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Minimization of Parameter Sensitivity to Pre-Estimation Errors and its
Application to the Calibration of Magnetometer Arrays

Raphaël Neymann1,2, Hendrik Meier2, Hugo Lhachemi1, Christophe Prieur3, and Antoine Girard1

Abstract— We consider the problem of parameters estima-
tion in the situation where a subset of parameters of the
underlying model has already been estimated. Potential errors
in the pre-estimated parameters limit the accuracy in the
computation of the still unknown parameters in a way that
crucially depends on the symmetries of the data set. In this
article, we develop an optimization approach that minimizes
the sensitivity to errors in the determination of parameters
by determining optimal weights that depend on both the
model and the input data in the situation where the data are
incomplete. We apply the method to the problem of calibrating
the sensor positions in an array of magnetometers whose scale
factors and biases have been estimated beforehand.

I. INTRODUCTION

Sensor calibration is an essential step to get accept-
able performance from any navigation devices. Consistent
measurements are constantly required in navigation algo-
rithms, in particular in practical applications of magneto-
inertial dead-reckoning, which consists in a fusion of
inertial and magnetic measurements.

Fundamentally, a calibration is an optimization prob-
lem, for which the inputs are a dynamic data set and,
often, additionally pre-estimated parameters, e.g., physi-
cal constants or model parameters known or estimated
beforehand. Inaccurate knowledge of these parameters
can have a strong impact on the final calibration as the
optimization problem can be very sensitive to their errors.

In the context of magnetic sensors, many calibration
methods make use of the invariant associated with a
homogeneous field, either the Earth’s magnetic field [9],
[10], [12], [20] or coil-generated constant field [5], [14],
[15]. Calibrations in inhomogeneous fields have also been
developed [1], [4], [18], [21]. It has recently [4] been proven
that in inhomogeneous fields, positions of magnetometers
become identifiable using a motion capture reference. The
knowledge of this geometry is needed for the computation
of the magnetic field gradient, which is the key ingredi-
ent within magneto-inertial dead-reckoning [2], [3], [19].
More recent developments include the combination of
magneto-inertial algorithms with machine learning [22],
[23] and magnetic mapping [8].

We are thus interested in calibrating the positions of the
single-axis sensors in an array of magnetometers as accu-
rately as possible. The full calibration model being highly
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non-linear [4], typical calibration methods rely either on
dynamic systems [16] or linearization and iteration, using
Least-Squares methods (LS), especially Ordinary Least-
Squares (OLS) that assign the same weight to each sample.
However, in the latter case, iterating on inaccurate input
parameters can lead to amplified errors in the final results.
Moreover, trajectories used to generate calibration data of-
ten require particular symmetries in their design (needed
for reducing the sensitivity in the pre-estimation errors),
which may be yet hard to properly define and execute,
especially if the sensors are embedded in a larger device.

In this paper, we develop a calibration algorithm that
is resilient with respect to errors in the pre-estimated pa-
rameters and unexpected perturbations in the experiment
by assigning suitable weights to the input samples. Our
approach is inspired by the computation of a fictional
material in magnetostatics for which the sensitivity in the
magnetic permeability and electrical current is minimal
[6], and aims to compute a sample-dependent weight
function such that the estimation of a calibration param-
eter of interest be as insensitive as possible to errors in
a pre-estimated set of parameters. A sensitivity minimiza-
tion strategy, based on data selection, has recently been
implemented in the context of Li-ion batteries calibration
[7]. A complementary approach, rebuilding missing points
in incomplete data set with polynomials, has also been
suggested [17]. Our method is yet more general, for it
consists in a weighting strategy by assigning a quality
coefficient to each sample of the data set.

Thus, we introduce a sensitivity measure of the esti-
mated parameters with respect to pre-estimation errors.
This sensivity can then be minimized by selecting an
optimal weight function of the data set.

