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I. INTRODUCTION

The validation process is an important step in the development of a real-time application. This validation process consists in proving that, whatever happens, the scheduling policy guarantees that all the temporal constraints are met. Usually, the task model is an extension of the model of Liu and Layland [START_REF] Liu | Scheduling algorithms for mutltiprogramming in real-time environnement[END_REF]. The schedulability conditions obtained with this model are however too pessimistic for certain kinds of pattern of tasks. Thus some authors proposed many other models of tasks: the multiframe model [START_REF] Mok | A Multiframe Model for Real-Time Tasks[END_REF] [START_REF] Han | A Better Polynomial-Time Schedulability Test for Real-Time Fixed-Priority Scheduling Algorithms[END_REF], and generalized multiframe model [START_REF] Baruah | Generalized Multiframe Tasks[END_REF], the model of tasks with self-suspension [START_REF] Ridouard | Negative results for scheduling independent hard real-time tasks with self-suspensions[END_REF] [8] [START_REF] Ridouard | Some results on scheduling tasks with self-suspensions[END_REF], the model of tasks with offsets (transactions) [START_REF] Tindell | Addind Time-Offsets to Schedulability Analysis[END_REF] [6] [START_REF] Mäki-Turja | Tighter Response Time Analysis of Tasks with Offsets[END_REF] [START_REF] Mäki-Turja | Faster Response Time Analysis of Tasks with Offsets[END_REF]; the models of serial transactions and reverse transactions [START_REF] Traoré | Schedulability Analysis of Serial Transactions, Real-Time and Network Systems[END_REF] which is a particular instance of the model of tasks with offset. Tindell [START_REF] Tindell | Addind Time-Offsets to Schedulability Analysis[END_REF] suggested the model of tasks with offsets; Palencia and Harbour [START_REF] Gutierrez | Schedulability Analysis for Tasks with Static and Dynamic Offsets[END_REF] extended and formalized Tindell's work. Then, Turja and Nolin [START_REF] Mäki-Turja | Tighter Response Time Analysis of Tasks with Offsets[END_REF] improved the schedulability conditions by introducing the concept of "imposed interference" different from the "released for execution interference". This model of tasks with offsets is a general model allowing to obtain good results for a broad range of patterns of tasks. In a context of tasks with offsets, all the tasks bounded by relations of offsets form a transaction; and, since a classic task is a transaction containing only one task, a configuration is a set of transactions. For now, the method of determination of the exact worst-case response time of the tasks of a transaction set is exponential. Thus, pseudo-polynomial time approximation methods, giving more or less pessimistic schedulability conditions have been proposed. In any case,The concept of approximation leads to some pessimism. This paper is a complementary contribution for analyzing tasks with offsets. We show that, in certain cases, it is possible to use a method of calculation of the exact worst-case response time, and that this method has lower complexity than the complexity of the approximation methods. Moreover, we show in this article that the multiframe model is a particular case of the model of tasks with offsets, but that the results on the multiframe model cannot be directly applied on transactions., however, the results presented obtained on monotonic transactions can be closely related to the results obtained on the multiframe model. The structure of the article is as follows: in section 2, we present the model of tasks with offsets. Section 3 presents the previous work about monotonic transactions. In section 4, we show that the approximation method proposed in [START_REF] Mäki-Turja | Fast and Tight Response-Times for Tasks with Offsets[END_REF] gives an exact worst-case response time for monotonic transactions. In Section 5, we present the relation between the multiframe model and the model of tasks with offsets. Finally, we present the exact method of calculation of the worst-case response time for monotonic transactions on an example.

II. BACKGROUND A. Presentation of the model

The model of tasks with offsets was proposed by Tindell [START_REF] Tindell | Addind Time-Offsets to Schedulability Analysis[END_REF] in order to reduce existing pessimism of the schedulability analysis where the critical instant for a task occurs when it is released at the same time as all the higher priority tasks. Indeed, certain tasks can have for example the same period and be bound by relations of offsets i.e. they can never be released at the same time. A set of tasks of the 
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Γ i same period bound by offset is called a transaction. The release of a transaction is bound to an external event (the transactions themselves are non-concrete), whose worst-case period of occurrence is the period of the transaction. A task system Γ is compound of a set of transactions Γ i . [START_REF] Gutierrez | Schedulability Analysis for Tasks with Static and Dynamic Offsets[END_REF][13]:

Γ := {Γ 1 , Γ 2 , .., Γ k }
A transaction (see Figure 1) contains |Γ i | tasks of the same period (with |E| is the cardinal of set E) :

Γ i :=< {τ i1 , τ i1 , ..., τ i|Γi| }, T i > A task is defined by τ ij :=< C ij , Φ ij , D ij , J ij , B ij , P ij >
where C ij is the worst-case execution time (WCET), Φ ij is the offset (minimal time between the release of the transaction and the release of the task),D ij is the relative deadline, J ij the maximum jitter (giving t 0 the release date of an instance of the transaction Γ i , then the task τ ij is released between t 0 +Φ ij and t 0 +Φ ij +J ij ), B ij maximum blocking due to lower priority tasks, and P ij the priority. It has been shown in [START_REF] Gutierrez | Schedulability Analysis for Tasks with Static and Dynamic Offsets[END_REF] that it is equivalent , regarding to the worst-case response time analysis to consider O ij = Φ ij %T i . Without loss of generality, we consider that the tasks are ordered by increasing offsets O ij ; in our case, we define the response time as being the time between the release of the task and the completion of this task. Let us note also hp i (τ ua ) the set of indices of the tasks of Γ i with a priority higher than the priority of a task under analysis τ ua i.e. j ∈ hp i (τ ua ) if and only if P ij > P ua . (assuming that the priorities of the tasks are unique). We denote |Γ i | the number of tasks in a transaction.

In order to validate the system, the Response-Time Analysis (RTA) [START_REF] Joseph | Finding Response Time in a Real-Time System[END_REF] method is to be applied on each task of the transactions. The task under analysis is usually noted τ ua . Tindell showed that the critical instant of τ ua is a particular instant when it is released at the same time as at least one task of higher priority in each transaction Γ i . The main difficulty is to determine what is the critical instant candidate τ ic of a transaction Γ i that initiates the critical instant of τ ua . An exact calculation method would require to evaluate the response time obtained by carrying out all the possible combinations of the tasks of priority higher in each transaction and to choose the task in each transaction that leads to the worst-case response time. This exhaustive method has an exponential complexity and is intractable for realistic task systems; several approximation methods giving an upper bound of the worst-case response time have been proposed. The best known approximation method is the upper bound method based on the "imposed interference".

B. Utlisation of the approximation method

The best known approximation method has been proposed in [START_REF] Mäki-Turja | Tighter Response Time Analysis of Tasks with Offsets[END_REF]. This method removes the unnecessary overestimation taken into account in the classic computation of the interference imposed by a task τ ij on a lower priority task τ ua . This overestimation does not have any impact in the case of tasks without offset but has a considerable effect in the approximation of the worst-case response time when we are in the presence of tasks with offsets. This method consists in calculating the interference effectively imposed by a task τ ij on a task τ ua with a lower priority during a time interval of length t; the idea is that this interference cannot exceed the interval of time t. In order to calculate this "imposed interference", [START_REF] Mäki-Turja | Tighter Response Time Analysis of Tasks with Offsets[END_REF] substracts a parameter x (see Figure 2) from the original interference formula; let us note W ic (τ ua , t) the interference that Γ i imposes effectively on the response time of τ ua during a time interval of length t when τ ic is released at the same instant as τ ua [START_REF] Mäki-Turja | Tighter Response Time Analysis of Tasks with Offsets[END_REF]. In a first study of transactions, we will focus on cases with no jitter(i.e J ij = 0).

W ic (τ ua , t) = j∈hpi(τua) t * T i + 1 * C ij -x ijc (t) t * = t -phase(τ ij , τ ic ) phase(τ ij , τ ic ) = (T i + (O ij -O ic )) % T i x ijc (t) = 0 for t * < 0 max(0, C ij -(t * %T i )) otherwise
x ijc (t) corresponds to the part of the task τ ij that cannot be executed in the time interval of length t; since this interference is not effectively imposed in this interval, it is not taken into account (see an example on Figure 2).

In order to determine the upper bound of the responsetime, [START_REF] Mäki-Turja | Tighter Response Time Analysis of Tasks with Offsets[END_REF] uses this function :

W i (τ ua , t) = max c∈hpiτua (W ic (τ ua , t))
With the value of each W i (τ ua , t) , the upper bound of response-time R ua of τ ua can be calculated: R ua is found by iterative fix-point lookup.

