a, A) of the Poincare grougP by - automorphisms dB,, such that (a, A)(B#(O)) = By({a, A}0) for all
bounded open setand all{a, A} € °P;. The Lorentz group composition law giveéa, A) = a(a, ) (0, A).
Obviouslythe existence of the automorphism representat{enA) follows directly from the construction of the
pure Lorentz transformatian(0, A) = o(A). One obtaing (A) by constructing locally correct infinitesimal
generators. Formally, the operators,

2
Mok = Mg'lf{ + MI% = Ext- f*R§3%{: T, (x)2: +: (V¢H(x)) i +m?: go,f(x)z:}xkd%x + Hz,;f(xkg) (13.23)



k = 1,2,3 are infinitesimal generators of Lorentz transfatiores in a regior® if the cutoff functiong equals one on

a sufficiently large interval. We consider now tiegions0, contained in the sefs € *R¥3| x;, x,, x5 > |t]| + 1}.

Thus for such region8, we may replace (1) by = Ext- [, 4 H(x) x* g (x)d**x, with a nonnegative functions
(4

x*g(x), k = 1,2,3. HereH(x) is the formally positive energy density:
2
H() = 2 {1, (0% +: (T, (1)) +m: 0, (0% 4 Hy () = Hop () + Hy ().

ThereforeM* is formally positive. In fact it is technically neenient to use different spatial cutoffs in thesfiand
the interaction part d#°%, k = 1,2,3. Final formulas foM2* reads

My = M (g0,9%) = aHo, + Hon (x" g6) + Hye(x*g). (13.24)

Here

0 <a and0 < x*gk(x),0 < x¥g (x),k =1,2,3
and in order that (13.24) be formally correct, wsuane that:

a+ xkgk = x* =xkg (13.2)
on[1,R]® =[1,R] x [1,R] x [1, R] with R sufficiently large.
For technical reasons we assume that:
a + xkgk(x) = x*, k = 1,2,3 onsupp(g).

By above restrictions ogk andg we have thatupp(g¥), supp(g) c {x|a < x*,k = 1,2,3} and we show that the
operatorM2¥ is essentially self#-adjoint and it generates Lorentz rotations in gelata B, (0,)

Ext-exp(iBM2*)B,(0,)Ext-exp(—ifM2¥) c B,({a, A($)}0,) (13.25)
provided thaD, and{a, A(8)}0, are contained in the region
{x e "R¥,t e "R¥ [t|+1<x, <R—|t],k =123}, 13(26)

whereM %% is formally correct. These results permit us tbralethe Lorentz rotation automorphisnid) on an
arbitrary local algebr&,(0). Using a space time translatiota), a € *R** we can translaté into a region

0 +a=0; c{x € R te R¥ x; > |t| + 1} andfor R € *R¥ large enoughp, and{a, A($)}0; are contained
in the region (1) we define(0, A(8)) = a(A(B)) by

a(AB) T B4(0) = o({=A(B)a, 1N ({0, A Do({a, 1D 1 B4(0).

Theorem 13.22 Let M°*(g,, 9), k = 1,2,3 be given by (126), withr, g, (x), g(x) restricted as mentioned above.
ThenM®(g,, g) is essentially sel#-adjoint onC " (H n H,).

Theorem 13.23 Let 0, and{0, A(8)}0, be contained in the set (1). Then the followingnitty holds between self-
#-adjoint operators:

Ext-exp(iBM°®) @i (f) Ext-exp(iBM°) ~ ¢l (f({0,A(B)}x)) =

Lo @% (F0, A} x, D) ) dxd . (13.27)



Here providedsupp(f) < 0;.
The proof of the Theorem 13.23 is reduced to thidigation of the following equations

a* a* .
{ka + ta#xk} O, t) = [IM, @} (x, )],k = 1,2,3. 3(28)

Here (13.28) that is equation for bilinear formsasnappropriate domain. Sind* is self#-adjoint, we can
integrate (13.28), thus we compute formally foe= H, ,, + H;,.(g),

[iM%, pf(x,t)] = [iM°%, Ext-exp(itH) @} (x, t) Ext-exp(—itH)] =
Ext-exp(itH)[iM°* (—t), o (x, 0)]Ext-exp(—itH). (19)2
HereM% (—t) = Ext-exp(—itH)M°*Ext-exp(itH). Formally one obtains that

o (—t)" .
MO%(—) = Ext-z > ad" (H) (M), k = 1,23,

n=0

Note that ifM°* andH were the correct global Lorentzian generatorskaahiltonian they would satisfy
[iH,M°¢] = ad (iH)(M°*) = Pk, [iH,[iH, M°]] = 0, M®*(—t) = Mk — Pkt (13.30)
HerePk, k = 1,2,3 are the generators of space translations. Thus t81) we get
[ M, @} (x,0)] = [iMg*] = xm}(x, 0), [iP*, 9} (x,0)] = =V (¢) (x, 0).

Formally we have (130).However the difficulty withis formal argument is that and M°¢ do not obey (132)
exactly, since they are correct onlydpn. We have instead (13.30) the equations

[iH,M°] = Pk, [iH,[iH, M°]] = R,k = 1,2,3. (13.31)
HerePk . acts like the momentum operators only in the megig i.e.
[Pllf)c' go;:(x, t)] = [Pkl (pﬁ(x, t)]l (x’ t) € 01'

Hence[iH, P¥.] = R,k = 1,2,3 is not identically zero, but commutes wih(0,). Formally, further
commutators oR¢, k = 1,2,3 with H are localized outside regi@n, and (13.28) follows formally even for our
approximate, but locally corregt andM°%. In order to convert this formal argument into aorigus mathematical
result, we apply now generalized Taylor series agjmn [13] for the quantities

E(—t) = (Q, [ iM% (=1), @ (x, 0)]Q), k = 1,2,3. (13.32)
HereQ € ¢ *(H) and thus we obtain

d¥E(0) L d*2E, (&)
d*t 2 d*t?

E.(—t) =E,(0)—t , Wheref € [—t, t].

From (13.31) we obtain

d"E (-8
d#t2

= (Ext-exp(iEH)Q, [iR°, @} (x, &) | Ext-exp(iEH) Q).

Note that(x, t) € 0, so that withf € [—¢,t], (x, &) € 0, and therefore



[RIC, @i (x, )] = 0. (13.33)

After integration ovex € *R* with a functionf € S (*R¥?) we obtain the operator identity:

Ext-[ o[RS, @ (6, O] f(x)d™x = 0,k = 1,2,3. (13.34)
Therefore d#:ffz(f) =0if |¢€] < |t] and
E(—) = E(0) — 2550 — (0 (iM%, o} (x, 0)] — e[ Py, 0} Cx, 0)]}00) =
=(Q, (xm}i(x, 0) + tV* () (x, 0)} Q).
Thus we get
(13.35)

[iMOK(=1), pf(x, 0)] = xm}(x, 0) + tV* 5 (x, 0)
Inserting the relation (13.35) in (131) finally wetain (13.28).This completes the proof of Lorecdzariance.

Definition 13.14 For the local free field energy we 5(g) = T (g) + T(g), where

R (k) Chez) ey eg) +m?
T3(9) = ciExt- [\, A" kiExt- [\ d" kygUech — k3, kf — k3, Kk} — k3 {“ “J‘u;k:)u(lk; +m}x (13.36)

at (ky)a(k,) =

#3 #3171, (11 17,2 3 1,3 3y [l u(ky)+kb kE+m? t _
d klExt'flkzls;:d k,G(ki— k3, ki —k3 ki — kz){ \/Ii(k1)li(;€2§ }a (ka(ky) =

i=3
=3¢ Ext- flk1|5x

= Z?=1 T01,l (g)!

2 _ #3 #31, Arl 11,2 3 1.3 3y |~ k) (k) +(kq ko) +m?
Ty (g) = c,Ext- flkllsﬁd k. Ext- f|k2|S% d@ k,G(ki — k3, ki — k3, ki — kz){ NS } x  (13.37)

X {aT(k1)aT(_k2) + a(=ky)a(k,)} =

i=3 _ #3 _ #3p sl _ 1 1,2 _ 1,3 1,3 _ 1,3 —#(kl)#(kz)+kik§+m2}
128 ot [ 7 Bt 0 Reo Uk — 3, KE — I I — I { il

X {aT(k1)a+(_k2) + a(—kpa(ky)} = 21'3:1 Tol,i(g)-

Here ky = (ki, ki, k), ky = (k3, k3, k3), (kg kp) = X3 ki k5, §(p) = Ext- [ s (Ext-[i(p, X)) g (x) d*3x.

Similarly, for thecomponents of the local momentum we 8&1(g) = P'V(g) + PI®(g),i = 1,2,3 where

P (g) = ¢, Ext- S0 @™ KaExte f | d* ey gk — ke, kE = K3,k — k) x (13.38)
{ TRtk }a (ka(k,),
A" kg Ext- [, A" kg (ki — K,k — K3,k — k3) x (13.39)

P@(g) = c,Ext- flk1|5x



Kt ka0 g ot
X{ Tt R() }{ a'(ky)a'(—kz) + a(=ki)a(k;)}-

Definition 13.15 Let P, (f) be the local operator, defined foi€ S (*R#%) by
Bo(f) = Hoy (f) — m? f*,Rags: @2 (x): f(x)d®x (13.40)

Theorem 13.24 Suppose that the operatat§¥, k = 1,2,3 andH are given by¥%* = aH, + T, (%9 +
T;(xx9,), H 2 H,,, + H;,, , whereH, = H,, andT; £ H,,. Then the following statements hold.
(1) Fork = 1,2,3, D((M°)?) € D(H),D(H?) c D(M°¥).
1 1
(2) Fork = 1,2,3, D(M°*) c D ((H + b)E), DH)cD ((MO" + b)E), whereb is a constant sufficiently large so

thatH + b andM + b are positive.
Proof By Theorem 11.3, D((M°*)?) ¢ D(H,N,)) andD(H?) c D(H,N,,). Elementary estimates show that

D(N;) c D(Tl(xkgl)) n D(TI (91))

and by Theorer8.2.1, we getD(H,) c D (T0 (xkgék))) and therefor® (H,N,,) ¢ D(M°¢) n D(H). This proves
inclusions (1). Note that

D(Ho) < D ((H +b)?) (13.¢)

By Theorem 3.2.1, the proof of (13.@') extends to show th#&(H,) c D ((M + b)%), sinceD(M*®) U D(H) c
(H,) the inclusions (2) hold.

Theorem 13.25 Let the operatorsy %%, k = 1,2,3 are given by % = aH, + T, (xkgék)) + T, (xxg1), Where
Hy 2 Hy,, and T; £ H;,,. Then the following statements hold.
(1) Forl = 2,3,4,k = 1,2,3

M%:D(HY) —» D(H'™?). (13.41)

(2) As operator equalities dd(H?) for k = 1,2,3,

(k)

[iH, M%] = 3153 P <M> (1312)

a#

(3) As operator equalities dWH*), for k = 1,2,3,

[iH, [iH, M°]] = Xi=3 B, <M> yi=3 (

#
dxl

) (13.43)

d#x;
(4) The roles oH andM°* can be interchanged in the following sense:lfer 2,3, 4 and fork = 1,2,3,

H:D((M*)") - D((M*)'=2). (13.4%)
The equalities (13.42) hold on the domAif(M°*)3), and orthe domaind ((M°%)*), for k = 1,2,3,

[iMOk, [iM°%, H]| =

pap ((d (xkgo")))> (( (xkgl)>) e i&((aﬂkgé"))d#x(wﬁ)) (13.8")




Remark 13.9 If condition (13.2") also holds, then the double commutators (13g8rimally localized outside a
neighbourhood of the reglm p]- Itis this localization, made precise in thedaling sense: that these results in
M generating Lorentz transformationstire reglorm[a'b], see Definition 11.16.

Proof The case of (13.41) fdr= 2 is covered by Theorem 13.24, which also defi1&%, k = 1,2,3 as a bilinear
forms onD (H?) x D(H?). From this and the fact that B,, andT, are operators defined @(H,N,,) > D(H?) it
follows that the terms involved in (¥2) and (13%3) are defined as bilinear forms BGH?) x D(H?). In Lemma
6.6 we will prove that (1212)-(1343) hold as bilinear forms an(H?) x D(H?). Assuming this, we now prove
parts (1)-(3) of the theorem. Lgty € D(H?). We have fok = 1,2,3,

at (k
<HX' MOkl)b)# (X' MOkHll’)# - l(X'Z; 3P1< ( el )> l,b># (1344)

d#x;
Since, by Theorem 104dnd Theorem 11.1
[(Ho + D&l < const [|[(H + b)Ql 4 (13.45)
forallQ € D(H), it follows from Theorem 11.3hat
IM°% Q| < ||(Hy + DQ|l4 + const ||[N2Q||s < const [[(H + b)?Qls, (13.46)
for all Q € D(H?). LetQ = Hy, then by (13.46) we obtain the inequality

[(x, MO Hip)y| < [constli(H + b)*llslllxlls- (13.47)

Since by Theorem 9.8nd (13.45) we have the inequality

Xk g
|<x,z§z'i‘P’< s )>¢>#

d*x;

[const||(Ho + D) ¥ll¢]llxlls < [const|[(H + b) plle]llxlls,

we get by (13.44) and (13.47) that
[(Hx, MO )] < [constl|(H + B)*llalllxll4- (8)

HenceM < € D((H It D(H?))") sinceH is essentially sel-adjoint onD (H?). This proves part (1) fdr= 3. As
a consequencé[H, M°¢], k = 1,2,3, is an operators oB(H?) and by (13.44), we obtain

Xk9o

(k)
(X' [H' MOk]II))# = <X'Z:Z§ Pl < ( )> d})#

dtx;
for all y,y € D(H?). This proves (132), since thg's are#-dense.
The proof of (13.41) for the cage= 4 and the proof of (13.43) are similar. Letp € D(H*). From (13.41) with
[ = 2,3, and the assumption that (13.43) is valid asiadal form, we have far = 1,2,3

(H?x, M%)y = —(r, MO H*)y + 2(H x, M°* H)y — (x, [iH, [iH, M*¥]|)y = (13.49)

#2(x, (()k)
= —(x, M**H*Y)y + 2(x, HM"*H )y — (x, {Zggg P, (%) yi=3 <d 9 )} "

d*x;

By (13.48), (13.46) and the inequality



< const[l|(Ho + D lls + IN? + D pllg]llxl

o #2(xp (()k) i
oo iz () - szt (52 o

which follows directly from Theorem 11.3, we haverh (13.49) the inequality

(H?x, M)y < [constl|(H + b)*lls]llxl-

HenceM % € D((H? I D(H*))") = D(H?), proving (13.41) for the cade= 4. Thus[iH, [iH, M°]] is an
operators defined ob(H*), and we find from (13.49) that (13.43) holds.

The proof of parts (1)-(3) of the theorem is thampleted when we establish the equalities (13.43)4@3) in the
sense of bilinear forms an(H?) x D(H?) andD(H*) x D(H*) respectively. The proof of part (4) of the theorism
similar. For example, we replace the inequality.453 by the inequalities

[(Hy + DQl« < const ||(M®* + b)Q|| 4. (13. 50)

for all @ € D(M°%). This also follows from Theorem 10.1 and Theoreml 1By Theorem 11.3, we replace (13.46)
with

IHQ |4 < const [[(M% + b)2Q||s, (13.51)

To complete the proof of part (4) of the theorera,iveed to establigii3.42) as a bilinear form on
D((M®)3) x D((M®)3) and (13.3") as a form ob ((M°*)*) x D((M)%).
Theorem 13.26 As bilinear forms oD (H,) x D(H,) for f, g € S, ("R¥#3)

(T (. To(@)] = E53P (£ 52— g 525), (1352)
7o), PiCg)] = P (£ 52) =T, (9 5L). (13.53)

The equalities (13.52)-(13.53) also hol¢fi= 1 or g = 1. In particular from (13.53) we get

[iHo, P()] = P (%2 2). (13.54)

d*x

SinceD(H,) > D(H) u D(M°F), these equalities hold as formsD(H ) x D(H ) and onD (M%) x D(M®F).
Proof The operator,, P, P are #closable (symmetric), defined @&{H,) and bounded as operators relative to
H, + I. Therefore (1352)-(13.53) are defined as bilinear forms BiH,) x D(H,) and it suffices to establish
equality on a core faf,, e.g. onD# = {yp € F¥|yp™ € sk (CR¥™), ™ = 0 for all sufficiently large m}. By
direct calculations o@# x D# one obtains the equalities (13.44)-(13.46). Fangle

: 1 _ #3 #3 o pl)u@)+H{kp)+m
[iHo, TE(g)] = ¢ Ext- flk1|S% d* k Ext- flkzlsxd pGky — vk — 2,k3 — p3) {W} X
[Hp, a®(K)a(p)] =

, A (k)u(p)+{k,p)
iy Bxtf, L, AP KBt [ 4% pglky = ik = 2,k = po) (k) — u(p)) {LEBDHED 4t g o )

#3 #3 ~ kin@)+pipk) || _
=%z 1{C1Ext f|k |<x d™ k Ext- flk I LA Pk = p)G(ky — p1ky — 2,k3 — p3)] {W}} =



= 3iz3 PO (£9), (13.55)

d#xi
since the following equality holds

(k) — ][ u(p) + (k,p) + m?] = {XiZ3(k; — py) [kiu(p) + pu(k )]}
By a similar calculation o®* x D* one obtains

i= # #
Tpiw(pte AT
i=1 d#xi d#xi '

L
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The remaining calculations are similar.

Theorem 13.27 As bilinear forms o (H,,N,,) x D(Ho,N,,)

[iT; (h), To(f)] = —4AExt- [y £ () RCx): i Co)mie (x): A, (13.56)
[iT, (), PH(F)] = =T, (%) (13.57)

Proof. The operator$,, T;, P are#-closable, defined oh (HO,;,N;,), and are bounded as operators relative to
(Ho,N, + I). Note that the right hand side of (13.56) is aneitir form oD (H, ,,N,,) x D(H,,N,), and that

(Ho N, + I)_1 [Ext- f*uxﬁ () h(x): @B ()l (x): d#3x] (HoxN, + I)_1 is a bounded operator. Hence each term

in (150)-(151) is a bilinear form aB(H,,, N, ) X D(H,,N,). It suffices to establish equality & x D*, as in the
proof of theTheorem 84, sinceD* is a#-core forH, ,N,,. Note that on the domal* x D*, the equalities (150)-
(151) are seen to hold by direct computation in motum space similarly to proof of the Theorem 11.27
Remark 13.10 We assume now the relations:

0<a, xkgi(k)(xl,xz,x:.;) = [hgk) (xl,xz,xg,)]z,k =1,2,3;i =0,1; hgk) € S (CR#). (13.58)
On a neighbourhood of a polyhedienb]® c *R¥, we assume fdt = 1,2,3
o + X g0° (y, %5, X3) = Xy = Xy (%, X2, X3). (13.59)
For allx;, € *R*3, k = 1,2,3, we assume
X gr (%1, X2, x3) = (0-’ + xkgék’)(xl,xz,x;;)) 91 (x1, %2, X3). (18)6

The conditions (13.60) are satisfiedvif+ xkggk) (x4, x4, x3) = x; is valid on the support gf, for k = 1,2,3. The
condition (13.60) makes the required commutatorsely defined operators, rather than bilinear forms
Definition 13.16 Let R{, ,; be a set

Rivp) = (01,25, %3,1) € "RE*a+ |t| <x; < b —|t| forallk = 1,2,3}. (13.61)

Remark 13.10 Note that the operator*, k = 1,2,3 are formally a Lorentz generators for the spacetiegion
ﬂ%ﬁa_b], also note that (13.58) implies that intervat [a, b] lies in the positive half line. Of course, we @dso

consider the operatofd® = —aH, + To(x,G°) + T; (2, 5%) with g& (x) = g* (—x) and therefore the
operators %%, k = 1,2,3 are locally correct generators ff, ,; = R{_, ;.



Definition 13.17 We also writeR} insteadR{, ,; forI = [a,b] and we Writeli for1® =[a—s,b +s]3. The

conditions (13.58)-( 13.60) are satisfied sincecar chooscgi(k) so that for some, 0 < ¢ < a/3,

(k) c 13

suppg; © I5,;suppgo 3. k=123 (13.62)

anda + x,9% (x1, %5, %3) = xp, X1 € I, . Hence the conditions (154) hold. We can alsg,let 1,x, € I?; sothe
conditions(13.59) hold orli. The Hamiltonian

H = Hy, + T;(g1) (13.63)

is correct in the regioR}. We shall work as above with this particular cleodt the Hamiltonian.

Theorem 13.28 For the operator® °* in Theorem 11.25 and in (13.63) the following hold:

(1) D((M°*)?) c D(H), D(H?) € D(M°*), k = 1,2,3

(2) D(M®) € D ((H + b)2),D(H) < D (M +b)z), k = 12,3

whereb is an constant sufficiently large so that the apes H + b andM + b are positive.

Theorem 13.29 Ander the conditions (13.59) and (13.60) the eitjgal(13.42)-(13.43) and (134 hold as bilinear
forms onD (H?) x D(H?) and onD((M%%)?) x D((M®%)?).

Proof As bilinear forms o (H?) x D(H?) or D((M°)?) x D((M°*)?) for k = 1,2,3 the following equalities hold
[iH, MO] = [iHo, Ty (2 g$”)] + {[iHo, T; (e g:)] + [T (91), aHo] + [iTy (1), To(xg$)]}. In order to compute
these commutators we apply Theorem 1B2d Theorem 11.28.

] - A at(x g(k)
[iH, M°] = %z} P! <(d:—x:) + 4AExt- f*R§3{xkgl(x) —ag,(x) - xkgl(x)gék)(x)} L (O (x): dPx =
# (k)
iz3 pi (%) (13.64)

By condition (13.60),

at
d#xi

(xk, —a-— xkgék’)(xl,xz,x3)) 91(x1'x2’x3)] = 0.

Andx, —a — xkgék) (x1, x5, %x5) = 0 for x;, € supp(g,)- Therefore foii = k we get

d#
91 (X1, %2, %3) = gl(xl,xz,xs)ﬁ(xkgék)(xpxz,xﬁ)- (13.65)
And fori # k, x;, x;, € supp(g,) we get
d#

i (0l G x)) = 0. (13.66)

From (13.64)-(13.66) we get far=k, k = 1,2,3
d#(xkg(k))
P 0k1 — pk 0
[iH, M%) =P ( o) (13.67)

And fori # k,

p (2l o, (13.68)

d#xl—



These equalities (13.67)-(13.68) hold by the comait (13.60). Hence the equality (13.42) holdD¢H?) x
D(H?) and on the domaib ((M°%)?) x D((M°)?). This proves (13.42).

Similarly, using Theorem 11.2¥hd Theorem 11.28, we compute in the sense ofhitiforms oD (H?) x D(H?)
or onD ((M°%)?) x D((M°*)?)

(k) (k) (k)
[iH,P‘ <7(;‘§9° )>] - [iHOK,P‘< “k90 )] [lT,(gl) pi <7(;‘§f° )>] = (13.69)
(4% (xg® g0
= P <d Ei#xi? )> -1 (d d#i )

From (13.65)-(13.66) and (13.68) we getifet k, k = 1,2,3

(k) #2 (k) (k)
. k (xkgo ) _ B d (ng ) _ < Xkdo )
[lH,P (—d#Xk )] = P;,< i T, (e ). (13.70)
And fori # k,
- d#z(xkg(k)) x1.g"
P}{ (T - TI <d+xlo> =0. (1371)

These equalities (13.70)-(13.71) prove (13.43).
Similarly for k = 1,2,3

- [iMO",Pi (—(;";jg’k))ﬂ = —a [iHO, P (—(;";jgk))>] - (12)7
- [iTo(xkgé")), P! (gL(k)))] - [m (X9, P" <(d;“’m)>] =

_ [a*2 (k) a#? (k) (k) . 0
oo () ) o () o )

From (13.65)-(13.66) and (13.72) we getifet k, k = 1,2,3

- [iMO", Pk <—d#(;ff,:k))>] = —a [iHo. Pk (—(:fffk))ﬂ - (13)7

[lTo(x g k)) Pk <#(:+f§k))>] - I:iTl(xkgl)' p* (%)] =

_ [a*? xkg(k) a#? xkg(k) xkg(k) a* at xkg(k)
= —aP}{ (71(1#)(}{ ) X gék) 75#)( ) +T0 (d# 9 ) +T1 d#xk ngl(di) )

which simplifies to (13.3") by condition(13.60).

Again let the operato®%, k = 1,2,3 andH are given byM% = aHy + To(x, 9% + Ty (xg1), H 2 Hop + H, e
whereH, £ H,,, andT; £ H,,, and assume that (13.58) and (13.60) ) hold:

Theorem 13.30 If n > 2, D(H™) is a#-core forM°* andD ((M°*)™) is a#-core forH.