To demonstrate the utility, in Sec. II, we first study
within a simple toy problem how selecting suitable sub-
sets of the calibration data can significantly reduce the
sensitivity in a simple situation. We then establish a
general method in Sec. III applicable to situations in which
exploitable symmetries are not evident and finally apply
this method in Sec. IV to our initial problem of estimating
the sensor positions in an array of magnetometers.

II. A TOY PROBLEM STUDY

In this section, we motivate our approach by showing
on a simple toy problem that selecting or weighting the
calibration can help to reduce the sensitivity to errors in
pre-estimated parameters.



A. Model for a 2D magnetometer

Consider a single-axis sensor in a two-dimensional
world measuring the projection of an ambiant tangent
field, e.g. a magnetic field, onto its axis. The sensor
is attached to a (moving) body, to which a (moving)
reference frame b has already been assigned. If the sensor
response to the ambient field B is linear, a complete model
for the measurement M is given by

M = c ·Bb +b. (1)

Herein, b ∈R denotes the sensor bias, and the (row) vector
c = (

cx cy
) ∈R1×2 points along the sensitive axis (in body

frame b). Its norm is the scale factor. The upper index b
in Bb indicates that vector components are in body frame.

Our objective is to have at our disposal the best possible
estimates for the calibration parameters b and c. Suppose
that the bias b has already been estimated to a value
b0 by a separate calibration method, e.g., in a zero-field
chamber, with a residual error δb = b0 − b∗, where b∗
denotes the true but unknown bias value. In this situation,
we wish to estimate the remaining calibration parameter c
while being as insensitive as possible to the potential
error δb.

B. A simple calibration method

For the estimation of the scale factor vector c, suppose
the following experiment has been carried out: the rigid
body carrying the sensor is rotated by a known angle θ

with respect to the (inertial) navigation frame n. The
(uniform) ambient field is oriented along the y-axis of this
frame, Bn = (

0 B
)>

. In this situation, the (by hypothesis
noise-free) measurement for a given θ amounts to

M (θ) = c ·R (θ)> Bn +b with R (θ) =
(
cosθ −sinθ
sinθ cosθ

)
, (2)

cf. the models in [4] and [10] and Fig. 1.
If measurements M (θ) are available for homogeneously

distributed angles θ ∈ (−π,π), a standard LS optimization
of c with b fixed to the possibly erroneous pre-estimate b0

yields a value that is independent from the actual bias b,
cf. Eq. (28) in App. V-A. This value is thus fully insensitive
to any residual error δb, i.e. equal to the true value. This
independence is a manifestation of the O(2) rotational
symmetry in the chosen samples.

If however, for some reason, measurements are avail-
able only for θ ∈ (−π

4 , 3π
4

)
, see Fig. 1, the aforementioned

symmetry is broken and the standard LS optimization
yields an error

δc = δb

B

2
p

2

π

(
1 1

)
, (3)

using Eq. (30) of App. V-A. This error reflects how within
the standard approach, the scale factor estimation is quite
sensitive to residual errors in the pre-estimated bias b.

O cosθ

sinθ

θ =−π
4

θ = 3π
4

cx very sensitive to bias error

cx insensitive to bias error

Fig. 1: In red the angles covered by the calibration ex-
periment. The arrows indicate the regions within this
trajectory where the scale factor cx is very sensitive or
insensitive to an error in the pre-estimated bias b, cf.
Eqs. (4) and (5). (For cy , the regions of high and low
sensitivities are simply reversed.)

C. Sensitivity in data subsets

For the trajectory θ ∈ (−π
4 , 3π

4

)
, the result obtained by

standard LS calibration contains an error of order δb/B .
Let us now consider the subset of the initial trajectory
given by θ ∈ (−ε,ε) for 0 ≤ ε ≤ π/4. Applying the LS
optimization to this interval only, we obtain, using again
Eg. (30), the scale factor vector up to an error

δc = δb

B

(
0 ι(ε)

)
, (4)

with ι(ε) = (2sinε)/(ε+sinεcosε) taking values between 1
and ≈ 1.1. Whereas the error δcy remains of order δb/B ,
the estimation of cx is remarkably insensitive to the
error δb in the pre-estimated bias, see Fig. 1. This in-
sensitivity can be attributed to the reflectional symmetry
(w.r.t. θ = 0) of the subset of calibration data.