R 0 ua = C ua R (n+1) ua = C ua + Γi∈Γ (W i (τ ua , R n ua ))
¨We apply this method on the example of figure 3. In this example, we have two transactions Γ 1 and Γ 2 . Let us consider a task under analysis τ ua with a WCET equal to 2; let us suppose that the priority of τ ua is lower than ? -

x i21 (t) ? Γ i =< {τ i1 , τ i2 , τ i3 , τ i4 }, 50 > τ i1 =< 2, 0, 4, 0, 0, 4 > τ i2 =< 4, 4, 8, 0, 0, 2 > τ i3 =< 2, 12, 15, 0, 0, 3 > τ i4 =< 3, 17, 15, 0, 0, 1 > W i1 (τ ua , 5) = (2 -0) + (4 -3) + (0 -0) + (0 -0) = 3 Fig. 3. Example of RTA Γ 1 - 6 Γ 2 - 6 τ ua Γ 1 =< τ 11 , τ 12 
, τ 13 , τ 14 , τ 15 , τ 16 , τ 17 , τ 18 , 100 > τ 1j =< 2, 4 * (j -1), 6, 0, 0, j > for 1 ≤ j < 9 τ 19 =< 4, 32, 10, 0, 0, 16 > Γ 2 =< τ 21 , τ 22 , τ 23 , τ 24 , τ 25 , τ 26 , 100 > τ 2j =< 1, 4 * (j -1), 6, 0, 0, j + 8 > for 1 ≤ j < 7 τ 27 =< 3, 24, 10, 0, 0, 15 > the priority of each task of the transactions Γ 1 and Γ 2 , for instance (P riority(τ ua ) = 0). We present the details of the two first significant iterations in the process of the application of this method.

Iteration 0 : R 0 ua = 2

Iteration 1 :

Evaluation of W 2 (τ ua , 2) : W 2j (τ ua , 2) = (1 -0) + (0 -0) + .... + (0 -0) = 1 for 1 ≤ j < 7 W 27 (τ ua , 2) = (3 -1) + (0 -0) + .... + (0 -0) = 2 W 2 (τ ua , 2) = max 1≤j<9 (W 2j (τ ua , 2)) Thus W 2 (τ ua , 2) = 2
And R

(1)

ua = C ua + W 1 (τ ua , 2) + W 2 (τ ua , 2); consequently R (1) ua = 2 + 2 + 2 = 6.
Iteration 2 :

Evaluation of W 1 (τ ua , 6) : W 1j (τ ua , 6) = (2 -0) + (2 -0) = 4 for 1 ≤ j < 8 W 18 (τ ua , 6) = (2 -0) + (4 -2) = 4 W 19 (τ ua , 2) = (4 -0) = 4 Thus W 1 (τ ua , 6) = 4
Evaluation of W 2 (τ ua , 6) :

W 2j (τ ua , 6) = (1 -0) + (1 -0) = 2 for 1 ≤ j < 6 W 26 (τ ua , 2) = (1 -0) + (3 -1) = 3 W 27 (τ ua , 2) = (3 -0) = 3 Thus W 2 (τ ua , 6) = 3
Then R

(2)

ua = 2 + 4 + 3 = 9.
We present in the table 1 the values obtained in the following iterations. The upper bound of the worst-case response time obtained with this method is thus equal to 18.

However, the exact worst-case response time of the task τ ua (obtained in testing every combinations) is equal to 14. This value is obtained when τ ua is released at the same time as τ 17 and τ 26 . The "imposed interference" method is less pessimistic than the others methods of approximation but its application needs the evaluation of the value of x ijc (t) for each iteration and for each task. Moreover, the application of these methods of approximations on some concrete real-time application is sometimes unnecessary. Indeed, in certain cases there is a tractable method for determining the real worst-case response time; this method is less complex than all known approximation methods.

III. MONOTONIC TRANSACTIONS

Let Γ i be a transaction and τ ua a task under analysis; in order to simplify the notation, we consider that all the tasks of Γ i have a higher priority than the task under analysis τ ua . Moreover, we assume that the load of the configuration is less than 1.

