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PARAMETRIC INFERENCE FOR ERGODIC MCKEAN-VLASOV
STOCHASTIC DIFFERENTIAL EQUATIONS.

V. GENON-CATALOT(1), C. LARÉDO(2)

Abstract. We consider a one-dimensional McKean-Vlasov stochastic differential equation with
potential and interaction terms depending on unknown parameters. The sample path is contin-
uously observed on a time interval [0, 2T ]. We assume that the process is in stationary regime.
As this distribution is not explicit, the exact likelihood does not lead to computable estimators.
To overcome this difficulty, we consider a standard kernel estimator of the invariant density
based on the sample path on [0, T ] and obtain original properties of this estimator. Then, we
derive an explicit approximate likelihood using the sample path on [T, 2T ], including the kernel
estimator of the invariant density and study the associated estimators of the unknown parame-
ters. We prove their consistency and asymptotic normality with rate

√
T as T grows to infinity.

Several classes of models illustrate the theory.
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1. Introduction

Stochastic systems of N interacting particles and their mean-field limits for large N , the
McKean-Vlasov stochastic differential equations (SDEs), were first described in [38]. They ap-
peared later in various areas of applications: for the modelling of granular media in statistical
physics ([8]), in neurosciences (see e.g. [18], [3]), for population dynamics and ecology ([43], [9]),
for epidemics dynamics ([4], [21]) , in finance (see e.g. [26] and the references therein).
During the past decades, most contributions were devoted to their probabilistic properties (see
e.g. among many references [50], [42], [6], [7], [27], [34]).
During the same period, statistical inference for these models remained unstudied except [32].
But recently, the interest for this topic is growing in two directions. Either, statistical studies are
based on the direct observation of large interacting particle systems: see e.g. [19], [20], [26], [12],
[5], [14], [2], [45]. Or, statistical inference is based on the observation of the mean-field limit,
the McKean-Vlasov process. Indeed, observing the whole N -particles system might seem too
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demanding or unrealistic for large N . Thus, inference for the limiting process of one typical par-
ticle for large N is now the subject of several contributions: see e.g. [48], [23],[24], [25], [46], [37].
This latter point of view is adopted in this paper. More precisely, consider the one-dimensional
McKean-Vlasov stochastic differential equation (SDE)

(1) dXt = −b(α,Xt)dt−
∫
R

Φ(β,Xt − y)µθt (dy)dt+ σdWt, X0 = η

where (Wt) is a Wiener process, η is independent of (Wt) and µθt is the distribution of Xt. The
functions b(α, x),Φ(β, x) depend on an unknown parameter θ = (α, β) belonging to a convex set
Θα ×Θβ ⊂ Rd × Rd′ . The potential term b(α, x) is an usual drift term describing the geometry
of the space and Φ(β, x) is an interaction term describing the interaction between particles in
the original system. A solution of (1) is a couple ((Xt, µ

θ
t ), t ≥ 0) composed with a process (Xt)

and a family of distribution (µθt ) satisfying (1). When defined, (Xt) is a time-inhomogeneous
Markov process. Assumptions for existence and uniqueness of a solution to (1) and existence
and uniqueness of an invariant distribution are known. Below, we assume that (1) admits an
invariant distribution πθ and that the process is in stationary regime, i.e. η ∼ πθ.
Our aim is to estimate θ from a continuous observation of (Xt) throughout a time interval [0, 2T ]
with asymptotic framework T → +∞.
A large number of contributions is concerned with statistical inference for ergodic diffusions (see
e.g. the books [35], [31], [33], [30] and a lot of papers (see e.g. [1], [16], [17], [29], [44], [41]).
For what concerns McKean-Vlasov SDEs in stationary regime, papers are not so numerous: to
our knowledge, we can refer to [48], [46] and [25] where the special McKean-Vlasov model with
no potential term and with odd polynomial interaction term is considered. The McKean-Vlasov
SDE studied here is much more general than in the latter paper and the approach quite different.
Assuming that the initial variable η of process (1) follows the invariant distribution implies that,
for all t ≥ 0, the marginal distribution µθt (dy) is constant and equal to the invariant distribution
πθ(dy). Therefore, the drift term of (1) does no longer depend on t and is given by

(2) x→ S(θ, x) := −b(α, x)−
∫
R

Φ(β, x− y)πθ(dy) = −b(α, x)− Φ(β, .) ? πθ(x).

Nevertheless, the invariant distribution is not explicitely known so that, although the exact
likelihood can be theoretically studied, it does not lead to computable estimators. To overcome
this difficulty, we start by studying a kernel estimator π̂T (x) of the invariant density based on
the sample path (Xt, t ∈ [0, T ]). This estimator is studied in [10], [36], [35], [16], [49]. Its
noteworthy property is that its variance rate is

√
T , i.e. the parametric rate which is important

for our parametric setting. Nevertheless, the existing results concerning this estimator cannot
be directly applied. For our purpose, we study a weighted mean integrated risk fitted to our
problem and moreover we prove a convergence in distribution result which, up to our knowledge,
are new results of intrinsic interest. In a second step, we propose an approximate likelihood
based on the sample (Xt, t ∈ [T, 2T ]) where the unknown invariant density of the drift S(θ, x) is
replaced by the kernel estimator, thus leading to the approximate drift:

(3) ŜT (θ, x) = Ŝ(θ, x) = −b(α, x)− Φ(β, .) ? π̂T (x),

Then, we study the asymptotic properties of the associated estimators of θ and prove their
consistency and asymptotic normality with rate

√
T . Examples of classes of models illustrate

the theory.
Section 2 presents our assumptions to ensure existence and uniqueness of a solution to (1) and

existence of an invariant density. We prove a useful bound for the invariant density (Proposition
1) and obtain that the process (Xt) in stationary regime is identical to an ergodic diffusion
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(Proposition 2). Section 3 is devoted to statistical results. The statistical assumptions are
presented. Then, we study the theoretical exact maximum likelihood estimator (MLE) of θ,
prove its consistency an asymptotic normality and exhibit the asymptotic Fisher information
(Section 3.1). Section 3.2 concerns the kernel estimator π̂T (x) based on (Xt, t ∈ [0, T ]) (Theorem
1, Theorem 2 and Corollary 1). In Section 3.3, we define our approximate likelihood (contrast)
which is the conditional likelihood of (Xt, t ∈ [T, 2T ]) given XT where the unknown invariant
distribution is replaced by the kernel estimator π̂T . We study the associated pseudo-Hessian
matrix (Proposition 6) and pseudo-score function (Theorem 3). We conclude by stating the
consistency and asymptotic normality of our maximum contrast estimator (MCE). In Section 4,
several classes of models are detailed where we compare the asymptotic variances of the MCE
and the exact MLE. Section 5 is devoted to lemmas (Lemmas 1 and 2) which are the backbone
of the proofs of Section 3. Lemma 2 is especially difficult to obtain. Section 6 gives concluding
remarks. Section 7 is an appendix where we recall results from [22] concerning a central limit
theorem for ergodic diffusions and properties of the infinitesimal generator, properties used all
along the paper. Section 8, 9 and 10 contains all proofs.

2. Assumptions and preliminaries.

In the sequel, the notation . means ≤ up to a constant. Let us set

(4) V (α, x) =

∫ x

0
b(α, y)dy, W (β, x) =

∫ x

0
φ(β, y)dy.

We assume that, for all α ∈ Θα and all β ∈ Θβ , these functions satisfy:
• [H1] The function W (β, .) is even. The functions x→ V (α, x) and x→ W (β, x) are C2

and convex, one of the two being strictly convex: there exist constants K(α) and λ(β)
such that

∀x, ∂
2V

∂x2
(α, x) ≥ K(α) ≥ 0,

∂2W

∂x2
(β, x) ≥ λ(β) ≥ 0 and K(α) + λ(β) > 0.

• [H2] The functions x→ ∂V
∂x (α, x), ∂W∂x (β, x) are locally Lipschitz with polynomial growth,

i.e. there exist c = c(α, β) > 0, ` = `(α, β) ∈ N∗ such that

∀x, y ∈ R, |∂V
∂x

(α, x))− ∂V

∂x
(α, y))|+ |∂W

∂x
(β, x)− ∂W

∂x
(β, y)| ≤ c|x− y|(1 + |x|` + |y|`).

• [H3] The functions x→ ∂V
∂x (α, x), ∂

2V
∂x2

(α, x), ∂W∂x (β, x), ∂
2W
∂x2

(β, x) have ` polynomial growth:
there exists a constant c = c(α, β) such that

|∂V
∂x

(α, x)|+ |∂
2V

∂x2
(α, x)|+ |∂W

∂x
(β, x)|+ |∂

2W

∂x2
(β, x)| ≤ c(1 + |x|`).

According to [39], [6], [11],[27], under [H1]-[H3], equation (1) admits a unique solution ((Xt, µ
θ
t )), t ≥

0). For what concerns invariant distributions, two cases are to be distinguished. If V (α, .) is
strictly convex (K(α) > 0), model (1) admits a unique invariant distribution πθ such that∫
R x

2πθ(x)dx < +∞. If V (α, .) ≡ 0, (1) admits a one-parameter family of invariant distribu-
tions, the parameter being the expectation of the distribution. Thus, the invariant distribution
is unique once its expectation is specified (see also more details in [25]).
If the initial variable X0 of (1) follows an invariant distribution, then, for all t, L(Xt) = L(X0).
This is why, in what follows, to cover all cases, we assume

• [H4] Either [H1]-[H2] hold with K(α) > 0 and X0 = η follows the unique invariant
distribution πθ of (1) or V (α, .) ≡ 0, [H1]-[H2] hold with λ(β) > 0 and X0 = η ∼ πθ,
where πθ is the unique centered invariant distribution. In the latter case, πθ is symmetric.
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Under [H4], the invariant distribution πθ has density πθ(x) given as the solution of the implicit
equation

(5) πθ(x) =
1

Zθ
exp [− 2

σ2
(V (α, x) +W (β, .) ? πθ(x))],

where Zθ =
∫
R exp [− 2

σ2V (α, y) +W (β, .) ? πθ(y)]dy.
Contrary to classical SDEs, the invariant distribution is not explicit. Nevertheless, we have:

Proposition 1. Under [H4], V (α, x) + W (β, .) ? πθ(x) ≥ (K(α) + λ(β))x
2

2 + ax + b (a =
∂V
∂x (α, 0)− λ(β)

∫
yπθ(y)dy, b = λ(β)

2

∫
y2πθ(y)dy). Thus, the invariant distribution satisfies

(6) πθ(x) . exp [−(K(α) + λ(β))

σ2
(x+

a

K(α) + λ(β)
)2].

As an obvious consequence, the invariant distribution has moments of any orders and (6)
implies that, for all k ∈ R and all ε > 0,

(7)
∫
R

exp (kx)(πθ(x))εdx < +∞.

This property is crucially used in proofs for various values of ε.
Under [H4], the initial variable η follows an invariant distribution πθ(x)dx. Then, the distri-

bution L(Xt) = µθt (dy) satisfies that

∀t ≥ 0, µθt (dy) = πθ(y)dy.

Therefore, the following holds (see (2)):

(8) dXt = −(b(α,Xt) + Φ(β, .) ? πθ(Xt))dt+ σdWt = S(θ,Xt)dt+ σdWt, X0 = η ∼ πθ(x)dx.

Proposition 2. Assume [H4] and consider the stochastic differential equation (see (2))

(9) dYt = S(θ, Yt)dt+ σdWt.