Analogously, for θ close to π/2, i.e. θ ∈ (
π
2 −ε, π2 +ε), we

find the error estimate

δc = δb

B

(
ι(ε) 0

)
. (5)

Here, cx , with an error of order δb/B , is very sensitive
to δb, see Fig. 1, as the reflectional symmetry (w.r.t. θ =
π/2) favors cy , whose error vanishes.

As a result, we find that the LS sensitivity of the
estimation of each calibration parameter to the error in
the pre-estimated parameters depends crucially on the
underlying input data. In particular, symmetries within
a well-chosen subset of input data may render a certain
parameter insensitive to such errors.

Following the small toy model study of this section,
we develop in Sec. III a general approach to minimize
the sensitivity of parameter estimation to errors in pre-
estimated parameters in situations in which exploitable
symmetries are not apparent.

III. GENERAL APPROACH

In this section, we propose a general approach for an
optimization problem estimating (calibration) parameters
with minimal sensitivity to errors in predetermined pa-
rameters.



A. Setting of the problem

We consider a sensor calibration problem defined by its
involved quantities and a calibration model of the form
defined below.

Definition 1: Physical quantities. A calibration prob-
lem involves

• the calibration parameter vector πππ ∈Rn , n ∈N∗, to be
estimated;

• a vector of pre-estimated calibration parameters m0 ∈
Rm , m ∈ N∗, needed for the estimation of πππ and
determined with known precision caracterized by a
given covariance matrix;

• a set of data points k ∈ {1, . . . , N } 7→ξξξk ∈M , where M

is the manifold in which the data points are recorded
(i.e. data of the sensor to be calibrated and possibly
other sensors used in the calibration experiment).

Definition 2: Calibration model. A calibration model is
a real-valued (C 3-)function

ψ :

∣∣∣∣ Rn ×Rm ×M −→ R

(πππ,m,ξξξ) 7−→ ψ(πππ;m,ξξξ).
(6)

such that for the true value m∗ of the pre-estimated
parameters, there is exactly one parameter vector πππ∗ such
that ψ(πππ∗;m∗,ξξξ) = 0 for all ξξξ ∈M .

B. Calibration formalism

For fixed pre-estimated parameters m0 and measure-
ment data points ξξξk , k ∈ {1, . . . , N }, we seek to estimate πππ

by minimizing loss-function

Jm0,ξξξ, f :

∣∣∣∣ Rn −→ R+
πππ 7−→ Ψ(πππ,m0,ξξξ, f ),

(7)

with

Ψ(πππ,m0,ξξξ, f ) =
N∑

k=1
fkψ

(
πππ;m0,ξξξk

)2 , (8)

Herein, the coefficents f = ( fk )k=1,...,N denote weights
associated to each data point. They are defined by

Definition 3: Weight function. A weight function

k ∈ {1, . . . , N } 7−→ fk ∈R+ (9)

is a nonnegative function that satisfies the L1-property,∑
k fk = 1.1

In the following, we develop the formalism that allows
us to determine an optimal weight function f in order
for the minimum of Jm0,ξξξ, f , which we denote π̂ππ|m0,ξξξ, f , to
have minimal sensitivity to errors in m0.

We assume that π̂ππ|m0,ξξξ, f is (at least locally) a unique
minimum and that the Hessian matrix of Ψ(πππ,m0,ξξξ, f )
w.r.t. πππ is positive definite at π̂ππ|m0,ξξξ, f for all weight func-
tions f involved.2

1In particular, Ordinary Least-Squares (OLS) correspond to f = 1/N .
2In practice, this can usually be accomplished with a sufficiently rich

calibration trajectory.