A. Normalisation of the transaction

A similar normalization process has been used in [START_REF] Mäki-Turja | Fast and Tight Response-Times for Tasks with Offsets[END_REF], with a difference because the authors split the tasks when they can end after the period of the transaction, while we don't use the split part. Definition :

The transaction Γ i is in normal form if O ij + C ij < O i(j+1) for 1 ≤ j < |Γ i | and O i|Γi| + C i|Γi| < T i + O i1
For example the transactions Γ 1 ,Γ 2 of Figure 3 and the transaction Γ i of Figure 4 are in normal form. While the transaction Γ i of Figure 9 is not in normal form; indeed, we have for example

O i3 + C i3 > O i4 . Let us suppose that there is a task τ ij such as O ij + C ij ≥ O i(j+1)
in a transaction Γ i ; according to theorem 1 of [START_REF] Tindell | Addind Time-Offsets to Schedulability Analysis[END_REF], the busy period starting at O ij contains the busy period starting at O i(j+1) . Consequently, the task τ i(j+1) cannot initiate the critical instant for the task τ ua ; therefore it is useless to evaluate W i(j+1) (τ ua , t) in the process of calculation of the worst-case response time. For this reason, if a transaction Γ i is not in normal form, we group the tasks of Γ i in order to obtain a normal form before starting the iterative lookup of the fix-point. Let Γ * i be the normal form of Γ i . Γ * i is obtained as follows: Γ * i is first initialized with the value of Γ i :

Γ * i :=< {τ * i1 , τ * i2 , ..., τ * i|Γi| }, T i > with τ * ij = τ ij f or 1 ≤ j ≤ |Γ i |
Process of normalization :

• Step 1 : for 1 ≤ j < |Γ * i |, if O * ij + C * ij ≥ O * i(j+1) then merge τ * i(j+1) into τ * ij .
These two tasks form one task starting at O * ij with a WCET equal to C * ij + C * i(j+1) . Renumber the tasks of the transaction in increasing order of O * ij because τ * i(j+1) is deleted

• Step 2 : -if O * i|Γ * i | + C * i|Γ * i | ≥ T i + O * i1 then merge τ * i1 into τ * i|Γ * i | . C * i|Γ * i | = C * i|Γ * i | + C * i1 .
Renumber the tasks of the transaction and start again the step 2 otherwise it is the end of the process This process converges, since we cannot merge any task if there is only one task left. The transaction of the figure 10 is the normal form of the transaction of figure 9.

B. Monotonic pattern

Definition:

Let Γ i =< {τ i1 , τ i2 , ..., τ i|Γi| }, T i > be a transaction and τ ua a task under analysis. Without loss of generality, we consider that all the tasks of Γ i have a higher priority than the one of τ ua . Let Γ * i =< {τ * i1 , τ * i2 , ..., τ * i|Γ * i | }, T i > be the normal form of the transaction Γ i . Let us note:

• α ij = O * i(j+1) -(O * ij + C * ij ) f or 1 ≤ j < |Γ * i | • α i|Γ * i | = (T i + O * i1 ) -(O i|Γ * i | + C i|Γ * i | )
Note that α ij > 0 since Γ * i is in normal form. Γ i is a monotonic transaction for the task τ ua if the WCET of Γ * i have decreasing values while the phases α ij have increasing values i.e:

• C * i(p+1) ≤ C * ip f or all 1 ≤ p < |Γ * i | • α ip ≤ α i(p+1) f or all 1 ≤ p < |Γ * i |
Example of monotonic transaction : (see Figure 4) in this example, the task τ ua is a lower priority task for all the tasks of Γ i ; moreover, Γ i is already in normal form:

Γ i = Γ * i . we have C i1 ≥ C i2 ≥ C i3 ≥ C i4 ≥ C i5 and α ip ≤ α i(p+1)
f or all 1 ≤ p < |Γ * i |. Therefore, according to the definition of monotonic transaction, Γ i is monotonic for the task τ ua .

