Karim Traore
email: karim.traore@ensma.fr1

Emmanuel Grolleau
email: grolleau@ensma.fr

Francis Cottet
email: cottet@ensma.fr

Characterization and analysis of tasks with offsets: monotonic transactions

This article introduces the concept of monotonic transactions. A monotonic transaction is a particular case of transactions for which the load arrival pattern is (or can be by rotation) localized at the beginning of the transaction. In the general context of tasks with offsets(general transactions) only exponential methods are known to calculate the worst-case response time. The pseudo-polynomial methods known give an upper bound of the Worst-case response time. The method of analysis suggested in this article gives the real worst-case response time; moreover, this method has a complexity lower than that of the existing methods of approximation. There are two main steps in the application of this method: grouping the tasks of the transaction in a normal form and seeking a monotonic pattern.

Introduction

The last step of the development of a hard real-time application consists in modeling the tasks in order to prove the temporal correctness of the application. This validation process consists in proving that, whatever happens, the scheduling policy guarantees that all the temporal constraints are met. In worst-case analysis, the most used task model is an extension of the model of Liu and Layland [START_REF] Liu | Scheduling algorithms for mutltiprogramming in real-time environnement[END_REF] (methods RMA based). The schedulability conditions obtained with this model are however too pessimistic for certain kinds of pattern of tasks. Thus some articles suggested many other models of tasks:the multiframe model [START_REF] Mok | A Multiframe Model for Real-Time Tasks[END_REF] [13], the generalized Multiframe [START_REF] Baruah | Generalized Multiframe Tasks[END_REF], the model of tasks with self-suspension [START_REF] Ridouard | Negative results for scheduling independent hard real-time tasks with selfsuspensions[END_REF] [START_REF] Ridouard | Scheduling independent tasks wit selfsuspension[END_REF] [START_REF] Ridouard | Some results on scheduling tasks with selfsuspensions[END_REF], the model of tasks with offsets(transaction) [START_REF] Tindell | Addind Time-Offsets to Schedulability Analysis[END_REF] [START_REF] Gutierrez | Schedulability Analysis for Tasks with Static and Dynamic Offsets[END_REF] [6] [START_REF] Mäki-Turja | Faster Response Time Analysis of Tasks with Offsets[END_REF]; the models of serial transactions and reverse transactions [START_REF] Traore | Efficient Schedulability Analysis of Serial Transactions, rapport de recherche nr 06001[END_REF] which appear as particular instances of the model of tasks with offset. Tindell [START_REF] Tindell | Addind Time-Offsets to Schedulability Analysis[END_REF] suggested the model of tasks with offsets; Palencia and Harbour [START_REF] Gutierrez | Schedulability Analysis for Tasks with Static and Dynamic Offsets[END_REF] extended and formalized the Tindell's work. Then, Turja and Nolin [START_REF] Mäki-Turja | Tighter Response Time Analysis of Tasks with Offsets[END_REF] improved the schedulability conditions by introducing the concept of "imposed interference" different from the "released for execution interference" which is the method of calculation of interference inherited from the model of Liu and Layland. In a context of tasks with offsets, all the tasks bound by relations of offsets form a transaction; and in a configuration of tasks, we can have several transactions. In spite of the interest of a lot of researchers for this model, until now, the method of determination of the real worst-case response time remains exponential. For this reason, methods of approximation giving more or less pessimistic schedulability conditions have been proposed. In any case, the concept of approximation leads to the acceptation of some pessimism. This paper is a complementary contribution for analyzing tasks with offsets. We show that, in certain cases, it is possible to propose an exact method of calculation of the real worst-case response time having a lower complexity than the one of all the existing methods of approximation. The structure of the article is as follows: in section 2, we present the model of tasks with offsets. Section 3 presents the normalization process of the transactions. Section 4 presents the concept of monotonic transaction. In section 5, we present an exact method of calculation of the worst-case response time for monotonic transactions. Lastly, section 6 presents the application of the new method.