C. Parameter sensitivity

We define the sensitivity of the unique minimum
π̂ππ|m0,ξξξ, f as the linear response to the error m0 − m∗
with respect to the true value m∗ of the pre-estimated
parameter.

Definition 4: Parameter sensitivity. The sensitivity of
the estimated parameter π̂ππ|m,ξξξ, f to errors in the pre-
estimated parameters m, for given data ξξξ and weight
function f , is defined as the derivative (Jacobian)

Sm∗,ξξξ, f (π̂ππ) =∇m π̂ππ|ξξξ, f (m∗) (10)

such that the error in π̂ππ|m0,ξξξ, f is given by

Sm∗,ξξξ, f (π̂ππ) · (m0 −m∗)+O
(‖m0 −m∗‖2) . (11)

With full knowledge of the system, the sensitivity can be
readily computed from the loss function Ψ:

Proposition 1: The sensitivity Sm∗,ξξξ, f (π̂ππ) is given by

Sm∗,ξξξ, f (π̂ππ) =−H−1
πππ,πππ ·Hπππ,m, (12)

with the Hessian matrices

Hπππ,πππ =∇2
πππ,πππΨ

(
π̂ππ|ξξξ, f (m∗),m∗,ξξξ, f

) ∈Rn×n ,

Hπππ,m =∇2
πππ,mΨ

(
π̂ππ|ξξξ, f (m∗),m∗,ξξξ, f

) ∈Rn×m .
Proof: The formula follows immediately from the

implicit function theorem applied to the mapping

(πππ,m) 7→ ∇πππΨ(πππ,m,ξξξ, f )

in the neighborhood of
(
π̂ππ|m∗,ξξξ, f ,m∗

)
. The Hessian Hπππ,πππ

is invertible by assumption, see Sec. III-B.
As the exact value m∗ is not known in our calibration,

we may use the available (pre-)estimation m0 to obtain
the approximation

Sm∗,ξξξ, f (π̂ππ) ' Sm0,ξξξ, f (π̂ππ), (13)

which, if inserted into Eq. (11), yields an equal error
estimate of the same order. Sm0,ξξξ, f (π̂ππ) can be calculated
from the Hessian matrices at m0.

The i -th row of Sm0,ξξξ, f (π̂ππ) defines the sensititivity of the
i -th component of πππ to the error in m0. We denote by ei

the i -th (row) vector of the standard basis of Rn and thus
obtain

s(i )
m0,ξξξ, f

(π̂ππ) = ei ·Sm0,ξξξ, f (π̂ππ) (14)

as the sensitivity of the i -th component of πππ.
Definition 5: Scalar sensitivity. The scalar sensitivity of

the i -th component of π̂ππ|m,ξξξ, f to errors in m for data ξξξ

and weight function f is defined as

Λ(i ) ( f
)= ∥∥∥s(i )

m0,ξξξ, f (i ) (π̂ππ)
∥∥∥2

(15)

We assume that all components of m have the same physi-
cal dimensions, which can always be achieved if necessary
by applying suitable scale factors. We furthermore assume
that the covariance matrix, which caracterizes precision of
the estimate m0, is proportional to the unit matrix. This
also is always achievable through a suitable orthogonal
transformation and suitable scale factors.



Using Def. 5, we formulate the calibration problem as
the following nonlinear variational problem: Find a weight
function f̂ (i ) that minimizes Λ(i )( f ).

With an optimal weight function f̂ (i ) at hand, the i -th
component of πππ can be found by a LS optimization of
πππ. Depending on the situation, it may be suitable to treat
several components at once by minimizing the sum of the
corresponding (possibly weighted) functions Λ(i )( f ) with
respect to a common f .

D. Steps of the calibration algorithm

We summarize the steps the general method of calibra-
tion with minimal sensitivity to pre-estimated parameters.

1) Formulate the calibration problem as in the form of
Sec. III-A.

2) Calculate the sensitivity Sm∗,ξξξ, f (π̂ππ) using Proposi-
tion 1.