Proof D(H?) ¢ D(M®*), k = 1,2,3 by Theorem 13.24We prove first thab (H?) is a#-core forM°. Since
D((M°%)?) is a#-core forM, it suffices to show that

D(M° I D(H?)) > D(H?) (13.74)

We use the smoothing operator, foe= 1,2,3,...,

B =[1+ic+ |, (13.75)
which has the following properties
E;: D(HY) - D(H™Y), (13.76)
IEll, <1, (13.77)
st. #-lim;_, - Ej (13.78)

and onD(H), [E;, H| = 0. Lety € D((M°%)?). SinceD ((M°¥)?) c D(H ), E; € D(H?), by (13.76). Since
Ejp — 1 the desired inclusion (13.74) would follow from

M Eqp — MO, (13.79)

We now prove (13.79) for alp € D((M*)?). First we show that faR € D(H?),k = 1,2,3,

. # (k)
MOKE,Q = E;MO%Q — L £, p¥ (M%)) E;Q. (13980
J

d#xi

Each term in (13.80) is defined sinRéH?) c D(M°%), k = 1,2,3, andP* is defined orD(H ) < D(H ,). We now
compute|E;, M**| onD(H?). If Q € D(H?)

. # (k)
£ MO*]0 = BB [E, MOK]ETEjQ = E[MO% BB = S B [M°*, HIEQ =  E;P* (M) E;Q.

J d#xi

Here we have used Theorem 13.25, part (1) and)(@{Ehce we have established (13.80) on the doméiit).
Lety € D((M°%)?),0 € D(H?). SinceM®, k = 1,2,3 is self#-adjoint onD (M°%),

(E;MO*Q, )y = (M Q, Ejip)y = (Q MOKEj).
And
(MOKE;Q, )y = (Q, E;M%)y.
Thus one obtains

. #(xy (()k) i #(x (()k)
(0, [MOE )y = ((EM]Q9), = G EP (%) EjQ, )y = (Q,— EP* (%) Ejpds.

SinceD (H?) is #-dense,



. # (k)
MO Ejp = E;M%y — & E;P* (%) Ep. (13.81)

And therefore (13.80) holds dh((M°)?).The strongt-convergence (13.78) now follows. By (13.77),
E;M°*E;p — E;M %4,
And

1

<:
J

#

< const% |(Ho + D Ejl:b”# =
#

j d#x;

d#(xkg(k))
k 0

< const%”(H0 +b) Ej1/1||# = const%”Ej(H0 + b)lﬂ”# < const%lI(H0 +b) Y|y =4 0if j - oo,

pk <d#(xk93k))_> Eq

We have used the fact thate D((M°*)?) c D(H) < D(H ,). Hence by (13.81),
MOkEjl,b N MOkll)

which proves (13.79) and establishes ihé#?) is a#-core forM°¢. The inequality (13.46) and the fact that
D(H™) forn > 2, is a#-core forH? shows that

D(M° 1 D(H?)) > D(H?),.

SinceD (H?) is a#-core, it follows thaD (H™) is also a#-core forM%. The proof thaD ((M°*)™) is a#-core forH
is similar, and follows the above proof by intensgang H with M°*. In the following, we assume th#®* andH
are given by by

M% = aHy + Ty (x.9$) + Ty (xieg), H 2 Hop + Hyy s

whereH, £ H,,, andT; £ H,, and assume that (13.58-(13.60) ) hold.
Theorem 13.31 Let f € S, ("R%®) andsuppf c R, ;. then the operatap®(f) is defined oD ((M°%)?),

o*():D((M°)?) - D(M®*),k = 1,2,3 and, as the operator equalitiesd %), k = 1,2,3

[iM%, o} ()] = ¢t (122 +x. ). (13.82)

a#xk E

Remark 13.11 Note that forf real, the operatap} (f) is essentially sel#-adjoint onD (H™) for anyn > 1/2 and
1

@} (F):D((H + b)) = D ((H +b)"72), (13.83)

Proof The terms in (13.82) are operatorsiniH?) sinceg! (f)D(H®) ¢ D(H?) c D(M°%),k = 1,2,3 and
M°D(H?) c D(H) < D(¢f (f)) by (13.83) and Theorem 13.25. Note thaflleorem 11.40 (13.82) holds on
the domairD (H®). Assuming this, we now can to prove the theoreetiyle D((M°%)?), k = 1,2,3. By Theorem
11.29, D((M°%)?) c D(H ) and by (13.83) we gety € D(¢f (f)). Let us prove now that

@i ()Y € D(M),k = 1,2,3. (13.84)

1
NotethatMy € D(M°%) c D ((H + b)E) c D(¢} (f)) by Theorem 11.29 and (159), also ko= 1,2,3



# (p 20 o'
YeEeD <<p,{ (t P + X a*‘r))'

Therefore by the assumption mentioned above t#&®) (iolds on domaif (H>), we get for allk = 1,2,3 and for
all y € D(H®) that
Ok, # 0K,y — # 0k ; 4 (9% o*f
(MO%x, g (FIMO ) = (r, @l (M) +i (r, 0f (£355 + 2 52) ). (13.85)

a#xk

Sok (f)y € D((M I D(H®))") for k = 1,2,3. By Theoreml1.31, D(H®) is a#-core for theM®, k = 1,2,3
and therefore we get inclusion (13.84). By using §4) we can rewrite (13.85) in the following ecalent form

, a# a*
(x [MO%, @ (DIY) = (x, i (tﬁ + X a—#];) P). (13.86)
. 5N ok | # Cow o, 0%F a*f . :
SinceD(H>) is #-dense, we geM ", o (1Y = ip; (t I + xp E) Y, proving (13.82) on the stated domains

D(M®), k =1,2,3.
Remark 13.12 Let us consider the seffadjoint operators

MO%(t) = Ext-exp(—itH)M*Ext-exp(itH), k = 1,2,3.

Since the operat@xt-exp(itH) leavesD (H™) invariant, we have by Theorefi.29 and Theorenil1.26 that
D(H?) c D(M°k (1)), k = 1,2,3 and forl = 2,3,4 we have that

M (t):D(HY » D(H"?),k = 1,2,3. (13.87)

Let f € St (*R¥*) with suppf < R} forI = [a, b]. By (13.83) and (13.87) we can to conclude that
o*(ID(H®) € D(H?) € D(M° (1)), k = 1,2,3 and M**(¢t)D(H®) c D(H ) < D(gf(f)) or more generally, we
can replace the operatpf (f) by Ext-exp(itH) @i (f)Ext-exp(—itH). Thus fory € D(H?) andf € Si ("R#*)
with suppf < R%, we can to define the functions

Fe(t) = (W, [iM° (8), o3 (O1Y) = (b (1), [iM°%, Ext-exp(itH) p5; (f)Ext-exp(—itH)]i(t)). (13.88)
Where
Y (t) = Ext-exp(itH)y. (13.89)

Let! = [a,b],Is = [a — §,b + &] and letR,, be the causal shadowdf= I5 x I5 x I5. LetR? be a set
4 _ 1 _ 1
Rt =Ry n{Go0lltl <} ={Conlltl <ea+Isl+1el < b—Is| - |el}. (13.90)

Note that the points oR? have small times, artd? translated by times less thp lies inR3.
Theorem 13.32 Lety € D(H®), thenF,(t),k = 1,2,3 in (13.88) is twice#-continuously#-differentiable. If

a*2re) _
attz T 7

Proof First we prove thet-differentiability of i (t), k = 1,2,3. LetA,, be the difference quotient for the
n-derivative ofExt-exp(itH) att = 0. For instance,

function f has#-compact support ifk,, then for|t]| < [s],

A, (g) = e Y(Ext-exp(ieH) — I).

Note that for a given vectap € D(H™), andm + j < n, ase -4 0, we get



[[H™{a(e) = G Y|, = [I{a; () = G IH™ |, —4 0
Hence, fony € D(H™), the operator valued functiond ¢ (Ext-exp(itH) ) isn — 2 times#-differentiable, since

for j < n — 2 we get| M (Ext-exp(itH) ){A;(e) — (iH)f}l,b”# < |{a;(e) — GH) }(H + b)2¢||# -4 0. All these
functionsF, (t) has the following form

F (t) = i{M°¢ (Ext-exp(itH) ), Ext-exp(itH) @} () — i(Ext-exp(itH)@# (), M* (Ext-exp(itH) )).
For a given vectory € D(H®), o (f)y € D(H*) andF,(t) is three timest-continuously#-differentiable. Note

that

LI — (MO Hup(2), Ext-exp(itH) g} ()p) — (MO (6), H(Ext-exp(itH) ) — (13.91)

d*t
—(Ext-exp(itH) @} (f )P, HM () + (Ext-exp(itH) @} (f)p, MO H(t)).

By rearranging the terms in (13.91) and using thmain relations of Theorefl.26.1 we obtain by(143) that

T = [, MO0} (F1) = (ol (D, [H, MOK (1) = (13.92)

Taft

#(xegg”

—i (¢, (Ext-exp(—itH) )P( )> (Ext-exp(itH) Yo (HY) +

@ (P, (Ext-exp(—itH) )P ((—“"()> (Ext-exp(itH) o).

®)
By #-differentiating (13.92) and writing, for the operatoP <(;f:)> we obtain
IO — (y, (Ext-exp(—itH) )[H, P,](Ext-exp(itH) J) + (13.93)

(@ (M, (Ext-exp(—itH) )[H, P ](Ext-exp(itH) )ip) =

d#x,

(L), [ ("d—g))> = 7, (4522) , (Bxt-exp(itH) Yo} (F) (Ext-exp(~itH) Y ).

Note that the all terms in (13.93) are well definEdr instanceH P, (Ext-exp(itH) ol () is well defined since,
for a given vectoy € D(H5), (Ext-exp(itH) ol (f)y € D(H*), and byTheorem 11.26 for allk = 1,2,3 we
obtain

Py (Ext-exp(itH) )k (f )y = [iH, M°*](Ext-exp(itH) )5 ().

Note thatd M**(D(H*)) € D(H) andM°*H(D(H*)) c D(H ), soHP, (Ext-exp(itH) )o} (f)¥ is well defined.
d?F () _

Now, assuming thatuppf < R%, |t] < |s| we can to show thatd,q,—2 = 0,k = 1,2,3, this proof is based on the
locality of the operatorS,, k = 1,2,3
< d#z(xkg(k)) dtg,
S, =P, (W _ (d#Xk). (13.94)

The operators,, are symmetric o (H,N) and by (153) fok = 1,2,3 andi = 1,2,3



d#z(xkg(()k))

2
a*xp d*xp

in a neighbourhood df= [a, b]3. We prove thaf,, k = 1,2,3 commutes with the von Neumann algetva(l) =
{Ext-exp(ipj (hy) + i} (hy))|h; = h, € SE,('R#3), supph;  R,} generated by the spectral projections of the
time zero fieldsExt- f*Rgg @} (x) hy(x)d*3x andExt- f*]R*f m#(x) hy(x)d*3x, h; = h, € S, ("R¥3), supph; c R,.
Theorem 13.33 On the domaiD (H?) for k = 1,2,3 the equalities hold

[S,, W(D]D(H?) = 0. (13.95)
Proof Let D* be the domain of well-behaved vectors.
D* ={y e F¥lYp™ € SE ("R¥™), ™ = 0 for all sufficiently large m}. (13.96)

For x,, x> € D¥, direct momentum space computation gives fon ail*N
(Sixas (90;#: (hy) + ”ﬁ (hz))n)h) = ((‘Pﬁ (h) + ”ﬁ (hz))n)(psk)(z) (13.97)

1
By easy computation we get the inequalify;: (r,) + 1}t (h2))" x || < c1c2 (n!)z for constants, andc,
depending on vectoy € D¥. Thereforey € D* are entire vectors for the operafgr (h,) + 7/t (h,)), and the
sum

(io} (n)+ink (n))"

n!

Uy = Ext-Y,2, x = Ext-expli(of (hy) + 7t (h))]x (13.98)

#-converges strongly. Now, we multiply (13.97) #4n!)~* and by summation over using the#-convergence of
the hyper infinite series (13.98) we get forfak- 1,2,3 that

(Six1, Ux2)s = (U™ x1, Six2)s = (X USkx2)e

for y; € D* i = 1,2. Note that this equality extendsp€ D (H,,N),i = 1,2 sinceD* is a core for operatofd,, N
ands, and

ISixlls < wll(Ho N + Dxll4,
wherey is finite constant. Therefore fgre D(H,, N), we have proved thaty € D(S;) and
SiUy = US,x, k = 1,2,3.
For the next step we now prove thya€ D(H,, N) = Uy € D(Hy,N), so that
S Uy =USex, k=123, (13.99)
since the operatot%, are symmetric od (H,, N). We define orD (H,,,N) a#-norm by

Xl = ICHoseN + Dxlly1-

Note that the corresponding scalar product mékgg, N) a non-Archimedean Hubert space, gay. For the next
step we now prove that the opereBor= ¢} (h;) + i (h,) generates a one parameter group

U(a) = Ext-exp(iaB) = Ext-exp|ia(B = ¢} (hy) + f (hy))]



onHy, and therefore we need to prove that the operator
B = (Hg, N + DB(Hy, N + 1)1 (13.100)

iS a generator to one parameter group on a comesmp Fock space. Sin@is essentially self-adjoint onD*,
and on this domain we have that

B = B + [Hyy,N, B)(Ho, N + )1 = B + [N, B]Ho, (Ho,N + )™t + N[Hy,,, B](HoN + D1 = B + A.

HearA is bounded operator. Note th@t D* is a bounded perturbation of an essentially#eitijoint operator.

Hence it#- closure#- (@ r D#) generates a one parameter group on Fock sphcand operataB ' (Hy, N +

1)D* has a#- closure inH,, that generates a one parameter grouf,qnSince the topology df,, is stronger than
that of 7#, the#-closure ofB I' (H,,,N + I)D¥ in H,, is a restriction of- B in F# and the one parameter group in
H,, is a restriction of the one parameter group geedray#- B in F*. This proves that

U:D(Hy,,N) = D(H,,N) (13.101)

And (13.99).Therefore we have proved ti$alUy = US, x, k = 1,2,3. Now by passing to strong limits of linear
combinations of such operatdiswe obtain (13.95) on restricting to the domai{H?) c D(H,, N). This makes
precise the statement that operaysk = 1,2,3 are localized outsidé= [a, b]3.

Remark 13.13 Note that for eachy, |t;| < |s;|, the spectral projections dfxt- fmg3 e} (x)f(x,t;)d**x belong to

w (#-int(A_M)), where#-int(A_jq ) is the#-interior of A_gj= {x|(x, t;) € R} = {(x1, x5, x3)|a + |s| < x; <
b — |s|}. Note thasuppf = R%, hence the spectral projections of

Ext-exp[iH(t + t1)] (Ext- f*u@*f F(Of (x, tl)d#3x) Ext-exp[—iH(t + t;)] (13.102)

belong toW (#-int(A|t|_|S|)). For|t| < |s|, #-int(Aj;_1s)) < A; so the spectral projections of (13.102) belang t

W (A). Now we use the locality property (13.95) of thpeiatorsS,, k = 1,2,3. Note that for vectoy € D(H?), €
D(H?) we have that

YED (Ext- f*n&? of(x,0)f (x, tl)d#3x),
# — # #3 # H
and forg} (f) = Ext- fmm @5 (x, ) f (x, t)d™x d"t, by (159) it follows

Ext-explitH] ¢} (f)Ext-exp[itH]y € D(H?). (1833)

Therefore by (13.95) and the localization of (12)for allk = 1,2,3 we get
(Six, Ext-exp[iH(t + t;)] (Ext- Jogrz PR COf (x, tl)d#3x) Ext-exp[—iH(t + t;)]Y) = (13.104)
(Ext-exp[iH(t + t;)] (Ext- Jops 02O (x, tl)d#3x) Ext-exp[—iH(t + t;)]x, S¥).

Note that forit| < |s| andf € S£ (*R¥#*) with suppf < R? we can integrate the equality (13.104) aseio obtain

(Six, Ext-exp[iH (t)1pf (f) Ext-exp[—iH (t)1y) = (Ext-exp[iH (6)]@; (f)Ext-exp[—iH ()]x, Sy) =

(x, Sy Ext-exp[iH (t)]p#(f)Ext-exp[—iH (t)|). 13(105)



Here the last equality in (13.105) follows by (1B} and the fact tha, is a symmetric operator @(H,, N) 2
D(H?). From (13.105) we obtain thsgy € D(((Ext-exp[iH (t)]@f (f)Ext-exp[—iH(t)]) I D(H?))") and
therefore that

Sy € D(Ext-exp[iH (t)]pf (f)Ext-exp[—iH (t)]),

sinceD (H?) is a#-core foref(f). Finally from (13.105) we get fdt| < |s| andf € Sf, ("R¥#*) with suppf < R¥
for all k = 1,2,3 that

S Ext-exp[iH (6)]of(f)Ext-exp[—iH (t)]yp = Ext-exp[iH ()] (f)Ext-exp[—iH (t)]S, . (13.106)
We apply the relations (13.106) to (13.93). In thegey(t) € D(H>) c D(H?), so

a#?
LB = 0, for |t] < |s].

Theorem 13.34[15] Let f € S{, ("R#*) andsuppf < R¥, then on domai® (H>) the operator equalities hold for
allk =1,2,3

d#(xkgék))

[iMO(), @} (F) ] = [iM%%, 9 ()] — s [Pk ( >,<oﬁ(f>]. (13.107)

Proof Each of the six terms in (13.107) is an operatdindd onD (H%), sincep(f): D(HY) —» D(H'™Y),
M%(s):D(HY) - D(H"Y) forl = 2,3,4,k = 1,2,3, and (by Theorer.3)

d*xp

Pk <M>:D(H3) - D(H).

Let ¥ € D(H5) . Thenwe get

<l,b, [iMOk (S)' @Jﬁ(f) ]Eb)# = Fk(s)

for F,, k = 1,2,3 defined in (6.45). By Theorem 13.32, dfyhas two#-derivatives. Hence by generalized Taylor's
theorem with remaindgd.3],

Fe(s)= F(0) + SFY(0) + S F{"(2)
for somet, |t| < |s|. Furthermore, by Theorem 13.32 foe= 1,2,3,
Fi(s) = F(0) + sF{'(0)
By definition, fork = 1,2,3,
F(0) = (i, [iM°%, @ (f) Ttb)y
and by (13.92),

k
d#(xkgé )

F¥(0) = —i(y, [Pk <Tk)>,<ﬂff(f) ] Py

This proves the equality



d#(xkg(()k))

W, [MO(s), 3 () T}y = (b, [iM%, () T}y — s (¥, [il’k (d#—x,(>  @x(f) ] ar

which proving (13.107) by polarization and thelensity ofD (H>).
The next step in the proof of Theorem 13i81o pass to the sharp tintdimit of Theorem11.35, thus we need to

choose a hyper infinite sequence of functifips S, ("R#*),n € *N which pick out a time zero contribution in the
#-limit. Let us define now

Ay (f,£) = Ext- [gus 93 ()f (x, £)d"x, (13.108)
B,(f,t) = Ext- f*u&’ﬁ i) f(x, t)d*x. (13.109)

Whereg} (x) andr (x) the canonical time-zero fields. For r¢ga& S (*R¥#*), with #-compact suppori,. (f, t)

1 *
andB, (f,t) are essentially se#-adjoint onD ((H + b)E). Letf € C (R} and letf,(x, t) € St ("R¥*),n € *N
be a hyper infinite sequence of functions of tHefaing form £, (x, t) = f,(x, s)8,(t) with support ifR# and

#-converging in the weak sensefldx, s)8 (t) asn — *o. For the vectonp € D(H?>), the vectors! %% (s)y, k =
1,2,3, and the vectors

#( 5, g
MOR(S)IP,MORIP, p <d ( k90 )>1/)

d*xy

the same as in the proof of Theor&in35. Note that the bilinear fornp (x, t) for (x,t) € R} determines a
bounded operator

G(x,t) = (H + b)z 9 (x, ) (H + b) 2. (13.110)

Note that the operator valued functi6fi, t) is #-continuous in variabléx, t).
Theorem 13.35 Let f € S& ("R#*) andsuppf < R3. Then, in the sense of bilinear forms BH®) x D(H®), for
allk =1,2,3

[iM°%(s), A, (f, )] = [iM°, A, (f, )] = s[iPy, A, (£, 5)] 3(111)

HereP, = P* <M>.

d#xk

Proof Choose av*-#-convergent sequence #fmeasureg, (x, t) € Si ("R#4),n € *N as above. Consider, for
example, the first term in (13.107) as a bilineanf onD (H%) x D(H5). Lety, y € D(H®)

(W, [iM° (), @t (fo) 12004 = Ext- [ogual=iM* (), 3 (6, OY)4f (x, )8, ()" x d¥t +

+Ext- f*R?4(goﬁ (x, ) x, iM% ()Y f (x, 5) 8, (£)d*3x d¥t, (13.112)

1 1
where on the right hand sigd (x, t) is considered as a bilinear form Dr((H + b)E) x D ((H + b)E)

#-continuous in(x, t) by (13.110). Thus, by thé-convergence of thg, the terms on the right hand side of (13.112)
#-converge ag — " to

Ext- f*Rg4(— iM% (s)x, @ COP)uf (x, s)d*x + Ext- f*Rgd%’f(x))(. iM% (s))af (x,5)d"x.



This is the left side of (13.111), evaluatedyorx 1. The other terms of (13.111) are similarly obtdihg passing
to the same¥-limit in (13.107).

Theorem 13.36 [15] Letf € C ;°°( R1). As an equality of bilinear forms dh(H ) x D(H )

. atf
[i P A (f, )] = Ay (5550 5) (13.113)
d#(xkg(k))
— pk 0
P =P ( o)), (13.114)

Proof Let D* is the domaiD* = {y € F¥|yp™ € SE ("R#™), ™ = 0 for all sufficiently large m} of #-smooth
vectors. We prove (13.113) in the sense of bilifieans onD* x D* by direct computation in momentum space
for k = 1,2,3 (e.g. as in the proof of Theorem 13.26):

[ P A, 5)) = 4 (o (7 280 )

d*xp d*xp

which agrees with (13.113) becauc;‘tggk) = x;, — a on a#-neighbourhood oA= I3, while f(x, t) vanishes for
x ¢ A. Note thatD* is a#-core forH,,, and

[ Peap, A, (f, $))s| < const||(Hy, + Dl

for ally € D(H,,,). Hence the equality (13.113) extends frbfhx D# to D(H,,,) X D(H,,), since the operators
involved are closable. SindyH,,) < D(H,,,), the theorem is proved.

Theorem 11.37 Letf € C ;°°( R1). As the equalities of bilinear forms &(H?) x D(H?) for allk = 1,2,3

[iM%%, A, (f,$)] = [iH, A, (xi f, )] = B (xi f, 5). (183)
Proof The proof is similar to the proof of Theorem 13.36.

Theorem 11.38[15] Let |fl4, be the#-norm|fly, = ¢ (Ext- [.ps {IFC,Olliz + Zillof FC 0, Jd¥t).

3
Let |f|4, is finite. Then on the domaip ((H + b)E), ), the fieldp} (f) satisfies the following equation

@) (f) = —@u (0 ) = mi(f) = [iH, o (F)]. (136)

Proof Note that the first equality in (13.116) is theidifon of a distribution#-derivative. The out the difference
quotientA,f (x, t) to #-derivative 8 f readsA, f(x,t) = w note tha#-lim,_, o A.f(x,t) =

1
af f (x, t). Note that for any vectap such thatp € D ((H + b)E) by canonical consideration we get
#-lim| @ (0! v — wx(8.f G O)Y |, = 0.
3
We have fonp € D ((H + b)E) that
@(Bf (o O = €71 — Ext-explieH]) {Ext- [.gya 0 Cr, t = €)f Gr, 0 oxipal e+

et {Ext- f*Rgs‘ A, (f, t)(Ext-explieH] — I)l,bd#t}.



Here the last term-converges as -4 0 and it#-limit is: i(Ext- f*R#g, A, (f, O HYd¥t ) Sinceg;; (Agf(x t))l,b

#-converges as -4 0, the remaining term in expression {aﬁ(Agf(x, t))ll) #-converges also to#limit y,. For
x € D(H) we obtain that

() = #2—1%1 (x,e7*(I — Ext-exp[ieH]) {Ext-fR#g o, t — &) f(x, )d"xpd*t }) = (iHy, e ().

SinceH = H*, it follows thate (f)y € D(H) andy, = iHe} ()Y and therefore=oi (0f )y = [iH, o (H]P.
From the above equation we obtain

(W, (0 Hip) = Ext- f*Rg (Hy(t), Ext- f*R#s @5 (x, 0)f (x, )d®xp(t) ) d*t —
Ext- f*ch# (Ext- f*u@“ o (x, 0)f (x, )d®xyp(t), HY(t)) d*t.

Herey (t) = Ext-exp[itH]ip. Note thatp(¢) € D(Hy,) N D(H, ), and||H,, (&) — )|, < al|(H +
D)W@) = ¥(s))||, =4 0, as|t — s| »4 0. Therefore we may substituts, + H,,, for H and consider each term
separately. Note that the operathys, andExt- fR#g ©5i(x,0)f (x,t)d**x commute and thereforé, ,, contribute

zero to equality above. The following identity kgnonical computation holds for any € D(H,,,), in particular for
Y(t) = Ext-explitH]|y € D(H,,,)

(Hosxp, EXt'fR#s @3 (x, 0)f (x, )d**xip ) — (Ext- fR#s @ (x, 0)f (x, A" xp , Ho,ap) =
(W, —iExt- [, 5 Cx, 00 Cx, A1) ).
Therefore finally we get
i, 92 (0f )Y) = Ext- f*Rg (W (t), —iExt- f*R#3 i (x, 0)f (x, )d*xp ) d*t = (, —inf ().