Then (Yt) is a positive recurrent diffusion with stationary density given by (5). If Y0 ∼ πθ(x)dx,
it is ergodic. Moreover,
- If Y0 6= X0, (Yt) 6≡ (Xt).
- If Y0 = X0 = η ∼ πθ(x)dx, then Xt = Yt for all t ≥ 0.

The result simply follows from the uniqueness of solutions. Thus, under [H4], (Xt) is equal
to the solution of a classical SDE in stationary regime and is ergodic. This result has impor-
tant consequences. One can apply to (Xt) results for classical ergodic SDEs. If f satisfies∫
|f(x)|πθ(x)dx < +∞, the ergodic theorem (see e.g. [47], Chap. V-7), yields

(10)
1

T

∫ T

0
f(Xs)ds→a.s.

∫
f(x)πθ(x)dx.

More results are given in Section 7. They rely on the infinitesimal generator of the SDEs (8):

(11) Lg = (σ2/2)g′′ − (b(α, .) + Φ(β, .) ? πθ(.))g
′.

The operator L acts on L2(πθ(x)dx) and is defined on the domain D,

(12) D = {g ∈ L2(πθ(x)dx), g′ abs. continuous, Lg ∈ L2(πθ(x)dx), lim
|x|→∞

g′(x)πθ(x) = 0}.
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3. Estimation results.

From now on, we assume that [H4] holds for all θ and study the estimation of θ = (α, β) from
the continuous observation of (Xt, t ∈ [0, 2T ]) satisfying (8).

Throughout this study, we assume that σ2 is fixed, known or unknown, but since it is identifi-
able from the continuous observation of (Xt) on [0, 2T ], we are not concerned by its estimation.
Clearly, the invariant density of (Xt) defined by the implicit equation (5) also depends on σ2.
Since it is fixed, we omit for sake of clarity, its dependence with respect to σ2 and just write
πθ(.), as well as in all statistical notations used in the sequel.

We detail first a maximum likelihood approach (Section 3.1) which is theoretical. Then, we
propose a tractable contrast method which relies on a nonparametric estimator of the invariant
density whose properties are studied in Section 3.2. The contrast is studied in Section 3.3.

We denote by Pθ the distribution on C([0, 2T ]) of (Xt, t ∈ [0, 2T ]) and by θ0 the true value of
the parameter. For M a matrix or a vector, we denote by M ′ its transpose.
Recall the notation (2) and set

K(θ0, θ) =

∫
R

(S(θ, x)− S(θ0, x))2πθ0(x)dx,(13)

K̃(θ0, θ) =

∫
R
{b(α, x)− b(α0, x) + [Φ(β, .)− Φ(β0, .)] ? πθ0(x)}2 πθ0(x)dx.(14)

These two quantities are well defined since, under [S1], b(α, .) and Φ(β, .) ? πθ have polynomial
growth and, by (6) πθ has moments of any order. Statistical assumptions are required.

• [S0] The parameter space Θ = Θα ×Θβ is compact and the true value θ0 belongs to Θ̊.
• [S1] The functions (α, x) → V (α, x) and (β, x) → W (β, x) are respectively defined on
Uα × R and Uβ × R where Uα (resp. Uβ) is an open set containing Θα (resp. Θβ) and
are such that all the derivatives

(α, x)→ ∂i+jV

∂xi∂αj
(α, x), (β, x)→ ∂i+jW

∂xi∂βj
(β, x) exist, are continuous respectively on Uα×

R (resp. Uβ × R) and have polynomial `-growth with respect to x, uniformly in α, β.
• [S2] {K(θ0, θ) = 0} ⇒ {θ = θ0}.
• [S3] For all α, β, and for z1, z2 ∈ Rd × Rd′ ,

{z1.∇αS(θ, x) + z2.∇βS(θ, x) ≡ 0} ⇒ {z1 = z2 = 0}

where ∇α (resp. ∇β) denotes the gradient vector w.r.t. α (resp. β) and x.y denotes the
Euclidian scalar product of two vectors x, y.
• [S4] {K̃(θ0, θ) = 0} ⇒ {θ = θ0}.
• [S5] For all α, β, and for z1, z2 ∈ Rd × Rd′ ,

{z1.∇αb(α, x) + z2.[∇βΦ(β, .)] ? πθ(x) ≡ 0} ⇒ {z1 = z2 = 0}.

Assumptions [S0]-[S1] are standard for MLEs or MCEs. As we can see from the expression (15),
the likelihood is not explicitly known so that the MLE is not computable. Therefore, we introduce
an explicit contrast (pseudo-likelihood) leading to computable estimators. Assumptions [S2]-
[S3] are the identifiability conditions for the MLE (resp. [S4]-[S5] for the MCE). Assumption
[S3] (resp. [S5]) concerns the invertibility of the Fisher (resp. pseudo-Fisher ) information
matrix required for the asymptotic normality of the MLE (resp. MCE). By direct computation,
comparing (13) and (14) is not straightforward, except on specific examples (see Section 4).
Below, Proposition 3 (resp. Proposition 5) states that [S2] ensures the consistency of the MLE
(resp. [S4] of the MCE). Therefore, the statistical theory ensures that if [S4] holds, [S2] holds.
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3.1. Maximum Likelihood Estimator based on (Xt, t ∈ [0, T ]) and (Xt, t ∈ [0, 2T ]). To
estimate θ from (Xt, t ∈ [0, T ]), let us first look at the conditional log-likelihood of (Xt, t ∈ [0, T ])
given X0. The Girsanov formula holds for (Xt) and using (2) yields

(15) `T (θ) =
1

σ2

(∫ T

0
S(θ,Xt)dXt −

1

2

∫ T

0
S2(θ,Xt)dt

)
.

From (2), we see that S(θ, x) depends on πθ given by the implicit equation (see (5)) and is
not explicit. Therefore, (15) cannot lead to computable estimators of θ since the derivatives of
the log-likelihood depend on the derivatives w.r.t. θ of πθ. Nevertheless, a theoretical study of
the MLE is possible. A first step is the following proposition which determines the rate of the
problem and the parameters that can be identifiable on this model.

Proposition 3. Assume [H4], [S1]. Then, as T tends to infinity, under Pθ0, using (13),
1

T
[`T (θ)− `T (θ0)]→a.s. −

1

2σ2

∫
R

[S(θ, x)− S(θ0, x)]2πθ0(x)dx = − 1

2σ2
K(θ0, θ).

The proof of Proposition 3 is standard as (Xt) is identical to (Yt) an ergodic diffusion process,
and therefore satisfies (10). Now, let us define the MLE as

(16) ̂̂
θT = arg sup

θ∈Θ
`T (θ).

Under [S0]-[S2], K(θ0, θ) possesses a unique minimum at θ = θ0, which leads to the consistency of̂̂
θT . Moreover, Proposition 3 implies that the estimation rate of θ is

√
T as for ergodic diffusions.

We can define the (d+ d′) matrix

(17) I(θ) =

(
I11(θ) I12(θ)

[I12(θ)]′ I22(θ),

)
, where

I11(θ) =

(∫
R

∂S

∂αi
(θ, x)

∂S

∂αk
(θ, x)πθ(x)dx

)
i,k=1,...,d

,

I12(θ) =

(∫
R

∂S

∂αi
(θ, x)

∂S

∂βj
(θ, x)πθ(x)dx

)
i=1,...,d;j=1...d′

I22(θ) =

(∫
R

∂S

∂βj
(θ, x)

∂S

∂β`
(θ, x)πθ(x)dx

)
j,`=1,...,d′

, and

∂S

∂αi
(θ, x) =

∂b

∂αi
(α, x)+Φ(β, .)?

∂πθ
∂αi

(θ, x),
∂S

∂βj
(θ, x) = [

∂Φ

∂βj
(β, .)?πθ](θ, x)+[Φ(β, .)?

∂πθ
∂βj

](θ, x).

Then, under [S1], the Fisher information matrix associated with `T (θ) is σ−2I(θ) (see Proposition
4). As usual, [S2] implies [S3] as K(θ0, θ0 + h) = h′I(θ0)h+ o(‖h‖)2) but the reverse is not true.

Note that σ2 implicitly appears in the Iij(θ), i, j = 1, 2 through πθ. As S(θ, .) depends on πθ,
the derivation of the MLE requires, additionally to the ability of differentiating πθ w.r.t θ, the
knowledge of σ2. This is specific to McKean-Vlasov diffusions. We can state:

Proposition 4. Assume [H4], [S0]-[S2]-[S3]. Then, the MLE ̂̂θT is consistent and
√
T (
̂̂
θT − θ0)

converges in distribution under Pθ0 to the Gaussian law Nd+d′(0, σ
2I−1(θ0)).

The proof of this result is standard. However, the result remains theoretical as the MLE is
not computable. Besides, one cannot easily check either [S2] or [S3] (see Section 4).
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In order to compare the estimators derived from the two methods (the MLE and the MCE
below), assume now that the observation is (Xt, t ∈ [0, 2T ]). We know that, under the same

assumptions as in Proposition 4,
√

2T (
̂̂
θ2T − θ0) converges in distribution under Pθ0 to the

Gaussian law Nd+d′(0, σ
2I−1(θ0)). Therefore,

√
T (
̂̂
θ2T − θ0) converges in distribution under Pθ0

to the Gaussian law Nd+d′(0,
σ2

2 I
−1(θ0)).

3.2. Nonparametric estimator of the invariant density. When there is no ambiguity, we
drop in this section the index 0 and write θ instead of θ0.
Before studying the second estimation method, we need properties for the nonparametric esti-
mator of πθ(.) that we plug in S(θ, x).
Let K a nonnegative continuous even function with support [−A,A], A > 0 such that

(18)
∫
K(v)dv = 1,

∫
v2K(v)dv = σ2

K < +∞, and set Kh(x) = (1/h)K(x/h).

Then, a kernel density estimator of πθ(x) is, if hT is a bandwidth satisfying hT = o(1),

(19) π̂T (x) =
1

T

∫ T

0
KhT (Xt − x) dt.

Note that he function π̂T (x) is a probability density.
For n i.i.d. observations, the mean integrated risk of a kernel density estimator is well known

(see e.g. [51], [13]). The rate of the integrated square-bias term is a power of the bandwidth
and the rate of the integrated variance term is (nh)−1, lower than the parametric rate. For
i.i.d. observations on [0, T ] of diffusions paths with fixed T , similar results on the estimation
of πT (x) = T−1

∫ T
0 pt(x0, x)dt where pt(x0, x) is the transition density and x0 the initial value,

have been obtained by [40].
For a kernel estimator such as π̂T based on the continuous observation of a one-dimensional
stationary process, this risk was firstly investigated in [10], see also for the case of ergodic
diffusion processes, [36], [35], [16] for pointwise risk or [49] for sup-norm risk or [15]. The results
are different from the i.i.d. case. Indeed, under appropriate assumptions, the variance rate
of the kernel estimator is the parametric rate T−1 which is unusual for nonparametric density
estimation. This is why it is interesting in our model to replace the unknown density πθ by the
kernel estimator π̂T as this substitution will not affect the rate of convergence of our parametric
estimators. However, these results are not sufficient for our purpose and we need to study a
weighted mean integrated risk fitted to our problem together with a convergence in distribution
result which, up to our knowledge, have not yet been studied.

Theorem 1. Assume [H4]. We have, for all p ≥ 0, using (18), (19),
(1) There exists a continuous function fθ : R→ R+ such that

B2
T (p, θ) = B2

T (p) =

∫
R

(1 + |x|p)(Eθπ̂T (x)− πθ(x))2dx ≤ h4
T σ

4
K sup
|t|≤A

fθ(t).

(2) There exists a constant Cθ(p) such that

VT (p, θ)) = VT (p) =

∫
R
Varθ(π̂T (x))(1 + |x|p)dx ≤ Cθ(p)

T
.