3) For the selected component (or components) i of
the parameter vector πππ, compute the optimal weight
function f̂ by minimizing the sensitivity Λ(i )( f ) of
Eq. (15).

4) Compute π̂ππ|ξξξ, f̂ (m0) using the derivation by LS opti-

mization using the optimal weight function f̂ .

For numerical optimizations discussed in this Article, we
have used the Levenberg-Marquardt algorithm [11][13].

E. The toy problem revisited

To demonstrate the general approach, let us apply it to
the toy-model of Sec. II. The quantities involved are πππ= c
(scale factor vector)3, m = b (pre-estimated bias), and ξξξk =
(M(θk ),θk ) with Mk = M(θk ) denoting the measurement at
orientation angle θk . The calibration model is given by the
function

ψ (c,b, (M ,θ)) = M −b −Bcx sinθ−Bcy cosθ, (16)

with B denoting the external field strength, cf. Eq. (2).
Calculating the Hessian matrices required for Proposi-

tion 1, we find for the sensitivity

∂

∂b
ĉ|(M ,R), f (b0) =−H−1

c,c ·Hb,c (17)

with

Hc,c =−B 2

2

N∑
k=1

fk

(
1−cos2θk sin2θk

sin2θk 1+cos2θk

)
, (18)

Hc,b = B
N∑

k=1
fk

(
sinθk

cosθk

)
. (19)

For a given weight function, the scale factor estimate is

ĉ|(M ,R), f (b0) =−H−1
c,c ·B

N∑
k=1

fk (Mk −b0)

(
sinθk

cosθk

)
, (20)

which we note to be linear in b0. The error estimate δ̂c =
δb · (∂ĉ/∂b) is thus equal to the exact error δc.

In the simulated calibration problem under considera-
tion, a set of N = 400 data points is available for angles θ

3In this section, we consider c to be a column vector.

TABLE I: Numerical results for errors and sensitivities for
the calibration of ci , i = x, y , for the homogeneous weights
(OLS) and optimized weights LS obtained by symmetry
considerations or by Levenberg-Marquardt (LM) optimiza-
tion.

OLS
Optimized weights

Symmetry LM

Error δci (−) 1.8 ·10−4 < 10−9 < 2 ·10−13

Scalar sensitivity
0.9 ≈ 2

p
2

π
< 2 ·10−6 < 10−9[

Λ(x)
]1/2

(G−1)

0
0

0.005

0.01

0.015

0.02

Fig. 2: OLS (red, solid) and optimized weights LS for the
calibration of cx in the toymodel. The optimal functions
depicted are the one suggested by symmetry considera-
tions (green, dashed) and the result of the LM optimiza-
tion (blue, dotted).

distributed homogeneously over the interval (−π/4,3π/4).
We choose the true values to be c∗ = (0.0,1.2), b∗ = 0.0 G
and B = 1.0 G while supposing a pre-estimated bias of
b0 = 0.2 mG.

Applying the approach of the previous section, we
optimize the weight function fk for cx and cy separately.
For cx ,4 we thus compute the weight function f̂ (x)

k that

minimizes Λ(x) = ∣∣(1 0
) ·H−1

c,c ·Hb,c
∣∣2

.
For the numeric optimization, we employ a Levenberg-

Marquard (LM) algorithm, starting with homogeneous
weights fk = 1/N for which the scalar sensitivity

[
Λ(x)

]1/2

is of order 1 G−1, see Table I. As result of the LM opti-
mization, we obtain the non-trivial weight function f̂ (x)

k
depicted in Fig. 2 and for which the sensitivity practically
vanishes. Evaluating cx using Eq. (20) with the optimal
LM weights, we thus find the true value with practically
vanishing error.

We further note that there is more than one optimal
weight function. For instance, the much simpler weight

4For cy , a completely analogous treatment yields the same results for
sensitivity and error.



function given by f̂ (x)
k = 2/N for θk ∈ (−π/4,π/4) and f̂ (x)

k =
0 otherwise, see Fig. 2, yields (practically) zero sensitivity
and error as well (column “Symmetry” in Table I). It is this
weight function that, chosen by symmetry considerations,
has led to Eq. (4) in Sec. II-C.