This equality finalized the proof.
Theorem 13.39 As the operator equalities &(H>) for allk = 1,2,3

[iM°, o ()] = (ta—f +x, ﬂ). (13.117)

ot

Proof We first prove (13.117) as equalities of bilineamfis onD (H%) x D(H®). Let is a near standard vector
andy € D(H®). By Theorems 13.37-13.39, for &l= 1,2,3 we get

(W, 1M (5), A (F, Y00 = (W B (i D, s = W0 A (S5 5)
SubstitutingExt-exp(iHs) for i, we obtain for alk = 1,2,3 that
, [iMO%, Ext-exp(iHs)A,,(f, s)Ext-exp(—iHs) )y = (133)1
(0, Ext-exp(iHs) { B, (vif,s) — A (s ;#ii s)} Ext-exp(~itis))s.
From (13.116) we get

#
Ext- f*ux#“ Ext-exp(iHt) w# (x) Ext-exp(iHt) f (x, t)d*3xd*t = — ¢} (a—f) (13.119)

o*t



Using (13.119) we integrate (13.118) over s toiobfar all k = 1,2,3 the equalities of bilinear forms

W, iM%, 0 (e = — b, 0} (625 + 5 Z) ). (13.120)

#
SinceM o (), pf (F)M%, andef (¢t ( f) are operators o (H®) for all k = 1,2,3, the operator

equalities (13.117) follows by polarizatlon and thdensity of D(H®). This final remark completes the proof of the

theorem and hence it completes the proof of Thedrgss9.

Theorem 13.40 [15] Let® < *R¥%,, be an bounded region iR¥%, and letF, (8, x, t),k = 1,2,3 be a functions

0" Fr(Bx.t)
a*p

each poin{x,t) € *IR{C fin- Assume that for alf (x,t) € C ;‘fﬁin(ﬂ%) the following equalities hold for ad = 1,2,3,

such thaf, (B, x, 1), B € "R 5, and are#- continuous in(B, x, t), where the partia¢-derivative exists for

A*Fr (Bt o
Ext- fmﬁ% £, )d*xd"t = —Ext- [,y Fe(8,%,6) [xk - tﬁ] d*3xd*t. (13.121)
Then for all(B, x, t) such that\, z(x,t) € Rfor0 < y < 1,k =123
Fo(B,x,t) = Fy (o, Ayp(x, t)) +8(Bx t) = (13.122)

F, (0, x;, cosh B + t sinh B8, x; sinh 8 + t cosh 8) + §(B, x, t).

Hered (B, x, t) is a nonzero function such thiig, x, t) # 0 andd (B, x, t) is #-differentiable with zero partial
#-derivativess)’ (B, x,t) = 0,8% (8,x,t) = 0,6¢ (8,x,t) = 0.

Proof Obviously (13.122) is a solution to the equatiat®.121).Thus we need prove uniqueness (13.122) for a
given functions (B, x, t) and for allk = 1, 2 3 and it is sufficient to prove uniqueness for theaF, (0, x, t) =

6(0,x,t). Let A, be the operatat, = x;, — + t— Note that by (177), prowdenhppf( ve (% t)) c R we get

a#t
a* ,
i (Ext- Jogps FeB' 0, Of (Ay g (0,0)) d*xd*t) = (123)

Ext [y (P £ (A0, 0) + (B2, DA (A (e, 0)}d "2t = 0

Let R = No<y<1Ayp Randf(x,t) € C 0°§m( R), then (13.123) holds for gii’ such thad < g’ < . Note that for
all functionsf (x,t) € C ;f’}’in(iR) the following equalities (13.124) hold for &ll= 1,2,3,

Ext- [ Fe (B, 2, 00f (A, (x,)) dPxd ¥t = 0. 13(124)
Thus, in the sense of distributions we obtain fbka 1,2,3 that
F.(B,x,t) =0,(x,t) € R (13.125)

SinceF, (B, x, t) is #-continuous, (13.125) hold in usual sense everywingfe This establishes required
unigueness, and completes the proof of the theorem.

Definition 13.18 (1) Let(Hs, ||-]l«) be a linear normed space over fislf. An elementx € Hy is called finite or
norm finite if ||x||4 € *]Rc fin @nd we leFin(H,) denote the set of the all finite elementdigf the element € Hy is
called infinitesimal if||x||; = 0 and we writex = y for ||x — y||4 = 0. (2)Let(Hy, {-,")4) be a non-Archimedean

Hilbert space over fieldC! endowed with a canonicat-norm||x||» = +/{x, x)x, then we apply the same definition



asin (1).

Definition 13.19 Let A be a linear operatet: H, — H, with domainD (A). Let D, (A) € D(A) be a subdomain
such that for alhp € D(A): Y € Dgp(4) & |ixlly € *RE g, and letDf (A) be a subdomaiBf, (4) c D, (4) such
that for all 1 € Dg, (A): ¢ € Df (A) & ||Ax|l4 € "R 4,

Definition 13.20 Let q(+,-) be a bilinear form with domaib(q) x D(q) onHy such thaD(q) X D(q) S Hy X Hy
andD(q) x D(q) — *C¥. Let Dg,(q) X Dsn(q) < D(q) X D(q) be a subdomain such that forah,,,} €

Din(q) X Drin(q) & (1, 12)4] € "RE gy LetDE,(q) X DE,(q) € Dgin(q) X Dgin(q) be a subdomain such that for

all (1,9} € Dan(q) X Dan(q): (1,92} € DE,(q) X DE(q) & q(hy, ;) € "Clyy,.

Theorem 13.41[15] Assume that the operataV&’ = M3* = MJ% + MPX, k = 1,2,3 satisfy conditions152)-
(154) and where the operatai®, are defined byl@5). We set nows (8, x, t) = 0.

(1) If f € S§,CREY), suppf © #-int(R}), A= [a, b]® andsuppfy s S #-int( R}) = o3, then for allk = 1,2,3 on
domainsDg, ((M%%)?)

Ext-exp(iM°*B) @i (f)Ext-exp(—iM°*B) = @} (facp))- (13.126)

Here thex - equalities (198) hold as -equalites for self-adjoint operators.
(2) If (x,t) € R; andAg (x,t) € R}, then for allk = 1,2,3

Ext-exp(iM° )@ (x, t) Ext-exp(—iM°*B) =~ ¢} ( Ap(x, t)) (13.127)

Here thex - equalities (13.127) hold in the sensé‘]Ef_ﬁn- valued bilinear forms on domaifg, (M°%) x

DE (M) and on domainBfi (M%) x D (M°K).

Remark 13.15 Note that: (1) for real-valuefl € Sf, ("R#*) is a self#-adjoint operatop/ (), essentially
self-#-adjoint operator on a variety of appropriate doreaihis for this sel#-adjoint operator that (13.126) is
valid; (2) on the subdomairi!, (M°%)?) ~ -equalites (13.126) entail for ail= 1,2,3 the equalities

st(Ext-exp(iM° B) @k (x, t) Ext-exp(—iM°*p)) = st ((pff ( Ap(x, t))) ;
(3) on the subdomair, ((M°)?) the~ -equalites (13.126) entail for &= 1,2,3 the equalities

st(Ext-exp(iMOk[)’)@ﬁ(f)Ext-exp(—iMOk[)’)) =st (goff(f,\(ﬁ))).
Proof Lety € D(M®%) and letF, (8, x,t),k = 1,2,3 be the functions is defined by
F (B, x,t) = (Ext-exp(—iM°*B), i (x, t) (Ext-exp(—iM°* B)) ). (13.128)
Forall(B,x,t) € "R g, x *R¥%, and forf € & ("RE*), let F (B, f) be the function is defined by
F (B, f) = (Ext-exp(—iM* B, (f) (Ext-exp(—iM** L))y =
Ext- f@f\ F. (B, x, ) f (x,t)d*3xd*t. (13.129)

Note thatp? (x, t) is a bilinear form defined ab ((H + b)%) X D ((H + b)g), #-continuous in(x, t) € *]Rff_?in. By

1
Theorem 13.2® (M%) c D ((H + b)E) and thereforé, (B, x, t) is well defined and-continuous in(x, t). Note
that a functiorF, (B, x, t) is #-continuously#-differentiable ing € *R¥ .. and for allk = 1,2,3

c,fin



O FBat) _

LPAD — —(Bxt-exp(—iM% B)iM ", L (f) (Ext-exp(~iM* Bp))y

—(Ext-exp(—iM R, o} (f) (Ext-exp(—iMO* R)iM k1)),

By the canonical argument, we have forka# 1,2,3 that

#
PIUED — (Ext-exp(~iMO*BY, iM%, o} ()] (Ext-exp(~iMOB)))y =
Ext- [ Fe(B,x, )f (x, t)d" xd"t.
By Theorem 13.39 under the conditisuppf < #-int( R}) we have for alk = 1,2,3 that

a*r (5f) f
aﬁ‘ﬁ — (Ext-exp(—iM°* B, off (ka + t—) Ext-exp(—iM%% B)), =

—Ext- f*]R,gg F(B,x,t) (xk a#{ + t )f(x t)d*3xd*t.
Therefore by Theorem 13.40 under the condition
Uosy<1 Ayp(x,t) € Ri
we have for alk = 1,2,3 that

Fe(B,2%,6) = F (0, Ay (6, 6)) + 8B, x, )

That s, if (13.133) holds, then (13.134) also kdigr allk = 1,2,3 and finally we get

Ext-exp(iM* B) @ (x, t) Ext-exp(—iM*B) = ¢} (Aﬁ (x, t)) + 8(B, x, t).

Here the equations (13.135) hold in the senseliolir forms orD ((M°%)?) x D((M°)?), i.e.

(13.130)

(13.131)

13(132)

(13.133)

(13.134)

(13.135)

(W, Ext-exp(iMOB) @} (x, ) Ext-exp(—iM“B)o)y = (W, 0f (Mg (6,0 ) Wody + 6(B,, )Wy, o)y (13.136)

From (13.136) on the domabyf;, ((M°%)?) x DE, ((M®)?) c D, (M?%)?) X Dgp (M?%)?2) € D((M%)?) x

D((M°%)?) we get thex -equality

(1, Ext-exp(iMOR) @l (x, ) Ext-exp(—iMB)o)y ~ (W1, 0f (A5 (6, 0) ) ),
since(y,,¥,) is finite and thereforeS (B, x, t) (Y4, ¥,)s = 0.
Note that in thet-limit 4 -4 0 by (125) we get
#-1imy_,,o MO = MRk
Therefore in thet-limit A -, 0 from (13.136) and (13.138) we obtain that
limy_, o (Y4, Ext-exp(iM°* B) @} (x, t) Ext-exp(—iM°* )i, ), =

(y, Ext-exp(iM3*B)pk . (x, t) Ext-exp(—iMI*B)h,)y =

(13.137)

(13.138)

(211)



Limy,o (W, @ (45060 ) hady + 8(B, %, OO, by = s, 0 (A5 (6, 0)) Py + 8B, %, (W1, o).

From (211) on the domaidj, ((M°)?) x Df (M%)?) c Dgy (M°%)?) X D, (M®%)?) € D((M®)?) x
D((M°F)?) we get the~ -equality for free quantum field, (x, t)

(1, Ext-exp(iM2*B) ol (x, ) Ext-exp(—iMZ BY,)s = Py, @l ( Mg (2, 6)) W3 (212)
Remark 11.16 Note that thex -equality required by (212) is necessary, see Ref&rk
The~ -equality (209) extends b-closure taDfi, (M) x D, (M), sinceDf, (M) c Df, ((H + b)*/?) by Theorem
11.29, and the estimate

|, Ext-exp(iM® B} (x, ) Ext-exp(—iMO B) )y ~ @1
|0l (4506, 00) )] < el + B)29.

Herec is finite constant. Furthermo((M%)?) for anyk = 1,2,3 is a#-core forH, by Theorem 11.31, and

therefore a#-core for(H + b)%. Thus (208) extends ®@((M°*)?) x D((M°*)?) and on this domain we also have
#-continuity of the form ir(x, t) € *Rﬁ"gn. Note that it is necessary to assume that,<; Ayz(x,t) € Rj.

However for the regior®j this statement follows from the conditién t) € R} = Ag(x,t) € R1. This final
remark completes the proof of this theorem partX@w we go to prove the operater-equality (198) for the case

f € SE (R, suppf U suppfa,. By Theorem 11.29, the operatgré(f) andg; (fAB) are defined on domain
D((M°%)?). Integrating (207) againgt(x, t), we get the equalities

Ext-exp(iM°B)pf(f)Ext-exp(—iM°*B) = ¢¥ (fAB) + Ext- fmg(?([)’, x, £)f (x, t)d*3xd*t. (214)

Obviously the equalities (213) hold on the doma@hgéM °%)?) with k = 1,2,3 correspondingly. For any vectgr
such thatp € D((M°*)?) from (207) we obtain the equalities

©F()Ext-exp(—iM°*B)y = Ext-exp(—iM°*B)p} (fAﬁ,) P+ (Ext- fmg 5B, x, )f (x, t)d’“xd*‘t) Y. (215)

1
Since ”goji (fAB)l,b" <qg ||(H + b))z | andD((M°%)?) for anyk = 1,2,3 is a#-core forH, by Theorem 11.31,
the equalities (215) extends Hyclosure taD(H) and (215) holds foy € D(H). Since the domaiD (H) is a

#-core for the operatap (fAB)' we conclude that (214) extends#losure taD (qofj (fAB)> and therefore the

equalities (215) hold for ald = 1,2,3 and for anyp such thatyy € D (qoff (fAB))' Thus we have proved that

Ext-exp(—iM*)D (0} (£a,)) = D2

By similar consideration one obtains that

Ext-exp(iM*RID(p4(N) < D (0% () )

This proves (214) as an equality between selidjoint operators, completing the proof of the teeo

Theorem 13.42 If M,k = 1,2,3 satisfies only the conditions (6.2) and (6.3), thaclusions of Theorem 13.41
still hold.

Proof By (6.3) there is an > 0 so that for alk = 1,2,3



a+ xkg(()k) (%1, X2, X3) = X = X, 91 (%1, X2, X3)
for (1, x5, x3) € I3, = [a — 2¢,b + 2¢]3. Let§, be aC™* function so that
X = E%
for by = 0,k € SE ('R¥), g, (x1, x5, x3) = 0 for (x;, x5, x3) & I3, andg, (x4, x,, x3) = 1 for (x;, x,, x3) € I3.
Then conditions (6.2)-(6.4) hold for the pai%ggk),gl} and
891 =91~ 01

is non-zero only in the complementgf Let for allk = 1,2,3

M = Hy, + To(xkg(()k)) + Ty (%1 g1,

MOk = MO — %% = T, (x.6g,).

By Theorenb.3, bothM%¢ andM°* are essentially se¥-adjoint onD (HZ,,). The operator8/°* are satisfies the
conditions of Theorem 13.41. Note thét* is also essentially sel-adjoint on this domain. Byl| Theorem 3.2],
the spectral projections 6% commute withp? (f) for supp(f) € R} ¢ M¥. Hence ifE,, is a spectral
projection ofpf ()

170k sk \
{Ext-exp(—iM°¢ B)}E, {Ext-exp(—iM°* )} = lim,,_+c, {(Ext-exp (@) Ext-exp (151\40 B)) }En X

n

X {(Ext-exp(—iMOkﬁ/n)Ext-exp(—i5M°"B/n))n},

where we use the fact that

Uosy<1 SUpp (fAB) c Rt

supp(f) U supp (fa,) © Rf.

ThusM% andiM°* generate the same transformations on the spectjaictions ofpf (f), if supp(f) U
supp (fAB) c R?. By Lemma6.2, Theorenb.3, and Theorem 2.4,chapt.2 and Theorem 4.3,chapt.2,

D(H?) c D(M°*) n D(M°F)
D(M™) U D(M®) € D(H,,) < D ((H + b)) < D(p}(f).
So Ext-exp(—iM°*B): D(H?) - D(¢}(f)) andExt-exp(—iM°B): D(H?) - D(pf(f))

Since we can expregg (f) as a strongf-limit of an integral over its spectral projections its domairD(<p,ﬁ(f)),
we obtain, orD (H?)

{Ext-exp(—iM°*B)}oi (f){Ext-exp(—iM° )} =



= {Ext-exp(—iM°B)}pf (F){Ext-exp(—iM**B)} = o} (fA;;)'

by Theoren®b.1. Since D(H?) is a#-core fore: (fAB)’ this equality extends bi-closure to the domain

D ((pfj (fAﬁ,)). Thus, part a) of Theorefl holds forM % satisfying (6.2)-(6.3). Part b) of Theorem 6.ldwls

from this since the formp} (x,t) is #-continuous inx, t) € M¥. on
8§ 14. ESTIMATESON THE INTERACTION HAMILTONIAN

Let F# be the Pock space for a massive, neutral scaldriGevo-dimensional space-time. The element® bfare
sequences of functions on momentum space. Letnthi@ikation and creation operators be normalizedhy
relation

[a(k),a* (k)] = §*(k — K'). (14.1)
Thus the free-field Hamiltonian is
Hy, = Ext- flklsu a*(k)a(k)w(k)d*k. (14.2)
Thet = 0 field with hyperfinite ultraviolet cut-ofk is
©#(x) = Ext- flklsu Ext-exp(—i(k,x))[a* (k) + a(k)] d*3k (14.3)
The spatially cut-off interaction Hamiltonian reads

Hi5(9) = Ext- [.ges: 03*(2): g (x) d"x = (14.4)

4o () {Bxt fy e @7Hes - Ext- [ dPka” (k1) = a” (ke )a(—kjun) =

x a(~k)F (T k®, Tk, Bk ) Tialok )] 72d ko .. d™k ),

where we lef; = (K, k@, kP),i = 1,2,3.

L

The total Hamiltonian reads

H,(9) = Ho, + Hi,(9) (14.5)
We let
Ny = Ext- [, " (k)a(k)d**k, (14.6)
and
DE, =N, 2, D(HL,). (14.7)

Theorem 14.1 For anys € *RE,, and for fixedg(x) € S& ("R#3) there is a constantsuch that as bilinear forms

fin+
onD§, x D,



1 1
Hé,{, [H;_,f, Hy, (|| < €HE, + b, (14.8)

— [N [N Hi (@] < €N + . (14.9)
Theorem 14.2 Let W: F# — F# be an operator of the form
W = Ext- flk e d*3k, - Ext- flk (e APk, wiky, ..., k) a* (k1) = a(=k,,), (14.10)

wherew(k;, ..., k,;) € L§((*IR§’§3’")). Then

| (N, + D2 (N, + D)= D/2|| < constllw (ky, k)l g0 (14.11)

(Ho M,[ OK,W] (Hop + 1) (N +1 <

#
1

< const [|wz (ZE, k(. Ty kP, Tk ) wlkey, o k)| 0 (14.12)

Ly

1 1
Hg”, [Hg”, ] (N, + D™™2|| < const X »*||X7, w(k)w(ky, ..., k)l g (14.13)
#
Theorem 14.3 Let the operatoW be as above. Then
1
H;H,[ o W] (N, + D™™2|| < const|lw(ky, ... el - (14.14)
#

Proof of Theorem 14.1.Introduce thie= 0 field <p}f(x) with an hyperfinite ultraviolet cut-oft < x:

Pp(x) = Ext-f Ext-exp(—i{k,x))[a* (k) + a(k)] d*3k
[kl=p

The spatially cut-off interaction HamiltoniaH, , (g) corresponding to the= 0 field go}f(x) reads
Hi5(9) = Ext- [.pua: 03*(2): g (%) d™x. (14.15)
Note that
Hp,(g) = st.#-lim,_, H;,(9g). (14.16)
If we write H;, (g) as a sum of five operators of the fowhin (14.10), then by Theorem 14aken for the case

m = 4 we get

(Hoy (Hoy + 1)

Ox’[ 0}[’le
#

< const[|w? (S, kL, Shy kP, Stk )w(kl,...,k4)||L#. (14.17)
2



Since the kerneb(k,, ..., k,) has an over-all factgﬁ( ?=1k.(1)

i

kD, v k@ ) whereg (k) is the

Fourier transform of the spatial cut-gffx), the fast decrease g{k)) ensures that
w%( Lk®, T k@, Sk )wky, . ky) €
Thus the kernel for the corresponding cut-off iat¢ion termw, approximatesy,, in the sense that
||w%( kD, S D, T D ) (Wl e hy) = w, ...,k4))||Lg 4 0 (14.18)

asu —y . This is holds for eacl making upH,,(g), so we infer that there existsyg such that for any: such
thatipuy <u <x

(Ho, +1)7 (Ho, +1)7

1 1
Hg . [Hé,w ( H,,(9) - HI,#(g))] < %e. (14.19)

#

§15. SELF ADJOINTNESSOF THE INTERACTION HAMILTONIAN

For a real spatial cut-off(x) in the Schwartz spadd, ("R#3), the interaction part of the Hamiltonia#y ,.(g) is
self #-adjoint.
Theorem 15.1 If g € S& ("R#3) is real, then

H,,(g9) = Ext- fmgsi it (x): g(x) d¥x (15.1)

is essentially sel-adjoint onD¢,, = N, 2, D(HE,).

Let us introduce a domalmf,{ obtained by applying any polynomial of the= 0 fields ¢ (f,), for realf; €
S#.CRE3) the no particle stat@,. ClearlyDf, c D{,., and any vecta in Df,, is an entire vector fapf(f),
which means that the hyperinfinite power series

‘w lef™nel, ,
n=0 n! z

Ext-Y, (15.2)
defines an entire function of s. Sinbé_,{ is #-dense in Fock space, Theorem 6.5 (Generalized Nslaaalytic
vector theorem) shows that for refalp;i (f) is essentially sel§-adjoint onDf,,. A similar argument can be made
for the canonically conjugate= 0 fieldsz?(f). Let M,? denote the von Neumann algebra of operators geera
by the spectral projections of all the= 0 field ¢f(f), f € S&,("'R#3). The algebraM? is maximal Abelian. In
other words, a bounded operator which commutes alithperators i is itself inMF.

Let us considerp (f) for supp(f) € 0 c *R#3, where0 is an#-open region of space. (The support of a function
is the smallest-closed set outside of which the function vaniskiesiically.) Define€#(0) as the von Neumann
algebra of operators generated by the spectragégtions of all the fieldsp(f) andrf(f) with supp(f) c 0.

Since

@ (x,t) = Ext-exp(itH,,) @i (x)Ext-exp(—itH,, ) = @p



= Ext- [0 4"y {8(x = y,0) T (9) — [;—,ZA#(x -y.0] o},

whereA, (x, t) is the solution of the generalized Klein-Gordoniaipn (13.9) and,(x, t) vanishes outside the
light cone, we infer that

Ext-exp(itH,, )€4(0)Ext-exp(—itH,,) € €i(0,), (ap.
where0, is the regior0 expanded by.

Theorem 15.2 If g(x) € Sf, ("R¥3) is real and has its support in #wopen rectangular parallelepip@d= *R#3,
then for theH, ,,(g) of (15.1)

Ext-exp (itH,'H(g)) € €k n k.

Theorem 15.3 Let T be any operator with domaibf,, such that

T D, < D(i™(f)). (15.5)
T D}, c D((T 1 D)), (15.6)
[T, o™ ()] DI, = 0. (15.7)
Then
mipf, cD(T T DE,), (15.8)
[#-T, Mt Df, = 0. (15.9)

Proof ForQ € Df,, from (15.5) and (15.7) we get

T pi"(HQ = ™ (T

But by (15.6), for reaf

IT i (OQUE =(TQ, ™" (FITQ) = (T'TQ, 9" (D < T TN 922" (-

Thus the#-convergent power series (3.2) shows thaffe Df,,
#-T (Ext-exp( i@ﬁ(f))) Q = Ext-exp( igfi(f))TAQ. (15.10)

It is clear that (15.10) is still valid Witﬂxt-exp( i<pf§(f)) replaced by strong-limits of sums of such exponentials,
and hence (15.8) and (15.9).

Theorem 15.4 Let M is a maximal Abelian algebra of bounded operatara non-Archimedean Hilbert spade
with a cyclic vectof),. LetT be a symmetric operator with domaifiQ),, and letl’ commute withM.ThenT is
essentially self-adjoint.

Proof Without loss of generalityM = L% (X) andH = L%(X) for some#-measure spadg, 2, 1), andQ, is the
functionl. Letf € L%(X). Thent € L%(X) andT is multiplication byt, with domainL?_ (X). Letf € L%(X) and
supposéef € L%(X) also and lef,,(x) = f(x) if |f(x)] < n,n € *N andf,(x) = 0 otherwise. Thelf, € L! =

D(T) andf,, =4 f, tf, =« tf in L} norm by the bounde#-convergence theorem. Th{)§ tf} is in the graph of the



#-closure ofT. Thus thet-closure ofT is self#-adjoint, andr’ is essentially sel-adjoint.

Remark 15.1 LetT,,,n € *N be a hyperinfinite sequence of operators withpiteperty ofT in the Theorem 15.4.
Then T,, —»4 T strongly on the domaii (), if and only ifT,,Q, =4 TQ,.

