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Abstract: 1 

Diabetic cardiomyopathy (CM), occurring in the absence of hypertension, coronary 2 

artery disease and valvular or congenital heart disease, is now recognized as a 3 

distinct, multifactorial disease leading to ventricular hypertrophy and abnormal 4 

myocardial contractility that correlates with an array of complex molecular and 5 

cellular changes.  6 

While animal models provide the unique opportunity to investigate mechanistic 7 

aspects of diabetic CM, important caveats exist when extrapolating findings obtained 8 

from preclinical models of diabetes to humans. Indeed, animal models do not 9 

recapitulate the complexity of environmental factors, most notably the duration of the 10 

exposure to insulin resistance that may play a crucial role in the development of 11 

diabetic CM. Also, most preclinical studies are performed in animals with uncontrolled 12 

or poorly controlled diabetes, whereas most patients undergo therapeutic 13 

intervention. Finally, while T2DM is a disease of the elderly in humans, most rodent 14 

models employ juvenile or young adult animals.  15 

The aim of this review is to identify the current limitations of rodent models, and to 16 

discuss how future mechanistic and preclinical studies should integrate key 17 

confounding factors to better mimic the diabetic CM phenotype. 18 

 19 
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Introduction: 1 

The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide, 2 

afflicting all ages, sexes, and socioeconomic classes, ultimately leading to frailty and 3 

compromising healthy ageing.1 Cardiovascular (CV) complications are the leading 4 

causes of morbidity and mortality in T2DM patients, accounting for about two-thirds of 5 

overall deaths as evidenced by the Framingham Heart Study.2 One of the specific CV 6 

complications in T2DM is the onset of diabetic cardiomyopathy (CM), originally 7 

described as an early diastolic dysfunction progressing to systolic dysfunction and 8 

heart failure (HF) in the absence of hypertension, coronary artery disease and 9 

valvular or congenital heart disease.3 The CARDIA study provided strong evidence 10 

for the diagnosis of diabetic CM,3 identifying subtle diastolic and/or systolic 11 

myocardial abnormalities preceding the onset of overt CM and HF.4-6 12 

Diabetic CM is now recognized as a distinct, multifactorial disease leading to 13 

ventricular hypertrophy and abnormal myocardial contractility that correlates with an 14 

array of complex molecular and cellular changes (Figure 1).7 Both insulin resistance 15 

and chronic hyperglycaemia contribute to impaired cardiac contractility and structure 16 

via reduced Ca2+ influx through L-type Ca2+ channels, abnormal PI3K/Akt pathway 17 

signalling, enhanced production of reactive oxygen species (ROS), advanced 18 

glycation end products (AGEs), and toxic fatty acid (FA) metabolites, as well as 19 

potentially involving less well studied mechanisms such as altered autophagy, and 20 

epigenetic control.8 Asserting the “uniqueness” of diabetic CM will require 21 

determination of the role of the «metabolic exposome», including diet, lifestyle, 22 

glycemic disorders, obesity and sedentary behavior, alongside other confounders 23 

such as systemic hypertension, sex and ageing, which are intertwined in the 24 

pathogenesis of diabetic CM.9  25 
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Moreover, the complex impact of these environmental factors are magnified by other 1 

processes linking the heart to key metabolic organs, i.e., the adipose tissue, liver, 2 

kidney and the gut (microbiota) that may separately exert noxious cardiac effects 3 

through a crosstalk mediated by pro-inflammatory cytokines, pro-fibrotic factors, 4 

microvesicles, miRNAs and immune cells. This endocrine organ-crosstalk evolves 5 

into a paracrine cellular-crosstalk between cardiomyocytes, fibroblasts, endothelial 6 

cells and immune cells in the myocardium (Figure 2).  7 

While animal models provide the unique opportunity to investigate mechanistic 8 

aspects of diabetic complications, including diabetic CM, important caveats exist 9 

when extrapolating findings obtained from preclinical models of diabetes to humans. 10 

Indeed, animal models do not recapitulate the complexity of environmental factors, 11 

most notably the duration of the exposure to insulin resistance that may play a crucial 12 

role in the development of diabetic CM. Also, cardiac physiology such as heart rate, 13 

calcium fluxes, sarcomere composition and vessel function is different in rodents 14 

versus humans, and rodent models are less likely to develop micro- and 15 

macrovascular diseases, which are quite prevalent in T2DM patients. Important 16 

differences also exist in the hormonal milieu and the concentrations of various lipid 17 

species. Furthermore, most preclinical studies are performed in animals with 18 

uncontrolled or poorly controlled diabetes, whereas most patients undergo 19 

therapeutic intervention. Finally, while T2DM is a disease of the elderly in humans, 20 

most rodent models employ juvenile or young adult animals.  21 

 22 

The aim of this review is to identify the current limitations of rodent models, and to 23 

discuss how future mechanistic and preclinical studies should integrate key 24 

confounding factors to better mimic the diabetic CM phenotype. 25 
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Authors of this review are all partners of the CARDIATEAM consortium, a H2020 1 

Innovative Medicine Initiative (IMI) funded project, aiming to assess the uniqueness 2 

of diabetic CM and develop an innovative approach involving deep clinical 3 

phenotyping for back translation to tailored preclinical models recapitulating human 4 

diabetic CM. 5 

 6 

Investigating diabetic cardiomyopathy in preclinical models: the importance of 7 

clinical confounding factors:   8 

Most of the molecular mechanisms involved in the pathogenesis of diabetic CM have 9 

been investigated in rodent models of type 1 or type 2 diabetes mellitus (Table 1). 10 

The models consist of animals with defective insulin actions or signalling, altered 11 

cardiac glucose and/or FA utilization, enhanced oxidative stress, and/or cardiac 12 

fibrosis.10, 11 The most popular animal models include the chemical ablation of the β-13 

cells of the pancreas by Streptozotocin, genetic interference with leptin signalling 14 