Model of tasks with offsets

Generality

The model of tasks with offsets was proposed by Tindell [START_REF] Tindell | Addind Time-Offsets to Schedulability Analysis[END_REF] in order to reduce existing pessimism of the schedulability analysis where the critical instant for a task occurs when it is released at the same time as all the higher priority tasks. Indeed, certain tasks can for example have the same period and be bound by relations of offsets i.e. they can never be

T i T i τ i1 6 ? - O i1 τ i2 6 ? - O i2 τ i3 6 ? - O i3 - D i3
Γ i released at the same time. A set of tasks of the same period bound by offset is called a transaction. The release of a transaction is bound to an external event(the transactions themselves are offsets free), whose worst-case period of occurrence is the period of the transaction. A task system Γ is compound of a set of transactions Γ i . [5][6]:

Γ := {Γ 1 , Γ 2 , .., Γ k }
A transaction (see Figure 1) contains |Γ i | tasks of the same period (with |E| is the cardinal of set E) :

Γ i :=< {τ i1 , τ i2 , ..., τ i|Γi| }, T i > A task is defined by τ ij :=< C ij , Φ ij , D ij , J ij , B ij , P ij >
where C ij is the worst-case execution time (WCET), Φ ij is the offset (minimal time between the release of the transaction and the release of the task),D ij is the relative deadline, J ij the maximum jitter (giving t 0 the release date of an instance of the transaction Γ i , then the task τ ij is released between t 0 +Φ ij and t 0 +Φ ij +J ij), B ij maximum blocking due to lower priority tasks, and P ij the priority. It has been shown in [START_REF] Gutierrez | Schedulability Analysis for Tasks with Static and Dynamic Offsets[END_REF] that it is equivalent , regarding to the worstcase response time analysis to consider O ij = Φ ij %T i . Without loss of generality, we consider that the tasks are ordered by increasing offsets O ij ; in our case, we define the response time as being the time between the release of the task and the completion of this task. Let us note also hp i (τ ua) the set of indices of the tasks of Γ i with a priority higher than the priority of a task under analysis τ ua i.e. j ∈ hp i (τ ua) if and only if P ij > P ua . (assuming that the priorities of the tasks are unique).

In order to validate the system, the Real-Time Analysis (RTA) [START_REF] Joseph | Finding Response Time in a Real-Time System[END_REF] method is to be applied on each task of the transactions. The task under analysis is usually noted τ ua . Tindell showed that the critical instant of τ ua is a particular instant when it is released at the same time as at least one task of higher priority in each transaction Γ i . The main difficulty is to determine what is the critical instant candidate τ ic of a transaction Γ i that initiates the critical instant of τ ua . An exact calculation method would require to evaluate the response time obtained by carrying out all the possible combinations of the tasks of priority higher in each transaction and to choose the task in each transaction that leads to the worst-case response time. This exhaustive method has an exponential complexity and is intractable for realistic task systems; several approximation methods giving an upper bound of the worst-case response time have been proposed. The best known approximation method is the upper bound method based on the "imposed interference".

Upper bound method based on the "imposed interference"

The "imposed interference" method has been proposed in [START_REF] Mäki-Turja | Tighter Response Time Analysis of Tasks with Offsets[END_REF]. This method removes the unnecessary overestimation taken into account in the classic computation of the interference imposed by a task τ ij on a lower priority task τ ua . This overestimation does not have any impact in the case of tasks without offset but has a considerable effect in the approximation of the worst-case response time when we are in the presence of tasks with offsets. This method consists in calculating the interference effectively imposed by a task τ ij on a task τ ua with a lower priority during a time interval of length t; the idea is that the interference cannot exceed the interval of time t. In order to calculate this "imposed interference", [START_REF] Mäki-Turja | Tighter Response Time Analysis of Tasks with Offsets[END_REF] substracts a parameter x (see Figure 2) from the original interference formula; let us note W ic (τ ua , t) the interference that Γ i imposes effectively on the response time of τ ua during a time interval of length t when τ ic is released at the same instant as τ ua [START_REF] Mäki-Turja | Tighter Response Time Analysis of Tasks with Offsets[END_REF]. In a first study of transactions, we will focus on cases with no jitter(i.e J ij = 0).

W ic (τ ua , t) = j∈hpi(τua) t * T i + 1 * C ij -x ijc (t) t * = t -phase(τ ij , τ ic) phase(τ ij , τ ic) = (T i + (O ij -O ic)) % T i x ijc (t) = 0 for t * < 0 max(0, C ij -(t * %T i)) otherwise
x ijc (t) corresponds to the part of the task τ ij that cannot be executed in the time interval of length t; since this interference is not effectively imposed in this interval, it is not taken into account(See an example on Figure 2).