Proof of the Theorems 15.1 and 15\®e apply now the Theorems 15.3 and 15.4 with &€k = H, ,,(g), M in
Theorem 15.4 as in Theorem 15.3, the non-Archimedhitbert space Fock spadd, andQ, the Fock no-particle
state. The hypotheses (15.5) and (15.6) can biecely a direct computation. Thig,,(g) is essentially self
#-adjoint onDj,, c D§ ., and hencél,, (g) is essentially sel#-adjoint onD{,,.

If we assume thatup(g) c 0, then a® is an#-open regionsup(g) € 0, where0, is 0 contracted by some
small amount > 0, ¢ = 0. SinceH, ,,(g) commutes wittM', andM is maximal Abelian;exp (itH,,;,(g)) EM.
Furthermore the argument in the proof of Theoren3,1&an be repeated to show tHaj,(g) commutes with
€%(0), where0 | is the complement of th-closure of0;. Since€},("R¥?) is irreducible andf; ,.(g) commutes

with €%(0 ), Ext-exp (itH,_H(g)) € €#(0,) where0, is 0, expanded by any amousit> 0. Takinge’ < &, we

haveExt-exp (itH,,H(g)) € €%(0), which completes the proof.

§16. SELF ADJOINTNESS OF THE TOTAL HAMILTONIAN

Theorem 16.1 (a) For realg(x) € Si (*R¥3), the total Hamiltoniat,,(g) = Hy,(9) + H;,,(g) is self#-adjoint

with the domairD (H,(g)) = D (HO_H(g)) nD (H,,,,(g)).
(b) The total Hamiltoniai,,(g) is essentially sel-adjoint on the domain

D(’J#,x = n;o:o D(Hg.%)'

Remark 16.1 In order to prove the seff-adjointness ofi,,, we combine the estimates of Sec. 14, the self
#-adjointness off; ,,(g) proved in Sec. 15, and a singular perturbationrthdeveloped in [19]. We need the
following result which is a special caseTdfeorem 8 of Ref. [19].

Theorem 16.2 Under the hypothesesiji) below, the operatoH,, = H,,, + H,,z is self#-adjoint.

(i) Both H,,, andH;, are self#-adjoint. The domaid{,, is contained in the domain Hf ., andH, ,, is essentially
self#-adjoint onD{,,.

(i) Let N,, be a positive selt-adjoint operator, commuting witth, ,,, and such thay,, < const H,,,. Suppose that
the operator§N,, + 1) "*H,, (N, + 1)~* and(N,, + I)"*H,,,(N,, + I)~* are bounded.

(iii) Suppose that for any > 0, there exists a numbére *R¥ such that as bilinear forms &§,, x D§,, ,

—H,, < &N, +bl, (16.1)
1 1
—|Hox Hé,;,Hz.u] < eH§, + bl (16.2)
— [N,{, [N, H,,,,]] < eN? + bI. (16.3)

Proof of Theorem 16.1 In order to prove thdt, (g) is self#-adjoint, we apply Theorem 16.2 in the case Hgt
is the free Hamiltoniar,, is the number operator, akg,, is the interaction Hamiltoniat; ,,(g). Thus we need
to verify (i)-(iii). Condition (i) was dealt withn Theorem 15.1, while condition (ii) is a consecqeenf (14.11).In
Refs. 2, and3, it is shown that for any > 0, there is a numbeér € *R¥ such that

_HI,H(g) S 8H0,H + b[.



By following that proof, but using the smoothingeoatorExt-exp(—tN,,), in place oﬂExt-exp(—tHolx), one
arrives at the estimate (16.1) required in (iifpeTremaining estimates (16.2) and (16.3) were ksitelol in
Theorem 14.1.Thus we conclude from Theorem 16 PHp&g) is self#-adjoint on the domaip (HM) n

D (H,,;,(g)) . We now show thdt,, (g) is essentially sel#-adjoint onD(HM). We first show thatl,,(g) is
essentially self-adjoint onD, = D(HM) N D(N2). By (14.11) it is clear that the domainif(g) containsD,.
Fory € D(H,(9)) = D(H,,) N D (H,M(g)), consider hyperinfinite sequenge € D,,n € *N defined by

Y, =n(nl + N,,) 1. (16.4)
Thus |, — Ylly + [|Hontn — Hontb|, =4 0 asn - *oo.
We need to study the following differences
Hy,abn — Hy,ap = =N, (nl + N,)™* Hy,. + n[H,,, (nl + N,)"tp,n € *N. (16.5)

SinceN, (nl + N,)~%,n € *N is a uniformly bounded hyperinfinite sequericeonverging to zero on thedense
setD(N,,), it #-converges to zero anjV,, (nl + N,)~* H,,,{l,b”# asn — *oo. But for the second term in (16.5) we
get

n[Hy,, (nl + N,) ™|y = [H,,,, (1l + N,)7(nl + N,)n(nl + N,) "1 = (16.6)
= (nl + N,) [N, H, Jn(nl + N,) "'y =

=l + N) I + N + NNy, Hy o] X

x (I + N, n(nl + N,)"*( + N ).

Note that as — *oo, hyperinfinite sequencs, = n(nl + N,)"*(I + N,,)y,n € *N #-converges strongly to
(I + N,)y, that by (14.11)(I + N,)~*[N,,, H;,.JU + N,)™ is bounded, and hyperinfinite sequepge=
= (nl + N,)7*(I + N,)y,n € "N #-converges strongly to zero. Thus we [, ., (1l + N,)"'9]||, =4 0 as

n — *oo, and sA|Hy,¥n — Hy, ||, =4 0 asn — “oo. Thus we can to conclude th(g) is the#-closure of

H, (g) restricted td,, soH,,(g) is essentially sel#-adjoint onD,. LetD, be a Hilbert space endowed with the
#-norm ||-||% such that

, 2
UplD? = 19l + Hoxb ||, + N3 (16.7)
From (14.11) we infer that

1H,(9) ¥lls < constlly|l,

so that H,,(g) is essentially self #-adjoint on any subset of D, which is #-dense in the Hilbert space D,.For
any € Dy, Y, = Ext-exp(—AH,, ) € D, = n;‘jOD(Hng), and [l —yllp# —» 0as 4 =, 0. Thus H,(g) is

essentially self #-adjoint on D,.

§17. REMOVING THE SPATIAL CUTOFF AND LOCALITY



For the reader's convenience, we sketch a progéiéralized Segal's theorem that the #edfljointness off,,(g)
allows the removal of the spatial cut-off. In fa€td is a bounded function of the free fields localize@ bounded
region of space at= 0, then

o:(4) = Ext-exp(itH,{ (g))AExt-exp(—itHH (g))

is independent of (x) provided thay(x) = 4, the desired coupling constant, on a sufficielaige region,
depending omn. Furthermore, ifd is localized in the region of spa@etheno,(A4) is localized in the regio@,,
where0, is the regior0 expanded by. (We have taken the velocity of light to be ona.pther words, the time
translations, gives rise to a local theory. If one chooses lierdperatoA a spectral projection of the= 0 field
@}(f), one can piece together the time translationaipefor the fields themselves. In section w&,showed that
H, = H,,, + H;,, which is sum of two self-adjoint operators, is itself se#tadjoint. As a consequence of this
fact, the generalized Trotter product formula ({sBe section 7) says that forgle F#

Ext-exp(itH,(9)) = #-lim,_ s ([Ext-ex (M)] [Ext exp (itH]:(g))]) "
And therefore we obtain

o (A)yY =

#- lim ([Ext-exp (M)] [Ext exp (%)DnA ([Ext-exp (%"w))] [Ext exp (M)D Y.

n-*oo

l.et O be the region of space defined|ay < M,t = 0, and letd € €%(0 ), where€#(0) is defined in Sec. 15.
Given an arbitrary, positive split g(x) into two infinitely #-differentiable partg, (x), g,(x) such that

g(x) = g1 (%) + g2 (%),
wheresupp(g; (x)) < 0, andsupp(g,(x)) N 0= = @ is empty. Write now
2

HI,H(g) = Hl,x(gl) + Hl,x(gz)’

so that as a consequence of theorems 15.1 and Hp,2g,) andH,,,(g,) commute, and

Ext-exp (M) = [Ext-exp (M)] [Ext exp (lfHIu(gz))]

Furthermore,
Ext-exp (@) € €i(0,),
andExt-exp (@) commutes witl€%(0,,, ). Therefore,

A, (D) = [Ext-exp (ltHou(gl))] [Ext exp (ltHIu(gz))] [Ext exp( lth(gl))] [Ext exp( ltHo,x(gz))]

depends o (x) only in the regior0,, and by the free propagation property (15.4),
Al € Gﬁ(o(t/nﬂe)

We continue step by step, and afteg *N\N steps by using hyperinfinite induction principdeg ref. [10], we
conclude that



0 = ([Evtesp (222 [xt-onp (2202) )

n n

x ([Ep (_ H_w>>] [Ep (_ imo.;(gg)])

depends o (x) only in the regior0,,,,. and
A1(6) € €5(0r4ne)

Sincee can be chosen arbitrarily,, (t) depends og(x) only in the regior#- 0., the#- closure of0,, and
An(8) € Neso €4 (0¢se).

ThusA,,(t) commutes with any local observatiidocalized in#-open region of spad®’ such thaD’ and 0, are
disjoint. As this is true for eaghe *N\N, it is true for

0:(A) = strong #- lim,,_,+o, Ay, (t).

Henceo, (4) is local and it depends @r(x) only in the regior#- 0,, where we choosg(x) = A. Thus we
conclude that the spatial cut-off has been remavetithe resulting theory is local.

8 18. Semiboundedness of the total Hamiltonian

§ 18.1. Reduction to a Problem with Discrete M omentum We use the non-Archimedean Fock space
representation for our fielg# (x), x € *R#3. The Fock non-Archimedean Hubert sp&eis a direct sum

F¥ = Ext-@®,_Fr,

whereF? is the space of non-interacting particles, i.&¥ is the space of symmetric squaéntegrable functions,
i.e.L¥ (*R¥#3) functions ofn variables. Lek = (ky, k,, k,) € *Rf‘

u(k) = (K + pg)'/? = (kf + k3 + k3 + m§)*/?,
i~ (x) = Ext- f*Rgg Ext-exp(i(k, x)) a(k)O(|k|, ) [u(k)]"2d**k, (18.1.1)
et (x) = Ext- f*R§3 Ext-exp(i(k, x)) a*(=k)0(| k|, ) [u(k)]~/?d*3k, (18.1.2)
O0(|k|,») = 1if |k| <x and(|k|,») = 0 if |k| > x,
and ¢ (x) = ¢~ (x) + ¢#*(x), wherea(k) anda*(k) are the annihilation and creation operators,
[a(k),a* (k)] = 6% (k- K'). (18.1.3)
By definition,
Lo () =%, (%) 0t @) of (P, (18.1.4)

Remark 18.1.1 Remind thawWick product differs from the ordinary product et all the annihilators are placed to

the right and the creators are placed to the:leﬂﬁp (x): is not an operator, but it is a densely defindiddar form.
We take Fourier transforms to compute



Ext- f*]Rags t P (0): h(x)d™x = Y (5’) Ext- f*]RZ#Sp a*(—ky) - a*(—k;)a(k;) - a(k,) x (18.1.5)

1/2

x Ext-h(ky + +k,) [T, 0k, 20 [u(k; )] " d*3k,

whereExt-h is the Fourier transform d@f. We assumé is in L% and saExt-h is inL% also. Since: (k) ~ | k| for
large|k|, one can show that

Ext-R(ky +- +ky) T, 0kl 20)[u(k; )] % € LA (18.1.6)

It is well known that (18.1.6) implies that eacteigral on the right side of (18.1.5) is an operdtfined on the
domain D(N?/2) of NP/2. This domain is the set ap = 1o, 1, ..., ; € Fff  with

Ext- X nP/? || Ext-TTZ; 0 (Ilkill, 20) ¥yl < oo 1g)

Thus (18.1.5) is an operator definedV?/). Similarly Hy, + Ext- [.p4: P(: @5 (x)): d**x is an operator

defined on thet-dense domaim) (H,,,) N D(Nd/z), whered is the degree of the polynomil We approximate

now (18.1.5) by a hyperfinite sum. Choose humiets0 andx € *R?\*Rﬁ'ﬁn. We define now an hyperfinite

approximation in configuration space. Under thipragimation, the momentum space variable (k, k,, k3) €
*R#3 is replaced by a discrete varialiles T3

Fg = {k = (kllkZl k3)|kl = 6ni’ni € *Z’l = 11213} 8(18)
Thus we defing}, the Fock space for hyperfinite volurvié = 53 as
7 = € (@) = CrOU PO ()@l (1)} - (18.1.9)

We choose now one to one correspondete> *Z§ x *Z5 x *Z§ = T3 given by vector-functioge (m)

go(m) = {k;(m), k,(m), k3(m)} = k(m) (18.1.10)
and such that
p(—m) = —p(m). (18.1.11)
And we define now
I35 = {k €Tkl < ). (18.1.12)
We set now
as(k(m)) = (8)73/2 |Ext- [} d*1, Ext- [} d*l, Ext- [ d*15 a(k(m) + D)), (18.1.13)
a5(k(m)) = (6)7%/2 |Ext- [} a*l, Ext- [} d*l, Ext- [} a1y a” (k(m) + D). (18.1.14)

Then one obtains

1 1fm1 =m,

Oifm. = m. (18.1.15)

[ 5(k(m)), a5 (k(m))] = 8, = {

Let



Hy, s = Ext- Zkeri,s u(k) az(k)as(k). (188)1
One can check that eaghin D(Hy,,) is inD(H,,.s) also and that
#-limg_,, Ho s = Hos . (18.1.17)
Next we approximate (18.1.5) by
L @B (0= 50/2 % (7) Bxt- Tyers, @ 5(—k) - @ 5(=k;)as (k) = as(k,) (18.1.18)
x Ext-h([k;] ++ +[k,]) [Tilu([k:] )]7Y2,
where

- s s s .
hs(k) = Ext- ff;:/a _";:/5 f:f:/&(Ext-exp(L(k, x)))h(x) d*3x

and[k] = ([k4], [k2], [k3]), where
(k1] = sup{l;|(I3, 15, 13) € Fg; ly <k}, [ky] = sup{l,|(11, 15, 13) € Fg,lz <k},
(k3] = sup{l3| (13, 12, I3) € T3, I3 < ks}

is the integral part ok relative to the lattic€}. Sinceh € L, hy is #-continuous and

Ext-R([ky] +- +[ky]) Tl ([ )72 = Ext-R(ky 4+ +k,) T2, 60Ukl 20 [u(k )]

uniformly. LetD¥ be the set of stategs = {1y, ¥y, ...} withy,(ky, ..., k,,) = 0 forn < *o or Ext-Y;|k;| < *o
large. Ifp, € D¢ then

#-1imso,o(,: @5 (0): )y = (d, Ext- [y 97 (0):d™xp). (18.1.18)
Thus the bilinear form of
Hy5 = Hos + Xy by 05 (h): (18.1.19)

#-converges tél,, onD¥ x D whereb,, ..., b, are the coefficients of), y; , ..., y, in the polynomiaP(y). Hence
if the H,, 5 are semibounded with a lower bound independeéittbénH,, is semibounded also. L& be the
subspace of# consisting of functions which are piece wise cansbetween lattice points. In other words,

Y=o, W1, oo, P . } € FL i
Yn(ky, o, kn) = P ([Ke], oo, [Kn DD
Let F;; 5 be the subspace 8§ defined by the restriction
Un(ky, oo k) = 0 i [k;] € T 5

for somei,1 <i < n.
The operatora ;(k) anda 5(k), k € T;}5, leaveF} s invariant and act irreducibly i} 5. We set nows = 277,
x = 2¥ and observe that}v ,-v increases monotonically withand that



D¥ = D¢ N U, Fyv,—v
is #-dense irF* andH,, c #-(H,, I D§"). Thus it is sufficient to prove the semiboundedrafss
daj2 #
His 1 (D(Hon) 0 D(N,™™) 0 Fis )
with a lower bound independent &f

§ 18.2. Diagonalizing the potential. In this subsection we give a hew representatidﬁjfgf in which the
interaction term: wﬁp(h): is a multiplication operator. Let

1/2 [

q (k(|m|)) = (Z_Z,u(k(m) )) as (k(m)) + a’é (k(m)) tag (—k(m)) + ag (—k(m))],

1/2 [_

q (k(=ImD) = i(272u(k(m))) as (k(ImD) + aj (k(ImD) + a 5 (~k(mD) —a (—k(lml))].

p (k(Im)) = i(22uChk(m)))""* [as (k(m)) — a; (k(m)) + a ; (—k(m)) — a5 (—k(m))],
p (k(~ImD)) = (272u(k(m)))""* [as (k(imD) +a; (k(ImD) — a ; (~k(mD)) - a; (~k(ImD)],
P =P (k(m)), qm = q (k(m))
for 0 # k € T} and let
G0 = (o/2)/* [a5 (0) + a; (0)],

Po = i(to/2)*|a5 (0) —a; (0)].
Using the equations mentioned above one can contipaite
Ho o5 = EXt- Ymez,ikamy<s 27" P70 + 12 (k(M) ) g7 — u(k(m))]. (18.2.1)
We replace now,, andg,, by unitarily equivalent operators. Let
His= Ext-® ez Hic,
where #} is L (*R¥) with respect to the Gaussi#rmeasure
pi(@)d*q = (u(k)/my)"/?(Ext-exp(—u(k)q*))d*q. (18.2.2)

There is a unitary equivalence betwééﬁ,; and?—"f_g which sends,,, into multiplication byg in the factoﬂ-[,f(m)
andp,, into the operator

P @i (5) i)

again acting in the factd;’. The proof of this statement is essentially gelimrd von Neumann's uniqueness
theorem for irreducible representations of the catation relations. We identif&[j’g and?—",’;"_(S and we identifyy,,,
etc. with its image, multiplication hy, etc. Let



Huo = 2707 @) |- () + uli)a?] gu(a) = (sp

=21 (%)2 +uog (5)

acting org{. Now —H, is the infinitesimal generator of a known Markpfbcess and furthermore the operator
Ext-exp(—Hu(k)) is an integral operator and the kernel can be coeapexplicitly. In particular

(Ext-exp(—Huq))¥ )(@) = Ext- [.po 0 (0,909 (4D (q")d"q’ (18.2.4)
for ¢y € #}f, where
¢ N1 _ _ _ u(a'~(Ext-exp(-ut))q)” 2
p“(q,q") = [1 — Ext-exp( ut)]{Ext-exp[ Ertexp(<zaD) ]+uq } (18.2.5)

Let g now denote a variable in a Euclidean spacand letg have coordinates,, = q (k(m)). Then
¢i()d"q = Ext-Tlie2 , ¢%(q(k))d" q(k) (2%)
is the product of thé-measures (18.2.2) and

H,s = Ly(92(q)d*q)

In addition to the function spa¢é, we will have to consider.(¢2(q)d*q). SinceExt- [ $2(q)d*q = 1, we have
Li, cLf ifr <r..

Lemma 18.2.1. Ext-exp(—H,,.s) i @ contraction operator dfi, 1 < r < *o. If T <t,1 <p andr < *wo itis a
contraction fromL’;, to L¥, for someT not depending o4. If p is bounded away from one ands bounded thef
does not depend gnorr.

Now we show that the interaction termﬁfs(x): is a polynomial in thg' s. Let

0l 5 (%) = 832Ext- Tygmyers | Ext-exp(idk(m), x) [u([k(m) 1)171/2 (a,s (k(m)) + (-k(m))) (18.2.7)
Since

q (k(ImD)) + iq (=k(Iml)) if m > 0
aCUheCm) D12 (a5 (ke (m)) + a5 (—k(m)) ) = VZqq ifm = 0
q (k(ImD) — iq (=k(Im])) ifm < 0

<pf{'8(x) andgoﬁfg(x) are polynomials in the's. We use the canonical formula

(27) —2j
NACIED e % ch 1o (20 (18.2.8)

to conclude by induction om that: w:fs(x): is also a polynomial in thgs. In (18.2.8) the coefficient

p!(277)
(p-2/)Y!




is just the number of ways of selectihgnordered pairs from objects and,, is defined by the formula
G = 8% Tpers (k1] 2
we have the bound
Ce < K2 (18.2.9)

whereK; is independent of andé§. Thus

# /8 /8 /8 #
() = Ext- [0 [T [T s @5 (0 h(x) dPx

is a polynomial in thg' s, as desired.
Let

P(y) = by +byy + -+ + byy?
be the polynomial iry and let
Vies = Sospea by * 9z (h): (18.2.10)

denote our approximate interaction term, as inl(18).
Lemma 18.2.2. For some constaiit, , independent of andx, we have

— K% < V5. (18.2.11)

Proof We use (18.2.8) to remove the Wick ordering inZ18)) and obtain

ny/8 my/S my/S #
Vis = Lp ap(Cx) {Ext- f-;f#/a —;#/5 —;#/5 Fs (0 h(x) d#3x}

wherea, (c,) is a polynomial irc,, of degree at mogtd — p)/2]. The coefficients of,, depend only on the
coefficients ofP, and so we have an estimate

|ap(c%)| <K'x C,({d /2],
Sinceay = by > 0 and sincel is even by hypothesis, it follows that
0<Y,a,(c,)y? forkK"(1+4¢c,) < |yl?
and
—c{IK" < %y ap(e) v

for all y. We bound,, by (18.2.9) and the proof is complete.
Lemma 18.2.3 FunctionV,, s € for all v < *oo0 and if 4 < , then

2j ; i .
(Vses = Vasll,, < (@t x k] x Ge = 224)), 8(2.12)



where K; is a constant which is independentiol ands.
Proof We use the particle representatiﬁfj,@, in place of the representati®fy,s = L% (p2(q)d*q). Now1 € I,
corresponds to the vacuum st@ie= {1,0,0,..} € F#

SO

Vs = Vil ;= Ext-[(Vigs — Vas)” 92(q)d*q = (18.2.13)

. . : 2
= ((Vies = Vas) Qo (Vs — Vas) Qods = ” (Vies = Vas)’ ”#-
We setti = 0 above and get
27j : 2
WaslZ = V20l
and sV, s € L¥ for all 7 < *oo. We return to (18.2.13) and note thigt; — V, 5 is a sum oti2¢ terms of the form
A = b8P Ext- T aciigion | Ext-R(SE, ke)a? (k) T (i, )] ] (18.2.14)

where in the summation oviy we havek; € I‘;S forl1<p<d,p<d andk; ¢ l“f5 for at least oné Summing
again over the same rangekgfwe get

5% Ext- Yo | Ext-R(EE, ki) TIE (ks N | = K x Gt - 22 (18.2.15)

andkK, is independent of, » andé.
Lety be a state with at mokparticles. It follows from (18.2.15) and the foohA4 that

1AQ 117 < ((L+p)1/1) X4x (> = 22 [l

and furthermorely is a state with at most+ p particles. Thus if we have operatdrs.. ., 4; of the form
(18.2.14),

4y - 4007 < () K[22.
Hence
; 2 ) )
[|(Vics - VM)’QO”# < (dj)! x KJ x (324 — 128)],

and the proof is complete.

§ 18.3. Path space and corresponding #-measure. Let g now denote a variable in a Euclidean srﬁ}ée:
‘RE amd letC* be the space af-continuous pathg = q(s) € E>,0 < s < *co. There is a&-measure ol
intrinsically associated with the semigroﬂpt-exp(—tHo,,{_g). To define thigt-measure we set, = q(k) and

Pk qi) = di(ai)d* qi = Pr{qi(t) = qilq:(0) = qi} (18.3.1)

the probability thaty, (t) = qy, if it is known thatg, (0) = gy - pk is defined by (18.2.5) we have added a subskript
to indicate the dependence pr= (k). Let



P2(q,9") = Ext-Tliers , i (i 9i)- (18.3.2)
Theo*- field [19] of #-measurable subsets ©f is generated by the sets
q(s;)) €B;,1<i <], (18.3.3)

whereB,; is a#-Borel subset oEft . The#-measure of (18.3.3) is

Ext-[5 x5, E¥E Tl Py g (s) , q(sin)) d2(a(s))d* q(s)92(q(0))d*q(0) (18.3.4)

if s, =0<s, < <s;. The definition (18.3.4) is forced by the definiti¢18.3.1) together with the Markov
character of the process, the stipulation that eachdinateg,, of g defines an independent process and the
specification ofp?(q)d*q as the probability distribution of the initial pig(0) of the pathy.

If V4, ... V; € LY(E3, pi(q)d*Q) then we compute

Ext- [ Ext-T1;Vi(q(s)) d*Q = Ext- [ V1(q(0))¢z(q(0))d*q(0) x (18.3.5)
X [Ext-exp(—(sy — So)Ho,5)VaExt-exp(—(s; — 51)Hoz5) (. (Vj—1 Ext-exp(—(s; — s5i-1)Ho5)V;) - )] (a(0))
and
|Ext- [ Ext-T1:Vi(q(s)) d*Q| < Ext-TLlIVilly; (18)8.6

using (18.3.4) and the fact trﬁxr-exp(—Ho,M)) is a contraction ohf . Furthermore (18.3.5) and (18.3.6) remain
valid when some of the timas coincide.