The invariant density is twice continuously differentiable by [H1] so that the rate of the bias
term is consistent with previous results.The second result on the variance term is new and difficult
to obtain. It strongly relies on property (7) of the invariant distribution.
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Theorem 2. Assume [H4], [S1]. Then, if ψ : R→ R is a C1 function such that ψ and ψ′ have
polynomial growth, under Pθ,

(20)
√
T

∫
R
ψ(y)(π̂T (y)− Eθπ̂T (y))dy =

σ√
T

∫ T

0
g′ψ(Xs)dWs +OP (

1√
T

) +OP (
√
ThT ),

where gψ satisfies Lgψ(y) = −(ψ(y)−
∫
ψ(y)πθ(y)dy) := −ψc(y), L is the infinitesimal generator

defined in (11), so that, using Remark 1 of the Appendix (Section 7),

(21) g′ψ(x) = 2σ−2π−1
θ (x)

∫ x

−∞
ψc(y)πθ(y)dy = −2σ−2π−1

θ (x)

∫ +∞

x
ψc(y)πθ(y)dy.

The above result is original and useful for the study of the asymptotic properties of our MCE.

Corollary 1. Under the assumptions of Theorem 2, if
√
ThT = o(1), under Pθ, as T tends to

infinity,
√
T

∫
R
ψ(y)(π̂T (y)− πθ(y))dy →L N (0, σ2

∫
(g′ψ(x))2πθ(x)dx).

As our aim is parametric inference, we do not seek a square bias-variance compromise. But,
we need a sufficient condition to erase the bias and obtain a

√
T global rate.

3.3. Maximum contrast estimator. To derive this estimator, we use the interval [0, T ] to
build the nonparametric estimator π̂T (x) of πθ(x) and substitute, in the conditional likelihood
of (Xt, t ∈ [T, 2T ]), given XT , πθ(x) by π̂T (x). Recall (see (3)):

ŜT (θ, x) = Ŝ(θ, x) = −b(α, x)− Φ(β, .) ? π̂T (x),

and consider the pseudo-likelihood or contrast

(22) ΛT (θ) =
1

σ2

(∫ 2T

T
Ŝ(θ,Xs)dXs −

1

2

∫ 2T

T
(Ŝ(θ,Xs))

2ds

)
.

The stochastic integral is well defined as π̂T (x) is computed using (Xt, 0 ≤ t ≤ T ). The following
proposition clarifies the identifiability assumption [S3] associated with the contrast (22).

Proposition 5. Assume [H4], [S1]. Then, as T tends to infinity, under Pθ0, the contrast defined
in (22) with π̂T given in (19), satisfies (see (14)),

1

T
[ΛT (θ)− ΛT (θ0)]→a.s. −

1

2σ2
K̃(θ0, θ).

Analogously, Assumption [S4] implies [S5]. The identifiability assumption for ΛT (θ) is not
the same as for `T (θ) as K̃(θ0, θ) 6= K(θ0, θ). The comparison of K̃(θ0, θ) and K(θ0, θ) is not
straightforward. In Section 4, examples are given where it is possible.
Now define the maximum contrast estimator (MCE) associated with (22) by:

(23) θ̂T = arg sup
θ∈Θ

ΛT (θ)

Contrary to the MLE, this MCE does not require the knowledge of σ2 and is explicit.
Under [S0]-[S1]and [S4], we deduce standardly from Proposition 5 that the MCE is consistent.
To obtain the limiting distribution of the normalized MCE

√
T (θ̂T − θ0), we have to study the

derivatives of the contrast with respect to the α = (αj , j = 1, . . . d), β = (βk, k = 1 . . . , d′). This
requires properties of the difference

(24) Ŝ(θ, x)− S(θ, x) = −Φ(β, .) ? (π̂T − πθ)(x).
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Let us define the (d+ d′)× (d+ d′) pseudo Hessian matrix IT (θ) =

(
IT,1,1 IT,1,2

[IT,1,2]′ IT,2,2

)
where

IT,1,1 =

(
∂2ΛT

∂αj∂αj′)
(θ)

)
1≤j,j′≤d

, IT,2,2 =

(
∂2ΛT

∂βk∂βk′)
(θ)

)
1≤k,k′≤d′

,

IT,1,2 =

(
∂2ΛT
∂αj∂βk

(θ)

)
1≤j≤d,1≤k≤d′

.

Proposition 6. Assume [H4], [S1]. As T tends to infinity, under Pθ, the normalized pseudo
Hessian matrix 1

T IT (θ) converges to −σ−2I(θ) where

(25) I(θ) =

(
I1,1(θ) I1,2(θ)

[I1,2(θ)]′ I2,2(θ)

)
, with

I1,1θ) =

(∫
R

∂b

∂αj
(α, x)

∂b

∂αj′
(α, x)πθ(x)dx

)
1≤j,j′≤d

,

I1,2(θ) =

(∫
R

∂b

∂αj
(α, x)

∂Φ

∂βk
(β, .) ? πθ(x)πθ(x)dx

)
1≤j≤d,1≤k≤d′

I2,2(θ) =

(∫
R

∂Φ

∂βk
(β, .) ? πθ(x)

∂Φ

∂βk′
(β, .) ? πθ(x)πθ(x)dx

)
1≤k,k′≤d′

.

Note that I(θ) is invertible if and only if , for z = (z1, z2) ∈ Rd × Rd′ ,
z′I(θ)z = 0⇒ {z1 = z2 = 0}.

Now
z′I(θ)z =

∫
(z1.∇αb(α, x) + z2.∇βφ(β, .) ? πθ(x))2 πθ(x)dx.

Therefore, z′I(θ)z = 0⇔ z1.∇αb(α, x) + z2.∇βφ(β, .) ? πθ(x) ≡ 0. Thus, [S5].
Let us study now the pseudo-score function. For this, define j = 1, . . . , d, k = 1, . . . , d′,

(26) Ψj(θ, y) =

∫
∂b

∂αj
(α, x)Φ(β, x− y)πθ(x)dx; Ψj,c(θ, y) = Ψj(θ, y)−

∫
Ψj(θ, z)πθ(z)dz,

(27)

Ξk(θ, y) =

∫
∂Φ

∂βk
(β, .) ? πθ(x)Φ(β, x− y)πθ(x)dx; Ξk,c(θ, y) = Ξk(θ, y)−

∫
Ξk(θ, z)πθ(z)dz.

By Proposition 9, there exist functions gj , hk satisfying

(28) Lgj(θ, .)(y) = −Ψj,c(θ, y); Lhk(θ, .)(y)= −Ξk,c(θ, y), j = 1, . . . , d; k = 1, . . . , d′.

Next, define the square d+ d′ matrix

(29) H(θ) =

(
H11(θ) H12(θ)

[H12(θ)]′ H22(θ)

)
,

where H11,H12, H22 are respectively the d × d, d × d′ and d′ × d′ matrices for j, j′ = 1, . . . , d,
k, k′ = 1, . . . , d′,

H11(j, j′) =

∫
g′j(θ, x)g′j′(θ, x)πθ(x)dx, H12(j, k) =

∫
g′j(θ, x)h′k(θ, x)πθ(x)dx,

H22(k, k′) =

∫
h′k(θ, x)h′k′(θ, x)πθ(x)dx.

Here, g′j(θ, x), h′k(θ, x) denote the derivatives of gj(θ, x), hk(θ, x) w.r.t. x (see (26), (27), (28)).



10 V. GENON-CATALOT, C. LARÉDO

Theorem 3. Assume [H4], [S1] and that hT tends to 0 in such a way that hT
√
T = o(1). Then,

σ2
√
T

(
∇αΛT (θ)
∇βΛT (θ)

)
satisfies that, under Pθ, for j = 1, . . . , d; k = 1, . . . , d′,

σ2

√
T

∂ΛT
∂αj

(θ) = − σ√
T

(∫ 2T

T

∂b

∂αj
(α,Xt)dWt +

∫ T

0
g′j(θ,Xt)dWt

)
+ oP (1),

σ2

√
T

∂ΛT
∂βk

(θ) = − σ√
T

(∫ 2T

T

∂Φ

∂βk
(β, .) ? πθ(Xt)dWt +

∫ T

0
h′k(θ,Xt)dWt

)
+ oP (1).

Therefore, σ2
√
T

(
∇αΛT (θ)
∇βΛT (θ)

)
converges in distribution to Nd+d′(0,Σ(θ)) with, using (25), (29),

(30) Σ(θ) =

(
Σ11(θ) Σ12(θ)

[Σ12(θ)]′ Σ22(θ)

)
, where Σij(θ) = σ2(Iij(θ) +Hij(θ)) for i, j = 1, 2.

To clarify the previous results, let us describe the main terms occurring in ∂ΛT
∂α (θ) assuming

d = d′ = 1. We have, under Pθ,

σ2

√
T

∂ΛT
∂α

(θ) = − σ√
T

∫ 2T

T

∂b

∂α
(α,Xt)dWt −A2,T + oP (1),

A2,T =
1

T

∫ 2T

T

∂b

∂α
(α,Xt)

√
T (Φ(β, .) ? (π̂T − πθ))(Xt)

=
√
T

∫
R

(π̂T (y)− πθ(y))
1

T

∫ 2T

T

∂b

∂α
(α,Xt)Φ(β,Xt − y)dy.

Substituting 1
T

∫ 2T
T

∂b
∂α(α,Xt)Φ(β,Xt − y)dy by its limit Ψ(θ, y) =

∫
∂b
∂α(α, x)Φ(β, x− y)πθ(x)dx

as T →∞ yields that the main term of A2,T is equal to

A2,T =
√
T

∫
R

Ψ(θ, y)(π̂T (y)− πθ(y))dy + oP (1) =
σ√
T

∫ T

0
g′(Xs)dWs + oP (1),

where, applying Theorem 2, g satisfies Lg = −Ψc(θ, .). Finally σ2
√
T

∂ΛT
∂α (θ) is the sum of two

uncorrelated terms and converges in distribution to a Gaussian random variable with variance
Σ11 = σ2

∫ [
( ∂b∂α(α, x))2 + (g′(x))2

]
πθ(x)dx using the central limit theorem (32).

Now, the convergence in distribution of the MCE derives classically from the previous results.

Proposition 7. Assume [H4], [S0]-[S1], [S4]-[S5]. The MCE defined in (23) is consistent and
satisfies that, under Pθ0, using (25), (30),

√
T (θ̂T − θ0)→L Nd+d′

(
0, I−1(θ0)Σ(θ0)I−1(θ0)

)
.

Note that this variance satisfies, using (29), σ−2(I−1(θ) + I−1(θ)H(θ)I−1(θ)).

4. Examples

Example 1 is the Ornstein-Uhlenbeck McKean-Vlasov process. Example 2 deals with the case
where b(α, x) = αb(x) is linear in the parameter α and Φ(β, x) = βx, α, β ∈ R. For this fam-
ily of models, we can compare K(θ0, θ), K̃(θ0, θ) and I(θ), I(θ). In Example 3, we consider
b(α, x) ≡ 0 and x → Φ(β, x) an odd polynomial. Thus, we compare the present approach with
the one developped in [25], which is devoted to the study of McKean-Vlasov models with nul
potential term and odd polynomial interaction term. For sake of simplicity, we focus on the
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comparison of the estimators ̂̂θT (16) (instead of ̂̂θ2T ) and θ̂T (23).

Example 1. V (α, x) = αx2/2,W (β, x) = βx2/2, α > 0, β > 0.
Equation (1) is dXt = −αXtdt − β(Xt − EθXt)dt + σdWt, ((23) so that EθXt = EθX0e

−αt.
Therefore, the invariant distribution is necessarily centered, and

dXt = −(α+ β)Xtdt+ σdWt.