(ob/ob and db/db mice, ZDF rats), the induction of insulin resistance by exposure to 15 

high fat diet (HFD) and transgenic animals with a cardiac-specific lipotoxicity.10 16 

However, important confounding factors contributing to cardiac remodelling and 17 

dysfunction are rarely considered when dissecting the signalling pathways leading to 18 

diabetic CM in rodent models. Experimental approaches that more closely mimic the 19 

clinical scenario in T2DM patients are detailed below:  20 

 Ageing  21 

Many of the cardiac abnormalities (i.e., increased wall thickness and interstitial 22 

myocardial fibrosis, cardiomyocyte hypertrophy) found in diabetic CM are analogous 23 

to those induced by ageing.12, 13 Recent studies suggest that T2DM accelerates the 24 

ageing of the heart and may therefore represent a form of premature senescence 25 
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leading to premature onset of HF.14 Indeed, T2DM has a dramatic impact on cellular 1 

senescence of different types of stem cells, including cardiac stem cells and 2 

potentiates the accumulation of senescent cells in the heart.15 3 

Senescent cells display a complex phenotype including DNA damage and genomic 4 

instability, endoplasmic reticulum stress, mitochondria dysfunction, impaired 5 

contractile function, hypertrophic growth and change in gene expression involving a 6 

rise of a unique secretory phenotype (senescence-associated secretory phenotype: 7 

SASP) and induction of senescence-associated beta-galactosidase positivity. 8 

Senescent cardiomyocytes secrete growth factors, creating a profibrotic 9 

microenvironment and promoting activation of cardiac fibroblasts, which is harmful to 10 

the myocardium and triggers processes associated with maladaptive cardiac 11 

remodelling.13, 16 Furthermore, T2DM induces epigenetic alterations, such as 12 

hypermethylation of CpG islands, increased trimethylation of Histone 3 (H3) at lysine 13 

(K)4, H3K9, H3K27, and H4K20, as well as a decreased monomethylation and 14 

acetylation of H3K9. These epigenetic modifications contribute to senescence 15 

through changing the access of transcription factors to promoter/enhancer regions 16 

and are complemented by noncoding RNA regulation by microRNA (i.e., miR 34a) 17 

and long-noncoding RNA.17  18 

To underscore the importance of senescence in the pathogenesis of diabetic CM, 19 

senolytic drugs have been shown to alleviate myocardial hypertrophy, fibrosis, and 20 

diastolic dysfunction in db/db obese mice.18 Such observations have suggested 21 

diabetic CM as a model of premature cardiac aging and that senolytic therapy can 22 

prevent this T2DM-related complication.19  23 

 Sex 24 
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Women with T2DM, independent of age, are at higher risk of developing CV diseases 1 

(CVD) compared to age-matched men, and tend to manifest a more severe cardiac 2 

remodelling in diabetic CM.20, 21 Interestingly, this sex-dependent aggravation of 3 

diabetic CM has been successfully recapitulated in several female rodent models. 4 

For instance, ZDF female rats exhibit cardiac hypertrophy with reduced capillary 5 

density and increased myocardial structural damage, even though males develop 6 

more pronounced fibrosis.22 Increased hypertrophy and endothelial dysfunction 7 

have also been shown in female GK rats compared to males.23 In the db/db mouse 8 

model left ventricular pro-hypertrophic and pro-oxidant gene expression were 9 

exaggerated in female leading to an increased cardiomyocyte size as compared with 10 

males.24 This difference is probably due to sex hormones and neurohormonal 11 

diversity coupled with gender-specific activation of molecular pathways involved in 12 

cardiac metabolism/remodelling.25, 26 For instance, sex differences have been 13 

demonstrated in terms of a dichotomous fatty acid handling pattern: differential FA 14 

activation together with acylcarnitine (AC) and triglyceride (TG) metabolism has been 15 

reported in the GK rat model, with increased accumulation of AC species and 16 

reduced TG in female compared to male rats, thus providing enhanced production of 17 

ROS in cardiomyocytes.27 18 

Therefore, exploring both sexes in preclinical models of CVD is recommended.26, 28  19 

 Obesity / adiposity  20 

Adipose tissue represents an intersection of pathways involved in longevity, genesis 21 

of age-related chronic diseases, metabolic dysfunction, and low-grade inflammation. 22 

Obesity and adiposity are causally linked to the development of T2DM and strongly 23 

contribute to diabetic CM.29 The cardiac risk of obesity per se, without diabetes and 24 

other co-morbid conditions, is underscored by its close association with structural, 25 
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functional, metabolic, and haemodynamic changes in the heart, leading to a condition 1 

clinically termed as obesity CM.30 Cardiac alterations related to obesity include 2 

progressive increase in left ventricular (LV) mass, LV remodelling with interstitial 3 

fibrosis and systolic dysfunction that may lead to HF in both patients and rodent 4 

models31, 32 and less energetic efficiency with reduced ATP delivery in obese CM 5 

hearts.33 Several wild type high fat diet (HFD) or genetically modified rodent models 6 

have shown to partially recapitulate features of human obesity CM (Table 1). 7 

Although conflicting data exists as per the ability of HFD to induce myocardial 8 

dysfunction these are likely explained by differences in mouse strains, the duration 9 

and timing of dietary intervention, and composition of diet.33, 34 Overall, the 10 

mechanisms by which adiposity contributes to cardiac alterations largely overlap with 11 

those reported for diabetic CM and include oxidative stress, inflammation, apoptosis, 12 

dysregulated autophagy, hypertrophy, interstitial fibrosis, lipotoxicity and metabolic 13 

defects. It seems that not only the degree of adiposity counts but the location of body 14 

fat accumulation influences the risk of cardiac dysfunction: ectopic adiposity (visceral, 15 

pericardial and epicardial) carries a higher risk than subcutaneous fat35, 36 through the 16 

release of pro-inflammatory and pro-fibrotic factors.37, 38 Interestingly, the effects of 17 