For the transaction Γ * i :=< {τ * i1 , τ * i2 , ..., τ * i|Γi| }, T i >, there is no difference, regarding the worst interference pattern, to consider the periodic transaction obtained by rotation Γ i =< τ i1 , τ i2 , τ i3 , τ i4 , τ i5 , 34 > τ i1 =< 4, 0, 6, 0, 0, 1 > τ i2 =< 3, 6, 5, 0, 0, 2 > τ i3 =< 3, 12, 4, 0, 0, 3 > τ i5 =< 2, 27, 3, 0, 0, 5 > τ ua =< 0, 10, 30, 0 > consisting in considering the origin of the transaction being the offset of the task τ ik :

Γ * r k i :=< {τ * r k ik , τ * r k i(k+1) , ..., τ * r k i|Γi| , τ * r k i1 , τ * r k i2 , ...., τ * r k i(k-1)
}, T i > where the only difference between the original transaction Γ * i and its rotation Γ * r k i is the value of the offsets, chosen such that r * r k ij = 0 with respect to the periodic load pattern of the tasks:

r * r k ij = (T i + (O * ij -O * ik )
)%T i We can rotate the tasks of the transaction Γ * i without modifying the interference imposed by Γ * i on the tasks having a lower priority. For this reason, we consider that Γ i is monotonic if we can find a monotonic pattern in Γ * i by rotating the tasks of Γ * i . Looking for a monotonic pattern is trivial (we know that the first task has the highest WCET), thus in the sequel, we simplify the notation Γ * r k i for the monotonic pattern of a normalized transaction in writing Γ * i . For example figure 10 shows a monotonic pattern starting from the task τ * i2 ; thus, the transaction Γ i of the figure 9 is monotonic (the transaction of the figure 10 is its normal form).

C. Results for monotonic transaction

In this section, we present a simple RTA method used when a transaction Γ i is monotonic for a task under analysis τ ua . Theorem 1: Let Γ i =< {τ i1 , τ i1 , ..., τ i|Γi| }, T i > be a transaction and τ ua a task under analysis. Let Γ * i be the monotonic normal form of transaction Γ i in regard to a task under analysis τ ua . The critical instant of τ ua occurs when it is released at the same time as the first task of Γ * i .

Proof : The main idea of the proof of the theorem is that the load pattern is higher at the beginning of the transaction than anywhere else. The details of the proof can be found in [START_REF] Traoré | Characterization and Analysis of Tasks with Offsets : Monotonic Transactions[END_REF].

Corollary: Let τ ua be a task of a task set. if all the transactions of the task set are monotonic for the task τ ua , then the worst-case response time obtained by supposing that τ ua is released at the same time as the first task of each transaction is exact.

In fact, in the process of fix-point lookup of the approximation method proposed in [START_REF] Mäki-Turja | Tighter Response Time Analysis of Tasks with Offsets[END_REF] [14] [START_REF] Mäki-Turja | Fast and Tight Response-Times for Tasks with Offsets[END_REF] [6]

[10], the task that initiates the critical instant may vary from iteration to iteration, but the interference takes the maximum function of all the interference functions in order to avoid an exponential complexity. This situation can lead to an unrealistic upper bound of the worst-case response time. In the case of monotonic transaction, the task that initiates the critical instant does not change from iteration to iteration; so, there is no pessimism in the fix-point lookup process and the worst-case response time obtained is exact.

IV. "IMPOSED INTERFERENCE" METHOD ON MONOTONIC

TRANSACTIONS

Figure 5 shows the interference due to the transaction presented on figure 2 (supposing that all the tasks of the transaction have a greater or same priority as a task under analysis): each line represents the interference imposed, regarding the length of the busy period, on a task under analysis when it is released at the same time as a task of the transaction. The approximation methods use the maximum value of the interference functions. Figure 6 shows the interference functions of the monotonic transaction of figure 10. We can see clearly that the task giving the maximum value of interference depends on the length of busy period (see Figure 5). For example, from 1 to 6, W i2 (τ ua , t) has the greatest value and from 6 to 15, W i2 (τ ua , t) has the greatest value. For this reason, the worst case candidate in each transaction changes from iteration to iteration during a RTA. In such an analysis, some unrealistic cases can be reached, because the task under analysis could be executed in idle slots between the release of the tasks of the transactions. In the particular case of monotonic transactions, the task that initiates the critical instant is always the same, thus the maximum interference function corresponds to a single case, which is always realistic (see on Figure 6 that W * i2 (τ ua , t) has the greatest value). Therefore, if all the transactions of a task set are monotonic for a given task τ ua , the task that initiates the critical instant doesn't change from iteration to iteration; then the worst-case response time calculated with the method of [START_REF] Mäki-Turja | Fast and Tight Response-Times for Tasks with Offsets[END_REF] is exact. The difference between this method and the method presented in section III-C is the number of steps in each iteration needed for determining the worst-case response time (there is no need to compute every cases, but only to focus on the first task of the monotonic pattern). ) , ( ) , (

1 t W ua i τ ) , ( 2 t W ua i τ ) , ( 3 t W ua i τ ) , (
* 1 t W ua i τ ) , ( * 2 t W ua i τ ) , ( * 3 t W ua i τ ) , ( * 4 t W ua i τ V.