The invariant distribution πθ is the Gaussian distribution N (0, σ2/2(α + β)) and S(θ, x) =

−(α + β)x. Here, K(θ0, θ) = [α + β − (α0 + β0)]2
∫
x2πθ0(x)dx = σ2

2(α0+β0) [α + β − (α0 + β0)]2.
The only identifiable parameter is τ = τ(θ) = α+ β ([S2], [S3] not satisfied). The MLE of τ is

̂̂τ = −
∫ T

0 XtdXt∫ T
0 X2

t dt
and
√
T (̂̂τ − τ)→L N (0, 2τ).

Let us look at the contrast ΛT (θ). We have Ŝ(θ, x) = −αx−β
∫

(x− y) π̂T (y)dy = −(α+β)x−
β
∫
yπ̂T (y)dy = S(θ, x)− β

T

∫ T
0 Xtdt since∫

yπ̂T (y)dy =
1

ThT

∫ T

0

∫
R
yK(

y −Xt

hT
)dy =

1

T

∫ T

0

∫
R

(Xt + vhT )K(v)dv =
1

T

∫ T

0
Xtdt.

We have K̃(θ0, θ) = K(θ0, θ). With τ = τ(θ) = α+ β,

σ2ΛT (τ, β) =

∫ 2T

T
[−τXt − β

1

T

∫ T

0
Xtdt]dXt)−

1

2

∫ 2T

T
[−τXt − β

1

T

∫ T

0
Xtdt]

2dt).

Thus, the MCE satisfies

1

T
IT
(
τ̂T
β̂T

)
=

1

T

( ∫ 2T
T XsdXs

− 1
T

∫ T
0 Xtdt

∫ 2T
T dXs

)
with IT =

(
−
∫ 2T
T X2

sds
1
T

∫ T
0 Xtdt

∫ 2T
T Xsds

1
T

∫ T
0 Xtdt

∫ 2T
T Xsds −( 1

T

∫ T
0 Xtdt)

2

)
.

For given T , IT /T is invertible but, as T grows to infinity, it converges to the non invertible

matrix
(
−σ2/2τ 0

0 0

)
. After some computations, we find

τ̂T =
1

1
T

∫ 2T
T X2

sds− ( 1
T

∫ 2T
T Xtdt)2

(
− 1

T

∫ 2T

T
XtdXt +

1

T

∫ 2T

T
dXs

1

T

∫ 2T

T
Xsds

)
.

By the ergodic theorem, 1
T

∫ T
0 Xtdt converges almost surely to

∫
yπθ(y)dy = 0. Then, we apply

the result of Proposition 8 to fc(x) = x with Lg(x) = (σ2/2)g′′ − (α + β)xg′. The function
g(x) = x/(α+ β) satisfies Lg(x) = −x. Therefore, σ2(fc) = σ2/(α+ β)2. Thus,

√
T (

1

T

∫ T

0
Xtdt)→L X ∼ N (σ2/(α+ β)2).

This allows to study τ̂T and we can prove that
√
T (τ̂T − ̂̂τT ) = oP (1). We can compute β̂T , but

there is no result for it. Note that z1
∂b
∂α(α, x) + z2

∂Φ
∂β (β, .) ? πθ(x) = (z1 + z2)x ≡ 0 does not

imply z1 = z2 = 0. So [S5] is not satisfied.

Example 2. Consider the class of models b(α, x) = αb(x), α > 0, with b twice continuously
differentiable, Φ(β, x) = βx with αb′(x) + β ≥ K > 0, b′′(x) 6≡ 0. Assumption [H4] is satisfied
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and the model has a unique invariant density πθ,

πθ(x) =
1

Zθ
exp

[
− 2

σ2

(
α

∫ x

0
b(y)dy + β(

x2

2
− xγ1(θ))

)]
,

where γ1(θ) =
∫
yπθ(y)dy is not explicitly known and Zθ is the unknown normalization constant.

Now, we compare K(θ0, θ), K̃(θ0, θ) and I(θ), I(θ).
The equation for Xt is given by

Xt = X0 + α

∫ t

0
[b(Xs) + β(Xs − Eθ(Xs))]ds+ σWt.

When X0 ∼ πθ, the process is in stationary regime. Thus, taking expectations yields

(31)
∫
b(x)πθ(x)dx = 0.

This implies,

K(θ0, θ) =

∫
[(α− α0)b(x) + (β − β0)(x− γ1(θ0)) + β(γ1(θ0)− γ1(θ)]2πθ0(x)dx

= K̃(θ0, θ) + β2(γ1(θ)− γ1(θ0))2.

Assume that K̃(θ0, θ) = 0. Then, for all x, (α−α0)b(x)+(β−β0)(x−γ1(θ0) = 0. Since b′′ is not
identically nul, this implies α = α0 and β = β0. Thus, by the contrast ΛT (θ), both parameters
are identifiable. One sees that, if [S4] holds, [S2] holds. So, both parameters are also identifiable
by the likelihood method. We have

σ2`T (θ) = −
∫ T

0
[αb(Xt) + β(Xt − γ1(θ))dXt −

1

2

∫ 2T

T
[αb(Xt) + β(Xt − γ1(θ)]2dt,

σ2ΛT (θ) = −
∫ 2T

T
[αb(Xt) + β(Xt − m̂T )dXt −

1

2

∫ T

0
[αb(Xt) + β(Xt − m̂T )]2dt,

with m̂T = T−1
∫ T

0 Xsds. Here, we again see that the MLE of θ is not explicitly computable as
there is no explicit expression of the function θ → γ1(θ) and its derivatives w.r.t. θ = (α, β).
Nevertheless, we can compute the Fisher information matrix which is σ−2I(θ), where, using (31)
and (17), I(θ) = (Iij(θ))1≤i,j≤2, with

I11(θ) =

∫
b2(x)πθ(x)dx+ (β

∂γ1

∂α
(θ))2, I22(θ) =

∫
(x− γ1(θ))2πθ(x)dx+ (β

∂γ1

∂β
(θ))2,

I12(θ) =

∫
b(x)(x− γ1(θ))πθ(x)dx+ β2∂γ1

∂α
(θ)

∂γ1

∂β
(θ).

Note that I(θ) =
∫ ( b(x)

x− γ1(θ)

)(
b(x), x− γ1(θ)

)
πθ(x)dx+

(
β ∂γ1∂α (θ)

β ∂γ1∂β (θ)

)(
β ∂γ1∂α (θ), β ∂γ1∂β (θ)

)
.

Hence, for z = (z1, z2)′, z′I(θ)z = 0 is equivalent to
for all x, z1(b(x) +β ∂γ1∂α (θ)) + z2(x−γ1(θ) +β ∂γ1∂β (θ)) = 0. This, in turn implies, since b′′(x) 6≡ 0,
z1 = z2 = 0. So the matrix I(θ) is invertible. The MLE converges to N (0, σ2I−1(θ)).

Contrary to the MLE, the MCE of θ is explicit and solution of the linear system:

−IT
(
α̂T
β̂T

)
=

( ∫ 2T
T b(Xt)dXt∫ 2T

T (Xt − m̂T )dXt

)
with IT =

( ∫ 2T
T b2(Xt)dt

∫ 2T
T b(Xt)(Xt − m̂T )dt∫ 2T

T b(Xt)(Xt − m̂T )dt
∫ 2T
T (Xt − m̂T )2dt

)
.
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The matrix IT /T converges as T tends to infinity to (see (25))

I(θ) =

( ∫
b2(x)πθ(x)dx

∫
(x− γ1(θ))b(x)πθ(x)dx∫

(x− γ1(θ))b(x)πθ(x)dx
∫

(x− γ1(θ))2πθ(x)dx

)
.

The relation z1b(x)+z2(x−γ1(θ)) ≡ 0 implies z1 = z2 = 0: [S4] is satisfied and I(θ) is invertible.
In this model, we can compute the functions g, h of Theorem 3. Indeed, we have, using (31),

Ψ(θ, y) = β

∫
b(x)(x− y)πθ(x)dx = β

∫
xb(x)πθ(x)dx,

Ξ(θ, y) =

∫
(x− γ1(θ))β(x− y)πθ(x)dx = β

∫
x(x− γ1(θ))πθ(x)dx

Thus, y → Ψ(θ, y) and y → Ξ(θ, y) are constant so that g ≡ h ≡ 0. Therefore, Σ(θ) = σ2I(θ).
The asymptotic variance of the MCE is equal to (σ2I(θ))−1. Note that

I(θ) = I(θ) +

(
β ∂γ1∂α (θ)

β ∂γ1∂β (θ)

)(
β ∂γ1∂α (θ), β ∂γ1∂β (θ)

)
.

This shows that there is a loss of information when using the contrast ΛT (θ) instead of the exact
log-likelihood which is not surprising.

Example 3. b(α, x) ≡ 0, Φ(β, x) = β1x+ β3x
3 with β = (β1, β3), β1 > 0, β3 ≥ 0. Assume that

(Xt) is in centered stationary regime. The invariant distribution πβ is not only centered by also
symmetric (see [H4]). Using this property, we obtain, with γi(β) =

∫
yiπβ(y)dy,

Φ(β, .) ? πβ(x) =

∫
[β1(x− y) + β3(x− y)3]πβ(x)dx = (β1 + 3β3γ2(β))x+ β3x

3.

Let us first study the MLE. If (β10, β30) denotes the true value of the parameter,

K(β0, β) =

∫
[β1x+ β3(x3 + 3xγ2(β))− (β10x+ β30(x3 + 3xγ2(β0)))]2πβ0(x)dx.

Therefore, K(β0, β) = 0 implies that β3 = β30 and β1 − β10 + 3β30(γ2(β) − γ2(β0)) = 0. Thus,
Assumption [S2] holds if

[C1] : ∀β1 > 0, β3 ≥ 0, 1 + 3β3
∂γ2

∂β1
(β) 6= 0.

Due to the presence of γ2(β), Φ(β, .) ? πβ(x) is not explicit so the MLE cannot be computed.
We can compute I(β) (see (17)) and we get, for z = (z1 z2)′ ∈ R2,

z′I(β)z =
∫
x2
(
z1(1 + 3β3

∂γ2
∂β1

(β)) + z2(3γ2(β) + x2 + 3β3
∂γ2
∂β3

(β)
)2
πβ(x)dx.

Condition [C1] implies that z′I(β)z 6= 0.The Fisher information matrix is obtained by:

I11(β) = (1 + 3β3
∂γ2

∂β1
(β))2γ2(β),

I12(β) = (1 + 3β3
∂γ2

∂β1
(β))(3(β3

∂γ2

∂β3
(β) + γ2(β))γ2(β) + γ4(β)),

I22(β) = γ6(β) + 6γ2(β)γ4(β) + 9γ2(β)(γ2(β) + β3
∂γ2

∂β3
(β))2 + 6β3γ4(β)

∂γ2

∂β3
(β).

Let us now study the Maximum Contrast method. We have K̃(β0, β) =
∫

[(β1 − β10)x + (β3 −
β30)(x3 +3xγ2(β0))]2πβ0(x)dx. Therefore, Assumption [S4] is satisfied and β1, β3 are identifiable.
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Note that, if β1, β3 are identifiable with the contrast method (i.e. can be consistently estimated),
β1, β3 are identifiable with the likelihood method. Thus, [S3] holds and this shows that [C1] holds.

We have:
∂Φ(β, .)

∂β1
? πβ(x) = x,

∂Φ(β, .)

∂β3
? πβ(x) = x3 + 3x2γ2(β).