HFD on cardiac remodelling are reversible, as a switch from HFD to standard diet for 18 

8 weeks reduced lipid accumulation, myocardial hypertrophy, and fibrosis, and 19 

improved myocardial function in 16-week HFD mice.39 These preclinical data are in 20 

line with clinical intervention studies, such as gastric bypass, caloric restriction or 21 

exercise, intended to reduce myocardial structural and functional consequences of 22 

diabetes or obesity.40, 41  23 

 Sedentary life/exercise  24 
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Physical exercise is an important non-pharmacological treatment in T2DM, with high 1 

efficacy in delaying or preventing diabetic CM.42 Preclinical studies have identified 2 

some mechanisms underlying the exercise-related benefits. Exercise inhibits the 3 

pathological processes of myocardial apoptosis, fibrosis, and microvascular 4 

alterations through improving myocardial metabolism (improved glucose oxidation 5 

and reduced FA oxidation), restoring the physiological regulation of Ca2+ (normalizing 6 

depressed expression and function of SERCA2a in HFD + streptozotocin rats) and 7 

protecting mitochondrial function.43 Beneficial cardiac effects of exercise are also 8 

mediated by a decrease in adipose tissue senescence and its related pro-fibrotic 9 

secretome, independently of improvement in metabolic status in HFD mice.44 10 

 Left ventricular pressure overload  11 

Left ventricular pressure overload occurs in a variety of conditions such as advanced 12 

age, hypertension, valvular heart disease, often in association with obesity, and 13 

diabetes. Its deleterious consequences, i.e., myocardial fibrosis and hypertrophy, are 14 

mediated by neuro-hormonal factors involving the sympathetic nervous system and 15 

the renin–angiotensin–aldosterone system (RAAS). The sympathetic nervous system 16 

provides the most powerful, but also deleterious, stimulation of cardiac function, via 17 

catecholamines and their post-synaptic β-adrenergic receptors (β-AR) including β1-18 

AR, β2-AR, and β3-AR subtypes.45 Interestingly, diabetic CM, similar to other forms 19 

of HF, displays alterations of autonomic control with reduction of parasympathetic 20 

activity and an increase of sympathetic nervous system activity, which promotes 21 

decreased β‐AR responsiveness.46 The latter increases heart rate, stroke volume 22 

and peripheral vascular resistance, and stimulates the RAAS, exacerbating left 23 

ventricular dysfunction. At the molecular level, elevated sympathetic drive enhances 24 

β1-AR signalling, which promotes hypertrophy, interstitial fibrosis, cardiomyocyte 25 
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apoptosis and impairs energy metabolism and myocardial function.45 Additional 1 

mechanistic studies suggested that a canonical downstream effector of β-AR, the 2 

cyclic AMP-dependent protein kinase A (PKA) may be involved in the deficient 3 

ventricular performance and metabolism in the mouse diabetic heart,47 potentially 4 

giving way to other cAMP effectors, such as the Epac proteins.48 Interestingly, the 5 

relationship between insulin resistance and β-AR signalling is emerging as an 6 

important focal node in the pathogenesis of diabetic CM since hyperinsulinemia may 7 

play a role in desensitization of β-AR signalling in T2DM. This is well illustrated in a 8 

study showing that in a diabetic CM murine model induced by HFD, myocardial injury 9 

and dysfunction could be reversed by pharmacologically inhibition of β2-AR or G 10 

protein-coupled receptor kinase 2 (GRK2) activity.49 In contrast to cardiac β1‐ and 11 

β2‐AR, the role of the β3-AR in the diabetic heart has been minimally investigated. It 12 

was reported that a β3‐adrenoceptor‐mediated negative inotropic effect contributes to 13 

the altered positive inotropic response induced by β‐adrenoceptor activation in 14 

diabetic rat heart.50 15 

 Intermittent hypoxia  16 

Prevalence and severity of obstructive sleep apnoea (OSA) is higher among diabetic 17 

individuals compared to non-diabetic subjects.51 OSA is associated with metabolic 18 

and CV co-morbidities including hypertension, arrhythmia, stroke, coronary heart 19 

disease, which supports OSA as a major health burden. Mechanistic studies in 20 

rodents subjected to chronic intermittent hypoxia (the pathophysiologic basis of OSA) 21 

found that OSA-induced CV dysfunction (vascular remodelling, endothelial 22 

dysfunction, early atherosclerosis and increased arterial blood pressure) depends on 23 

oxidative stress- and HIF1α-driven sympathetic overactivity. Specifically, increased 24 

levels of ROS and HIFα activate chemoreflex and suppress baroreflex, thereby 25 
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stimulating the sympathetic nervous system, increasing LV afterload, and contributing 1 

to insulin resistance and T2DM.52  2 

 3 

 4 

Crosstalk between metabolic organs and the heart beyond cardiac glucose 5 

toxicity:  6 

There is need to consider each major organ, heart, liver, adipose tissue, skeletal 7 

muscle, lung and kidney operating as an integrated network within the human body in 8 

response to dysregulated metabolism. In particular, T2DM is associated with 9 

progressive microvascular disorders and systemic inflammatory processes, inducing 10 

fibrosis in several organs, including CV system, liver, adipose tissue, and skeletal 11 

muscle. During the progression of these fibro-inflammatory processes, there are 12 

significant haemodynamic and metabolic interactions between these organs, which 13 

need to be assessed to predict health trajectories in T2DM patients53 and more 14 

specifically the progression towards diabetic CM and HF with preserved ejection 15 

fraction (HFpEF).54, 55 Indeed, dysregulation of both the immune system and 16 

microcirculation through endothelial cell dysfunction and procoagulant changes 17 

contributes to diabetic CM beyond hyperglycaemia, insulin resistance, and metabolic 18 

derangements.8, 53 Importantly, the microcirculation impacts on insulin sensitivity by 19 

affecting the delivery of insulin and glucose to skeletal muscle. Thus, endothelial 20 

dysfunction and extracellular matrix remodelling promote the progression from 21 

prediabetes to diabetes and the development of diabetic CM and other T2DM 22 

complications, including HFpEF and chronic kidney disease (CKD).56, 57 Thus, whilst 23 