COMPARISON WITH THE RESULTS OF THE MULTIFRAME MODEL

The multiframe model has been proposed in [START_REF] Mok | A Multiframe Model for Real-Time Tasks[END_REF] in order to reduce pessimism in the schedulability conditions when the WCET is significantly higher than the average-case execution time of a task.

Definition : A multiframe real-time task is a tuple (Γ,P) where Γ is an array of N execution times (C 0 ,C 1 ,...,C N -1 ) for some N ≥ 1, and P is the minimum separation time,(the ready times of two consecutive frames must be at least P time units apart). The execution time of the i th frame of the task is C ((i-1)%N ) where 1 ≤ i. The deadline of each frame is P after its ready time.

A multiframe task Γ is characterized by a finite number of execution time and by the period of the task. A multiframe task with N execution time and a period P is noted Γ = ((C 0 , C 1 , ..., C N -1 ), P ). Example :Let Γ = ((3, 2, 1, 2, 2, 1), 26) be a multiframe task. We present Γ in the figure 7.

Let us note C m = max N -1 i=0 C i the peak execution time of task Γ. One of the main result presented by Mok and Chen in [START_REF] Mok | A Multiframe Model for Real-Time Tasks[END_REF] is for the multiframe task presenting a "Accumulatively Monotonic" pattern.

Definition : Let C m be the maximum in an array of execution times (C 0 , C 1 , ..., C N -1 ). This array is said AM(Accumulatively Monotonic) if

m+j k=m C (k%N ) ≥ i+j k=i C (k%N ) , 1 ≤ i ≤ N -1, 1 ≤ j ≤ N -1
A task Γ is said to be AM if its array of execution times is AM. The multiframe task presented in the figure 7 is a AM multiframe. If Γ is a multiframe task with a AM pattern, we will rotate the execution time of Γ such as C 0 be the peak execution time.

Result for AM pattern [START_REF] Mok | A Multiframe Model for Real-Time Tasks[END_REF] : Let Γ be a AM multiframe task and τ ua a classical task under analysis. Let us suppose that the priority of τ ua is lower than the priority of each instance of Γ; then the critical instant of τ ua occurs when τ ua is released at the same time as the first instance of Γ.

We can see that the multiframe model is a particular instance of the tasks with offsets. One of the main particularity is that

O i+1 -O i = P f or 1 ≤ i < N and T i -O N = P
If this particularity is not satisfied for a task with offsets, we cannot apply the result(for AM pattern) presented in the previous section. For example, figure 8 shows a task with offset Γ i . Γ i =< {τ i1 , τ i2 , τ i3 , τ i4 , τ i5 , τ i6 }, 30 > τ i1 =< 3, 0, 5, 0, 0, 1 > τ i2 =< 2, 6, 10, 0, 0, 2 > τ i3 =< 1, 11, 15, 0, 0, 3 > τ i4 =< 2, 15, 16, 0, 0, 4 > τ i5 =< 2, 18, 17, 0, 0, 5 > τ i6 =< 1, 21, 18, 0, 0, 6 > The execution times in Γ i are the same as for Γ in the figure 7.

In the transaction Γ i , the difference between the releases of 

∃ i such as O i+1 -O i = O i+2 -O i+1 1 ≤ i < 5
Let τ ua be a task under analysis with a WCET C ua = 3 with a lower priority than Γ i . We can see that the critical instant of τ ua does not coincide with the release of the first task of the transaction Γ i . The critical instant of τ ua occurs in this case when it is released at the same time as the fourth task of Γ i . So, it is clear that we cannot apply directly the results found for "AM multiframe" on the general model of tasks with offsets without taking into account the values of offsets between the tasks of a transaction. Monotonic transaction does this consideration and appears like an analog result to the one presented for multiframe model. Note that the multiframe model does not provide suitable results for serial transactions [START_REF] Traoré | Schedulability Analysis of Serial Transactions, Real-Time and Network Systems[END_REF] either.