For a good choice of a proper weight function in real
situations, noise can be a factor that may favor some
weight functions over others that are equally optimal in
the noise-free setting.

IV. GEOMETRY OF AN ARRAY OF MAGNETIC
SENSORS

The estimation of the magnetic gradient is an impor-
tant ingredient of magneto-inertial navigation [19] and, if
realized in an array of magnetometers, requires accurate
knowledge of the array geometry, in particular the posi-
tions of the single sensors.

As recently shown by Chesneau et al. [4], it is possible to
calibrate simulationeously for one single-axis magnetome-
ter its scale factor, bias, and position relative to a body
frame origin for which motion capture data are available.
Being able to calibrate a single sensor in this way, we
are a fortiori in a position to calibrate an array of such
sensors. The calibration requires a trajectory providing
as many independent observations than the number of
parameters to estimate, and encompassing a region of
space with an inhomogeneous magnetic field. In practice,
it may become a difficult task to produce a trajectory that
excites all the degrees of freedom necessary to identify all
involved calibration parameters at once.

Here, we suppose that sensor scale factors and biases
are known beforehand. This may be the case if a separate
calibration, e.g. in a homogeneous magnetic field [10],
has already been carried out or if an iterative calibration
algorithm is used alternating scale factor and bias opti-
mization on one hand and position optimization on the
other hand. Furthermore, we assume that a local fit of the
ambient magnetic field to a suitable model is available.

A. Formulation of the calibration model

We adopt the calibration model of [4] for the single-axis
magnetometer

M −b −c ·R>B̂n (
X+Rp

)= 0. (21)

Herein, p ∈ R3 is the sensor position in body frame
relative to the frame origin, which is the parameter to be
estimated: πππ = p. The sensor bias b ∈ R and scale factor
(row) vector c ∈ R1×3 are the pre-estimated parameter:
m = (

b c
)>

. Finally, we dispose for each data point of the
sensor measurement M ∈R as well as the position X ∈R3

of the body origin in the navigation frame n and the
attitude R ∈ SO(3) of the rigid body relative to n. These
quantities together form the variable ξξξ = (M ,X,R) ∈ M =
R×R3×SO(3). Equation (21) with these definitions sets up
a calibration problem in the sense of Sec. III-A.

As mentioned before, we suppose the magnetic field
to be known in form of a map X 7→ B̂n(X). Assuming

positions p close to the body origin on the scale defined
the (non-linear) variations in the magnetic field, we obtain
the calibration model ψ :R3×R4×(

R×R3 ×SO(3)
) 7→R with

ψ
(
p, (b,c) , (M ,X,R)

)= M −b −c ·R> [
B̂n (X)+∇B̂n (X)Rp

]
(22)

by linearization of Eq. (21).
In order to obtain a uniform physical dimension in the

tuple m = (
b c

)>
, we may choose to measure the bias in

units of the average magnetic field norm B .5

B. Computation of sensitivity

Using the method presented in Sec. III, our objective is
to estimate the sensor position, obtained by LS minimiza-
tion as

p̂
∣∣
(M ,X,R), f (b0,c0) =−H−1

p,p·
N∑

k=1
fk

[
Mk −b0 −c0 ·R>

k B̂n (Xk )
]

R>
k ∇B̂n (Xk )Rk ·c0

> (23)

for an optimal weight function fk .6

Separating the sensitivities errors in bias and errors in
the scale factor,

∂

∂b
p̂
∣∣
(M ,X,R), f (b0,c0) =−H−1

p,p ·Hp,b (24)

∇c p̂
∣∣
(M ,X,R), f (b0,c0) =−H−1

p,p ·Hp,c, (25)

we set up three cost functions, for each of the components
of p = (px , py , pz )> in the form

Λ(i )( f ) =σ2
b

(
∂p̂i

∂b

∣∣∣∣
(M ,X,R), f

)2

+σ2
c

∥∥∥∇c p̂i
∣∣
(M ,X,R), f

∥∥∥2
(26)

for i = x, y, z. The coefficients σ2
b and σ2

c , which designate
the (known) variances of the pre-estimated parameters,
have been chosen in accordance with the remarks follow-
ing Def. 5.