HFpEF was initially considered as a disorder characterized by hypertension, cardiac 24 
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hypertrophy and diastolic dysfunction, the pandemics of obesity and T2DM have 1 

modified the HFpEF syndrome. As a result, HFpEF is now recognized as a 2 

multisystem disorder involving the heart, lungs, kidneys, skeletal muscle, adipose 3 

tissue, vascular system, and immune and inflammatory signalling.54, 58  4 

How inter organ crosstalk during T2DM specifically contributes to diabetic CM 5 

requires further exploration. Animal models of T2DM represent a unique approach to 6 

test the mechanisms of such organ interactions and to assess how the pathological 7 

state developing in one organ, can lead to deleterious functional and structural 8 

consequences in the heart. 9 

 Kidney 10 

T2DM is directly related to both CKD and CVD. Patients with diabetes and CVD are 11 

twice as likely to develop CKD than those without CVD.56-59 Furthermore, the co-12 

incidence of HFpEF and CKD is very strong since approximately 50% of the patients 13 

with HFpEF also suffer from CKD.55, 60 To further underscore a pathophysiological 14 

crosstalk, activated inflammatory cascades and endothelial dysfunction in renal injury 15 

promote features of HFpEF, such as cardiomyocyte stiffening and myocardial 16 

fibrosis.55 Beside clinical evidence, a causal relationship between CKD and HFpEF 17 

came from an experimental rat model of CKD induced by nephrectomy, which 18 

resulted in a cardiac HFpEF-like phenotype, with left ventricular hypertrophy and 19 

diastolic dysfunction.61 The kidney-heart relationship is also achieved by complex 20 

interactions involving neuro-hormonal pathways.62 This is well illustrated with the 21 

RAAS system, which is overactivated during CKD and causes a cascade of events 22 

leading to vasoconstriction, increased sodium retention, and reduced water excretion. 23 

All of which increase blood volume expansion and restore perfusion pressure and 24 

therefore may contribute to the development of HFpEF.62 Besides its renal effects, 25 
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aldosterone directly promotes cardiac fibrosis, left ventricular hypertrophy, and 1 

coronary microvascular dysfunction.58 Additional renal factors such as uremic toxins 2 

and galectin 3 may also have a direct impact on the heart and/or coronary 3 

microvasculature and therefore may play a role in the pathogenesis of HFpEF.63, 64 4 

These important interactions between T2DM, renal dysfunction and diabetic CM  5 

induce a downward spiral of deleterious events, whose interruption represents a 6 

novel therapeutic opportunity.65 7 

 Adipose tissue   8 

A growing body of evidence supports the existence of a two-way adipose-myocardial 9 

axis in which products released from fat affect myocardial metabolism and function, 10 

whilst peptides secreted from the heart affect FA disposal. Accumulation of ectopic 11 

fat in various organs, e.g., in heart, liver, pancreas and kidney has been identified as 12 

an important marker in the pathogenesis of T2DM in both human and animal 13 

studies.66-68 Although the causal relationship between the pathophysiological status 14 

of white adipose tissue and cardiac lipotoxicity remains elusive, elevated lipolytic rate 15 

in adipose tissue has been demonstrated to contribute to the overall augmentation of 16 

plasma lipid levels, as observed in the majority of patients suffering from HF. 17 

Excessive release of FA from adipose tissue contributes to myocardial insulin 18 

resistance with subsequent metabolic inflexibility characterised by a shift in cardiac 19 

energy expenditure towards a near-exclusive and less oxygen-efficient FA oxidation. 20 

The perpetuation of this metabolic deregulation leads to the development of cardiac 21 

lipotoxicity.69, 70 Cardiac lipid overload promotes the formation of cytotoxic 22 

intermediates (diacyl-glycerols and ceramides) and enhances ROS generation 23 

through exacerbated peroxisomal and mitochondria FA oxidation. Both intermediate 24 
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lipotoxic species and ROS affect mitochondrial function and Ca2+ handling proteins 1 

promoting cardiac dysfunction.71, 72  2 

Adipose tissue is an important source of inflammatory mediators (TNF-, IL6, IL-8, 3 

MCP-1) and adipokines (leptin, resistin, and omentin), which may act in an autocrine, 4 

paracrine, and endocrine manner ultimately furthering cardiac injury.38, 73 In contrast, 5 

the anti-inflammatory adipokine, adiponectin, has been found to be inversely 6 

correlated with myocardial adiposity. Whilst visceral adipose tissue contributes to a 7 

low-level and sustained systemic inflammation, pericardial and epicardial fat can 8 

directly affect the underlying myocardium by local diffusion of secreted inflammatory 9 

mediators.74-76 Another ectopic fat source known to influence the heart is the 10 

perivascular adipose tissue (PVAT) surrounding the vasculature, which volume 11 

increases proportionally to elevated visceral adipose tissue.77 In obesity, PVAT has 12 

been shown to shift from an anti-inflammatory and vasodilatory profile towards a 13 

proinflammatory and impaired vasodilation status favouring the progression of 14 

vascular disease.78, 79  15 

Finally, a prominent role for atrial and B-type natriuretic peptides (ANP and BNP, 16 

respectively) has been proposed in the crosstalk between the heart and the adipose 17 

tissue.80 As such, the induction of lipolysis by natriuretic peptides secreted by the 18 

damaged heart has been suggested to counteract obesity, with a disproportionately 19 

greater role in reducing visceral adipose tissue than subcutaneous adipose tissue.81 20 