We can compute I(β) (see (25)).

I(β) =

(
γ2(β) γ4(β) + 3γ2

2(β)
γ4(β) + 3γ2

2(β) γ6(β) + 6γ2(β)γ4(β) + 9γ3
2(β)

)
Thus, z′I(β)z =

∫
x2
(
z1 + z2(3γ2(β) + x2)

)2
πβ(x)dx⇒ Assumption [S5] is satisfied.

Let us study ΛT (β). Setting m̂i(T ) =
∫
yiπ̂T (y)dy, we obtain that

Φ(β, .) ? π̂T (x) = β1Γ̂1(x) + β3Γ̂2(x),

with Γ̂1(x) = x− m̂1(T )and Γ̂2(x) = x3 − 3x2m̂1(T ) + 3xm̂2(T )− m̂3(T ).
Therefore, the MCE (β̂1, β̂3) satisfies

−Γ̂T

(
β̂1

β̂3

)
=

(∫ 2T
T Γ̂1(Xs)dXs∫ 2T
T Γ̂2(Xs)dXs

)
with Γ̂T =

( ∫ 2T
T Γ̂2

1(Xs)ds
∫ 2T
T Γ̂1(Xs)Γ̂2(Xs)ds∫ 2T

T Γ̂1(Xs)Γ̂2(Xs)ds
∫ 2T
T Γ̂2

2(Xs)ds

)
.

We can compute Σ(β). First, let us obtain H(β). Since the odd moments of πβ are nul,

Ξ1(β, y) = β1γ2(β) + β3γ4(β) + 3β3γ2(β)y2 ⇒ Ξ1,c(β, y) = 3β3γ2(β)(y2 − γ2(β))

Ξ3(θ, y) = β1(γ4(β) + 3γ2(β)) + β3(γ6(β) + 3γ2(β)γ4(β)) + 3β3(γ4(β) + 3γ2
2(β))y2

⇒ Ξ3,c(β, y) = 3β3(γ4(β) + 3γ2
2(β))(y2 − γ2(β)).

Let g(β, y) denote the solution of Lg(y) = −(y2 − γ2(β)).
Then, h1(β, y) = 3β3γ2(β)g(β, y) and h3(β, y) = 3β3(γ4(β) + 3γ2

2(β))g(β, y). Therefore,

H(β) = 9β2
3

∫
(g′(β, y))2πβ(y)dy

(
γ2

2(β) γ2(β)(γ4(β) + 3γ2
2(β))

γ2(β)(γ4(β) + 3γ2
2(β)) (γ4(β) + 3γ2

2(β))2

)
,

Σ(β) = σ2(I(β) +H(β)).

Therefore the asymptotic variance of the MCE is σ2(I−1(β) + I−1(β)H(β)I−1(β)).
This example is a special case of a previous work where estimation for ergodic McKean-Vlasov

equations with polynomial interactions and no potential term was investigated ([25], Example 3
of Section 3.5.) The estimators, say (β̃1, β̃3) are obtained by means of an explicit relation linking
them to the empirical moments of (Xt). Set γ̂2(T ) = 1

T

∫ T
0 X2

sds, then(
β̃1

β̃3

)
= −

(
1 −3γ̂2(T )
0 1

)
Ψ−1
T

(∫ 2T
T XsdXs∫ 2T
T X3

sdXs

)
where ΨT =

(∫ 2T
T X2

sds
∫ 2T
T X4

sds∫ 2T
T X4

sds
∫ 2T
T X6

sds

)
.

This estimator is consistent and the asymptotic variance of
√
T (β̃−β) is σ2(Σ1(β)+Σ2(β)) with

Σ1(β) = I(β)−1 and Σ2(β) = 9β2
3

∫
(g′(β, y))2πβ(y)dy

(
1 0
0 0

)
.

Thus there is a slight loss of information when using the present nonparametric approach leading
to (β̂1, β̂3) instead of the approach of [25] leading to (β̃1, β̃3).
Of course, the method of [25] only works when b(α, x) ≡ 0 and Φ(β, x) is an odd polynomial.
The present method works with a non nul potential term and a more general interaction term.
To be complete, we have seen that m̂1(T ) = T−1

∫ T
0 Xsds. For i = 2, 3, the moments m̂i(T ) of

π̂T satisfy, using that K is even and σ2
K =

∫
z2K(z)dz <∞,
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m̂2(T ) = 1
T

∫ T
0 ds

∫
R(Xs + hz)2K(z)dz = 1

T

∫ T
0 X2

sds+ +σ2
Kh

2
T ,

m̂3(T ) = 1
T

∫ T
0 ds

∫
(Xs + hz)3K(z)dz = 1

T

∫ T
0 X3

sds+ +3σ2
Kh

2
T m̂1(T ).

As T → ∞, by the ergodic theorem, m̂1(T ) →
∫
yπβ(y)dy = 0, m̂2(T ) →

∫
y2πβ(y)dy = γ2(β)

and m̂3(T )→
∫
y3πβ(y)dy = 0. Therefore 1

T (Γ̂T −ΨT ) = oP (1).

5. Main lemmas

Proposition 5, Proposition 6 and Theorem 3 rely on the following Lemmas. Lemma 2 is
especially difficult to obtain and used for Theorem 3. These lemmas use Propositions 1 and 2.

Lemma 1. Assume [H4] and that ϕ,H,G : R→ R have polynomial growth, then, under Pθ,

D11(ϕ,H) =
1

T

∫ 2T

T
ϕ(Xs)H ? (π̂T − Eθπ̂T )(Xs)ds = OP (

1√
T

),

D12(ϕ,H) =
1

T

∫ 2T

T
ϕ(Xs)H ? (Eθπ̂T − πθ)(Xs)ds = OP (h2

T ),

D21(H,G) =
1

T

∫ 2T

T
H ? (π̂T − Eθπ̂T )(Xs)G ? (π̂T − Eθπ̂T )(Xs)ds = OP (

1

T
),

D22(H,G) =
1

T

∫ 2T

T
H ? (Eθπ̂T − πθ)(Xs)G ? (Eθπ̂T − πθ)(Xs)ds = OP (h4

T ),

D23(H,G) =
1

T

∫ 2T

T
H ? (Eθπ̂T − πθ)(Xs)G ? (π̂T − Eθπ̂T )(Xs)ds = OP (

h2
T√
T

).

Lemma 2. Assume [H4] and that ϕ,H : R→ R have polynomial growth. Then, under Pθ,
√
TD11(ϕ,H) =

1

T

∫ 2T

T
ϕ(Xs)H ? (

√
T (π̂T − Eθπ̂T ))(Xs)ds

=
σ√
T

∫ T

0
g′(Xs)dWs +OP (hT

√
T ) +OP (

1√
T

).

where g solution of Lg = −Ψθ,c, Ψθ(y) =
∫
ϕ(x)H(x−y)πθ(x)dx, Ψθ,c(x) = Ψθ(x)−

∫
Ψθ(y)πθ(y)dy.

The reason why we separate Lemma 1 and Lemma 2 is that Lemma 1 is enough to study the
second derivatives of ΛT (θ) w.r.t. the parameters whereas Lemma 2 is required to study the first
derivatives. We take hT = o(T−1/2) so that the middle term of

√
TD11(ϕ,H) tends to 0.

6. Concluding remarks

In this paper, we study the estimation of θ = (α, β) for the process (Xt) given by (1) when
the process is in stationary regime. Thus the distribution of Xt is constant and equal to the
invariant distribution πθ. In such a case, (Xt) is equal to an ergodic diffusion. The exact MLE
of θ obtained from the continuous observation of (Xt) on [0, T ] can be studied theoretically but
does not lead to computable estimators since the drift term of (Xt) depends on πθ and therefore
is not explicitly known. To overcome this difficulty, we assume that (Xt) is observed on the
time interval [0, 2T ] and we build an explicit contrast based on the conditional likelihood of
(Xt, t ∈ [T, 2T ] given XT , where πθ in the drift is replaced by a nonparametric estimator π̂T
computed from (Xt, t ∈ [0, T ]). This leads us to study a weighted mean integrated risk for π̂T
yielding a new result for this estimator. Then, we prove that the MCE is asymptotically Gaussian
with rate

√
T with explicit iasymptotic variance. Several classes of models are discussed.
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In the continuation of this work, it is interesting to consider the same estimation problem for
discrete observations or multidimensional McKean-Vlasov diffusions.
Here, our assumptions ensure uniqueness of an invariant distribution. But concrete models
having more than one invariant distribution are proposed in [18] or [28] (see also [46]). The
estimation problem in this case certainly raises new considerations, which are worthwhile.

7. Appendix

Based on the ergodic theorem (10), the central limit theorem for stochastic integrals (see e.g.
[35], Chap.1) can be proved and states that, if f ∈ L2(πθ(x)dx),

(32)
1√
T

∫ T

0
f(Xs)dWs →L N (0,

∫
f2(x)πθ(x)dx).

Consider now the central limit theorem associated with (10), i.e. the limiting distribution of√
T ( 1

T

(∫ T
0 f(Xs)ds−

∫
f(x)πθ(x)dx

)
. The results below can be found in [22].

Let L denote the infinitesimal generator of the SDE (9) defined in (11). The operator L acts on
L2(πθ(x)dx) and is defined on the domain D (see (12)). Note that

(33) Lg =
σ2

2πθ

(
g′πθ

)′
.

Proposition 8. Assume [H4]. Let f ∈ L2(πθ(x)dx), set fc = f −
∫
R f(x)πθ(x)dx and denote

by 〈., .〉πθ the scalar product of L2(πθ(x)dx). If fc ∈ Range(D), where Range(D) = L(D) is the
image of D by L, then, as T tends to infinity, under Pθ,

(34)
1√
T

∫ T

0
fc(Xs)ds→L N (0, σ2(fc))

where σ2(fc) = −2〈fc, g〉πθ and g is any element of D satisfying Lg = fc. Moreover,

Var
(

1√
T

∫ T

0
fc(Xs)ds

)
→ σ2(fc).

The relation −2〈fc, g〉πθ = −2〈Lg, g〉πθ = σ2
∫
R(g′(x))2πθ(x)dx holds.

Proposition 8 is exactly Theorem 2.2 in [22]. It is a well known result on ergodic diffusions.
In the proofs, result (34) will be clarified when used.

Corollary 2. Let h1, . . . , hp be functions belonging to Range(D) such that
∫
hj(x)πθ(x)dx = 0,

for j = 1, . . . , p. Define

Vθ(hi, hj) = 4σ−2

∫
R
π−1
θ (x)

(∫ x

−∞
hi(y)πθ(y)dy

∫ x

−∞
hj(y)πθ(y)dy

)
dx

so that σ2(hi) = Vθ(hi, hi). The vector 1√
T

(
∫ T

0 hi(Xs)ds, i = 1, . . . , p)′ →L Np(0, V (θ)) with
V (θ) = (Vθ(hi, hj), 1 ≤ i, j ≤ p).

Corollary 2 is a straightforward consequence of Proposition 8 using the Cramér-Wold device.
The following proposition is little known, and its proof is given below.

Proposition 9. Assume [H4]. Let γθ(x) = 2σ−1(b(α, x) + Φ(β, .) ? πθ(x)). Then,

(35) lim
x→+∞

γ−1
θ (x) = 0, lim

x→−∞
γ−1
θ (x) = 0.