C. Settings of the calibration

We apply the calibration method to a single-axis mag-
netometer for which estimates of bias and scale factor
are available to a precision characterized by standard
deviations σb ≈ 1.4 mG and σc ≈ 1.4 · 10−3. We confront
the method to both simulated and real data, minimizing
the (scalar) sensitivity separately for each of the three
components of p.

1) Simulation: We simulate the ambient magnetic field
in navigation frame as modelled by its value at a chosen
origin, Bn

0 = (0.46,0.0,0.0)> G, and a uniform gradient ∇Bn
0

whose (Frobenius) norm is of order 45 mG/m. The model
for the magnetic field is supposed to be perfectly known
in the calibration algorithm. The calibration trajectory
consists of 35 samples corresponding to non-uniformly
chosen positions and attitudes of the body frame (to

5Having in mind a typical indoor environment, norm and direction
of the magnetic field vary relatively by far less 1 along the calibration
trajectory.

6For Hessian matrices Hp,p, we use the notations of in Sec. III-C.



TABLE II: Simulation results for the position error and
sensitivity to the errors with respect to pre-estimated bias
and scale factor values. The indicated scalar sensibility is
the square root of Λ = ∑

i=x,y,zΛ
(i )

(
f̂ (i )

)
with Λ(i ) as in

Eq. (15) and f̂ (i ) the weight function minimizing Λ(i ).

OLS Optimized weights

Error
∥∥δp

∥∥ (mm) 15 0.05

Scalar sensitivity Λ1/2 (mm) 15 0.15

which the magnetometer is attached). Positions and at-
titudes are also supposed to be known without error in
the calibration algorithm.

For bias and scale factor, we choose the true values b∗ ≈
−3.0 mG and c∗ = (

1.0 0.0 0.0
)
. Their pre-estimates b0

and c0 are simulated by adding errors randomly chosen
according to a Gaussian law with standard deviations as
specified above.

2) Real data: Real data is obtained from a calibration
trajectory confined to an indoor region allowing for posi-
tion and attitude tracking by an optical motion capture.
For this considered volume, the magnetic model has been
determined beforehand. Harmonizing the data of motion
capture with an on-board inertial measurement unit in the
body reference frame, we are in the position to define the
body frame origin as the position of the accelerometer
and the body frame orientation by the accelerometer
axes. The calibration parameters to estimate are then the
position coordinates of the magnetometer in this frame.
A reference position (at millimeter precision) is available
by conventional metric measurements.

Errors in the bias b and the scale factors c considered
in this study dominate over the errors due to noise or
systematic errors in the motion capture data and the
magnetic field model. Focussing on the sensitivity to b
and c, a detailled characterization of the errors in position,
attitude, and model parameters is not necessary. (Such
errors may yet be included in the sensitivity measure in
a separate study.)

D. Results

1) Simulations: Table II shows the results of the sim-
ulation study. The OLS method (i.e. a uniform weight
function) yields a position p̂ with an error of 15 mm, in
accordance with the sensitivity to bias and scale factor
errors of also 15 mm (in units of their respective standard
deviations). Minimizing this sensitivity to both bias and
scale factor errors, it is reduced to below 0.15 mm, which
is reflected by a position error of less than 0.05 mm, a
precision that is difficult to achieve using conventional
means.

2) Real data: The results for real-life data are shown in
Table III. The position error using the conventional OLS
method amounts to 43 mm, which is in magnitude twice
the OLS error obtained in simulations. We may attribute

TABLE III: Experimental results for the position error and
sensitivity to errors in pre-estimated bias and scale factor
values. The indicated position errors is obtained by com-
parison with the conventionally measured magnetometer
position (relative to the on-board accelerometer).