On the other hand, increased release of adipocyte FA may contribute to cardiac 21 

steatosis and cardiac cachexia.82 22 

Further analysis of the crosstalk between adipose tissue and the heart may identify 23 

new treatment options such as targeting lipolysis and cardiac lipid metabolism in 24 

diabetic CM to avoid its progression towards HFpEF. 25 
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 Liver  1 

Several studies support the bidirectional crosstalk between the heart and liver and 2 

the consequences of simultaneous development of hepatic metabolic diseases, 3 

diabetic CM, and HF. A better understanding of this hepato-cardiac axis is required to 4 

ensure an effective management of T2DM patients with heart or liver diseases in 5 

order to improve overall prognosis. 6 

Whilst T2DM and metabolic diseases (obesity and non-alcoholic fatty liver disease) 7 

are important risk factors to induce cardiac dysfunction,31, 83 a growing body of 8 

evidence suggests that the dysfunctional heart per se could affect both systemic 9 

metabolism and liver function, and thus, create a vicious injurious cycle between 10 

heart and liver. The close association among cardiac and metabolic diseases 11 

suggests a common pathophysiological basis. Notably, in metabolic diseases, the 12 

heart and liver share similar intracellular defects such as mitochondria dysfunction, 13 

ER stress, lipotoxicity and disrupted calcium homeostasis. Interestingly, mitochondria 14 

and endoplasmic reticulum interact at contact sites called mitochondria-associated 15 

membranes (MAMs) to exchange phospholipid and calcium and regulate metabolic 16 

homeostasis and signalling.84 Of note, reduction of ER-mitochondria communication 17 

was observed in both heart39 and liver85 of HFD mice. In the heart, decreased ER-18 

mitochondria communication caused mitochondrial dysfunction leading to diabetic 19 

CM, whereas in the liver, disrupted ER-mitochondria interactions alters hepatic 20 

metabolic flexibility and insulin sensitivity. Therefore, targeting MAMs could be a new 21 

strategy to concomitantly improve both heart and liver function in T2DM. 22 

In addition, the heart secretes proteins referred to as cardiokines, which go beyond 23 

local cardiac effects, and mediate changes in extracardiac tissues, including liver 24 

function. For example, the cardiac atrial natriuretic peptide attenuates glycolysis and 25 
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increases gluconeogenesis in rat liver.86 Other studies showed that the heart controls 1 

systemic metabolism via the cardiac-specific microRNA-208a and the mediator 2 

complex subunit 13 (MED13) signalling in rodent cardiomyocytes.87 Overexpression 3 

of MED13 or inhibition of miR-208a in cardiac tissue of transgenic mice enhanced 4 

lipid uptake, -oxidation, mitochondrial content, and other genes involved in FA 5 

utilization in adipose tissue and liver,88 thus supporting the existence of a functionally 6 

relevant, metabolic crosstalk between the heart and liver.  7 

 Skeletal muscle  8 

Sarcopenia is characterized by a loss of skeletal muscle strength due to reduction in 9 

the quality and quantity of muscle mass, replacement of muscle fibres with fat, 10 

changes in muscle metabolism, oxidative stress, degeneration of neuromuscular 11 

junctions and increased fibrosis. Whilst sarcopenia has been described in elderly 12 

individuals, mounting evidence suggests a higher prevalence in T2DM patients. 13 

Sarcopenia in T2DM patients may be caused by different mechanisms, such as 14 

impaired insulin sensitivity, chronic hyperglycaemia, advanced glycosylation end 15 

products, subclinical inflammation, microvascular and macrovascular complications.89 16 

It seems that the opposite also applies; patients with sarcopenia are at increased risk 17 

to develop T2DM.89, 90 In addition, sarcopenia is associated with CVD91, 92 and both 18 

share common risk factors, such as altered glucose metabolism, insulin resistance, 19 

inflammation, and metabolic syndrome.93 For instance, T2DM patients with chronic 20 

HF exhibit severe skeletal muscle fibre atrophy, capillary remodelling and impaired 21 

mitochondrial function, characterized by mitochondrial complex I dysfunction, lower 22 

transcript levels of complex I and ROS overproduction.94  23 

 Brain 24 
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Recent studies shed light on the relationship between the brain and CV system, and 1 

how the brain-heart axis regulates T2DM.95 Cohort studies highlight the link between 2 

Alzheimer's disease and T2DM,96 whilst drugs that are currently approved for the 3 

treatment of T2DM, such as metformin, have shown promising results in improving 4 

cognitive function, and even preventing the development of Alzheimer's disease in 5 

diabetic patients.97  6 

Investigating diabetic cardiomyopathy in preclinical models: the role of cellular 7 

crosstalk within the heart:   8 

The same inter organ signalling also works in a paracrine and autocrine fashion, 9 

where a given cell type can detrimentally affect neighbouring cells, leading to a 10 

vicious cycle and subsequent cardiac dysfunction. In addition to its signature 11 

parenchymal cells, the contracting cardiomyocytes, the heart contains many other 12 

cells, including fibroblasts, smooth muscle cells, endothelial cells, and resident 13 

macrophages. Crosstalk between these different cells ensures myocardial 14 

homeostasis but a pathologically altered cell-cell communication may initiate and 15 

propagate adverse cardiac remodelling and play a crucial role in the development of 16 

diabetic CM.58, 98 17 

 Fibroblasts / cardiomyocytes 18 

Cardiac fibroblasts play a crucial role in extracellular matrix (ECM) turnover, as they 19 

are involved in both synthesis and degradation of ECM components through matrix 20 

metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). 21 

Fibroblasts adhere to ECM proteins through integrins that are critical mediators of cell 22 

attachment, adhesive signalling, and remodelling of collagen fibrils. Excessive 23 

cardiac ECM deposition is a key feature of the remodelling response in diabetic CM 24 
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and promotes myocardial stiffness and cardiac dysfunction in experimental rodent 1 

models of diabetes.99 Experimentally, high glucose levels induce cardiac fibroblasts 2 

into a state of increased proliferation,100 with increased DNA and collagen synthesis 3 

as well as fibronectin and TGF-beta-1 gene expression.101, 102 Genetic inhibition of 4 