This implies that Range(D) = {h ∈ L2(πθ(x)dx),
∫
h(x)πθ(x)dx = 0} so that the central limit

theorem associated to (10) holds for all f ∈ L2(πθ(x)dx).
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Proof of Proposition 9. We rely on results stated in Proposition 2.2 in [22]. First note that
∀g ∈ D,

∫
Lg(x)πθ(x)dx = 0 (see (12)). Thus Range(D) ⊂ {h ∈ L2(πθ(x)dx),

∫
h(x)πθ(x)dx =

0}. But the other inclusion does not hold except if the process is ρ-mixing, that is if its generator
has a spectral gap. In [22], it is proved that condition (35) is a necessary and sufficient condition
for ρ-mixing (Proposition 2.8). However, this proposition is stated for SDEs with locally Lipschitz
coefficients having linear growth, which were standard assumptions for classical SDEs.

Here, this assumption is not satisfied by (Yt) defined in (9). Nevertheless, this assumption is
not mandatory, the only requirement being that the SDE admits a unique strong solution and
an invariant distribution. (see the proof in the Appendix p.1074-1077). Therefore, we can apply
these results here and check that γθ satisfies (35) to get Proposition 9.
Set, for the proof, b(α, x) = b(x),Φ(β, x) = Φ(x), πθ(x) = π(x),K(α) = K,λ(β) = λ and
γ(x) = 2σ−1(b(x) + Φ ? π(x)).
We have γ(x) = 2σ−1(V ′(x) + W ′ ? π). As V ′′(x) ≥ K, for x ≥ 0, V ′(x) ≥ Kx + V ′(0). For
x ≤ 0, V ′(x) ≤ Kx+ V ′(0). As W ′′(x) ≥ λ and W ′ is odd, we have for x ≥ 0, W ′(x) ≥ λx. For
x ≤ 0, W ′(x) ≤ λx. Thus, for x ≥ 0,

(36) V ′(x) +W ′ ? π(x) ≥ (K + λ)x+ V ′(0)− λ
∫
yπ(y)dy,

which implies limx→+∞ γ(x) = +∞ as K + λ > 0. Analogouly, for x ≤ 0,

(37) V ′(x) +W ′ ? π(x) ≤ (K + λ)x+ V ′(0)− λ
∫
yπ(y)dy,

which implies limx→−∞ γ(x) = −∞. Hence, limx→−∞ γ
−1(x) = 0. 2

Remark 1. Using (33) and (12), we can solve Lg = fc = f −
∫
R f(y)πθ(y)dy and obtain

g′(x) =
2

σ2πθ(x)

∫ x

−∞
fc(y)πθ(y)dy = − 2

σ2πθ(x)

∫ +∞

x
fc(y)πθ(y)dy.

The above relation holds since
∫ +∞
−∞ fc(x)πθ(x)dx = 0. By Proposition 9, Condition (35) holds,

so that, for all f ∈ L2(πθ(x)dx), the integral

σ2(fc) = σ2

∫
R

(g′(x))2πθ(x)dx = 4σ−2

∫
R
π−1
θ (x)

(∫ x

−∞
fc(y)πθ(y)dy

)2

dx <∞.

We can choose g(u) =
∫ u

0 g
′(v)dv. Note that σ2(fc) <∞ is not obvious as

∫
π−1
θ (x)dx = +∞.

8. Proofs of Section 2.

Proof of Proposition 1. Under the assumptions of the proposition, (1) admits a unique
invariant distribution having a finite second order moment. For the proof, set V (α, .) = V ,
W (β, .) = W , πθ = π, K(α) = K,λ(β) = λ.

By [H1], for all x ∈ R, V (x) ≥ K x2

2 + V ′(0)x. And, as W is even, for all x ∈ R, W (x) ≥ λx22 .
Therefore,

W ? π(x) =

∫
R
W (x− y)π(y)dy ≥

∫
R
λ

(x− y)2

2
π(y)dy

= λ
x2

2
− λx

∫
R
yπ(y)dy +

λ

2

∫
R
y2π(y)dy. Hence, the result.2
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9. Proofs of Section 3

We first study the properties of the nonparametric estimator of πθ.

9.1. Proofs of Section 3.2. We study the properties of the nonparametric estimator of πθ
under Pθ .

Proof of Theorem 1. (1) The beginning of the proof is classical (see Proposition 3.3 in [13] or
[51]). Set πθ = π, Eθ = E. We have:

Eπ̂T (x) =

∫
R
KhT (y − x)π(y)dy = KhT ? π(x) =

∫
K(v)π(x+ vhT )dv.

By the Taylor formula, π(x+ vhT )− π(x) = vhT
∫ 1

0 π
′(x+ τvhT )dτ . As

∫
vK(v)dv = 0,

Eπ̂T (x)− π(x) =

∫
vhTK(v)F (x, v)dv, F (x, v) =

∫ 1

0
[π′(x+ τvhT )− π′(x)]dτ.

We apply the generalized Minkowski inequality which states that, for all r,[∫
X

(∫
V
F (x, v)dν(v)

)r
dµ(x)

] 1
r

≤
∫
V

(∫
X
F r(x, v)dµ(x)

) 1
r

dν(v)

with r = 2, dµ(x) = (1 + |x|p)dx, dν(v) = |v|K(v)dv. This yields

(38)
∫
R

(1 + |x|p)(Eπ̂T (x)− π(x))2dx ≤ h2
T

(∫
|v|K(v)dv

[∫
F 2(x, v)(1 + |x|p)dx

]1/2
)2

.

Next, we apply a second time the generalized Minkowski inequality with r = 2, dµ(x) = (1 +
|x|p)dx, dν(τ) = 1[0,1](τ)dτ . This yields[∫

F 2(x, v)(1 + |x|p)dx
]1/2

≤
∫ 1

0
dτ

(∫
(1 + |x|p)[π′(x+ τvhT )− π′(x)]2dx

)1/2

Now, we study, for t ∈ R, (∫
(1 + |x|p)[π′(x+ t)− π′(x)]2dx

)1/2

Using the Taylor formula and the Cauchy-Schwarz inequality yields
[π′(x+ t)− π′(x)]2 ≤ t2

∫ 1
0 [π′′(x+ ut)]2du where

π′′(x) = π(x)h(x), h(x) = − 2

σ2
[b′(x) + Φ′ ? π(x)] +

4

σ4
[b(x) + Φ ? π(x)]2]

By [S1], we check that |h(x)| . (1 + |x|2`). Thus,

[π′(x+ t)− π′(x)]2 . t2
∫ 1

0
π2(x+ ut)(1 + x2` + (ut)2`)du.

This implies,∫
(1 + |x|p)[π′(x+ t)− π′(x)]2dx . t2

∫
(1 + |x|p)

∫ 1

0
π2(x+ ut)(1 + x2` + (ut)2`)du

. t2
∫ 1

0
du

∫
(1 + |x|p)π2(x+ ut)(1 + x2` + (ut)2`)dx

. t2
∫ 1

0
du

∫
(1 + |y − ut|p)π2(y)(1 + (y − ut)2` + t2`)dy.
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Now, |y − ut|p . (|y|p + |t|p) and (y − ut)2` . (y2` + t2`). Thus,∫
(1 + |x|p)[π′(x+ t)− π′(x)]2dx . t2

∫
(1 + (|y|p + |t|p))(1 + y2` + t2`))π2(y)dy = t2f(t),

where f is a positive continuous function on R. Next, using (38)∫
R

(1 + |x|p)(Eπ̂T (x)− π(x))2dx . h2
T

[∫
dv|v|K(v)

∫ 1

0
dτ |τvhT |

√
f(τvhT )dτ

]2

.

We note that 0 < hT < 1, K has compact support [−A,A] and finally obtain∫
R

(1 + |x|p)(Eπ̂T (x)− π(x))2dx . h4
T

(∫
v2K(v)dv

)2

sup
t∈[−A,A]

f(t).

(2) Next, we study the mean integrated variance term. The proof uses definitions (12), (33),
Proposition 1, Proposition 9 and Remark 1. Let Fπ(x) =

∫ x
−∞ π(v)dv and set hT = h, KhT = Kh

(see (13)). Recall that K is even.
We start by a property of the invariant distribution. For all (x, z),

π(z)

π(x)
= exp {− 2

σ2
[V (z)− V (x) +W ? π(z)−W ? π(x)]}.

Using (36), we get, for 0 ≤ x ≤ z,

V (z)− V (x) +W ? π(z)−W ? π(x) ≥
∫ z

x
[(K + λ)t+ c]dt =

(K + λ)

2
(z2 − x2) + c(z − x),

where K = K(α), λ = λ(β), c = ∂V
∂x (0)− λ

∫
yπ(y)dy. Therefore,

(39) for 0 ≤ x ≤ z, π(z)

π(x)
≤ exp [C(z − x)], C = − 2

σ2
c.

Analogously, using (37),

(40) for z ≤ x ≤ 0,
π(z)

π(x)
≤ exp [C(z − x)], C = − 2

σ2
c.

Now, we have:

π̂T (x)− Eπ̂T (x) =
1

T

∫ T

0
(Kh(Xt − x)− EKh(Xt − x)) dt.

For each x, we look for fx ∈ D such that Lfx(y) = −[Kh(y − x) −
∫
RKh(z − x)π(z)dz]. Using

(33) and Remark 1, we take fx(u) =
∫ u

0 gx(v)dv where

gx(u) =
2

σ2π(u)

∫ u

−∞

(
Kh(y − x)−

∫
R
Kh(z − x)π(z)dz

)
π(y)dy

= − 2

σ2π(u)

∫ +∞

u

(
Kh(y − x)−

∫
R
Kh(z − x)π(z)dz

)
π(y)dy

Equivalently,

gx(u) = − 2

σ2π(u)

[∫ u

−∞
Kh(y − x)π(y)dy − Fπ(u)

∫
R
Kh(z − x)π(z)dz

]
= − 2

σ2π(u)

[∫ +∞

u
Kh(y − x)π(y)dy − (1− Fπ(u))

∫
R
Kh(z − x)π(z)dz

]
.
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By the Ito formula,

fx(XT )− fx(X0) = σ

∫ T

0
gx(Xt)dWt +

∫ T

0
Lfx(Xt)dt.

Therefore,

π̂T (x)− Eπ̂T (x) = −σ
T

∫ T

0
gx(Xt)dWt +

1

T
[fx(XT )− fx(X0)].

This implies

E (π̂T (x)− Eπ̂T (x))2 ≤ 2
σ2

T
Eg2

x(X0) +
4

T 2
Ef2

x(X0).

Therefore, it remains to prove that

(41) I =

∫
R

(1 + |x|p)Eg2
x(X0)dx < +∞, J =

∫
R

(1 + |x|p)Ef2
x(X0)dx < +∞.

Consider first I:

I =

∫
R

(1 + |x|p)
∫
R
g2
x(u)π(u)dudx =

4

σ4
(I+ + I−)

with

I+ =

∫
u>0

1

π(u)
du

∫
R

(1 + |x|p)
[∫ +∞

u

(
Kh(y − x)−

∫
R
Kh(z − x)π(z)dz

)
π(y)dy

]2

dx

≤ 2(I
(1)
+ + I

(2)
+ ),

where

I
(1)
+ =

∫
u>0

1

π(u)
du

∫
R

(1 + |x|p)
(∫ +∞

u
Kh(y − x)π(y)dy

)2

dx

I
(2)
+ =

∫
u>0

du
(1− Fπ(u))2

π(u)

∫
R

(1 + |x|p)[
∫
R
Kh(z − x)π(z)dz]2dx

and

I− =

∫
u<0

1

π(u)
du

∫
R

((1 + |x|p)
[∫ u

−∞

(
Kh(y − x)−

∫
R
Kh(z − x)π(z)dz

)
π(y)dy

]2

dx

≤ 2(I
(1)
− + I

(2)
− ),

with

I
(1)
− =

∫
u<0

1

π(u)
du

∫
R

(1 + |x|p)
(∫ u

−∞
Kh(y − x)π(y)dy

)2

dx

I
(2)
− =

∫
u<0

du
(Fπ(u))2

π(u)

∫
R

(1 + |x|p)[
∫
R
Kh(z − x)π(z)dz]2dx.