Lemma 18.3.1 LetV be a polynomial function o . Then Ext- fOtV(q(s))d#s € Lh(C*,d*Q) forallp < *oo.
and

||Ext- fotV(q(s))d#S”#j < t|IVill4;

for j € *N an even positive integer.
Lemma 18.3.2 Letr € [1,2). There is a finitd independent of such that it > T and if¢ andy in

1 (14(92(q)d"q) ) theng (g (0))(q(t)) € LE(C*,d*Q) and

lp(a(ONY(q()l4r < lI@llaz X 1P ll42.

TheT can be chosen independentlyrgirovidedr is bounded away fror.

§18.4. The generalized Feynman K ac formula. The generalized Feynman Kac formula states that

(¢, Ext-exp(—tH,.s))y = Ext- [ $(q(0)) {Ext-exp (— [Ext- fot Vies(q(s)) d#s])}t,b(q (s))d*Q. (18.4.1)

The RHS of (18.4.1) is bounded by

I (a@)w(a@),, x [|Ext-exp (= [Ext- [ vs(a() d's])|, <

< NPz X N1llay X ”Ext-exp (— [Ext- fot V,s(q(s)) d#s])”#p



forp > 2 and fort large, by Lemma 18.3.2. Thus
||Ext-exp(—tHK,5)||# < ”Ext-exp (— [Ext- fot V,s(q(s)) d#s]) ”#p

and therefore

t1 {Ext-ln [”Ext-exp (— [Ext- fot V,.s(q(s)) d#s]) ”#p]} < H,s. (18.4.2)
Let
I, = Ext- [, V, 5(q(s)) d*s.
Then by Lemma 18.2.2 we have
—tK,2% < I,.

LetKs , ... denote positive constants depending onlyyand the polynomia? and letPr{q| -} denote the
#-measure defined by Q.
Then by Lemma 18.3.1 we get

Pr{q|l, < —tK,A* — 1} < Pr{q|[l,, — 1,1 = 1} < Ext- [[I,, — ;1% d*Q < t¥||I,,5 — ’/1.6”2,-- (18.4.3)
From (18.4.3) by Lemma 18.2.3,see (18.2.12) we get
Pr{q|l, < —tK,A% — 1} < [(d)!] x t2 x K] x (24 — 22)], (18.4.3)

Lemma 18.4.1 Let f be*R¥- valued function on a probability~-measure spadg/, =#, u*), see [19], and let
me(x) = u*{qlf(q) = x}. Let F: "R} - "R¥ be a bounded positive, monotone non-decreasifidunction. Then

Ext- [, F(f())d*u* = Ext- [ = FGOd* mp(x) = —F(="w) + Ext- [ o me()F¥ () d*x.  (18.4.4)
In particular, by the generalized monotone convecgeheorem:
Ext- fM[Ext-exp(f(q))]d#u# = Ext- f::o[Ext-exp(x)]mf(x)d#x. (18.4.5)
From (18.4.3) we get
Pr{q|—1,, = K,2% + 1} < [(d))!] X t¥ x KJ x (2% — 224)], (18.4.6)
From (18.4.6) and (18.4.5) finally we get
Ext- [ [Ext-exp(—pl,.(q))]d*Q < [(d))!] x t¥ x KgExt- fOH[Ext-exp(x)](}de —x?)id¥x < 0. (18.4.7)

ThusExt- [ [Ext-exp(—pl,(q))]d*Q is bounded independently &fand combining this with (7.2) we haifg 5
bounded below by a constant which is independedit aEcording to §18.1this proves Theorem 18.4.1.
Theorem 18.4.1 Let h be a nonnegative function ifi n L%. Suppose that the polynom#lin ((18.2.10)) has even
degree and that the leading coefficient is posifileen HamiltoniarH,, is bounded from below.



§ 18.5. We will give an alternate derivation of the resuftsntioned in subsections above without the use of
functional integration, central in subsection 18V consider a Hamiltonian of the form

H,=Hy, +V, (18.5.1)

whereH,,, is the free Hamiltonian of a particle of magsexpressed in terms of the neutral scalar figidx) and
its momentum conjugate’ (x):

H,,, = Ext- fol d¥x, (Ext- fol d*x, (Ext- fol dPx;  [Vei?(x) + udei?(x) + ni?(x)]: )) (18.5.2)

As is evident from (18.3.2) we are working in aipdic boxB = [0,1]3. V, is a polynomial function of the} (x).
We denote by H,,, and"V,, N € *N\N the parts oH,,, andl}, depending only on the creation and annihilation
operators of thé&/ lowest-energy modes of the free Hamiltonian ardhghat|k| < » . We always imagine we are
working withVH, ,, and™V,,, but derive inequalities independenthaf

Theorem 18.5.1 Assume for each finite > 0 that there is ai, such that
(0]Ext-exp(—a("V,))|0) < M,
where|0) denotes the vacuum of the free field. Then theesBisuch that

NHy, + NV, = B, for allN.

Actually as will be seen it is not necessary tas$athe condition above for all, but only for some sufficiently
largea that one can calculate. We refer to section 1&.3he result that the conditions of the theoreesatisfied
for a large class of self-interactions.

We apply the notation

Phs(x) = Ext-Tyerg | Ext-exp(ie, x)) (a5 (0) + a (<) (18.3.3)
and define fok € T3 5
G0 = (o/2)* [a5 (0) + @} (0)], po = i(uo/2)"/ a5 (0) — a5 (0)], (18.3.4)
q (k(imD) = (272u0e(m)))""* [as (k(m)) + a; (k(m)) + a 5 (~k(m)) + a ; (—k(m))|

1/2

q (k(=Iml)) = i(2-2u(k(m)))"* [as (k(mD) + a; (k(imD)) + a ; (~k(imD) — a; (—k(ImD))],
p (k(Iml)) = i(22uCke(m)))"”* [as (ke(m)) — a; (k(m)) + a ; (~k(m)) — a5 (—k(m))],
p (k(=ImD) = (272u(k(m)))"* [a5 (k(ImD) + a; (k(mD) = a 5 (~k(ImD)) — a ; (~k(ImD)],

Pm = p (k(m)), qm = q (k(m)).
In terms of these variables,

HO,J{,§ = Ext- Zme*l,lk(m)sxl 2_1 [przn + #2 (k(m) )Q72n - #(k(m) )] = Ext- Zme*Z,Ik(m)st Hm' (1835)



We represent these operators onithepace of R¥N with #-measure: the product of thét-measureg,,
A = (W /74)"?(Ext-exp(—wmqn))d* g 3%)
with g,, a multiplicative operator and
Pm = (0% /0% qm) — WG (18.3.7)
Where
W = (K (m) + p5)"? = (kf(m) + k3 (m) + k3 (m) + ug)'/2.
A complete set of eigenfunctions fay, is given by
Pmn(@m) = ")V A, (qm(wm)/?),n € N, 18(3.8)

n!# = Ext- H0<psnpv 2" = Ext- H0<psn 2!

d#n

An(2) = (-1D)™(Ext-exp(z?)) (Ext-exp(—z2)).

d#zn
The chief inequality we will exploit is the followgj numerical inequality fot,y € *R¥,y > 0:
xy < Ext-exp(x) + Ext-In(y). (18.3.9)
The expectation value of the interactignin a state witHC#-functionF is given by
(F|V,,|F) = Ext- [(|F|*V,)d*w. (18.3.11)
We apply (18.3.10) witke = rV,, andy = r~1F? to derive the inequality
—(FIV|F) < Ext- [(Ext-exp(—rW,))d*u + = [Ext- [|FI?(Ext-In(IF|%))d*u] — - (Ext-In(r)). (18.3.12)
Herer is a numerical factor to be fixed later. Note that
Ext- [(Ext-exp(—1V,))d*u = (0|Ext-exp(—rV,)|0). (18.3.13)

We intend now to bound the second term on the sigie of (18.3.12) by the expectation valuéfgf, in the
stateF. We consider the following equation:

[Ext- [IF|?(Ext-In(|F|?))d*u] = (18.3.14)

2 N 1d* * 1+At
=2 (Ext- [ F* Ho, Fd*p) + EE(EH' J[(Ext-exp(—tH,,)) (Ext-exp(—tH,,.)) | d#u)L:O,
which easily follows for functiong nice enough so that all the integrals exist aeddifferentiation may be moved

inside the integral, a dense subspadginVe do not discuss domain questions. We rewrBe3(12) using
(18.3.14):

—(FIVy|F) < Ext- [(Ext-exp(—V;,))d*u + —(F|Ho |F) — = (Ext-In(r)) + (18.3.15)
# * 1+At
+%jTt(Ext- J[(Ext-exp(—tH,,)) (Ext-exp(—tH,,)) | * d*u )L:O.



The theorem we are after is established provided 2 and we can bound the last term in (18.3.15). Eneainder
of the paper is devoted to a study of

1+At
d

Ext- f[(Ext-exp(—tHo_H))*(Ext-exp(—tHo_H))] #u = Ext- [|Ext-exp(—tH,,)|**?*d"p. (18.3.16)

We consider, corresponding to agyn L% (u ), its expression as a sum of products of the fanstin (18.3.8):
9(a) = Ext-Si, iy Cipiy {Ext- T (251,1%) 7 (Ext-exp(is) Ay, (a5 (05)'/2) )} (18.3.17)

Theg; are merely the, in some order. The coefficienty, _;, are now considered as functions on the discrete
space whose points are the indices oftifee To the pointi(. .. iy) is associated the point mass

Ext- HS(Ext-exp(ZiS)) . With this measure, the transformatibthat carries a set @f's into the corresponding
function g as in (18.3.17) is norm preserving asa® froml# to L4. We will later show thal is norm decreasing as
a map from# toL%. Assuming this for a moment, we complete the pobthe theorem. We apply the generalized
Riesz-Thorin convexity theorem to the transfornraficobtaining

Ext- [|Ext-exp(—tH,,,)|**?*d*u <

1431t
2(1+AD)\ 12(1+AD)
1434t )]

< [Ext- (Zi1~,~,iN Ext- Hs(Ext-exp(ZiS)) X |(Ext-exp(—a)i1wiNt)) X Ciy. iy (18.3.18)

with
Wi, iy = Ext- X lsws. (18.3.19)

In the right-hand side of (18.3.18) we apply theagalized Holder inequality to obtain an expressinmlving the
weighted sum of the squares of the absolute valfig®e C's which is equal to one:

Ext- [|Ext-exp(—tH,,)|**#*d*u <

24t
< [Ext- <Zi1.,.._i,\, Ext- Hs(Ext-exp(ZiS)) (Ext-exp (_("il-,--,izv X 2(12_;10)»] ) (18.3.20)
It follows that

#
S (Ext- f|Ext-exp(=tHy )**d*u )| <
t=0

21 X {Ext-ln [Ext- (Zi1-,~,i1v Ext- HS(Ext-exp(Zis)) (Ext-exp (_wi1-,-.,i,\, % 2(1+At)))>]}. (18.3.21)

22

If uy/A > 2, this gives an inequality with finite right handisiin the#-limit N — *co. It is clear that the theorem is
now reduced to establishing tifats #-norm decreasing fror to L%.

Lemmal8.3.1. LetS be the space of sequen€s}, y=0,1,..., N with #-measure at, Ext-exp(2y); andY the
space of functions ofR¥ with #-measure

(1/my)Y/? (Ext-exp(—x?))d*x, (18.3.22)

andT the operator fron§ toY given by



(Ext-exp(y))Ay (x)

T{C,} = Ext-%, C, 7y ] (18.3.23)

a#m

with A, (x) they-th Hermite polynomiali, (x) = (—1)"(Ext-exp(x?)) (Ext-exp(—x?)) ; then,T is #-norm

da#xm
decreasing frond{ to L%.
It is easy to see that this lemma would follow frestablishing the inequality

1

(ni#)E (Ext-exp(—a —-b—c— d)) x

x (Ext- 208+ (@) (1) (ct#) (a1 )] /2 Aa () Ay (A () Aq () (Ext-exp(—x?))dx)| <1 (18.3.24)

for all integersa, b, c € "N andd > 0; actually, it is sufficientto let = b = ¢ = d. We use the generating
function [21]
tN

Ext-exp(—t? + 2tZ) = Ext-Yven v An(Z) (18.3.25)

to obtain

(;1#)5 (Ext- Jgp(Ext-exp(=x%))Aq (1) Ap () A () Aq (x)d#x) = (18.3.26)

%(a+b+c+d)
pick-a-power

1
== x 220 @D+ o (g 4 rt 4 U + S+ su + tw)
Flatb+ctad)?

where pick-a-power means to find the coefficient of the monomial r*s”tu? in the expansion of the
expression. Note thata + b + ¢ + dis even or the integral vanishes. We make the crude estimate

La+b+cta
(rs+rt+ru+st+su+ tu)f)iz;a;:v; < (18.3.27)
_1 l(a+b+c+d)
< 272 @D s p gt 4 W2k a-power
Now,
1
S(a+b+c+d)  (a+b+cta)
(7"+S+ t+u)§)ick—a-power = W (18328)
enoting the left-hand side o 3. S and usin 3. we obtain
D ing the left-hand side of (18.3.24) by 3 and using (18.3.27) btai
\# —1(a+b+c+d)
S < (Ext-exp(—a— b — ¢ — d)) x —L@rbeerdhe 2 . (18.3.29)
[(a®) () (c1¥) (@) * [Fla+b+c+ )|
It is easily verify that
JI< 1L (18.3.30)

The inequality (18.3.30) finalized the proof of dhem.



CHAPTER I

8§ 1. INTRODUCTION

§ 1. 1 We can consider a somewhat different cut-off theoaymely thelp theory in a periodic box. This gives a
cut-off interaction which is translation invariaafjd therefore it is useful for the study of thewam state. In a
finite interval we prove that the total Hamiltonienself#-adjoint and has a complete set of normalizable
eigenstates.

§ 1. 2 Definitions and notation The Fock spa€# is the Hilbert space completion of the symmetitsor algebra
over L ("R#3)

Fh = C(L4CRE)) = Ext-@,2,F, (1.2)
whereF is the space of non-interacting particles,
Fi = B (RP)®L5("RP)®; - ®,L('RE). (1.2.2)
The variablek = (k,, k,, k3) € *R¥? denotes momentum vector. kb= {yy, 4, ...} € F# = Fi@FiD -

We define on Fock spad®’ the*R#- valued#-norm||-||, by |lp||3 = Ext- Z;‘:Olllpzlliz, where||:|| 4,is a#-norm in
LE(*R¥#3) The no particle spacg? = *C* is the complex numbers, and

Q ={1,0,0,..} € F* (1.2.3)
is the (bare) vacuum or (bare) no-particle statéoreWe define operatofé and H, ,, by
(N, = n(Ext- T, 6(Ilk Il 20) ), (1.2.4)
(Houb), (ky, o k) = Ext- 301 (|||, ) (k) Y (s, oo ), (1.2.5)

wherex € *R¥,\"Rf,, and

o(|lk[l3) = 1 ||k || < x and(|[k [ x) = 0 if k|| > , u(k;) = [Che, ke, +m2 (1.2.6)

Jr

HereN is the number of particles operator, aHgl,, is the free energy operator (the free Hamiltonidhp rest
mass of the non-interacting particlesrig, andu(k) is the energy of a free particle with momentumteek . We
use the standard annihilation and creation opesatd) anda*(k),

(a(k)l)b)n—l(kli R kn—l) = \/ﬁlpn(k' klﬂ R kn—l)'



As a convenient minimal domain fack), we use the s&" of vectorsp € F# with 1, = 0 for largen € *N and
Y, € S CR¥™) for alln € *N.

* -1/ R
(@ ()Y ne1(Ry, oo ey Knyr) = NVt 1Ext- X021 6% (k — k) Yo (Ko, oo Ky o Ke). (1.2.7)

Here the variabld; is omitted. While a*((k) is not an operator, itiiglensely defined bilinear form ot x €7,

Remark 1.2,1 Note for a*C#- valued function ofC#- valued distributioh we can define'C#- valued bilinear
form

B = Bxt- [y gy Dss o i Ky K@ (R) @ () a(—K)) = a(—Kp)d Ky ..d® k. (1.2.8)

The integration helps in (1.2.8) aBds not only a bilinear form, but often an operaiffhis is the case if, for
examplep is the kernel of a bounded operaBgrfrom # to F¥. In this case

(N, + D74/2B(N,, + D7P/?|, < const- [|By 4, (1.2.9)

provided thatn + n < a + . The constant depends only @3, m andn. Intuitively we think ofB as being
dominated byV™ *™/2: in particularB is an operator of ( N +”)/2) the domain oN™ *™/?_ The inequality
(1.2.9) is one of our basic estimates and in using will often dominatd|B,||; by the Hilbert Schmid#-norm
1Bollsus < Iblluz, 1Bollsus = /EXt- YicwllAe;lls , and wherde;|i € oo} is an orthonormal basis .

By definition the field with hyperfinite momentunuieoff ¢} (x), x = (x1, x,, x3) € *R¥3,3c € *R¥, \"RE , is

ol (x) = Ext- fIkIS%(Ext-exp(—i(k, x)){a* (k) + a(k)Mu(k)] 2d*k = (1.2.10)
= Ext- f*mg O(llk I, ) (Ext-exp(—i(k, x)) ){a" (k) + a(k)}[u(k)]~/2d*3k.
We also define the bilinear form

mh(x) = Ext- [, i(Ext-exp(~iCk, x))){a’ (k) + a(O}u(k)2d*k = (1.2.11)

1
Ext- LR? 0k I, 2) (Ext-exp(—i(k, x))){a" (k) + a(k)}[u(k )]2d*3k,
the conjugate momentum ¢gf (x). Since the kernels(k) = (||k ||, 3)(Ext-exp(—i(k, x)))[u(k )]~*/? in L} the
bilinear forms (1.2.10)-(1.2.11) define operatolueal functionsef(x): *R#3 — L(F*) andrf(x): *R#3 —» L(F#).
For realf (x), g(x) such tha® (||k ||, ) [u(k)]~"/%f (x) € L% and@(||k ||, ) [u(k )]%g(x) € L%, , the bilinear forms

() andr#(g) define operators whoskclosures orD( Nj/z) are self#-adjoint. They satisfy the canonical

commutation relations

Ext-exp(in}(g))Ext-exp(ipf(9)) = Ext-exp(i(f, g)s){Ext-exp(ig(g))Ext-exp(inf(g))}.  (1.2.12)

It is furthermore possible to define polynomial étions of the fieldpf(x), the Wick polynomials ¢ (x): (see
chapter | for a definition of the Wick dots : :jticitly, as a bilinear form o®( N,/*) x D( N/?),

L in(x) = YT, (’Jl) by(ky, ..., k) a*(ky) = a*(k;)a(—kj 1) = a(—ky), (1.2.33

where



by, o k) = Ty (|| || 20) (k)] % Ext-exp(=i(7-y k;, %)),
Thus for realf (x) € S*(*R¥®), the bilinear form
: @™ (f) = Ext- f*Rga t it (0)f (x): d*3x

has a kernel proportional f@}_, 9(||kj||,}{)[[l(kj)]_1/2 f (271 k;). Thus from (1.2.9) we conclude that

1 @i (f): defines a symmetric operator on the donﬂa{riv,f/z). It was shown in chapter | sect. 15 thaf™(f):
is essentially self-adjoint on this domain.

§2. THE PEREODIC HYPERFINITE APPROXIMATION IN

CONFIGURATION SPACE

§ 2.1 The cut-off Hamiltonian H,,(g).The cut-offHamiltonianH,,(g) acts orF and can be written in terms of the
field operatorpf (x), x = (x4, x5, x3) as

H,(g) = Hy, + Ext- f*Rga () dBx = (2.12)
= HO,}{ + HI,J{,g'
where Hy,, = H,,(0) is the free hamiltonian, artd< g. Let
C*OO(HOM) = ﬂnoiOD(H(?_H)

be the set of "* vectors forH, .. It was shown in sect.15 chapt.1 thaf(g) and H;,, ;, are essentially
self-#-adjoint onC ™ (H,,, ), that

D(H,(9)) =D(Ho,) ND(Hypg) (2.1.2)

and that there are finite or hyperfiniteb = b(g) such that
| Hoscll, + | Hipegll, < ICH, () + DYl (2.1.3)

for ally € D( H,(g)).

Note that it is convenient to introduce a periduyperfinite approximation in configuration spacendér this
approximation, the momentum space varidbke (k,, k,, k3) € *R¥3 is replaced by a discrete varialile I3}

2y
I} = {k = (ky, bea, k) ki = 2%,

" € Z;i=1,2,3}

with V € *RﬁA*REM. Thus we defing#, the Fock space for volunt& as
7 = (@) = "C'OU TS UP)® L ()}

We identifyF} with the subspace ¢t* consisting of piecewise constant functions whigh@nstant on each cube
of volume(2m/V)3/ cantered about a lattice point



{ky, ..k} € TF X TF x - x I} =T/

The periodic annihilation and creation operatofk) anda* (k) can be extended frof¥ to F# by the formulas
3/2
a, (k) = (%) [Ext- [ 7, d*L, Ext- [ 7, d*ly Ext- /! NS l)], (2.1.4)

: v \3/2 /v v v ;
ay () =(2)" [Ext-["7, atly Ext- [ dtt, Ext- [7/) a1y a”(k + 1) (2.1.5)

2

Therefore the periodic fielg# , (x) and the periodic Hamiltonia#,, , (g) can be extended to act &tf by the
formulas

@l () = @V) 2 Ext- Syeers e Ext-exp(— ik, x)[a” (k) + a(—10) (u()) ", (2.1.6)
Hyy = Hopy + Hppy, (2.1.7)
Hy = Bt 1% Exe [ Bxt- 712, o1 () 4", @1
Hosy = Ext- [, a” (k) a(k)u(k,)d**k (2.1.9)
with ky, a lattice point infinite close tk,
ky €T3, Ik — kyll < 7 ~ 0. (2.1.10)

Remark 2.1.1 Note the absence oflain thea(k) anda*(k) in (2.1.9). OrFF}}, this definition of H, ., agrees with
the standard definition

Ext-Syera  ay(k)ay (R)uck).

VIki<x
The operatord,; ,,, and H,, , are essentially self adjoint an® (HO,,{_V), and
D(Hyy ) = D(Hosy) N D(Hypy)- 2.1.11)
Forally € D(H,y ),
1Hoswbll, + 1 Howbll, < all By +2)W,, (22)

whereb depend oi¥. OnF}, the operatoH, ., has a#-compact resolvent. We want to approximatg (g) by
operators with#-compact resolvents oi?, so we define

H,(g,V) = Hoy,y + Ext- f*]R§3 LRy () g()d*x = (2.1.13)
= Hov + Hp (g, V).

As in chapter | sect. we can show tHatg, V), andH,, (g,V) are essentially se#-adjoint onC’™® (HO,K,V), and
that

D(Hy(9,V)) = D(Hony) 0D (Hp(g, V). (2.914



Furthermore, for all) € D(H,,(g,V)),
[Hosex®l, + Hix (g, VIV, < all(Hi (g, V) + DYl (2.1.15)

In this case botlg andV serve as volume cutoffs, and the constaatb(g, V) can be chosen independentlyof
for fixed g. On the spac&}, the operatoH,,(g, V) has a#-compact resolvent. Our hamiltonians are semi-bodinde
and for eacls > 0, there is a constahtsuch that

0 < eHy, + Hp,(g) + b, (2.1.16)
0 < éeHopy + Hyyy + b, (2.1.17)
0 < eHo,y + H; (g, V) + b, (2.1.18)

see chapter | sect. 1 (2.1.18), thé can be chosen to be independerit ofakinge = 1/2, we have

%HO,}{ < Hl,x(g) + b,
1
which implies that for aliy € D <(H;,(g))2 )

I1Hs2wll, < V2 || (H.(9) + b(%))mw”#- (2.1)19
Here we must choodgx) at leadtE,, (2g)|, whereE,, (2g) is the vacuum energy for the cut-a§.
8 3. THE EXISTENCE OF A VACUUM VECTOR ﬂ%,g FORH,(g)

In this section we prove the existence of a vacuaatorQ,, , for H,.(g), and we prove that the vacuum is unique.

§ 3.1 The existence of a vacuum vector In this subsection we prove the existence of awacuecton,, , for
H,(g). Since the HamiltoniaH,,(g) is bounded from below, we can define the vacuuer®rE, , 2 E(x, g) to
be the infimum of the spectrum &f,(g) and we also refer t8, ;, as thdower bound of H,,(g). We show thak,, ,
is an isolated point in the spectrum. In a relatigitheory, the gap between the ground statetantlrst excited
state is the mass of the interacting particle.tisrreason we say thHs, (g) has a mass gap. A vacuum vedr,
is defined as a normalized eigenvectotg{g) corresponding to the eigenvalbig,.

Hy (9 Qsg = EreigQe g [[Qgll, = 1. (3.1.1)

Theorem 3.1.1There is exists a vacuum vecty, , for HamiltonianH,.(g). For anye > 0, ~ 0 the

operatoH, (g), restricted to the spectral intervb‘l’,_g, E, g+ mg— e] is #-compact.