OLS Optimized weights

Error
∥∥δp

∥∥ (mm) 43 4.6

Scalar sensitivity Λ1/2 (mm) 20 0.1

this increased error to noise and systematic errors that
have not been included in the simulation model.

Applying the weights obtained from our sensitivity
minimization algorithms, we obtain a position that is
accurate up to 5 mm in comparison with the (nominal)
reference position. Minimization of sensititivity has thus
been reduced the error by a factor of order 10. The residual
position error of 5 mm can again be attributed to the
errors in the motion capture data and the magnetic model.

E. Discussion

Our simulation shows that for sufficiently rich calibra-
tion trajectories, the sensitivity of the position calibration
to errors in the pre-estimated parameters can be reduced
to arbitrarily small values. Applying the method to data
obtained in real experiments, we have achieved a net error
reduction (by a factor of order 10), yet a residual position
error of several millimeters remains. At this precision,
our approach is reliable in the situation where conven-
tional position measurements (including the simple use
of a ruler) are unavailable, e.g. if the magneto-inertial
measurement unit is hidden in a “black box”. In this
case, we provide a non-invasive method to estimate the
magnetometer position with an accuracy that is optimal
with respect to errors in the pre-estimated calibration
parameters.

For a further reduction of the position error, we may
on one hand try and improve the performance of the
reference data sets used in the calibration algorithm.
These are the trajectory data set, which depends on
the performance of the motion capture system, and the
magnetic field model, which may be developed to a higher
order and, in our case, would also benefit from a more
performing motion capture system, we have used to map
the local ambient field.

In a complementary approach, errors of the motion
data and the magnetic field model may, too, be included
into our sensitivity measure. In doing so, our approach
may be extended beyond static errors (such those in bias
and scale factor) to include also noise.

V. CONCLUSIONS

We have developed an optimized least-squares ap-
proach that minimizes sensitivities to errors in pre-
estimated parameters, leading sometimes to complete
vanishing. Such situations arise in calibration problems



in which a certain subset of parameters is already known
(with limited accuracy) at a given step of the procedure.

We have tested our sensitivity-based approach in both
simulation and experiment in the context of position cali-
bration of magnetometers in an inhomogeneous magnetic
field. In simulation, we have proven the validity of the
approach. Our experimental result shows a significant
error reduction. We have discussed how the residual error
may further be reduced in future studies.

Our approach may finally be helpful in the design of a
calibration process such as the conception of a calibration
trajectory with minimal sensitivity to errors.
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APPENDIX

A. Least-squares optimization for the toy model of Sec. II

For a set measurements that are homogeneously dis-
tributed in the interval (θ1,θ2), we consider for the cali-
bration model of Eq. (2) the cost function∫ θ2

θ1

(
M (θ)−b0 −c ·R (θ)> Bn)2

dθ. (27)

The bias in this cost function is considered fixed and pre-
estimated with an error δb. Minimization of (27) yields
the estimate

ĉ =
[∫ θ2

θ1

(M (θ)−b0) Bn>R(θ)dθ

]
·K (θ1,θ2) (28)

with

K (θ1,θ2) =
[∫ θ2

θ1

R>(θ)BnBn>R(θ)dθ

]−1

. (29)

Note that if θ1 and θ2 span over a full interval of length 2π,
Eq. (28) shows that ĉ is independant from b0 and therefore
insensitive to any possible error in it.

For c∗ the true value of the scale factor vector, the
(noise-free) measurement is M (θ) = c∗R (θ)> Bn +b∗ and
the LS estimate (28) contains an error

δc = ĉ−c∗ =−δb

[∫ θ2

θ1

Bn>R(θ)dθ

]
·K (θ1,θ2). (30)

The remaining integrations and matrix products are ele-
mentary and yield the results reported in Sec. II.
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