Consider first I(1)
+ . By the change of variables v = (y − x)/h, we obtain

I
(1)
+ =

∫
u>0

1

π(u)
du

∫
R

(1 + |x|p)

(∫
(x+hv)≥u

K(v)π(x+ hv)dv

)2

dx

=

∫
u>0,v,v′∈[−A,A]

1

π(u)
K(v)K(v′)dudvdv′

∫
(x+hv)≥u,(x+hv′)≥u

π(x+ hv)π(x+ hv′)(1 + |x|p)dx.
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By (39), for 0 ≤ u ≤ x + hv, π(x+hv)
π(u) ≤ expC(x+ hv − u) and for 0 ≤ u ≤ x + hv′, π(x+hv′)

π(u) ≤
expC(x+ hv′ − u). This implies, for 0 < h < 1, v, v′ ∈ [−A,A],

π(x+ hv)π(x+ hv′) ≤ π3/2(u)π1/2(x+ hv′) exp [(3C/2)(x− u) + Chv + (C/2)hv′)]

≤ π3/2(u)π1/2(x+ hv′) exp [(3C/2)(x− u)] exp (3A|C|/2).

Thus,

I
(1)
+ ≤∫
u>0,−A≤v,v′≤A

e(−2Cu) π
3/2(u)

π(u)
K(v)K(v′)dudvdv′

∫
R
e[(3C/2)x)]π1/2(x+ hv′)(1 + |x|p)dx.

Now, since v′ ∈ [−A,A],∫
R

exp [(3C/2)x)]π1/2(x+ hv′)(1 + |x|p)dx .∫
R

exp [(3|C|/2)(|z|+A))]π1/2(z)(1 + (|z|+A)p)dz := B < +∞.

Thus,

I
(1)
+ . B

∫
u>0,v,v′∈[−A,A]

exp (−2Cu)π1/2(u)K(v)K(v′)dudvdv′

= B

∫
u>0

exp (−2Cu)π1/2(u)du < +∞.

Now, we look at the other term I
(2)
+ . It holds that

I
(2)
+ =

∫
u>0

du
(1− Fπ(u))2

π(u)

∫
v,v′∈[−A,A]

K(v)K(v′)

∫
R

(1 + |x|p)[π(x+ hv)π(x+ hv′)dxdvdv′

.
∫
u>0

du
(1− Fπ(u))2

π(u)

∫
R

(1 + (|z|+A)p))π(z)dz .
∫
u>0

du
(1− Fπ(u))2

π(u)
,

as π is bounded.
Now, ∫

u>0
du

(1− Fπ(u))2

π(u)
= 2

∫ +∞

0

du

π(u)

∫
u<v<v′

π(v)π(v′)dvdv′

For 0 ≤ u ≤ v ≤ v′, using (39),

π(v)π(v′) = [π(v)π(v′)]1/4[π(v)π(v′)]3/4 ≤ [π(v)π(v′)]1/4[π(u)]3/2 exp (C(v + v′ − 2u).

Therefore,∫
u>0

du
(1− Fπ(u))2

π(u)
≤ 2

∫ +∞

0
π1/2(u) exp (−2Cu)du

(∫ +∞

0
exp (Cv)π1/4(v)dv

)2

< +∞.

The term I− can be treated analogously using (40). Hence the first integral I of (41) is finite.
We turn to the second one.

J =

∫
(1 + |x|p)π(u)(

∫ u

0
gx(v)dv)2dxdu ≤ J+ + J−, with

J+ =

∫
(1 + |x|p)

∫
u>0

uπ(u)

∫ u

0
g2
x(v)dvdudx, J− =

∫
(1 + |x|p)

∫
u<0

π(u)|u|
∫ 0

u
g2
x(v)dvdudx.
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We only treat J+ as J− is analogous. We have

gx(v) = − 2

σ2π(v)

[∫
x+hz≥v

K(z)π(zh+ x)dz − (1− Fπ(v))

∫
K(z)π(x+ zh)dz

]
,

so that

g2
x(v) ≤ 4

σ4

1

π2(v)

[(∫
x+hz≥v

K(z)π(zh+ x)dz

)2

+ (1− Fπ(v))2(

∫
K(z)π(x+ zh)dz)2

]
.

Thus, J+ ≤ 4
σ4 (J

(1)
+ + J

(2)
+ ) where

J
(1)
+ =

∫
(1 + |x|p)

∫
u>0

π(u)u

∫ u

0

1

π2(v)

[(∫
x+hz≥v

K(z)π(zh+ x)dz

)2
]
dudvdx

J
(2)
+ =

∫
(1 + |x|p)

∫
u>0

π(u)u

∫ u

0

1

π2(v)
(1− Fπ(v))2(

∫
K(z)π(x+ zh)dz)2dudvdx.

We look at J (1)
+ .

J
(1)
+ =

∫
(1 + |x|p)

∫
u>0

π(u)u

∫ u

0

1

π2(v)

∫
x+zh≥v,x+z′h≥v

K(z)K(z′)π(zh+ x)π(z′h+ x)dzdz′dudvdx.

For 0 < v < u and v ≤ x+ zh, v ≤ x+ z′h, we write

π(u)π(x+ zh)π(x+ z′h)

π2(v)
= π1/3(u)[

π(u)

π(v)
]2/3[

π(x+ zh)

π(v)
]2/3[

π(x+ z′h)

π(v)
]2/3[π(x+zh)π(x+z′h)]1/3

where

[
π(u)

π(v)
]2/3[

π(x+ zh)

π(v)
]2/3[

π(x+ z′h)

π(v)
]2/3 ≤ exp (2/3)C(u− v) exp ((2/3)C(x+ zh− v) exp ((2/3)C(x+ z′h− v).

Therefore, as π is bounded,

J
(1)
+ .

∫
u>0

uπ1/3(u)

∫ u

0
exp (−2Cv)dv[∫

K(z)K(z′)

∫
R

[π(x+ zh)]1/3(1 + |x|p) exp [(2/3)C(x+ (z + z′)h]dx

]
dzdz′du

.
∫
u>0

uπ1/3(u)

∫ u

0
exp (−2Cv)dvdu×

∫
R
π1/3(y)(1 + |y|+A)p) exp [(2/3)Cy]dy < +∞.

The fact that J (2)
+ < +∞ is simpler and omitted.

Therefore, we conclude that (41) holds which implies the result.2

Proof of Theorem 2. Set πθ = π, Eθ = E again. We study

IT =

∫
dy
√
T (π̂T (y)− Eπ̂T (y))ψ(y)dy,(42)

with, for some non negative c, |ψ(x)|+ |ψ′(x)| ≤ c(1 + |x|c). Set

Fh(ξ, y) = Kh(ξ − y)−Kh ? π(y) = Kh(ξ − y)−
∫
K(v)π(y + vh)dv.
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Thus, IT = 1√
T

∫ T
0 ShT (Xs)ds with

Sh(ξ) =

∫
dyψ(y)Fh(ξ, y) =

∫
K(τ)ψ(ξ + τh)dτ −

∫
dyψ(y)

∫
K(v)π(y + vh)dv

= S(ξ) +

∫
K(τ)[ψ(ξ + τh)− ψ(ξ)]dτ −

∫
dyψ(y)

∫
K(v)[π(y + vh)− π(y)]dv(43)

and S(ξ) = ψ(ξ)−
∫
ψ(y)π(y)dy. As ψ is C1 and 0 < h < 1,

|ψ(ξ + hτ)− ψ(ξ)| = |hτ
∫ 1

0
ψ′(ξ + huτ)du| . |hτ |(1 + |ξ|c + |τ |c).

Therefore, as K is compactly supported,

|
∫
K(τ)[ψ(ξ + τh)− ψ(ξ)]dτ | . |h|

(
(1 + |ξ|c)

∫
|K(τ)|dτ +

∫
|K(τ)||τ |cdτ

)
. |h|(1 + |ξ|c).

For the third term of (43), we can write:∫
dyψ(y)

∫
K(v)[π(y + vh)− π(y)]dv =

∫
dyψ(y)

∫
K(v)hv

∫ 1

0
π′(y + hτv)dτdv

=

∫ 1

0
dτ

∫
hvK(v)dv

∫
dzψ(z − hτv)π′(z).

By our assumptions, |π′(z)| . π(z)(1 + |z|c) and for v ∈ [−A,A], |ψ(z − hτv)| . (1 + |z|c +Ac).
This yields

∫
dyψ(y)

∫
K(v)[π(y + vh)− π(y)]dv . |h|. Therefore,

|Sh(ξ)− S(ξ)| . |h|(1 + |x|c).

This yields:

Eθ
(

1√
T

∫ T

0
[ShT (Xs)− S(Xs)]ds

)2

≤ T
∫

[ShT (x)− S(x)]2π(x)dx = Th2
TO(1),

which implies

IT =
1√
T

∫ T

0
S(Xs)ds+O(

√
ThT ).

By Propositions 8 and 9, we can find g ∈ L2(π) such that Lg = −S with g(x) =
∫ x

0 g
′(u)du, g′

given by (21) and

1√
T

∫ T

0
S(Xs)ds =

σ√
T

∫ T

0
g′(Xs)dWs +

1√
T

(g(X0)− g(XT )

where 1√
T

(g(X0)− g(XT ) = OP ( 1√
T

) as (Xt) is stationary and g ∈ L2(π).
Therefore, (42) can be written as

IT =
σ√
T

∫ T

0
g′(Xs)dWs +OP (

1√
T

) +OP (
√
ThT ).

The proof of Theorem 2 is complete. 2

Proof of Corollary 1. We write
√
T (π̂T (y)− π(y)) =

√
T (π̂T (y)− Eπ̂T (y)) +

√
T (Eπ̂T (y)− π(y)).
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Next, choosing p− 2c > 1,(∫
ψ(y)
√
T (Eπ̂T (y)− π(y))dy

)2

≤
∫

ψ2(y)

1 + |y|p)
dy ×

∫
dy(E

(√
T (π̂T (y)− π(y))

)2
(1 + |y|p)dy

. Th4
T .

Thus, ∫
ψ(y)
√
T (π̂T (y)− π(y))dy =

∫
ψ(y)
√
T (π̂T (y)− Eπ̂T (y))dy +O(

√
Th2

T ).

Thanks to Theorem 2 and the central limit theorem (32), the proof of Corollary 1 is complete.2

9.2. Proofs of Section 3.3. Assumptions [H2]-[H3] ensure that all the functions used in the
proofs below satisfy the assumptions of Lemma 1 and Lemma 2. As for the likelihood, we have
to study ΛT (θ)− ΛT (θ0).

Proof of Proposition 5. We can write

σ2(ΛT (θ)− ΛT (θ0)) = −1

2

∫ 2T

T
(Ŝ(θ,Xs)− Ŝ(θ0, Xs))

2ds

+

∫ 2T

T
(Ŝ(θ,Xs)− Ŝ(θ0, Xs))Φ(β0, .) ? (π̂T − πθ0)(Xs)ds

+ σ

∫ 2T

T
(Ŝ(θ,Xs)− Ŝ(θ0, Xs))dWs = AT +BT + CT .

Under Pθ0 , by Lemma 1,

1

T

∫ 2T

T
(Φ(β, .)− Φ(β0, .)) ? (π̂T − πθ0)(Xs)ds = OP (

1√
T

) +OP (h2
T ).