α11β1 integrin in STZ diabetic mice prevents the progression of fibrosis and 5 

abnormal cardiomyocyte growth, indicating that this specific integrin plays a critical 6 

role in modifying fibroblast-cardiomyocyte-ECM interactions.103 Crosstalk between 7 

cardiomyocytes and fibroblasts is also associated with cardiomyocyte switching to a 8 

fibrogenic phenotype, characterized by increased synthesis and release of cytokines 9 

that induce fibroblast proliferation and activation, as well as proinflammatory 10 

molecules that trigger fibrosis through activation of immune cells.99 11 

 Endothelial cells  12 

Diabetic CM is associated with coronary microvascular dysfunction, which impairs 13 

coronary blood flow and myocardial perfusion.104 Abnormalities in the coronary 14 

microcirculation result from endothelial cell dysfunction, which is considered a central 15 

mechanism in HFpEF pathophysiology.7, 79 Indeed, endothelial cells have altered 16 

paracrine signalling to cardiomyocytes by reducing the bioavailable vasodilator 17 

molecules, nitric oxide (NO) and endothelium-derived hyperpolarising factors 18 

(EDHFs), thereby limiting blood flow and promoting leukocyte infiltration in the 19 

myocardium.105 The latter leads to activation of myofibroblasts and interstitial 20 

collagen deposition. As part of T2DM-associated glucotoxicity and lipotoxicity, 21 

endothelial cells generate ROS and reactive nitrogen species (RNS) that uncouple 22 

endothelial NO synthase (eNOS) activity (by oxidising eNOS cofactor 23 

tetrahydrobiopterin) leading to decreased NO bioavailability.106 This effect together 24 

with insulin resistance converges on and minimizes the activity of guanylate cyclase 25 
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and cyclic guanosine monophosphate (cGMP)- protein kinase G (PKG) signalling that 1 

results in deranged titin phosphorylation and increased cardiomyocyte hypertrophy 2 

and stiffness in diabetic hearts.107 Endothelial cells can also contribute to the 3 

development of cardiac fibrosis through endothelial-to-mesenchymal transition to 4 

myofibroblasts.108 5 

 Immune cells  6 

Numerous experimental and clinical studies have reported a role of adaptive 7 

immunity in diabetic CM pathogenesis.109-111 T2DM is associated with chronic 8 

systemic inflammation, which leads to leukocyte activation and recruitment to various 9 

organs, further aggravating inflammatory cardiac tissue remodelling over time.110 This 10 

results in cardiac fibrosis as resident fibroblasts become activated in response to 11 

pathophysiologic conditions, which for the heart, leads to wall stiffening and 12 

decreased contractility.99 Although the role of B-cells is still unclear, T-cell derived 13 

immune response has shown to contribute to the progression of diabetic CM.111 As 14 

such, in STZ‐induced rodent models of diabetic CM, increased infiltration of T 15 

lymphocytes into the myocardium is positively correlated with increased collagen 16 

deposition and wall stiffness,110 whilst genetic depletion of CD4+ T cells protects 17 

against cardiac fibrosis and impairment in LV function.111, 112 Yet, recent studies have 18 

further delineated the contribution of each T-lymphocyte subset in the context of 19 

diabetic CM. Pro-inflammatory T helper cells Th1, Th17 and Th22 subtypes are 20 

increased in diabetic CM,113 whereas the activation of anti-inflammatory Th2 and 21 

Foxp3+ Treg subtypes is delayed or impaired,114 overall promoting chronic 22 

inflammatory tissue damage. Increased neutrophil/lymphocyte ratio (an indicator of 23 

systemic inflammation) is associated with the occurrence of subclinical diabetic 24 

CM.115 As per potential mechanisms involved, the sphingosine‐1‐phosphate 25 
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(S1P)/S1P-receptor signalling axis has been shown to regulate T-cell trafficking, 1 

activation, and polarization.116 Indeed, targeted deletion of T-cell S1P-R or 2 

administration of fingolimod (an analogue of S1P) both reduce myocardial fibrosis 3 

and improve cardiac function in STZ‐induced diabetic CM mice.117  4 

Macrophages also play a key role in regulating inflammatory responses and 5 

homeostatic maintenance of the myocardium. Normally in injured tissue, efferocytosis 6 

allows macrophages to engulf apoptotic cells and cellular debris to reduce 7 

inflammation.118 Efferocytosis is regulated by many processes in the context of high 8 

glucose. In particular, the metalloproteinase disintegrin and metalloproteinase 9 

domain-containing protein 9 (ADAM-9) were shown to be upregulated in 10 

macrophages, secondary to a downregulation of miR-126, which increased MER 11 

proto-oncogene, tyrosine kinase (MerTK) cleavage with a net effect of reduced 12 

efferocytosis.119 Interestingly, human diabetic hearts display the same molecular 13 

signatures in terms of miR-126, ADAM9, and cleaved MerTK expression, suggesting 14 

that this chain of events may be involved in regulating human diabetic CM 15 

progression. Recently, cardiac-resident MHCII-high macrophages showed a 16 

pathogenic role in cardiac remodelling through production of IL-10. The profibrotic 17 

effect of IL-10 autocrine loop promotes macrophages to secrete osteopontin and 18 