In order to determine the upper bound of the responsetime, [START_REF] Mäki-Turja | Tighter Response Time Analysis of Tasks with Offsets[END_REF] uses this function :

W i (τ ua , t) = max c∈hpiτua (W ic (τ ua , t))
With the value of each W i (τ ua , t) , the upper bound of response-time R ua of τ ua can be calculated: R ua is found

W i1 (τ ua , 5) ? - x i21 (t) ? Γ i =< {τ i1 , τ i2 , τ i3 , τ i4 }, 50 > W i1 (τ ua , 5) = (2 -0) + (4 -3) + (0 -0) + (0 -0) = 3 by iterative fix-point lookup. R 0 ua = C ua R (n+1) ua = C ua + Γi∈Γ (W i (τ ua , R n ua))
The "imposed interference" method is less pessimistic than the others methods of approximation but its application needs the evaluation of the value of x ijc (t) for each iteration and for each task. Moreover, the application of these methods of approximations for some tasks in a concrete real-time application is sometimes unnecessary. Indeed, in certain cases there is a tractable method for determining the real worst-case response time; this method is less complex than all known approximation methods.

Transactions in normal form

Let Γ i be a transaction and τ ua a task under analysis; without loss of generality, we will consider that all the tasks of Γ i are higher priority tasks for τ ua . Moreover, we assume that the load of the configuration is less than 1.

Generalities

Definition : The transaction Γ i is in normal form if O ij + C ij < O i(j+1) for 1 ≤ j < |Γ i | and O i|Γi| + C i|Γi| < T i + O i1
For example the transactions Γ 1 ,Γ 2 of Figure 3 and the transaction Γ i of Figure 4 are in normal form. In opposite, the transaction Γ i of Figure 7 is not in normal form; indeed, we have for example [START_REF] Tindell | Addind Time-Offsets to Schedulability Analysis[END_REF], the busy period starting at O ij contains the busy period starting at O i(j+1) . Consequently, the task τ i(j+1) cannot initiate the critical instant for the task τ ua ; therefore it is useless to evaluate W i(j+1) (τ ua , t) in the process of calculation of the worst-case response time. For this reason, if a transaction Γ i is not in normal form, we group the tasks of Γ i in order to obtain a normal form before starting the iterative lookup of the fix-point.

O i3 + C i3 > O i4 . Let us suppose that there is a task τ ij such as O ij + C ij ≥ O i(j+1) in a transaction Γ i ; according to theorem 1 of

Grouping in normal form

The method of grouping in normal form is close to the method of merging presented in [START_REF] Mäki-Turja | Fast and Tight Response-Times for Tasks with Offsets[END_REF]. Let Γ * i be the normal form of Γ i . Γ * i is obtained as follows : Γ * i is first initialized with the value of Γ i :

Γ * i :=< {τ * i1 , τ * i2 , ..., τ * i|Γi| }, T i > with τ * ij = τ ij f or 1 ≤ j ≤ |Γ i |
Process of normalization :

• Step 1 : for 1 ≤ j < |Γ * i |, if O * ij + C * ij ≥ O * i(j+1) then merge τ * i(j+1) into τ * ij .
These two tasks form one task starting at O * ij with a WCET equal to C * ij + C * i(j+1) . Renumber the tasks of the transaction in increasing or-

der of O * ij because τ * i(j+1) is deleted • Step 2 : -if O * i|Γ * i | + C * i|Γ * i | ≥ T i + O * i1 then merge τ * i1 into τ * i|Γ * i | . C * i|Γ * i | = C * i|Γ * i | + C * i1 .
Renumber the tasks of the transaction and start again the step 2 -otherwise it is the end of the process This process converges if the load of the system is less than 1. The transaction of the figure 8 is the normal form of the transaction of figure 7.

Monotonic transactions

Definition:

Let Γ i =< {τ i1 , τ i2 , ..., τ i|Γi| }, T i > be a transaction and τ ua a task under analysis. Without loss of generality, we consider that all the tasks of Γ i have a higher priority than the one of τ ua . Let Γ * i =< {τ * i1 , τ * i2 , ..., τ * i|Γ * i | }, T i > be the normal form of the transaction Γ i . Let us note:

• α ij = O * i(j+1) -(O * ij + C * ij) f or 1 ≤ j < |Γ * i | • α i|Γ * i | = (T i + O * i1) -O i|Γ * i |
Note that α ij > 0 since Γ * i is in normal form. Γ i is a monotonic transaction for the task τ ua if the WCET of Γ * i have decreasing values while the phases α ij have increasing values i.e:

• C * i(p+1) ≤ C * ip f or all 1 ≤ p < |Γ * i | • α ip ≤ α i(p+1) f or all 1 ≤ p < |Γ * i | Figure 3. monotonic transaction - 6 6 Γ i τ ua Γ i =< τ i1 , τ i2 , τ i3 , τ i4 , τ i5 , 34 > τ i1 =< 4,
0, 6, 0, 0, 1 > τ i2 =< 3, 6, 5, 0, 0, 2 > τ i3 =< 3, 12, 4, 0, 0, 3 >τ i5 =< 2, 27, 3, 0, 0, 5 > τ ua =< 0, 10, 30, 0 > Example of monotonic transaction : (See Figure 4) in this example, the task τ ua is a lower priority task than all the tasks of Γ i ; moreover, Γ i is already in normal form:

Γ i = Γ * i . we have C i1 ≥ C i2 ≥ C i3 ≥ C i4 ≥ C i5 and α ip ≤ α i(p+1) f or all 1 ≤ p < |Γ * i |.
Therefore, according to the definition of monotonic transaction, Γ i is monotonic for the task τ ua .

Looking for monotonic pattern

For the transaction Γ * i :=< {τ * i1 , τ * i2 , ..., τ * i|Γi| * }, T i >, there is no difference, regarding the longest busy period, to consider that:

Γ * i :=< {τ * i2 , τ * i3 , ..., τ * i|Γi| * , τ * i1 }, T i > or Γ * i :=< {τ * ik , τ * i(k+1) , ..., τ * i|Γi| * , τ * i1 , τ * i2 ,, τ * i(k-1) }, T i >
We can rotate the tasks of the transaction Γ * i without modifying the interference imposed by Γ * i on the tasks having a lower priority. For this reason, we consider that Γ i is monotonic if we can find a monotonic pattern in Γ * i by rotating the tasks of Γ * i . We know that for a monotonic pattern the first task has the highest WCET. In order to look for a monotonic pattern, we start by inventorying all the tasks with maximum WCET. Then, we consider alternatively each of these tasks τ * ik as the first task of the transaction Γ * i by rotating the tasks of Γ * i ; and we verify if the conditions of monotony (on C * ij and α ij) are respected; if so, Γ i is monotonic and τ * ik become the first task of Γ * i . Then,

Γ * i :=< {τ * ik , τ * i(k+1) , ..., τ * i|Γi| * , τ * i1 , τ * i2 ,, τ * i(k-1) }, T i >
For example in the figure 8, there is a monotonic pattern starting from the task τ * i2 ; thus, the transaction Γ i of the figure 7 is monotonic (the transaction of the figure 8 is its normal form).

Presentation of the method for monotonic transaction

In this section, we present the method of calculating the worst-case response time when the transaction Γ i is monotonic for a task τ ua . Theorem 1: Let Γ i =< {τ i1 , τ i1 , ..., τ i|Γi| }, T i > be a transaction and τ ua a task under analysis. Let Γ * i be the normal form of transaction Γ i . If Γ i is monotonic for the task τ ua , then the critical instant of τ ua occurs when it is released at the same time as the first task of Γ * i .

Proof : To simplify the writings, without loss of generality, we consider that all the tasks of Γ i have a higher priority than the priority of τ ua and Γ i = Γ * i . Let τ ip be a task of Γ i . Let W i1 (τ ua , t) be the interference imposed ("imposed interference") on the task τ ua by the transaction Γ i in a time interval of length t when τ ua is released at the same time as τ i1 . In the same way, W ip (τ ua , t) is the interference imposed when τ ua is released at the same time as τ ip . To show that the critical instant of τ ua always coincides with the release of τ i1 , we calculate W i1 (τ ua , t) -W ip (τ ua , t) and we prove that this value is always ≥ 0 for all p ∈ [1..|Γ i |] for any time interval of length t. For t ≥ 0, we know that there is an integer k such as t = k * T i + t%T i . According to theorem 2 of [START_REF] Mäki-Turja | Fast and Tight Response-Times for Tasks with Offsets[END_REF], we have: W i1 (τ ua , t) = W i1 (τ ua , k * T i) + W i1 (τ ua , t%T i) and W ip (τ ua , t) = W ip (τ ua , k * T i) + W ip (τ ua , t%T i); Moreover, the interference imposed by Γ i on the task τ ua in a time interval of length T i is the same whatever the task candidate for the critical instant is. This value is:

W ip (τ ua , T i) = |Γi| j=1 C ij ⇒ W ip (τ ua , k • T i) = k • |Γi| j=1 C ij Consequently, W i1 (τ ua , t)-W ip (τ ua , t) = W i1 (τ ua , t%T i)-W ip (τ ua , t%T i)
Thus, we can reduce the problem to 0 ≤ t < T i . Moreover, for t ≤ C i1 , we have W i1 (τ ua , t) = t; by definition of "imposed interference"

W ic (τ ua , t) ≤ W i (τ ua , t) ≤ t then for t ≤ C i1 , W i1 (τ ua , t) ≥ W ip (τ ua , t)
so, we can reduce the problem to:

C i1 < t < T i
¡ ¢ £ = ¤ η ¥ ¦ with § ¨= © = η
Let us note I 1 the interval from O i1 to O i1 + t :

I 1 = [O i1 ; O i1 + t]
and N 1 the number of tasks activated in the interval I 1 :

N 1 = |{τ ij ∈ Γ i /O ij < O i1 + t}|
Let η 1 be the characteristic function of the interference imposed in the last task of I 1 (see figure 4):

η 1 (t) = 1 if (O iN1 + C iN1) ≤ (O i1 + t) 0 otherwise η 1
indicates if the time interval of length t goes beyond the last task which is taken into account.

Thus we have :

N1-1 j=1 C ij < W i1 (τ ua , t) ≤ N1 j=1 C ij (1)
t -

N1 j=1 α ij ≤ W i1 (τ ua , t) ≤ t - N1-1 j=1 α ij (2)
As for the calculation of W i1 (τ ua , t), let us note I p the interval from O ip to O ip + t :

I p = [O ip ; O ip + t]
and N p the number of tasks activated in the interval I p :

p = |{τ ij ∈ Γ i /O ip ≤ O ij < O i1 + t or (O ij < O ip and O ip + t > O ij + T i)}| case1: N p < N 1 (See Figure 5)
Let us note < τ ik1 , τ ik2 ,, τ ikN p > the tasks activated in the interval I p by WCET decreasing i.e C ik1 ≥ C ik2 ≥ ≥ C ikN p Thus, we have :

Np-1 j=1 C ikj < W ip (τ ua , t) ≤ Np j=1 C ikj (3)
C ikj ≤ N1-1 j=1 C ij (4)
Consequently, according to (1),(3) and (4), we have

W ip (τ ua , t) ≤ Np j=1 C ikj ≤ N1-1 j=1 C ij ≤ W i1 (τ ua , t)
case 2:N p > N 1 (See Figure 6)

Let us note < τ ik1 , τ ik2 ,, τ ikN p > the tasks activated in the interval I p by phases increasing i.e α ik1 ≤ α ik2 ≤ ≤ α ikN p By analogy with inequality (2), we have :

t - Np j=1 α ikj ≤ W ip (τ ua , t) ≤ t - Np-1 j=1 α ikj (5)
According to the assumption of the theorem, we have inevitably :

α ik1 ≥ α i1 , α ik2 ≥ α i2 ,....,α ikN 1 ≥ α iN1
. By adding member to member, we obtain

N1 j=1 α ikj ≥ N1 j=1 α ij Since N p > N 1 then Np-1 j=1 α ikj ≥ N1 j=1 α ikj
from which,we have :

t - Np-1 j=1 α ikj ≤ t - N1 j=1 α ikj (6)
According to (2), (5) and (6) we have:

W ip (τ ua , t) ≤ t - Np-1 j=1 α ikj ≤ t - N1 j=1 α ij ≤ W i1 (τ ua , t) case 3:N p = N 1
We have two possibilities : η 1 (t) = 0 or η 1 (t) = 1 If η 1 (t) = 0 then there are as many phases as tasks in the interval I 1 . Therefore, the last task taken into account for the calculation of W i1 (τ ua , t) is entirely in the interval I 1 .

Thus we use the same reasoning as in case 1.

If η 1 (t) = 1 then There are N 1 -1 phases in the interval I 1 . Therefore, the task τ iN1 is not inevitably entirely in the interval I 1 . We use the same reasoning as in case 2.