Theorem 3.1.2 The approximate Hamiltoniah, ,(g), has a vacuum vect@, , . Any hyperinfinite sequence of
volumesV; tending to hyperinfinityco has a hyperinfinite subsequeritgl € *N such that-limit

Oy = #-1imy e Oy gy, (3.1.2)

exists and satisfies (3.1.1).

Remark 3.1.1 LetE,, ; be the lower bound off,,;(g) onF{. Since H,,(g) has a#-compact resolvent af,
there is a vacuum vectey, , , for H,,, (g) I Fj. We now see thdl, , is the lower bound fo#,, ,(g) onFy, so
that Q,, 4 is a vacuum vector fdf,,, (g).



Remark 3.1.2 Let Fj* be the orthogonal complement®f. Since H,,,(g) leavesF;} invariant and is self-
#-adjoint, H,,(g) also leavesF{* invariant.

Theorem 3.1.3 The lower bound of,, ,(g) onFff ISE, 4v + my, Wherem,, is the rest mass of the Fock space
bosons.

Remark 3.1.3 Theorem 3.1.3 shows thas, , , is a vacuum forH,, , (g).

Proof We have an orthogonal decomposition in the sipghticle space

Fif = LECRE) = Ff, @ Fif. (3.1.3)

Here Ff, = F{ n F} consists of functions piecewise constant on irtisreantered at lattice points. Thus we may
write

F* = Ext-@,% F*0), Fi* = Ext-@,7, F*0), A3
where F#U) consists of vectors with exactlyarticles fromF#+ and
FHO) = (Ext- Fi} @, - @ FiH®s 7y (3.1.5)

In this tensor product decomposition there jai@ctorsF{i+. The Hamiltonian H,,, (g) leaves each subspa@&
invariant, and orF#*U) we haveH, ,(g) = IQA+ B ® I, whered = H, ,(g) I F; andB is a sum of copies of
H,,y each acting on a single fact@¥;. Since

jme < B, (3.1.6)

the Theorem follows from this decomposition.
Theorem 3.1.4 ForV < *oo, and forb sufficiently large we have

1

D(Ho,) € D (HE_H> NnD(N,) € D(H,y(g) +b), (3.1.7)

D(Ho,) € D ([(N, + D7 Hyy (@) +5)]7). (3.1.8)

Here we denote by~ #-closure of the operatat.
Proof We takeb large enough so thdt,, ,(g) + b is positive, see (2.1.18). By (1.2.9) and (2.)\ié get

D(Ho) 0 DINZ) € D(Ho) 0D (Hiey (9)) = D (o (@) € D ((Hiey (9) + b)é)-

Thus for alkp € D(H,,.) N D(N2),

L2
|t o) + 0Y0]| = 0, (i () + B0)s < b, By + D)0 +

+H (N, + D7 Hypoy (N, + D7 N, + DI

1
Since( H,y(g) + b)2 is a#-closed operator, we can extend this inequalitytbgontinuity. AsN,, and H ,,
commute, the inequality extends #ycontinuity to alkp € D (H1/2 ) NnD(N,) D D(HO,K). The proof of (3.1.8) is

0,x%
similar.
Theorem 3.1.5 Let z be non-real or real and sufficiently negative. sl tends to hyper infinityoo,



|(Hew(@) = 21)" = (i) =207, = 0. 13)

Proof Let us fixg andz and suppresg when possible. In chapter | sect 16 we have shtbatnH,, (g) is
essentially sel#-adjoint onC"*( H,,, ). Thus vectors of the form= (H, — zD)y, € € *( H,,), are#-dense
in F#. On these vectors

{(Huy —21)" = (Hy = 2Dy} x = (Hyy — 21) " {(Hye = 2D9 = (Hyy — 21)ip} =
= (Hyy —21) " (Hy = Hy)(H,— 2Dy =
= (Hyy = 2I)" Ny + DWWy + D7 (Hye = Hygy )Ny, + D7 Wy + D (Hy — 217 .
Forg € F*,
(0, {(Hoo = 21) " = (H, = 2D} )| < (3.1.10)
< ||+ D(H = 207|101 W+ D72 (Hy = By )N+ D7),

X [|(Ny, + D(Hye = 2D Hlgllxlls -

Using (2.1.15), we find tha”(N,{ +D(H,y — z‘I)_1 ||# is bounded uniformly i, since

|+ Doy = 21) |, < const || (Hoew + D(Hew = 20) 9|, <
< const - ” Hyy(Hyy — Z_I)_11[J||# + const - ”( H,y, — Z‘I)_ll,b”#,

where the constants can be chosen independeritlyRBy a similar consideration, the orthogonal decosifion

(3.1.3) shows thatV,, + I)( H,y — zI)_1 is a bounded operator. Thus from (3.1.10), andabithat they are
#-dense, we infer

”(H,{,V —zl) " — (Hy - z1)—1||# < const - [|(Nye + D)7 (Hy — Ho )Ny + D7, (3.1.11)

with a constant independent &f. The differencet,, — H,., = ( Ho, — Hony) + (H,'%(g) - H,,K,V(g))
and for infinite largéd’,

|(N,, + D=Y2( Hy,e — Hopy ) (N, + 1)—1||# =0W). (3.1.12)

This is a simple direct computation, usipgk,) — u(k)| = 0(V~1). For the interaction terms, we use (1.2.10) to
estimate

|+ D72 (Hillg) = Hie (@) (N +D7H| = 007, (3.1.13)
The kerneb (k, ..., k,) corresponding to a monomial i, (g) is

by, k) = () Tl O (kL ) [e(R)] ™29 (1P + kP + kP 4+ k® + kD + 1P+ kD),



0 <j < 4. The kerneby (k;, ..., k,) ) for the corresponding monomialth,,,(g) is obtained by replacing the
factor [T}, 0(||k; ||, ) [u(k,)]"* by the factof 1=, 6(|| kv ||, #) [1(k;,)] ™. Inspection of the difference
b(ky, ..., ky) — by(kq, ..., k) shows thallb (ki, ..., ks) — by (kq, ...,k4)||L§ = 0(V~1).asV - *oo, from which we
conclude that (3.13) i8(V ~1). The#-convergence of the resolvents follows from (3.1-(BL).13). The#-limit

EH,g,V 4 Ex,g

follows from the#-convergence of the resolvents, since for largetipedi,
-1 -1
(Ewgv +b) = ”(H%'V(g) +b) ||#
Proof of thetheorems 3.1.1 and 3.1.2 ltef (x) be a#-smooth positive function with support in the intarv
[—&,my — €] Thenf( H,y,(9) — EH,g_V) I F} is#-compact, since the resolvent 8, ,(g) I Fjfis #-compact on
F§. By Theorem 3.1.3( H,y(g9) — E,gy) I Fi* = 0 and therefore #-compact on the full Fock spag§. By

Theorem 3.5, the resolveﬁHH,V(g) —Eygv— z)_1 #-converge in#-norm as/ — *oo, and therefore
”f( H}{,V(g) - Ex,g,V) - f( H;,(g) - E}r,g)”# -4 0,

sincef ( H,(g) — E,,4) is a bounded function ¢fH,,(g) — E,. 4, — z)_1 which vanishes at hyper infinity. Since the
uniform #-limit of #-compact operators #-compact,H, (g) restricted to the spectral interfale, m; — €] is
#-compact. This means furthermore that only a finit@yperfinite number of eigenvalues Hf, ,(g) #-converge

to E, 4. Theorem 3.1.6 shows that the projection ontcctireesponding set of eigenvectorsigf , (g) #-converge
asV - *oo. SinceQ,, 4, is an eigenvector q‘f( H,,(g) — EH,g,V) a hyperinfinite subsequence of g, ,
#-converge to #-limit asV — *co. For this#-limit

(Bg + D) Qg = #-1imp oo (B g, +5) " Qg =

) -1 _
= #- llml—>*oo( Hn,Vl(g) + b) Qx,g,Vl = (H%(g) + b) 1Qn,g

by Theorem 3.1.5. Hene®, , € D( H,.(9)), H,(9)y = Ey 4Q, 4 andq,, , is a vacuum vector fdi, (g).

In the following section we will see th@t, ; andQ,, ,,, are unique except for an arbitrary phase

multiple Ext-exp(i@), and that there is a natural choice for this eabjtphase. With this choice, we then will prove
that theq),, , , #-converge tdl,, , asV - “oo.

Notation 3.1.1 Let X andY be a non-Archimedean Banach spaces. The set#fcidised operators froki to Y
will be denoted b¥*(X,Y). Also we write€* (X, X) = £#(X). The set of all linear operators fraxnto Y will be
denoted byB(X,Y). Also we writeB(X, X) = B(X).

Theorem 3.1.6



[18, p. 21 &B
C(B)

§ 3.2 Uniqueness of the vacuum. In this subsection we prove the uniqueness otawa vector),, , for H, (g).

Theorem 3.2.1 The vacuum vectaw, , , for H, (g) is unique.
Remark 3.2.1 In other wordsdt,, 4, the lower bound of,,(g) is a simple eigenvalue.
Definition 3.2.1 LetH# = L4(Q, d*u) be a non-Archimedean Hilbert space. We say thatuaded operator

A: H* - H* has a strictly positive kernel provided that

W, Ax) >0 (3.2.1)

wheneveny andy are non-negativé$ functions with non-zeré&-norms. Such an operator transforms a function
x = 0,]lxll# # 0 into a functiondy which is strictly positivet-almost everywhere.

Definition 3.2.2 Let H# = L4(Q, d*u) be a non-Archimedean Hilbert space. We say tihataded operator

A: H* - H* has a positive, ergodic kernel if for eaghy as abovéy. Ay) = 0 and

W, A )y >0 (3.2.2)

for somej, depending oY andy. Clearly everyd with a strictly positive kernel has a positivegedic kernel.
Theorem 3.2.2 Let A have a positive ergodic kernel, and suppose|lthly; is an eigenvalue of. Then||4]|; is a
simple eigenvalue and the corresponding eigenveetobe chosen to be a strictly positive function.

Proof SinceA maps positive functions into positive functional&o maps real functions into real functions. If

Y € H¥ satisfiesdy = ||All« - ¥, then so dRey andImyp. Therefore without loss of generality we may assume

thaty is real. Sincd|A’||, = l|All}, andA’y = ||All} - , we infer that

47, - 113 = . ATy < (), AT 1)y < 1AL, - plI3,

(W A1)y = (1], AT D)y
Writing nowyp = ¢+ — ¢~, whereyp* and i~ are the positive and negative partgof
W APy — APy — (7, AP )+, AT =
= W AP Yy + ATy HPT AT ) (T, APy
or
WH AP )+ 7, AlYt), = 0. (3.2.3)

Unlessy™ = 0 oryp~ = 0, each term of (3.2.3) could be made strictly pesiby choosing an approprigteThus
eithery* or ¥~ must vanish, and we may choose the eigenvgctorbe non-negative. Jf = 0, ||x|l» # 0, then
for some integey ,0 < (y, A7)y = ||A||j; “{x,¥)4. This proves thaty is not zero almost everywhere, and that
is strictly positive##-almost everywhere. Finally, if andy were linearly independent eigenvectorsiafith the
eigenvalud|A||, then we could repeat the above argument witlcoimeponent of¢ orthogonal tap. This would
yield two positive, orthogonal eigenvectors, whiehuld be impossible, and the proof is complete.



Remark 3.2.2 Let pj;(h) = Ext- [, ¢ (x)h(x) d**x denote the smeared, time zero free field opesaidre

spectral projections of thgf (h), or the function€xt-exp (i} (h)) generate a maximal abelian algebfd of
bounded operators @f*. Let Q be the spectrum of the algelivé?. The no particle vectdd, € F* is a cyclic
vector for 'DR, namelyF# = #-(,/%#QO). Therefore we may introducettameasureiu onQ so thatF# is
unitarily equivalent td.%(Q, d*u) and so that the equivalence cariéé into L% and takes), into the functior.
Theorem 3.2.3 With F* represented ds (Q, d*u), Ext-exp(— H,,.) has a positive, ergodic kernel.

Proof Lety andy be non-negative. Writgy = 1, + 1, wherey, is the component ofy alongQ,. Thus the.?
#-norm of Y is given by|Y |41 = (W, Qods = (Y1, Qo)s- Note||y||4; # 0 whenevenp is non-zero, and

|| Ext-exp(— tHo, )Y ||, < (Ext-exp(=tmy))llibll41, wherem, is the boson mass. Thus

W, Ext-exp(—tHg,K))()# = 1 llar - x er — NP2l - ||)(2||#1(Ext-exp(—tm0)). (3.2.4)

By choosing t sufficiently large, (3.2.4) is pos#tj which proves (3.2.2). If the following ineqgitgholds

1 1Y llgr llx g 1 I Naa 1 llaq
Ext-exp(—tm,) < = == 3.2.5
PLEMO) < 3 sl ales — 2 (2 =lwl2 ) > (iz-02,) (3.2.5)
then
1
W, Ext-exp(—tHo'K))()# = 5”1!) llsex - 11X Nsea- (3.2.6)

We need to show thét), Ext-exp(—tHO_,f)x)# > 0 for all finite t. In fact, it is sufficient to prove this for#&dense
set of non-negative¢h andy. Let us consider an approximate free energy operat

Hopy = Ext- [, a*(l)a ()p(k,)d"k. 3.4.7)

For vectorsp € € ®( Hy,), asV - *oo. || Ho,.y ¥ — Ho,p||, =+ 0. Since H,, is essentially self-adjoint on

C*°°( HO,R), the resolvents of, ,,; converge stronglfl8, p. 429]. Thus the generalized semigroup
#-convergence theoreft8, p. 502] ensures that for ajp € F#

||Ext-exp(—tH0,K'V)1,b - Ext-exp(—tHO'K)l,b”# -4 0

asV — oo, and thet-convergence is uniform gh-compact sets af Therefore we need only show that for a
#-dense set of non-negatiyeandy (v, Ext-exp(—tHo_,{,V)x)# > 0. LetF(x, ..., x,) be a non- negative, hyper
infinitely #-differentiable function witht-compact support, and let

¥ = F(@k(f), -, 0% (f2)) 0, (3.2.8)

wheref;, ..., f,, are real. The set of all such vectors#mense inF#*, the non- negative vectorst.
Furthermore, we define

Yy = F(0hy (R s 0y () Qo (3.2.9)
whereg , (f,) is defined by restricting the sum in (2.1.6) tosl

kel3, =7 n{k||kl <}



Theny,,, € Fi < F#* whereF} is the Fock space corresponding to the mdded’: . For any vector
x € C*(Hoy,)

kv (Fx = @i (Hxll, —4 0, asV - “oo,

and asC*°°( HO_”) is a#-core for g} (f), the resolvents apf , (f) #-converge strongly to the resolvent of, (f).

[18, p. 429]. Thus the generalized semigroizonvergence theorefi8, p. 502] ensures that for eaghe F#, s
real

||Ext-exp (iS<pﬁ,v(f))¢ — Ext-exp(is <pf§(f))¢||# -4 0, asV — “oo,

and the#-convergence is uniform fef-compact sets of. By (3.2.9)

Yoy = Ext- [ F(sy, ..., sp) [i Y}, Ext-exp (isq)ﬁy (fJ ))] dts, - d's,,
andF (s, ..., s,,) vanishes rapidly at hyperinfinity, so we conclulat
”Ebu,v - 1!’”# -4 0,asV - "o,
Thus for such vectong, y,
W, Ext-exp(—tHo_H))()# = #-limy_ o0 (Y v, Ext'eXp(_tHo,x,V)Xz,V)#
and we need only show that
Wy, Ext'exp(_tHO,}t,V)Xx,V)# = 0. 3.2.10)
However onF#,
Ho,y = Ext- Zker‘i'v ay(k)ay(k)u(k) = Ext- Zkerjy Hoevs

SoExt-exp(—tH,,.y) = Ext- Mierz, exp(—tH,,.y ). It easily verify by explicit computation that eagperator

exp(—tHO,H,V) have a strictly positive kernel, so (3.2.10) hadsl the proof is complete.

Theorem 3.2.4 With F# represented dg (Q, d* ), the operatoExt-exp(—H,(g)) has a positive, ergodic kernel.
Remark 3.2.3 We expect thaExt-exp(—H,, ) andExt-exp(—H,(g)) have strictly positive kernels.

Proof As in Theorem 3.2.3, formula (3.2.7), we consilgy, (g) = H,, + H;,,v(g). The approximate interaction
H,,.v(g) is constructed witkpZ , in place ofp/?. SinceC*°°( HO,;,) is a#-core forH, (g), we can argue as in the
previous theorem that for all € F#

Ext-exp (—tH%V(g))l,b >y Ext-exp(—tHK(g))l,b, asV — *oo.

Thus we need only prove that f¢r y as in Theorem 3.2.3

0<e< <¢}{,V’ Ext'exp (_tH}{,V(g))XJ{,V)#' 13-1)



and that for sufficiently large the constant = e(¥, x, %,V ) can be chosen independentlyodndV. OnF):, we

have an explicit representationBft-exp (—tHH_V(g)) given by generalized Feynman-Kac integral formula
(¥yp, Ext-exp (—tHH,V (g))xk,v)# = (3.2.12)

Ext-f Ext-exp (= [Ext- [ Hy g (a()) d*t] ) (a(0)) 20 (a(0))D*();
Hereq(s) denotes a points in the spectrum of the modes
av (k) = ay (k) + ay (k) + a;, (k) +a}, (=k)
gy (k) = ay (k) — ay (—k) + a;, (k) — a;, (—k)

for k € T3, = {k|k € I;} A |k| < »}, andC,,, is the path space for these modes. Skxeexp(—tH,,) has a
strictly positive kernel, (3.2.12) exhibiBxt-exp (—tHH,V(g)) explicitly as an operator with a strictly positive
kernel. Thus (3.2.11) is valid, and taking #iiimit asV — *co shows that

(w,Ext-exp(—tH%(g)))()# > 0. (3.2.13)

We now establish a uniform lower bounde@im (3.2.11) to prove that farsufficiently large (3.2.13) is strictly

positive. Given any positived we can split the integral (3.2.13) into two pakist CS‘), be those paths such that the

exponent in the Feynman-Kac formula satisﬁe[fxt- fot H g (a(s)) d#t] =-M, and Ietc}(f‘), be the
complementary set of paths. Thus

Wiy, Extexp (~tHyy (9)) Ty s = (Ext-exp(=M))Ext- f,c ¥ (0(0)) 2oy (a(®)D*q () =

= (Ext-exp(—M)) {(ED;{,V' Ext'EXp(_tHo,x,V)Xn,V)# — Ext- fC(Z& Yo (q(O)) Xx,V(Q(t))D#q(')}- (3.2.14)
First we choose by (3.2.5) so that (3.2.6) holds. Then for suéfitly infinitely largel’ (depending on),

1 1
(T Ext'exp(_tHO,u,V)Xx,V># = E(d"Ext'eXp(_tHo,x)X e = " 1 g - 1 Nlas
Thus (3.2.14) becomes

(wu,V’ Ext'exp(_tHO,x,V)XH,V)# =
1
> Ext-exp(—M) {lew lliex - 11Xl —Ext'f(z) Vv (2(0)) Xoew (a(©))D*q (5.
CH,V

Let Pr{-} denote theét-measure on path space, so that by the generaliaeléiHnequality

-1

Ext-f.c) wx,V(q(O))Xn,V(Q(t))D#q(')| <(Pr{cH)) T sy (0Ot (@),

wherel < r < 2. By the smoothing property @fxt-exp(—tH,, ) for sufficiently larget



[ (20X (@), < 0w [l X [t

and forV sufficiently infinitely large, this is dominated/ || |4, - |lx || 42- Thus with the choices so far made for
V,t,M,

(r-1
<¢%,V,Ext-exp(—tHx,V(g))xx,mZExt-exp(—M){inwn#l- s = 200 Nz - Il sz (Pr{c2}) 7 }2

> 2 (Ext-exp(—=M)) I llgs - I Nl > €, 1, )

provided in addition that

@) < (I la iz los \T=D
Pr{c”'v}_(16|I¢||#2'||X||#2) ' (32.15)

We now show that foM sufficiently large, (3.2.15) is satisfied and #fere theorem is proved.
Note that

Pr{Cff‘),} =Pr {M < Ext- fot Hyygv q(s)d#s} =Pr {1 <M (Ext- fot H o gv q(s)d#s)} <

2
<M [Ext- fC”V |Ext- fot Hyygv q(s)d#s| d#q(-)].

Replacing the integral overby a#-limit of hyperfinite Riemann sums, we obtain a bdumterms of generalized
Wiener integrals depending on a hyperfinite nundigimes.

Pr{C)} < #-lim,_-., (ﬁ)z |Ext-32,_, Ext- | oy Hixawd (%) Hyngva () d*q()].

By the definition of the generalized Wiener intdgtlais expression can be evaluated in terms gbamticle
expectation values, and it equals

2
#elimy, ey (=) Ext- 52 (Qo, {Ext-exp(—1i = jltHoe/n)} - Hypg Q).

By the generalized Schwarz inequality

Pr{ij&} = (ﬁ)z ||H1.ngVQ°”; = (%)2

for some constard,, independent o’. Thus we choose

-
M > Dt (16||111 l#1- llx ||#1)(r—1).
16l llgz: lx lly2

Combining Theorem 3.2.4 with Theorem 3.2.2 yielgsa@of of Theorem 3.2.1. Clearly the same proofliappo
H,,,(g). to show that its vacuum is unique.

Corollary3.2.5. LetQ, , be the vacuum fdt, 4, with its phase determined by the requirement
(Qo, Ly gy > 0. (3.2.16)

Then#-limy_,+, Q,5y =Q, 4 €Xists ), , is the vacuum foH,, 4, and



(Qo, Qe gy > 0. (3.2.17)

Proof A hyper infinite sequenc@,{,gyj with V; - *co has a#-convergent hyper infinite subsequence by Theorem
3.1.2,#-converging to a vacuum faf,, ;. The phase (2.3.16) fixes the phase (2.3.17) soyévconvergent hyper
infinite subsequence has the sa#émit Q,, ;. Thus theq,, , , #-converge td), ,, as required.

Coroallary 3.2.6 The vacuuni,, ; is a cyclic vector foM .

Proof The functionQ,, , is positive for#-almost allg € Q*, andM = L%_(Q*) in theL§(Q*, d*f) representation

of F#.

84. THE HEISENBERG PICTURE FIELD OPERATORS
8§ 4.1 In the Heisenberg picture operators have the tiepeddence
A(t) = Ext-exp(it H”(g))A(O)Ext-exp(—i tHH(g)) (4.11)

This definition of the dynamics contains the cutfahction g(x) explicitly. For an important class of operators
A(0), however A(t) is independent of (x) provided thag(x) = A, the coupling constant, on a suitably large set.
For example, we tak&(0) to be an observable representing a measuremdotmped in some 3-dimensional
regionB c *R#3 of space (at time = 0). ThenA(t) represents the same measurement performed at.tifne
hamiltonian with a hyperfinite ultraviolet cut-offe *R¥,\ "R, such asH,,(g), propagates information with at
most the speed of light. Thereforgjifx) = A on a region containing, andt is sufficiently small, the fact that

g(x) does not equal everywhere will never be recorded by a measured@nt For each localized observable
A(0) and eactr, we make an appropriate choice §dx). Therefore (4.1) provides the correct dynamicglier

(¢*), quantum field theory with the cgiantum field theory with the cut-off removed. histsection we discuss
the field operatorg? (x, t) or *R¥*

0¥ (f) = Ext- f*Rﬁ“ o (x,t) d*3xd*t. 4.9.2

We see that integration helps in (4.2) becapf§g) is an operator while# (x,t) is a bilinear form. Actually the
time integration is not required and for r¢al

A(t) = Ext- [.pus 03 (x, 1) d*3x (4.18

is also a sel#-adjoint operator dependinrtycontinuously ort. We expect that this is a special feature of the tw
dimensional model we are considering and that stiugfields will not be operators in four dimensso For this
reason, basic physical concepts have been fornoulaterms of the time averaged fields (4.2) rathan the sharp
time fields (4.3). For example, Wightman's axiomsd quantum field theory are expressed in ternteebpera-
tors (4.2), and we will show that many of his axgarne satisfied for our model.

§4.2 An invariant domain for localized fields. In this section we study the Heisenberg pictueklfiocalized in a
4-dimensional region of space tiBeWe find thaip} (x, t) is a bilinear form and that for rel o (f) is a
#-densely defined symmetric operator. We start withregion B, a bounded open subset of space timaedlire
that H,,(g) be a hamiltonian foB. This means that the spatial cut-gffx) equals the coupling constahbn a
sufficiently large interval to contain the domaihdependence d8. In other words, assuming that the velocity of
light is one, for every poiry, t) € B,

g(x) =4, if Jlx — y|l <t (4.2n

It is convenient to deal with the field



ok ;(x,t) = Ext-exp(it H,(9)) @} (x) Ext-exp(—i tH,(g))
and its time#-derivative
(X, 1) = Ext-exp(it Hk(g))rrﬁ(x)Ext-exp(—i tH,{(g)) = 0%} ,(x, 1) /0%t

The time zero field®}?(x) and its conjugate momentunj (x) were defined in chapterWe shall see that for
(x,t) € B, go,f,g (x,t) is independent of, and equals the fielg# (x, t). Thus all the cut-offs have been removed in

the definition ofp} (x, t). For eactC ®-function f (x, t) with support irB, we show that
©}(f) = Ext- f*Ri‘; o (x, ) f(x,t) d*3xd*t (4.2.2)
is an operator whose domain contains
D}y = C'*(Hy(9)) = N2 D(HE()), 4.2.3)
In factDj} ; is an invariant domain, i.e.
@i (F)D} g c Dfy, (4.2.4)

SO thatD,’f,g cCc™® (@,’f(f)). We note that this invariant domain may dependherrégiorB in which the field
@5 (f) is localized. Forp € D} ; the expectation values

(lp! <P§(x1' tl) (pf:(xn! tn)lp)# (425)

is *C#*- valued Schwartz distribution "' (B x--x B). If f(x, t) is a function ins* ("R%*), theng} , (f) still is
defined onD,’f_gand leaves it invariant. The expectation value3.9} .of <pf{’,g (x,t) are tempered distributions in
S*(*R¥*). However, the fieldg}; ;,(f) may depend op.