TGFβ, which activate cardiac fibroblasts to produce collagen that results in cardiac 19 

fibrosis and increased cardiac stiffness.120 Therefore, a new understanding of 20 

communication between cardiac resident macrophages and fibroblasts could lead to 21 

novel therapeutic strategies for diabetic CM and its progression towards HF. 22 

 23 

Investigating diabetic cardiomyopathy in preclinical models: identifying new 24 

biomarkers and therapeutic targets  25 
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 Biomarkers 1 

Since T2DM patients at high risk of developing HF display altered metabolism in 2 

cardiomyocytes, with underlying changes in protein and metabolite profiles related 3 

hyperglycaemia, lipotoxicity and oxidative stress, a systems biology approach may 4 

identify a specific signature of diabetic CM. To reduce disease burden, it is imperative 5 

to develop non-invasive biomarkers to detect and characterize diabetic CM 6 

processes at their early and possibly reversible stages in order to reveal new 7 

therapeutic targets and to follow disease progression. These last years, new methods 8 

have emerged, which offer a great potential to identify such biomarkers. Big datasets 9 

derived from in silico predictive models, imaging, and omics technologies 10 

(metabolomics, lipidomics, transcriptomics, proteomics) may be used for developing 11 

multiparametric datasets to assist improved diagnostic and therapeutic decisions. 12 

Metabolic alterations and insulin resistance are early signs of future cardiac 13 

dysfunction and have a causative role in the development of the diabetic CM.121 14 

Metabolomics using different analytical techniques such as magnetic resonance 15 

spectroscopy, mass spectrometry and chromatography122 are powerful approaches 16 

to follow simultaneous changes in multiple metabolite levels occurring in the diabetic 17 

heart. Indeed, cardiac energetic metabolism assessed by the PCr/ATP ratio, is 18 

reduced in some studies,123 although some discrepancies exist depending on the 19 

models.124, 125 In parallel, lipid metabolism is altered with increased FA oxidation and 20 

lipid accumulation.66 21 

In silico predictive methods have the potential to reveal or to confirm effective 22 

biomarkers. Using this approach and exploiting meta-analysis of transcriptomic 23 

datasets, differential expression levels of lysyl oxidase like 2 (LOXL2) and electron 24 

transfer flavoprotein beta subunit (ETFβ) in serum and heart tissue of 6–16-week-old 25 
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db/db mice correlated closely with a reduced LV diastolic dysfunction, supporting the 1 

use of LOXL2 and ETFβ as early predictive  biomarkers for diabetic CM.126  2 

Moreover, systematic multiorgan biobanking of porcine models of diabetes and 3 

obesity subjected to molecular profiling by transcriptomics, proteomics and 4 

metabolomics has been proposed to better understand tissue specific pathogenic 5 

mechanisms and organ crosstalk with the prospect of revealing novel molecular 6 

targets.127 7 

In the field of imaging technologies, the development of machine learning algorithms 8 

aims to provide more accurate biomarkers.128 Thus, combining imaging, radiomics 9 

and multi-omics data with machine learning will provide large datasets of parameters 10 

to find pertinent biomarkers for early diagnosis of diabetic CM and predict its 11 

progression.  12 

 New therapeutic targets 13 

Drug development is time consuming and costly, urging the use of precision medicine 14 

to replace the ‘one size fits all’ paradigm with more patient tailoring approaches. 15 

Understanding T2DM-specific mechanisms shall lead to opportunities of developing 16 

better therapies. Mechanistic studies have demonstrated dramatic glucotoxicity in the 17 

heart, and linked it to accelerated sugar-related protein modifications, such as O-18 

GlcNAcylation129 and AGE formation,130 as well as from increased ROS formation.131 19 

Yet, most interventional studies have focused on the reduction of plasma glucose in 20 

T2DM patients and studies with DPP4 inhibitors and GLP-1 peptides produced 21 

modest effects in terms of improving HF outcomes,132 whilst the recent benefits 22 

obtained with SGLT2 inhibitor (SGLT2i) treatment for HF and CKD are partly 23 

independent of their hypoglycaemic effects. Many potential mechanisms have been 24 

proposed for SGLT2i.133-135 For example, studies suggest that natriuresis, diuresis 25 
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and decreased blood volume that reduced preload and afterload are possible 1 

mechanisms. Reduced cardiac oxidative stress and fibrosis have also been observed 2 

with SGLT2i treatment.136 Occurrence of ketoacidosis prompted suggestions that 3 

plasma ketone bodies serve as an alternative and efficient source of cardiac fuel.137 It 4 

has also been proposed that SGLT2 inhibitors have off-target pharmacology by 5 

directly inhibiting cardiac NHE1 activity and protect the myocardium under ischemic 6 

conditions.138 Nevertheless, confirmation of specific SGLT-2 inhibitor cardioprotective 7 

mechanisms remains elusive to date.  8 

Research efforts need therefore to focus on finding therapeutic strategies to inhibit 9 

these pathophysiological pathways, and thereby reduce the risk of diabetic CM. In 10 

addition, the understanding of diabetic CM pathophysiology should generate 11 

awareness regarding its multiorgan nature. Thus, holistic approaches taking the 12 

complexity of myocardial damage induced by T2DM along with the functional 13 

interplay between different key organs into account will advance our knowledge of 14 

diabetic CM. This type of multidimensional approach will increase the likelihood of 15 

early diagnosis and the translational success of new drugs in development. Currently, 16 

there are no specific therapies for diabetic CM. Further refinement of diabetic CM 17 

molecular signatures derived from improved preclinical models should provide new 18 

mechanistic insights leading to specific targets, drugs, biomarkers, and effective 19 

patient management in the future. 20 

 21 

Future Perspectives  22 

The lack of experimental models that reproduce all structural, functional, and 23 

molecular alterations of human diabetic CM is one of the barriers to advance patient 24 
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care. Animal models have provided information about the initiation and progression of 1 

diabetic CM. They have decoded a few molecular mechanisms of diabetic CM. In 2 

addition, they are useful for testing new treatments, and identifying possible side-3 

effects.  4 

From the results of the CARDIATEAM study involving cohorts of diabetic patients 5 

with and without overt diabetic CM and control subjects, it is anticipated that many 6 

pathways specifically involved in diabetic CM will be discovered by employing 7 

unsupervised analysis and disease modelling of imaging and “omics” data. By 8 

backtranslation of these clinical results, the aim of CARDIATEAM consortium is to 9 

develop a preclinical model that recapitulates human diabetic CM. We postulate this 10 

will prove a powerful approach in improving the diagnosis and treatment of diabetic 11 