Applications of the method

In this section we apply the method of monotonic transaction on an example. Let

Γ i = {< τ i1 , τ i2 , τ i3 , τ i4 , τ i5 , τ i6 , τ i7 , τ i8 >, 50}
be a transaction. The tasks of Γ i are :(Figure 7): τ i1 =< 2, 1, 10, 0, 0, 11 > τ i2 =< 5, 9, 10, 0, 0, 12 > τ i3 =< 5, 19, 10, 0, 0, 13 > τ i4 =< 7, 23, 10, 0, 0, 14 > τ i5 =< 1, 34, 10, 0, 0, > τ i6 =< 8, 35, 10, 0, 0, 18 > τ i7 =< 5, 47, 10, 0, 0, 17 > τ i8 =< 1, 48, 10, 0, 0, 18 > Let τ ua be a task under analysis with a WCET C ua = 8 and a lower priority than all the tasks of Γ i .

Steps of the application of the method:

Step 1: We group the tasks of Γ i in order to obtain a normal form and we obtain the transaction of Figure 8:

Γ * i = {< τ * i1 , τ * i2 , τ * i3 , τ * i4 > 50} τ *
i1 =< 5, 9, x, 0, 0, x > τ * i2 =< 12, 19, x, 0, 0, x > τ * i3 =< 9, 34, x, 0, 0, x > τ * i4 =< 8, 47, x, 0, 0, x > (see Figure 8)

Step 2:Looking for a monotonic pattern We have :

C * i2 ≥ C * i3 ≥ C * i4 ≥ C * i1 and α * i2 ≤ α * i3 ≤ α * i4 ≤ α * i1
A monotonic pattern starts from task τ * i2 . Consequently, the critical instant of the task τ ua coincides with the release of the task τ * i2 . We apply the iterative fix-point lookup with the method presented in this article(see Table 1).

I i2 (τ ua , t) = |Γ * i | j=1 t * T i • C ij
With the new method, it is sufficient to calculate only I i2 (τ ua , t) at each iteration instead of calculating eight values of W ij (τ ua , t) at each iteration. Moreover, for the calculation of each W ij (τ ua , t) it is necessary to evaluate |Γ i | times the value of x ijc (t). This evaluation is no longer necessary with the new method. The number of steps in the fixpoint lookup is significantly lower. Finally, let us note that RTA analysis is exact. A concrete example of application of monotonic transaction can be found in [START_REF] Traore | Efficient Schedulability Analysis of Serial Transactions, rapport de recherche nr 06001[END_REF](intermediate priority tasks of a serial transaction).

Conclusion

In a general context of tasks with offsets, the RTA methods are intractable because they are exponential in time. This article defines a specific class of tasks with offsets: the monotonic transactions. For this class, we found an exact but simple RTA method which requires less steps (the method is pseudo-polynomial) than the known approximation methods for the general case. This method consists in grouping at first the tasks of the transaction in a normal form. If the normal form presents a monotonic pattern, we showed that the critical instant occurs when the task under analysis is released at the same time as the first task of the pattern; then, we applied the method presented in this article. It is important to note that in a task system, some tasks may be faced to some monotonic transactions, and some transactions which are not. Thus, in order to find the worstcase response time of such a task, the method would con- sist in analyzing the transactions looking for monotonic patterns, then consider them as classic tasks in the system, with a constant worst-case interference, and then to use the best approximation method [START_REF] Mäki-Turja | Fast and Tight Response-Times for Tasks with Offsets[END_REF] for the non-monotonic transactions. The two methods (ours and [START_REF] Mäki-Turja | Fast and Tight Response-Times for Tasks with Offsets[END_REF]) are thus complementary. In our future work on tasks with offsets, we will investigate new classes in order to find less pessimistic schedulability conditions with a lower complexity. Moreover, we will try to extend this method to transactions with jitters.

Figure 1

 1 Figure 1. model of tasks with offsets

Figure 2

 2 Figure 2. "Imposed interference" method on a transaction of 4 tasks

Figure 4 .

 4 Figure 4. Illustration of the phase and N 1 value

Figure 5 13 Figure 6

 5136 Figure 5. N 1 = 2 and N p = 1 with t = 13

Figure 7

 7 Figure 7. Transaction Γ i

Table 1 :

 1

		New method
	Iter # I 12	R ua
	0		8
	1	12	20
	2	21	29
	3	29	37
	4	29	37
	Let us note that I i2 (τ ua , t) is the value obtained with
	classical RTA method.