Lemma4.2.1 The fieldg} ; (x, t) is a bilinear form o® (( H,(g) + b)*/?) x D(( H,(g) + b)*/?) #-continuous

1
in x andt. Namely foryy € D (( H,(g) + b)E) (1, off(x, t))4 is a#-continuous function. Furthermore
a* ,
|Ext- [, 05 9 G, )y 33 f ()] < const [l (4, (H(g) + By i = 1,23, (4.2.6)

Proof The free fieldp(x,0) is the sum of two expressions of the form (1.8)e Kernel® (k, »)b(k) are inLf.
Furthermore we hav@(k, »)b(k)[u(k)]"*/? € L%. The estimate (1.2. 9) has been generalized tercmch kernels,
giving us

| Ho + )70t 4 (x,0)( Hop + 1)‘1/2”# < const - [|0(k, )b (R ()] ]|, < *oo . (4.2.7)

Thus for € D ((H,(g) + b)2), Ext-exp(~it H,(9)) € D ((H,(g) +b)?) < D(HE/2), by (2.1.19) and

0,%

therefore(y, g} ; (x, t J)y = (Ext-exp(—it H,(g))¥, ¢} 4(x,0)Ext-exp(—it H,(g) )ih)y is defined and
(W, 0k g (x, t)9)| < const- [|8(k, 5)b(R) U], - (b, (H,(g) + DY)y

Since [|6(k, )b (k) [u(k)] /2| k[*f (K) ||, < [|6 (k)b (R [ (FO1 /21Kl |, _ - Il ll42 < const - [l the
inequality (4.2.6) holds. Let us writg,, i = 1,2,3 for b to denote the dependencebadnx;. Then ||(b,, —




by,)0(k, ;r)[y(k)]‘l/2||#2 is a function ofx; — y;) only and it#-tends to zero g — y| —4 0.
Since

1/2
/ <

#2

[ (000 = 985, 0)) W] < const || (1 + Ho) |- || (b, = by )0 GO =

< const - [|( Hy(g) + )22 - || (bs, — by 0k, 20 kI (4.2.8)

#2

we have continuity with respect x0 Also
1
” (H,(9) +b)z (Ext-exp(—it H,(g)) — Ext-exp(—is Hx(g))) ||# -4 0
as|t —s| —4 0. Thus

|, (0hg G -0 5)) 9] <

X

< const - ”(I + HO',{)l/2 (Ext-exp(—it H,(g)) — Ext-exp(—is H%(g))) l,b”# : ” (by,)0(k, ;r)[y(k)]'%

#2

x{[| (1 + Ho,)"? (Ext-exp(—it Hu(9))) I, + |+ Hou)'"” (Ext-exp(—is H,(9))) TRE

X
#2

< const - ” (H,(g) + b)'/? (Ext-exp(—it H,(9)) — Ext-exp(—is H,{(g))) 1,11”# . ”(bxi)G(k, z)[,u(k)]_%

X |CH (g) + BYY2p||, =4 O (4.2.9)
as|t —s| —4 0.

From (3.2.8)-(3.2.89) we see th,aji,g(x, t) is jointly #-continuous inc andt. Probablynf,‘,g(x, t) is a bilinear
form onD(( H,(g) + b)*/?) x D((H,(g) + b)*/?) #-continuous inx andt, but our estimates are not strong
enough to prove this. The functiofiéx, t) in Sf (*R**) determine bounde#-measuredv = f(x,t)d*3xd"t,

S0} 4(f) = Ext- [ ¢f 5(x,t) f(x,t)d**xd*t is a bilinear form. It1*v,, -4 d*v in the weak topology for
#-measures, thebixt- [ ¢} /(x,t) d*v, >4 Ext- [ ¢} ;(x,t) d*v in the weak sense that fgre D(( H,(g) +
b)1/2)

W, Ext- [ @ff ;(x,t) d*v, )y =y (P, Ext- [ @f ;(x,t) d*v 1)y, (4.2.10)
We define also the sharp time field
A% 5 (6) = Ext- [ @l g(x,t) f(x,t)d"x (4.2.11)
and
Bi4(t) = Ext- [ 1} 5(x,t) f(x,)d%x. (4.2.12)

Lemma4.2.2 Let functionf (x,t) in S, ("R**) be real. Ther}, ;(t) andB} ;(¢) define self+#-adjoint operators,
and their domains includ(( H,(g) + b)'/?). With a constant independent of,



4, wll, + B2, @wll, < cOIFC Oz + UDEFC,Olliz) || (o) + bYzw (4.2.13)

| )
#

for ally € D((H,(g) + b)/?).

Proof It is sufficient to considep/; (f,) = Ext- [ ¢fi(x) f(x,t)d**x in placeof A% ;(t) andr}(f,) =

Ext- [ mi(x) f(x,£)d*x in placeof B} ;(¢), as they are unitarily equivalent by the unitary
operatoiExt-exp(—it H,(g)), and this unitary leaved(( H,(g) + b)*/?) invariant. The same is true fof ()
By (2.1.19) we have

1/2

2
G+ N2l < mat ||+ Ho) || < 2m3*[[(Ha9) + D)2y

so we need only prove that

ot Gwlls + It Fplls < clllf C Ol + IDLFC DN} || € + Nz (4.2.14)

¥
The lemma now follows from (1.2.9). For examptg(f,) is the sum of two operators of the form (1.2.8hwi
kernelsb (k) = 6(k, x)b(k)[u(k)]%(Ext-f(Ext-exp(—i(k, x))) f(x,t)d*3x), satisfying the inequality

Ibllsz = [|[(=D& + mDY*£(, D], < const- UIfC,Ollsz + IDEFC, Oll2)-

The kernel fokp# (f,) can be bounded by thig (-, t) || 4, #-norm alone. The estimate (4.2.13) now follows from
(4.2.14). The self-adjointness of4}; ,(t) andB;; ;(¢) can be proven by showing thaf(f,) andr(f;) are self-
#-adjoint. But (3.2.14) ensures that every vectdF frwith a finite number of particles #-analytic fore# (f,) and
for z#(f,), so these operators are essentially self-adjoirthe domain of vectors with a finite or hyperfanit
number of particles. Hence they are uniquely detegthby their definition on that domain.

We now explain the sense in which the integral.(2p#-converges, since we did not show mﬁ_;, (fy) was a

bilinear form. Ify € D(( H,(g) + b)*/?), theny € D(( N, + N*/?) and
(W, Ext-ft;(k))y = 0(k, %) [M(k)]%{(a(k)llml’)# + (W, a(=K)P)y} (4.2.15)

is a slowly increasing, locally summable functiand hence a tempered distributios ) . Thus(y, 7 (x )), is
by definition the distribution Fourier transform @ 2.15), and hence a tempered distributiasijn. Finally
(4.2.12) is the weak integral

W, By (W) = Ext- [ d*xf (x, ) ((Ext-exp(=it H,(9)) ), m} (x) (Ext-exp(—it H, (9))) ¥}y

Theorem 4.2.3 Lety € D((H,(g) + b)'/?), and letf (x, t) be a real function i§f;, ("R**). Then the vectors
Ai_g (t)y and B,f,g (t)y are strongly#-continuous and are rapidly decreasing functions ®he integrals
Ext- [ A} ;(Oyd*t = ¢} ;(f)p andExt- [ Bf ;(O)ypd*t = nf ,(f)y exist and defing] ,(f) andnf ,(f) as
#-closed symmetric operators with domains contaimﬁgH,{(g) + b)l/z). We have the estimate

kg OV, + [Imk g (DY, < cExt- [UIFC Oz + IDEFC Ollu2}d* O (Hy(9) + b)Yy (4.2.16)

with a constant independent of andg.
Proof We write

IF GOl = cllf Ol + cliDEFC Ol (4.2.17)



and
A% g ()P AL 5 (D0 = (1 = Ext-exp(—i(t —5) H,(9)) ) ALg ()W +
+[Ext-exp(it H,(q))|{Ext- [ 0k (x) (f(x,5) = f(x,0))d*x}[Ext-exp(—is H,(g))]y +
A% J()|Ext-exp(—i(t — s) H(9)) |
Thus by (4.2.13),

486w — ALy @], < |[(1 — Extexp(=iCt — ) H(9))) 4L, ()|, +

HFCS) = FOL || ) + 02w ||+

+fC Ol ||(Ext-exp(=i(t = ) Hy(9)) = 1) (Hy(g) + b)*]|, =4 0

ast —y s. This proves thet-continuity. The rapid decrease is ensured by (8)2ahd the fact thte S ("R#4).
A similar argument works fOB,jg(t)lli. The integrals definingyfﬁ,g(f) andnfﬁ_g(f) now exist; (4.2.16) follows
from integrating (4.2.13). Sinca} ,(¢) and B} ,(¢) are self#-adjoint, fory € D(( H,(g) + b)*/?) c

W, 0l g (F)PYy = Ext- [, AL g(O))yd*t = Ext- [( Af ;) ¥)pd"t

is a real, and similarly fm‘fﬁ,g (). Symmetric operators ateclosable and we now defir@_g D) andni_g (f) as
the #-closure of the above operators on the domain

D(( Hy(g) + b)*/?). (4.2.18)

Remark 4.2.1 (a) The integrals definin@fj_g Hy andni_g (f)y are strong Riemann integra@i‘,g (f) is a strong
#-limit of operators of the form

Ext-Yy Af ,(t),n € N, (4.2.19)
Conversely using th#-continuity ofAfi_g (t)y, we see that an operator of the form (4.2.19)s8@ng #-limit of a
hyper infinite sequenopjj,g (fj ),j € "N, and thef; can be chosen with thenorm
IFla = ¢ (Bxt- Lgus {IIF G Ol + ZEallof fC 0O, f de) (4.2.20)

uniformly bounded. For bot#-limits the#-convergence occurs on the domain (4.2.18) andaimdnsiderations
apply tort ,(f). Furthermorep}; ;(f) andr;; ;(f) can be defined whenevf|,; < *co.
(b) Using (2.1.19) to estimatH, ,, , we have from (4.2.16),

1
0% g (D Qegll, + 175 g (g, < 1f11(|Erzg = Ergl + 1)% (4.2.21)

but the bound on the right grows in the diametdhefsupport of.
Theorem 4.2.4(15] Let |f1; be the#-norm 1y, = ¢ (Ext- f.gya {IF . Olliz + Ziillaf G0, ) de).

3
Let |f|4q is finite. Then on the domaip ((H;,,g + b)E), ), the fieldp/?(f) satisfies the following equation



OF o) (f) = =9k 3 f) = mi(f) = [iH,g, 0% (P]. (22

Proof Note that the first equality in (13.116) is theidifon of a distribution#-derivative. The out the difference

[fGaret)-fxt)]
&

quotientA, f (x, t) to #-derivative 8] f readsA, f (x, t) = [ ,€ ~ 0, note tha#-lim,_, .o A.f (x,t) =

0f f(x, t). Note that for any vectap such thatp € D ((HH,g + b)%> by canonical consideration we get
#liml| (0! v — o (Aef e O], = 0.
We have forp € D ((H;,,g + b)%> that
@ (Def (x, ) = e72(I — Ext-explieH]) {Ext- J;RC#3 of(x,t —e)f(x, t)d#3x1,l)d#t}+
+&71 {Ext- fmc#g A, (f, ) (Ext-explieH,, 4] — I)I,bd#t}. (4.2)23

Here the last tern¥-converges as —, 0 and it#-limit is: i(Ext- f*Rcﬂ A, (f, t)H”_gll}d#t). Sincegf (A.f (x, ) )y

#-converges as —4 0, the remaining term in expression fpﬁ(Agf(x, t))l[) #-converges also to#limit y,. For
X € D(H,,,) we obtain that

Qo) = #-lim (r, €7 (1 = Ext-explieHyg]) {Ext- [.ypa 0} Go t = €)f (v, 0@ xpd*t]) = (it o2, 0 (1Y),
SinceH,, 4 = H;, 4, it follows thatej: ,(f)y € D(H, ,) andy, = iH, 40} ()P and therefore:
—@i ()Y = [iH,.g, 0% (O]
From the above equation we obtain
i, @5 (B ) = Ext- [y (Hyp(£), Ext- [.pun 3 (x, 0)f G, DA™ xip(8) ) dt —
Ext- f*wg (Ext- LM3 @5 (x,0)f (x, )d*xap (t), H,, g1p(t)) d¥t. (4.2.24)
Herey(t) = Ext-explitH, 4|i. Note thatp(t) € D(H,,) n D(H,,4), and
1H106 (&) = ()l < @ll(Hreg + D)) = W), =4 0,

as|t — s| -4 0. Therefore we may substituty,, + H;, for H, ; and consider each term separately. Note that the
operatordi; ,, andExt- f*R% @i(x,0)f (x,t)d**x commute and therefofd ,, contribute zero to equality above.
(4

The following identity by canonical computation éisifor anyy € D(Hy,,), in particular for
Y(t) = Ext-exp[itH|yY € D(H,,)

(HO}tlzb! Ext- f*RC#S (P;j(x; O)f(x! t)d#3x¢ ) - ([Ext- f*]Rg:i ‘Pﬁ(x' O)f(x' t)d#3x ] lp! HOKIP) =

(W, =i [Ext- [y mh (6, 0 G, )% | ).

Therefore finally we get



l(lp! (pﬁ(aff)lp) = Ext- f*]R? (lp(t)! —iExt- f*IRiG T[;j(x' O)f(x! t)d#axlp ) d#t = (lzb! _lnﬁ (f)lzb>

This equality finalized the proof.
Remark 4.2.2 (a) in exactly the same fashion one proves that

6t#t2§0:?g(f) = at#ﬂﬁ,g(f) = _ﬂi,g(aff) = [in,g'ﬂi,g(f)]

if |6,§*‘th|1 is also finite or hyperfinite. The commutator ibibnear form oD} ; x D} ;, D} ; = C"*(H,,4), namely

02 ok g (f) = XiZ3 045, 0k o (F) — mb it o (f) — 4Ext- o F g (2 0) : fx, D) g(0)dPxd™e. (4.2.25)
Here we define theg}3 (x, t) : product by
i3 (x,t) i= (Ext-explitH, 4|): @i% (x): (Ext-exp[—itH,4]), (4.2.26)
which we now prove is an operator valued non - Angldean distribution. First we note that
Ext- f*Rgg Pkt (xt) | f(x, t)d®x

is a sum of monomials in creation and annihilatperators with kernels ikf,, and theill} #-norms are
#-continuous irt. Thus by (1.2.9)

Ext- f*Rﬁg i) fx, ) g(x)d*3x
is a bilinear form onDf; ; x D ;. By (2.1.3),
(H +b) " {Ext- [ 0200 1 F(x,0)g(x)d"x} (H + b))
is a bounded operatat;norm#-continuous irt. Thus onD(H,, ;) x D(H,,),
g (f) i= Ext- [pes P @y (0, 1) f(x, ) g(x)d™x d"t

is defined as a bilinear form. Hence (4.2.25) halslsin equation for bilinear forms b¢H,, ;) x D(H,,4). But

1
each term except the last is an operator definddl @H + b)E). Thus: <pfij (f) i is actually an operator on
1 1
D ((H + b)E), and in fact for real f(x, t) it is essentially &é&tadjoint. Furthermore, oh ((H + b)E) X

1
D ((H + b)E) each term in (4.2.25) except the last is a bilifiean which is a distribution of order two. Thugth
same is true fo, : @ 3(x,t) : ¥)s. We have used (4.2.26) to define the cube ofrtteracting field. It would be
interesting to determine whether this definitiomeggg with conventional notions involving the sepiaraof points.
We shall see in this section and the following tivet theg (x) in equation (4.2.25) can be removed (k, t) has
compact support angl(x) = 2 on a sufficiently large set. Then (4.2.25) becomes

a2 - g2 . X
(a? + 2:?@ + mé) PR3(f) = —42: 0P () §,

which is a non-linear equation for a séHadjoint operator valued distribution.
(b) The identityr} (f) = [iH, 4, @k (f)] implies



B g(t) = [iH,g, A} 4(t)] (4.2.27)
provided that the right and left sides of (4.2.88ke sense and a#econtinuous irt. They are certainly defined
and are#-continuous as bilinear forms &{H,, ;) x D(H,,). To see that (4.2.27) makes sense as operators on

3 3
D <(HM + b)E) we need only show thatf; ;(t) mapsD <(HM + b)5> into D(H,, ;). We choose a hyper infinite
sequenc;(x,t) = f(x,t)5;(t — to),j € "N whered;(t — t,) is a hyper infinite sequence #fsmooth functions

#-converging tas*(t — t,) in thew* #-topology on#-measures and with tr#enorms|fj|#1, uniformly bounded.

Then the bilinear form#g-converge, which means that the inner products
0,11, 0l g (s = (0,10 g (NH ] )yH0, 1 ()

#-converge fop € D(H, ;). However the#-norms

(Hig + D)2

|13, ko], < liwto O, ], +lmtotrrvll, +151:

.
are uniformly bounded, and so the inner prodéetenverge for alp € F*. Thus the#-limit A%(t) = weak

3
#-lim @} (f;)y isinD(H;,,) = D(H,,4) which proves (4.2.27) on the domm'r((HH_g + b)i).

Corollary 425 Letf € S, ("R*). ThenD}, = € *(H,,) c C™® ((p,’f_g(f)), ande} ,(f) Df, c D},
Proof Using Theorem 4.2.4, we prove by hyper infinitduotion onm € *N thatgojj,g(f) fojg cD (Hzg) and that

fory € D},

HI 0l = oo (NDH b+ Bxt-St, (7)ol g (3 R,
This formula is a special case of the identty B = Ext- };j14 (';‘) [(adAYB]A™/,m € *"N Thus we obtain

1
m—j+=

(g + )"0

i, oot < Bxe-sm, () o1,
(4.2.28)

Theorem 4.26 Letf € Cg°° (B, that isf is C(:°° with support in thet-open region of space tingy. LetH,  , be a
Hamiltonian forBf, so thatg(x) = 1 on a large set. Then

@i (F) = @i(f) andrf ,(f) = mj(f) are independent gf/A.
Proof The spectral projections; (4, ») of the sharp time field

Aoy () = Ext- s 0 5 (6, O)f (3, £) d™x = Ext- [, Ad" E§(A, %)
are given by the formula
Ef(4,%) = (Ext-exp|itH, ,|)E§(A,3)(Ext-exp[—itH, 4]|)

and are independent gf see chapt.Z17. Thusd,, (t) is independent of and so is4,,(t). By (3.1.7), for allg,



Doy = D(HEZ) nD(N,) € D ((H,{,g + b)%) <D (phe(N)

SO thatgo}j,g (f) I Dy, is independent of. Thus to complete the proof, we only need to shuwat the domain of

1
ol (f) = #- <<pf§_g(f) D ((H,{,g + b)5>> is independent of. SinceH,, ; is essentially self-adjoint on the

1 1
domainC " ®(Hy,) € Do, 50 iS(Hy, + b)? Thus by (4.2.16)% ,(f) 1 D ((H%,g + b)f) c #-(@F (/) T Doy).

Thereforeft-(pf(f) I Do) = @i o (f), S0k ,(f) = @ii(f) is independent of. Similarlyr} ;(f) = mji(f) is
independent of.
Theorem 4.2.7 Lety € Dy ;, with H,, , a Hamiltonian foBj. Then

(Eb, <Pff (xl! tl) q’ﬁ (xn! tn)lp)#

is a distribution iD* (B x--x B)
Proof This follows directly from our previous estima(és2.16) and (4.2.28).

§ 4.3 Essential self-#-adjointness. The main result of this section is the proof ttoatreal test functiong = f(x, t)
with #-compact support, the fielg (f) is self#-adjoint, and essentially se#f-adjoint onD, ,, = D(H(}f) n

D(N,,), or on anyD, , where H,,(g) is a Hamiltonian for the support 6f We see furthermore thatfifis real and
Ifl#: defined by (4.2.20) is finite, thep;! ; (f) is self#-adjoint and essentially se#-adjoint onD,, ,. The proof
has three main steps. First, we assumeftligt regular function af; in that case we use an analytic vector
argument to show thatﬁ_g (f) is essentially selft-adjoint onD,, ;. As a second step, we takdimits in the
resolvents(w,’f_g (f) — z)~! asf tends to a more general function. In this wayolvin a self#-adjoint operator
<pf§_g (f). As a third step, we show tmﬁ,g (f) is essentially self-adjoint 05}( Hk(g)). The regularity we impose on
f is the requirement that its Fourier transform Besmooth function with#-compact support, or more generally
that for thet#t-norm|f|,,, of (4.2.20) there exist constamts= a(f) andf = B(f)

IDIf| < aB”,r € *N. (4.3.1)
For a vectorp, we consider the conditions
|(H,(g)+b)Yl|ls <ad",r € *N. (4.3.2)
Lemma4.3.1 Assume (4.3.1) and (4.3.2). Then
CH. () + b)Y 0k s (Y|, < aade(b + B)" (4.3.3)

for some constant independent of, v, f.
Proof . By (4.2.28) and (4.3.1)-(4.3.2)

ICH(9) + BY 0l g (DY, < Ext- X5o (7) cap![|(Hig) + BY 00l ()], <
< Ext-Y_, (;) caflad™*t < aadc(b + B)".

Lemma 4.3.2 Assume (4.3.1) and (4.3.2). Theris an#-analytic vector forpf}‘,g(f). In particular for reaf (x,t),
<pf§_g (f) is essentially sel#-adjoint onD, .



Proof We applying the preceding lemma successively. Véelsgt multiplication byo,’f_g (f) changes the constants
a andd of (4.3.2) as followsa —» aadc,— d + . Thus

| CHC9) + b [0 (D] 9|, < alac)*[Ext- T3 +jB] (@ + kp)",

and
|lozaO]w|, < aB*kr*

for some constar, which proves thay is #-analytic fore} ; (). The essential seff-adjointness op}; ,(f)
follows from generalized Nelson's analytic vectoedrem, see 86, Theorem 6.5.
We can draw more information from (4.3.3). If weterH,,(g) + b = Ext- f*R# Ad* E4(A,x), then (4.3.2) is

equivalent to ¢ € Range{E,(d, »)} and (3.3.3) gives that
@3 (f)Range{Ey (d, )} c Range{Ey(d + b, x)}. (4B.

Becausqofﬁ_g (f) is self#-adjoint we have

ok (f)Range{(I — E4(d,»))} c Range{(I — E4(d — b,))}. (4.3.5)

These two inclusions have simple physical integdiehs. We imagine thqt,*j_g (f) is written as a sum of two
operators, one creating physical wave packets ededavithH,,(g), and the other annihilating them. Because of
(4.3.1) the wave packets have energy at ripahd sapj; ,(f) can increase or decrease the total enHidy), by
at mosts.

We note thatpfj_g (f) is essentially selft-adjoint on the domaily; Range{E, (L, %)}, by the proof of Lemma 4.3.2
and the remarks above. Our next step is to #akmits with respect t¢f in the resolvent® = R(f,z) =

(<pfj_g (f) — z)7L. As preparation, we now prove ttRpreserveg-regularity, which means

ICH(g) + DY 2R(F, 20|, < M | (i) + bz (436)

|,

Lemma 4.3.3 Let f be real and satisfy (4.3.1). Then the estima® % holds foim z # 0. The constant& andb
depend only om, g, and|f|;.

Proof To prove this lemma, we obtain uniform estimatespproximating operato,. If (4.3.6) holds foR,,,
with M independent ot € *N, and

R = strong#-lim R,,, (4.3.7)

1
then (4.3.6) also holds f&. In fact ” (H,(g) +b)yp

1
|# defines a-norm on the domaip (( H,(g) + b)E) =H;,

which makes it into a non-Archimedean Hilbert spddee inequality (4.3.6) in equivalentRy, being a bounded
operator or¥{;, and thet-norm||R,|l41 1, Of R,, as an operator froff; to itself is defined by

<M. (8B.