CM. 12 
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 1 

Table 1. Rodent models that recapitulate diabetic cardiomyopathy features 2 

found in humans.  3 

  Animal model Cardiac functional and structural alterations  Ref. 

Mice HFD C57/BL6 mice Early onset of metabolic alterations and cardiac 

LV dysfunction (5 weeks after starting HFD) and 

defects in glucose handling. 

 

32, 139 

  Old female C/57BL/6J mice + HFD 

+ angiotensin II infusion.  

Model of HFpEF (LV hypertrophy and LV diastolic 

dysfunction; no change in LVEF) 

 

140 

  ob/ob Mouse Model LV diastolic dysfunction and features of 

lipotoxicity.  

 

141, 

142 

   C57BL/6N mice + HFD+L-NAME 

administration (p.o) 

Model of HFpEF (Hypertrophic response, 

diastolic dysfunction, pulmonary congestion, 

reduction in contraction velocity and impaired 

relaxation) 

143 

 Models of 

lipotoxicity 

Alteration in myosin heavy chain 

acyl-CoA synthetase (MHC-ACS 

mice) 

 

Lipotoxicity, abnormal cardiac metabolism, 

cardiac hypertrophy, LV dysfunction and 

premature death 

 

144 

  GPI-anchored human lipoprotein 

lipase transgenic mice (hLpLGPI 

mice) 

 

Lipotoxicity, cardiac hypertrophy, abnormal 

cardiac metabolism, LV dysfunction, and cardiac 

fibrosis. 

145 

  Myosin heavy chain-peroxisome 

proliferator-activated receptor α 

mice (MHC-PPARα mice) 

 

Lipotoxicity, cardiac hypertrophy, abnormal 

cardiac metabolism, LV dysfunction, and cardiac 

fibrosis. 

146 

  Myosin heavy chain fatty acid 

transport protein mice (MHC-FATP 

mice) 

 

Lipotoxicity, LV diastolic dysfunction and  

prolonged QTc intervals. 

 

147, 

148 

  Adipose TG lipase knockout mice Lipotoxicity. LV dysfunction and premature death 149 

 T2DM Streptozotocin 

- Intraperitoneal route 

Reduction in heart rate, amplitude of contraction 

and of ventricular pressure, and prolongation on 

the rate of ventricular myocyte contraction and 

relaxation 

150-

155 

  - Intravenous route 156 

    

 T1DM 

 

db/db Mouse Model Decreased systolic function, abnormal diastolic 

filling, and electrophysiological alterations 

  

157 

 4 
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  Animal model Cardiac functional and structural alterations 

that recapitulate human features of Diabetic 

Cardiomyopathy 

Ref. 

Rat HFD 

 

Sprague-Dawley rats 

 

Lipotoxicity, cardiac fibrosis and hypertrophy 158, 

159 

 Obesity Obese Zucker rat (fa/fa)  

 

Lipotoxicity and increased LV end-diastolic volume 

and stroke volume  

 

160 

  DahlS.Z-Lepr(fa)/Lepr(fa) 

(DS/obese) rat 

LV diastolic dysfunction, LV hypertrophy, and 

cardiac fibrosis. 

161 

     

 T1DM Streptozotocin 

- Intraperitoneal route 

LV systolic and diastolic dysfunction and fibrosis. 162-

164 

  - Intravenous route  165-

167 

 

 T2DM Zucker diabetic fatty rat (ZDF) Increased heart and LV weights, presence of 

fibrosis, depressed RV and LV systolic function 

 

168, 

169 

  Goto-Kakizaki rat (GK) 

 

Cardiac hypertrophy, increased extracelular matrix 

deposition and increased heart size 

170, 

171 

     

 1 

Abbreviations: HFD: high fat diet. LV: left ventricle; LVEF: left ventricle ejection fraction; T1DM: Type 1 2 

diabetes mellitus; T2DM: Type 2 diabetes mellitus  3 

4 
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 1 

Figures Legends 2 

Figure 1: Mechanisms contributing to cardiomyocyte dysfunction in diabetic 3 

cardiomyopathy. Hormonal and metabolic alterations may result in hyperglycemia, 4 

insulin resistance and lipid overload which cause through specific signalling pathways 5 

subcellular component abnormalities. This includes mitochondrial dysfunction, 6 

impaired metabolic flexibility, Ca2+ dysregulation and activation of gene transcription 7 

program involved in cardiac remodelling and senescence. These molecular and 8 

cellular events contribute to diastolic and systolic dysfunction. GPCR, G protein-9 

coupled receptor; IR, insulin receptor; ROS, reactive oxygen species; RyR, ryanodine 10 

receptor. 11 

 12 

Figure 2: Diabetic heart is at the cross-road of environmental factors, organ-crosstalk 13 

and paracrine cellular-crosstalk between cardiomyocytes, fibroblasts, endothelial 14 

cells and immune cells in the myocardium. 15 

 16 

Graphical Abstract: Rodent models should recapitulate the clinical phenotype 17 

to better mimic the progression of diabetic cardiomyopathy towards heart 18 

failure 19 

20 
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