VI. APPLICATIONS OF THE METHOD

In this section we apply the method of monotonic transaction on an example. Let

Γ i = {< τ i1 , τ i2 , τ i3 , τ i4 , τ i5 , τ i6 , τ i7 , τ i8 >, 50}
be a transaction. The tasks of Γ i are defined as (see Figure 9): τ i1 =< 2, 1, 10, 0, 0, 11 > τ i2 =< 5, 9, 10, 0, 0, 12 > τ i3 =< 5, 19, 10, 0, 0, 13 > τ i4 =< 7, 23, 10, 0, 0, 14 > τ i5 =< 1, 34, 10, 0, 0, 15 > τ i6 =< 8, 35, 10, 0, 0, 18 > τ i7 =< 5, 47, 10, 0, 0, 17 > τ i8 =< 1, 48, 10, 0, 0, 18 > Let τ ua be a task under analysis with a WCET C ua = 8 and a lower priority than all the tasks of Γ i .

The application of the "imposed interference" method gives the table 2. Now, we compute the worst-case response using the monotonic transactions characteristics.

# W i1 W i2 W i3 W i4 W i5 W i6 W i7 W i8 W i R ua 0 8
Steps of the application of the method:

Step 1: We group the tasks of Γ i in order to obtain a normal form and we obtain the transaction shown on Figure 10:

Γ * i = {< τ * i1 , τ * i2 , τ * i3 , τ * i4 > 50} τ * i1 =< 5, 9, x, 0, 0, x > τ * i2 =< 12, 19, x, 0, 0, x > τ * i3 =< 9, 34, x, 0, 0, x > τ *
i4 =< 8, 47, x, 0, 0, x > (see Figure 10)

Step 2:Looking for a monotonic pattern We have :

C * i2 ≥ C * i3 ≥ C * i4 ≥ C * i1 and α * i2 ≤ α * i3 ≤ α * i4 ≤ α * i1
A monotonic pattern starts from task τ * i2 . Consequently, the critical instant of the task τ ua coincides with the release of the task τ * i2 . We apply the iterative fix-point lookup with the method presented in this article(see Table 3). the value of x ijc (t). This evaluation is no longer necessary with the new method. The number of steps in the fix-point lookup is significantly lower. Finally, let us note that RTA analysis is exact.

A concrete example of application of monotonic transaction can be found in the intermediate priority tasks in a serial transaction in [START_REF] Traoré | Schedulability Analysis of Serial Transactions, Real-Time and Network Systems[END_REF].

VII. CONCLUSION

In a general context of tasks with offsets, the RTA methods are intractable because they are exponential in time. This article focuses on monotonic transactions (which could be compared, in the model of transactions, to the AM class of multiframe tasks). For this class, there is an exact and pseudo-polynomial RTA method which requires less steps than the known approximation methods for the general case. This method consists in grouping at first the tasks of the transaction in a normal form. If the normal form presents a monotonic pattern, the critical instant occurs when the task under analysis is released at the same time as the first task of the pattern. We noted also that the test proposed in [START_REF] Mäki-Turja | Fast and Tight Response-Times for Tasks with Offsets[END_REF] gives an exact result too in the case of monotonic transactions.

In our future work on tasks with offsets, we will investigate new classes in order to find less pessimistic schedulability conditions with a lower complexity. Moreover, we will try to extend this method to transactions with jitters.
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Table 1 :

 1 Application of "Imposed Interference" method Iter W 11 / 21 W 12 / 22 W 13 / 23 W 14 / 24 W 15 / 25 W 16 / 26 W 17 / 27

	W 18	W 19	W 1 / 2	Rua

Fig. 2. "Imposed interference" method on a transaction of 4 tasks -6 -W i1 (τ ua , 5)

Table 2 :

 2 "Imposed Interference" method Iter

Table 3 :

 3 New method Iter # I 12Let us note that I i2 (τ ua , t) is the value obtained with a classical RTA method.I i2 (τ ua , t) =With our method, we only have to calculate I i2 (τ ua , t) at each iteration instead of calculating eight values of W ij (τ ua , t) at each iteration. Moreover, for the calculation of each W ij (τ ua , t) it is necessary to evaluate |Γ i | times

			R ua
	0		8
	1	12	20
	2	21	29
	3	29	37
	4	29	37
			|Γ * i | j=1	t * T i	• C ij