IRallons = || CHig) + BYRACH () + )]

From the strongf-convergence (4.3.7) oi”, we conclude that on#dense set of vectors #,, R,, #-converges
weakly toR. Since the operatos,, n € *N are uniformly bounded oH;, R,, =4 R in weak operator
#-convergence ofi(;. Thus the#-norm||R, 4, is bounded by thé-lim sup of the||R, |4, , and (4.3.6) holds for
R. Let



H,(g9) + b = Ext- [, Ad* E,(4, »). (4.3.9)

RE

We approximate;; ;(f) by the bounded se#-adjoint operatot,, = Ey4(n,x)j; ;(f)Ey(n, »#),n € *N. From
(4.3.4) itis clear thaf,, -4 @ﬁ'g(f) on vectors with#-compact support in the energy. Sirqxj@g(f) is essentially
self#-adjoint on this domain, the resolvents afsoonverge stronglj/18, p. 429]

#-1im,_,+ o R, (2) = im0 (C, — 2)™1 = R(2),

proving (4.3.7). We now show that (4.3.8) holdg] #@ns sufficient to prove
1 1
|CH(9) + bY2RuC () + D) 20| < Ml (40)

fory in the#-dense seb,, ,. Since( H, (g) + b)‘% andR, both map,, , ontoD, , we need only prove that on the
domainD,, , x D, g,
H,(9) +b < M*(C, — 2)(H,(9) + b)(C, — 2) = (A3)
= M*(C, — ) (H,(9) + b)(C, — x) + (My)?(H,(g9) + b) + iM?y[ H,(9), C,],

wherez = x + iy. As the first term is positive, it is sufficierd show that

0 < [(My)? — 1](H,(g9) + b) + M?y[iH,(g), Cy]. (4.3.12)
But

[iH,(9), Cal = Ey(n, 30| iH,.(9), 93k g (N]E4(n, ) = Ey(n, 501}, 4 (f)Ey (n, ).

By Theorem 4.2.3,

G, [iH,(9), Calw)el = [(Ey (209, 7f o (F)Ey(n, 500)s| < Ills - || g (FEy (2|, <

<1l 1flon - [|CHelg) + BY2E ]|, <2 1f1un - {e b CH(g) + DYy + 720,004

for anye > 0. Furthermore, thé-norm |f|,, of (4.2.20) can be chosen independert fir largeb, since for
b, < b, we have thatd,,(g) + b, < H,(g) + b,. Therefore (4.3.12) is valid as long as

0 < {My)? = 1= IM2ye |fl4} (Hu(g) + ) =22 Il

For each|f|4;,y # 0, we can pidv large so thafMy)* > 3, € small enough so théﬂszs |fls1 < 1, andb large
enough so that the inequality is valid. This cortgsehe proof.

We now show that the resolvents of approximatel fogleratorsgt-converge. We use the spectral projections
E4(n,x),n € "N defined by (4.3.9) to cut-off the field.dﬁj_g (f) is a#-closed symmetric field operator, then
Ey(n, 0@} (f)E4(n, %) is a bounded, sel-adjoint approximation tg} ; (f).

Lemma4.34 Let f,,n € "N be a hyper infinite sequence of real functionsbang (4.3.1) withf depending om.

If the graphs; ((pf:,g (fn)) #-converge to the graph offadensely defined operator, if

|CHC) + D) #ot o () — 02y (i)} Ho(g) + b) 2

, %0 (4.3.13)



and if the#-norms|f,,|4,, are uniformly bounded, then the resolvents
Ry(2) = (G, —2)7! (4.3.14)
of
Cp = Ey(n, 1)@}t 5 (f) Ey(n, 20). (4.3.15)

#-converge strongly to the resolvent of a skkkdjoint operatot.
Proof This result is a special case of [ref.[19], Thnbl &or. 6]. See that paper for notation. Recall #hmeasure
E4(n, »)is defined by (4.3.9). Note that

= (4.3.16)

1) + )72 (G = 0t () (i) + )2

a0 = D) + 07| {[J ks G + 7|, + | o) + 0208, ()} <

s | CRACROEDE R [CRORDECHGI !

1
By Theorem 4.2.3 the operatqoﬁ,g (f)(H,(g) + b) 2 and its#-adjoint are bounded with

oot + )7E, < Ifals

which is bounded uniformly in, € *N. Then

¢t + 072 (G = 00 () (o) + 7|, = 0(n772) 4.3.17)

and so by (4.3.13),

-4 0

¢t + BYEE = G (g + )2,

asn, m - *oThe required uniform boundedness of the resolvgf@s — z) *||4,; < const follows from Lemma
4.3.3.
We now discuss when the hypotheses of Lemma 4r8.4adisfied. If theqoff,g (f,) #-converge strongly on a

#-dense domain, then the graphsonverge. Th@ﬁ_g(fn) will #-converge o, , if f, »4 f asn - "« inthe
#-norm|-|4,; they will also#-converge for some hyper infinite sequerfiger € *N

fo =# Ext-2IZ0 F(t)6% (£ — ) (4.3.18)
with £(-,t;) € SE ("R*). We can choosg(x, t) to have the form
f(x,t) = Ext- Y20 ()8, (t—t),

wheres,,(t) = 0 has support ifit| < n~*, andExt- [ §,(t) d*t. For such a sequendg, |4, is uniformly bounded

in nn € *N. From (4.2.9) we see that" #-convergence of th&,(t) as bounded-measures implies (4.3.13). Thus
the hypotheses are satisfied for the sequencel 8.3 hey are also satisfied if tiig#-converge in thé-norm

|'l41, and everyf;,, with finite |f, |4, is the#-limit of such a hyper infinite sequence.



Theorem 4.3.5 Letf be real andif|4, finite. Then the operatqm,";‘,g (f) is self#-adjoint and essentially self-
#-adjoint onD,, ;. A real linear combination of sharp time fieldstwieal test functions iS¢, ("R*),

Ext-Yi=7 A, 4(t;), is also essentially seif-adjoint onD,, ;.

Proof The two cases are similar and we only consdt,{g;(f). We first prove that the operatGrof Lemma 4.3.4
extendsp}; , ()

v q(f) cC. (4.3.19)

This is a consequence of [15], but we give theofeihg explicit proof. As in the proof of Theoren24%, we have
(4.3.20)

where go =0(Holl) n @(N). Let Rn(z) be defined By3(14), where f, ap- proximates f and satisfieshypotheses
of Lemma 3.3.4. Thus R(z) = 1limeso R"(z) exists @rtthe resolvent of a self-adjoint operator C. Edgy, C,*=
E(n)cg(f,)E(n)*r qTg(Hf, and convergence can bewh on D((H(g) + b)3'l). For X (q'g(f -2)*, R(z)X #m R(z)x =
limn b0 Rn(z)(Cl - z)* = A. Thus

and by (4.3.20), (4.3.19) is valid. We now showt tfig(f) is equal to C, which completes the prave need only
show that if * e @(C), then * e 9(9g(f)). We firsbtice that

R()D ((Ho(g) +b):) = D ((Hy(g) +b)?) 4.3.21)

and that (4.3.8) is valid fat(z). The argument for this is the same as the proaeaima 4.3.3, but the
approximate operatdt, = E4(n, z)<pfj_g (f)E4(n, x) replaces th€,,. of the former proof. The remaining
calculation is the same since tlfg|4;,n € *N, are assumed uniformly bounded. We now introdheestmoothing
operator

p= (141 +02) (43.22)
with the propertie§{pj[|, < 1
strong #-lim,,_,o P, = I, (4.3.23)
and forr < 2,
IP,CHL (o) + bY7l, = [ Hi) + BY B, < 5. (4.3.29)

Lety € D(C) andyp = R(2)x. ThenPp = 1), >, P,as j - ‘o andyy; € D( H,(9)) < D (0} 4 (M) If 0} o (HY;
#-converges and thep is in the domain of thé&-closed operatapf{‘,g(f), S0 we prove this

(goﬁg(f) - Z)lpj = (@Jﬁg(f) - Z) P}l»b = (@ﬁ,g(f) - Z) PjR(Z)X = (4325)
= (¢ ,(f) — 2)R(2) Pix + (¢ ,(F) — 2)[ P,R(D]x.

The last equality is valid since®;x € D( H,(9)*) < D((H,(g) + b)"/?) and by (4.3.21)

R(@) By € D ((Hy(g) +b)2) < D (9l ().



SinceC extendsps (), (0 g(f) = 2); = Px + (0hg(f) = 2)[ PLR@]x. AsPix =4 x = (C—2)¢ to
conclude that) € D ((p,’f,g(f)), we need to show that

A= ((pﬁ_g(f) — z)[ Pj,R(z)])( -4 0. (4.3.26)
We now claim that

Aj = #-limy o (Cy — 2)[ P, Ra (D], (4.3.27)

whereC,, andR,, are defined in (4.3.14-(4.3.15). Sin@&, — z)R,(2z) = (C — z)R (2) = I, we need only prove the
existence of the limit (4.3.27) with the commutatemoved. As observed in the first part of the prém ¢ €

3
D ((Hy(g) +b)2), Gt = Cplly = |Gt — 0o () ||, —4 0. SincePR(2)x € D(H,(9)?) < D(( Hy(g) +
b)3/2), asn - *oo, (C, — 2) PR (2)x =4 (¢h 4(f) — z)P,R (2)x. AlSOR,(2)x —4 R (2)x, and by Theorem 4.2.3
and (4.3.24)||(C, — 2) B|, < const- |fulss ]% which is bounded uniformly in € *N. Therefore
(€, —2) PjRn @x —4 (Qoﬁg(f) - Z)PjR @,

and (4.3.27) is established. Thjs= #-lim A; ,, where

Ajn = (Co = 2)[ B, Ru(@]x = (Co — DR (2) B[P, (G — 2)] R (2)x =
= j7 BI(Hy(9) + b)?, (Co = DIPR (2)x =
= j7 PACH, () + D) Hy(9), Cal + [ H,e(9), Cul(H,(g) + D)} PR (2)x =
= —ij 7 Bi{(H,(9) + b)Ey(n,20)1] 4 (fo ) E(n, 20) + Ey(n, 307, o (fo ) Ey(n, 20) (Ho(9) + B)}PR ()1
Now by (4.3.24) we obtain
1P (H.(9) + D), = [(Hi(g) + DR, < 717
and
£y 20w g (fo )Eu () Bill, + || PiEy 30w (£ )Ew(r 0|, < comst Iflen - j4/* <
< const- j1/*

as the|f, |4, are assumed uniformly bounded. The constant epi@adent of andn. Therefore
[| Ajnll, < const- j=*/* and

#-lim|| 4], < #-lim <#-1im|| Aj,n||#) = 0.

Jjo*oo Jjo¥o \ n-o*oo
Thus (4.3.26) is established and the proof is cetepl

§ 4.4 Thefidd asatempered distribution in S& (*R#4). In the previous sections we studied the fi@ﬁg(f)
corresponding to the Hamiltoniah,(g). We found that if<pf{‘,g (f) is localized, namely if has finitely bounded
#-compact support iB and H,,(g) is a Hamiltonian foB, then gofﬁ,g(f) = @} (f) is independent of the spatial cut-



off g. In this section we show that there is a cut-offependent fieldp} (f) defined for all f € S (*R**), and
@i (f) agrees with the previous one whehas#-compact support. The domain @f (f) includesD, ,, =
D(Hy/?) n D(N,,.), and on this domaimf:(f) is a tempered distribution &f;, ("R**).

Lemma4.4.1LetD,, = D(Hé/}f) N D(Ny,). Fory € Dy, , (i, i (x,t)), is a#-continuous, polynomially
bounded function and

|Ext- [ ouatth, @G, 0W)uDEF Gx,0)d* x| < OONFC O Nyah, (Hose + N + Dy (4.4.1)

Proof We divide space time into a number of similar regiwith a partition of unity. Lef(x, t), x = (x1, x5, x3),
be aC"® function satisfying

0<é(xt)<1, (4.4.2)
supp(§) c {(x, t)[lx| < 1,[t] <}, (4.4.3)
and such that
Ext-Y;&; (x,t) = Ext-3;8(x, — i, % — i, %3 — i, t —j) = 1. (4.4.4)
Thus if f(x,t) € SE, CR#),
f=Ext-3; fi; (6, t) = Ext- 35 f(x, )& (x,t) (445

with f;;(x, t) aC ™ function with support in the cube
By ={(xOlx;—il<LIx,—il < LI|xs—il < L]t —j| <1} (4.4.6)
We also pick & functiong,(x) such that
go(x) = 4,if x| <2, (4.4.7)
and
go(x) =0, if |x| = 3. (4.4.8)

Thus H,(g;;) is a Hamiltonian foB;; when

910 = go (2,20 220, (4.4.9)

1411 14117 14151

Furthermore
17+ Nos) ™ Hisegyy (1 + Now) ||, = 00 (4.4.10)

as the kernels of operators contributingﬂg{,gu haveL’ #-norms with ared (j). For(x,t) € B;j andy € D, ,,, we
have by Lemma 4.2.1, thap, ¢f(x,t)y)4 is #-continuous and

I, @Gt )yl < const- (i, ( Ho(gi) + BGO) )y (4.4.11)



where the constant is independentgf, i, andj. Hereb (x) is hyperfinite constant proportional to the loweeund
b(x) of H,(g;;), see (2.1.19). Note that that the lower bount,dfg;; ), is proportional to the diameter of the
support ofg;;, namelyO (j)). Thus (4.4.11) gives the bound for,t ) € B;j, 3 € Dy,

[, @5 (x, )yl < (4.4.12)

2 - - ~
const - {[[HgZwl. + 1(1 + No Iy - {| (7 + Nose) ™ Hiegy, (1 + Noe)™ ||# +b0o) I3} <

< const - [[f(, £) |42, (Ho,u + N, + I)ll’)# “b(») - 0()),

by (4.4.10) and the above discussiom©f). Since0(j) = 0(|t|), we have proved polynomial boundedness. Thus,
asin Lemma 4.2.1,

|Exct- [ s, 905G, O0aDEf (x, £)d x| < OONFC, O Nnah, (Hose + N + D,
which yields (4.4.1). We now define the sharp tiieé&ls
A, (f,t) = Ext- f*R#3 o (x, t)f(x,t)dx (4.4.13)
and
B (f,t) = Ext- [.p4s mh(x,t)f (x,t)d*x. (4.4.14)
Lemma4.4.2 Let f(x,t) € S, ("R*) be real. Thed,,(f,t) andB,(f,t) define self#-adjoint operators, and

their domain includeBq, .. Fory € Do, 4, (f, 0 lly + 1B, (f, DIl < 1FC, Ol - 1Eplly, where

E, = (Ho, + N&, + 1),

and |F(, )l = c(1+ 1D {IlFC Ol + 1D GO, )

Proof The proof is similar to that of Lemmas 4.2.2 andl X4

Theorem 4.4.3 Let f(x,t) € Sf, ("R**) be a real function i§f,. The vectors,,(t)y andB, (t)y, wherey €
D, are#-continuous and rapidly decreasing irTheir integrals over exist and defing-closed symmetric
operatorsef (f) and wj () with domains containing,,.. The fieldspf (), i (f), A,.(f, t) andB, (f, t) are all
independent of(x). For any vectotp € D,,, we have

Il o (OPlls + I E(OIPlls < Iz - IED s,
where|fly; = Ext- [|fC,t)]y,d*t andE, = (Hy, + N2, +1)"°.
Proof This proof is based on the proofs of Lemma 4 Bitigorem 4.2.3, and Theorem 4.2.6. The figigf) and
i (f) are defined as theit-closures o ,,.

8 4.5 Locality In this section we derive locality of the field ogars. Locality means that two field operators
e#(f) and@f(h) commute provided the supportsfoindh are spacelike separated. In other words, whenever

(x,t) € supp(f) and(y,s) € supp(h),

we have that



lx =yl > |t —sl.

Under this hypothesis a signal originatingipp(f) (caused, for example, by the process of perforrtieg
measurement op} (f) cannot be recorded by the measurementéh ). Thus one expects that the measurement
of @#(f) does not interfere with the measuremenpfh ), and that the joint measurementgf () andep}(h)
can be performed in either order. The rigorous eratitical statement that the measurements can fuerped in
either order is thatpf (f) ande/(h) commutes. For an§-closed operatof, a#-coreD#(A) of A is defined to be
a#-dense domain contained i(A) such tha#l = #-(A [ D) .

Self+#-adjoint operatorgl andB commute if and only if for any spectral projecti®mof B, and#-coreD of A4,

ED c D(A) and fory € D, EAy = AEYy.

Definition 4.5.1 (i) Lety € D¥(A), we say thavectory is a near standard vectot|ip||, € *RE, .

(i) A near standard-coreDfl (A) of A is defined to be a subdomaii, (4) < D#(A) which contains all near
standard vectorg such that: (a)p € D¥(4) and (b) vectody is a near standard vector.

(iii) A near standard domaib;;,,(A) of A is defined to be a subdomdiq,, (A) c D (4) which contains all near
standard vectorg such that: (a)) € D (4) and (b) vectody is a near standard vector.

Definition 4.5.2 Self+#-adjoint operatorg andB ~ -commute on domaib{, (4) n D{ (B) if for any near
standard vectorp € D (A) n D{,, (B) the following condition holddBiy ~ BA.

Lemma 4.5.1 Self+#-adjoint operatord andB ~ -commute on domaiff, (4) n D, (B) if and only if for any
spectral projectioff; of B, and near standa#ticoreDf,, (4) of A, EgDf,, (A) c Dg, (A) and for ally € DE, (4):
EgAY =~ AER.

Theorem 4.5.1 If supp( f) andsupp( h) are spacelike separateg? (f) and ¢ (h) ~ -commute.

Proof Let

Au,g(f' s) = Ext- fx]R#a <Pf§(X, t)f(x, t)d#3x
and
By g(h,t) = Ext- [,y w5 (x,t)f (2, )d"x

be the sharp time fields obtained from the testtionsf andh correspondingly. First we prove that ,(f,t) and
B, 4(h,t) commute. For any-open sef§ in space, we define the algelffa() as the wealé-closure of the
finitely bounded functions of thie= 0 fields

Ext- [.pus @5 (x,0) fo(x)d**x and Ext- o e (%,0) fo(x )d*x

asf, runs over th& - functions with support ifs. If 3; ands, are disjoint#-open sets, then elements®f(S; )
andG*#(3,) commute, and it was shown§nl7 that

[Ext-exp(—io H,.(9))]|C*(3)[Ext-exp(—io H,(9))] € €*(3,), (4.5.1)

where3,; is the set of all points in space with distanas linario| from 3. The proof in§ 17 is valid whether or not
g(x) = const on the sef. If F; is a small neighbourhood sfipp (f) N {time = s} and3, is similarly defined
with respect td at timet, thenJ; and(3;)._, are disjoint. Since the finitely bounded functiafsi,, ,(f,s)

belong to

[Ext-exp(—is H,.(9))]C*(3y)[Ext-exp(—is H,(g))]

and the bounded functions Bf , (h, t) belong to



[Ext-exp(—it H,,(9))]|C*(3,)[Ext-exp(—it H,(9))]
c [Ext-exp(—it H,(9))]C* ((32)s_e)[Ext-exp(—it H,(9))],

A, 4(f,s) andB, 4(h,t) ~ -commute. LeE be a spectral projection df, ,(f,s) and letp € D, ; 5, a near
standard¢-core forg}; ;(h ). ThenEy € Dy, (B,{,g (h, t)) for all t and

< @ﬁg(h)G, Elp)# ~ Ext'f(G'BJ{,g(hu t)EII))#d#t ~ (H'E[Ext'fBH,g(h' t)ll)d#t])# =~ <9' E§0§'g(h)># (452)

forall @ € D, 4. Thus
Ep € Dy (94 g(h)7) = D0 (R ),
Prg(R)EY = E@}l 4 (R)Y,

and4, ,(f,s) ~ -commutes withp} ;(h ). Now letF be a spectral projection fer ;(h).
ThenFy € Dg, (AH,g(f, s)) for all s and

(0} g(1)0,E)y = Ext- [0, Ay o (f, ) EP)yd*t ~ (0, F[Ext- [ Ay o(h, t)pd*t])y (4.5.3)

as before in (4.5.2), so thét) € Dy, (95 4 (") = Dan(@h o (f) ) andef (NEY ~ Ef ; (N
Therefore, () and ¢ff(h) ~ -commute.

8§ 4.6 Space time covariance Space time covariance means that the field tramsfam the expected fashion under
the space time translatiath = (xy, x5, x3),t',

oh(x ) > gix+x,t+t") (4.6.1)

By its very definition (4.1.1) an8 4.4, the field transforms correctly under timensiation. LetU (x") be the
~ -unitary operator off * which implements the free field space translaor x + x'. By definition,U(x")
acts on each vect®y in thej particle subspac:Ej# by

8§5. THE ALGEBRA OF LOCAL OBSERVABLES

To each#-open regiorB c *R#* of space time, we associate a non-Archimedgamigebra®(B) in such a way
that the self##-adjoint elements o8#(B) are exactly the operators corresponding to experiswhich may be
performed inB, see 813.



Definition 5.1 Let A € €*(B), we say that operator is near-standard if ||A||4 € *]Rﬁ_ﬁn and st(||A||4) # 0. The
sub algebra of the all near-standard operators in €#(B) will be denoted by €¥ (B).
Definition 5.2 The C* algebra of standard local observabk€S? (B)) is defined by

st(CL(B)) = {st(4)|A € CL(B)}.
Remind that the requirements for a local quantusohare (see §13)

(a) To each bounded open regiBrof space time, there is an associated non-Archémed]; algebrat®(B)
containing the identity.

(b) Isotony: ifB; o B,, thenG#(B;) o €#(B,).

(c) Locality: B, andB, are space like separated, teef€? (B,)) commutes witlst(C# (B,)).

(d) The algebra of local observablé$ is defined as th#-norm#-closure of the union of th&* (B).

(e) The algebra is primitive; in other words, it hafaihful, irreducible representation.

(f) Lorentz covariance: Ldu, A} be an element of the inhomogeneous Lorentz gkQufhen there is a
representationy, 5, of L', by a group ofx - automorphisms o&*, such that for a bounded regiBn

0,0 CL(B) ~ CL({a,A}B). (5.1)

In this section we consider several possible didims for the non-Archimedean algel#4(B). The different
definitions undoubtedly lead to differefif algebras. In order to arrive at a natural anthaés definition, we
prove that all reasonable candidatestfb¢B) have the same weakclosure; we take this weak#closed algebra
as the definition of¢#(B).

Definition 5.3 €*(B) is the weakly#-closed operator algebra generated by the operators
{FloA(NNIF € LY., supp(f) < B, f |41 € "R gn}:

The definition is unchanged if we replaide,, by some non- Archimedean algebra which igt-dense in the weak
operator topology. It is also unchanged if we replthe class of test functions by another (for eledf, (B))
having the sam#-closure in thg:|,, #-norm. In fact, ifl f;, — flu; =4 0, then(ef(£,) — 2)7 =4 (pf(f) —2)7!

in the strong operator topology by Lemma 4.3.4lanthe generalized semigroup convergence theorem
Ext-exp(ipf(f,)) —x Ext-exp(ipk(f)) ThusExt-exp(ipf(f)) andF (¢ (f)) belong to the weak-closure if
eachf,,n € *N is admitted as a test function in definition ohrérchimedearc; algebraG*(B).

The same algebi@ (B) is generated by the finitely bounded functionstudrp time fieldd,, (t) =

= Ext- f*]R,C,g o (x, t)f (x,t)d"x, f € D{,(B). In fact, using a hyper infinite sequenfen € *N such as (4.3.18),
we have the resolventsconvergind(pf (f,) — z) ™! =4 (4,(t) — 2)71, and sd (4,(t)) € €*(B). Thus the sharp
time fields generate a smaller algebra. Howeveft g@fDf (B), we can approximatig/(f,) by the following
hyperfinite sunExt- Y127 A, (t;)At;, with strong#-convergence ong. By Lemma 4.3.4 the resolvents
#-converge, S(F(gojj(f)) belongs to the weakH-closed algebra generated by the finitely boundedtfans of
hyperfinite linear combinations of the sharp tineds. We now see that all suElﬁw;’f(f)) belong to the algebra
generated by the finitely bounded functions ofgharp time fields themselves. Liebe a finitely bounded operator
commuting withd,, (t;), 4,.(t,), ... and4, (t,),n € *N. Then by the generalized spectral theorErapmmutes
with Ext- Y1=" A, (t;)At; on the domai®/, which by Theorem 4.3.5 istacore forExt- Y17 A, (t;)At;. Thus

F commutes witlExt- Y= A,,(t;)At;. Thus the commutant @xt- Y7 A, (t,)At; is larger than that of
Ext-Y'=7 A, (t)At;, and the double commutant smaller. Therefore, thepstime fields generat®” (B) as



asserted.
Theorem 5.1 With mentioned above definition 6 (B), the axioms (a)-(f) are satisfied

CONCLUSION

A new non-Archimedean approach to interacted qumaritelds is presented. In proposed approach, d €iperator
@(x,t) no longer a standard tempered operator-valuedhdisibn, but a non-classical operator-valued fiorctWe
prove using this novel approach that the quantetd theory with Hamiltonia® (¢), exists and that the canonical
C*- algebra of bounded observables correspondingdartbdel satisfies all the Haag-Kastler axioms pkce
Lorentz covariance. We prove that thg*), quantum field theory model is Lorentz covariartir Each Poincare
transformatiore, 4 and each bounded regionof Minkowski space webtain a unitary operat@ which correctly
transforms the field bilinear forms(x, t) for (x,t) € 0. The von Neumann algebi&(0) of local observables is
obtained as standard part of external nonstandgetb@B, (0).
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