Therefore,
1

T
AT → −

1

2

∫
[−b(α, x) + b(α0, x)− (Φ(β, .)− Φ(β0, .)) ? πθ0(x)]2πθ0(x)dx.

For the second term,
1

T
BT = OP (

1√
T

) +OP (h2
T )→ 0 by Lemma 1.

For CT , we have that 1
T < CT >= 1

TAT , so that, by the central limit theorem for stochastic
integrals, 1√

T
CT converges in distribution. This implies 1

T CT → 0.

Joining these results yields that, under Pθ0., using (14), 1
T (ΛT (θ)− ΛT (θ0))→ − 1

2σ2 K̃(θ0, θ). 2

Proof of Proposition 6. To obtain the limiting distribution of the normalized MCE under
Pθ, we need study the derivatives of the contrast with respect to the parameters α = (αj , j =
1, . . . d), β = (βk, k = 1 . . . , d′). Using (3) yields

σ2∂ΛT
∂αj

(θ) = −
∫ 2T

T
[
∂b

∂αj
(α,Xt)]]dXt +

∫ 2T

T
Ŝ(θ,Xt)

∂b

∂αj
(α,Xt)]dt

σ2∂ΛT
∂βk

(θ) = −
∫ 2T

T

∂Φ

∂βk
(β, .) ? π̂T (Xt)dXt +

∫ 2T

T
Ŝ(θ,Xt)

∂Φ

∂βk
(β, .) ? π̂T (Xt)dt
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σ2 ∂2ΛT
∂αj∂αj′

(θ) = −
∫ 2T

T

∂2b

∂αj∂αj′
(α,Xt)dXt

+

∫ 2T

T
Ŝ(θ,Xt)

∂2b

∂αj∂αj′
(α,Xt)dt−

∫ 2T

T

∂b

∂αj
(α,Xt)

∂b

∂αj′
(α,Xt)dt

σ2 ∂2ΛT
∂αj∂βk

(θ) = −
∫ 2T

T

∂Φ

∂βk
(β, .) ? π̂T (Xt)

∂b

∂αj
(α,Xt)dt

σ2 ∂2ΛT
∂βk∂βk′

(θ) = −
∫ 2T

T

∂2Φ

∂βk∂βk′
(β, .) ? π̂T (Xt)dXt +

∫ 2T

T
Ŝ(θ,Xt)

∂2Φ

∂βk∂βk′
(β, .) ? π̂T (Xt)dt

−
∫ 2T

T

∂Φ

∂βk
(β, .) ? π̂T (Xt)

∂Φ

∂βk′
(β, .) ? π̂T (Xt)dt

Therefore, using that Ŝ(θ, x)− S(θ, x) = −Φ(β, .) ? (π̂T − πθ)(x) (see (24)),

σ2 ∂2ΛT
∂αj∂αj′

(θ) = −
∫ 2T

T

∂2b

∂αj∂αj′
(α,Xt)Φ(β, .) ? (π̂T − πθ)(Xt)dt− σ

∫ 2T

T

∂2b

∂αj∂αj′
(α,Xt)dWt

−
∫ 2T

T

∂b

∂αj
(α,Xt)

∂b

∂αj′
(α,Xt)dt = AT +BT + CT

Applying Lemma 1 yields that 1
TAT is oP (1). By the central limit theorem for stochastic inte-

grals, 1√
T
BT converges in distribution so that 1

TBT is oP (1).
The last term satisfies 1

T CT → −
∫

∂b
∂αj

(α, x) ∂b
∂αj′

(α, x)πθ(x)dx a.s..

Lemma 1 and the ergodic theorem yield that σ
2

T
∂2ΛT
∂αj∂βk

(θ)→a.s. −
∫

∂b
∂αj

(α, x) ∂Φ
∂βk

(β, .)?πθ(x)πθ(x)dx.
Finally,

σ2 ∂2ΛT
∂βk∂βk′

(θ) =

∫ 2T

T

∂2Φ

∂βk∂βk′
(β, .) ? π̂T (Xt)Φ(β, .) ? (π̂T − πθ)(x)dt+ σ

∫ 2T

T

∂2Φ

∂βk∂βk′
(β, .) ? π̂T (Xt)dWt

−
∫ 2T

T

∂Φ

∂βk
(β, .) ? π̂T (Xt)

∂Φ

∂βk′
(β, .) ? π̂T (Xt)dt

Similarly, the first two terms of the equation above are oP (T ) and
σ2

T
∂2ΛT
∂βk∂βk′

(θ)→ −
∫

∂Φ
∂βk

(β, .) ? πθ(x) ∂Φ
∂βk′

(β, .) ? πθ(x)πθ(x)dx. 2

Proof of Theorem 3. To simplify notations, we do the proof for d = d′ = 1. We have:

σ2

√
T

∂ΛT
∂α

(θ) = − σ√
T

∫ 2T

T

∂b

∂α
(α,Xt)dWt +

1

T

∫ 2T

T

∂b

∂α
(α,Xt)[Φ(β, .) ?

(√
T (πθ − π̂T )

)
(Xt)dt

Using the notations of Lemmas 1 and 2, we can write:

− 1

T

∫ 2T

T

∂b

∂α
(α,Xt)[Φ(β, .) ?

(√
T (πθ − π̂T )

)
(Xt)dt =

√
TD11(ϕ0, H0) +

√
TD12(ϕ0, H0)

with

ϕ0 =
∂b

∂α
(α, .), H0 = Φ(β, .).

Thus
√
TD11(ϕ0, H0)+

√
TD12(ϕ0, H0) =

σ√
T

∫ T

0
g′(θ,Xs)dWs+OP (hT

√
T )+OP (

1√
T

)+OP (
√
Th2

T )
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where g(θ, .) is given by Lg(θ, .)(y) = −S(y) with

S(y) = Ψ(θ, y)−
∫

Ψ(θ, z)πθ(z)dz, Ψ(θ, y) =

∫
∂b

∂α
(α, x)Φ(β, x− y)πθ(x)dx

and L is the infinitesimal generator given by (11)-(33). Therefore,

σ2

√
T

∂ΛT
∂α

(θ) = − σ√
T

∫ 2T

0

(
1[T,2T ](t)

∂b

∂α
(α,Xt) + 1[0,T ](t)g

′(θ,Xt)

)
dWt + oP (1).

Next,

σ2

√
T

∂ΛT
∂β

(θ) = − σ√
T

∫ 2T

T

∂Φ

∂β
(β, .) ? π̂T (Xt)dWt +

∫ 2T

T
(Ŝ(θ,Xs)− S(θ,Xs))

∂Φ

∂β
(β, .) ? π̂T (Xs)

Therefore, using (2),(24)

σ2

√
T

∂ΛT
∂β

(θ) = − σ√
T

∫ 2T

T

∂Φ

∂β
(β, .) ? πθ(Xt)dWt

− 1√
T

∫ 2T

T

∂Φ

∂β
(β, .) ? πθ(Xs)× Φ(β, .) ? (π̂T − πθ)(Xs)ds

− 1√
T

∫ 2T

T

∂Φ

∂β
(β, .) ? (π̂T − πθ)(Xs) Φ(β, .) ? (π̂T − πθ)(Xs)ds

− σ√
T

∫ 2T

T

∂Φ

∂β
(β, .) ? (π̂T − πθ) (Xt)dWt.

The third integral is in the form of D(H,G) = 1√
T

∫ 2T
T H ? (π̂T − πθ)(Xt)G ? (̂πT − πθ)(Xt)dt

which is OP (1/
√
T ) by Lemma 1.

We have 1
T

∫ 2T
T [∂Φ

∂β (β, .) ? (π̂T − πθ) (Xt)]
2dt = oP (1) by Lemma 1, so that,

σ√
T

∫ 2T

T

∂Φ

∂β
(β, .) ? (π̂T − πθ) (Xt)dWt = oP (1).

The second term is

B2,T = − 1

T

∫ 2T

T

∂Φ

∂β
(β, .) ? πθ(Xs)× Φ(β, .) ? (

√
T (π̂T − πθ))(Xs)ds

=
√
T

∫
(π̂T (y)− πθ(y))

1

T

∫ 2T

T

∂Φ

∂β
(β, .) ? πθ(Xs)× Φ(β,Xs − y)ds.

Setting Ξ(θ, y) =
∫
∂Φ
∂β (β, .) ? πθ(x)× Φ(β, x− y)πθ(x)dx, we have, applying Theorem 2

B2,T = − σ√
T

∫ T

0
h′(Xs)dWs + oP (1),

with h satisfying Lh = −(Ξ(θ, .)−
∫

Ξ(θ, y)πθ(y)dy). Therefore,

σ2

√
T

∂ΛT
∂β

(θ) = − σ√
T

∫ 2T

T

∂Φ

∂β
(β, .) ? πθ(Xt)dWt −

σ√
T

∫ T

0
h′(Xs)dWs + oP (1).

The convergence in distribution follows from the central limit theorem (32). 2
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10. Proofs of Section 5.

Proof of Lemma 1.
� We have:

D11(ϕ,H) =
1

T

∫ 2T

T
ϕ(Xs)

[∫
H(Xs − y))(π̂T (y)− Eθπ̂T (y))dy

]
ds

=

∫
(π̂T (y)− Eθπ̂T (y))

[
1

T

∫ 2T

T
ϕ(Xs)H(Xs − y))ds

]
dy

By assumption, there exists a constant c > 0 such that , for all x, |ϕ(x)|+ |H(x)| ≤ c(1 + |x|c).
Therefore, |ϕ(x)H(x− y)| . (1 + |x|2c)(1 + |y|2c). Choosing p− 4c > 1, this implies

|D11(ϕ,H)| .
[∫

(π̂T (y)− Eθπ̂T (y))2(1 + |y|p)dy
∫

(1 + |y2c)2

1 + |y|p
dy

]1/2
1

T

∫ 2T

T
(1 + |Xs|2cds

Now, 1
T

∫ 2T
T (1+ |Xs|2c)ds = OP (1) and by the concavity of x→

√
x and Proposition 2, we obtain

Eθ
[∫

(π̂T (y)− Eθπ̂T (y))2(1 + |y|p)dy
]1/2

≤[
Eθ
∫

(π̂T (y)− Eθπ̂T (y))2(1 + |y|p)dy
]1/2

= O(
1√
T

).

� The proof for D12(ϕ,H) is identical except that we replace π̂T (y)− Eθπ̂T (y) by Eθπ̂T (y)−
πθ(y) and use Proposition 1 instead of Proposition 2.

� We have

D21(H,G) =
1

T

∫ 2T

T

[∫ ∫
H(Xs − y))(π̂T (y)− Eθπ̂T (y))G(Xs − z))(π̂T (z)− Eθπ̂T (z))dydz

]
ds

=

∫ ∫
(π̂T (y)− Eθπ̂T (y))(π̂T (z)− Eθπ̂T (z))

[
1

T

∫ 2T

T
H(Xs − y))G(Xs − z)ds

]
dydz

Using that H2(x− y) . (1 + |x|2c)(1 + y2c) and G2(x− z) . (1 + |x|2c)(1 + z2c) yields

| 1
T

∫ 2T

T
H(Xs − y))G(Xs − z)ds| .

1

T

∫ 2T

T
(1 +X2c

s )ds[(1 + y2c)(1 + z2c)]1/2.

Thus, choosing p such that p− 2c > 1 and applying Proposition 2 yields

|D21(H,G)| .

[∫
|π̂T (y)− Eθπ̂T (y)|(1 + y2c)1/2

]2 1

T

∫ 2T

T
(1 +X2c

s )ds

.
∫

(π̂T (y)− Eθπ̂T (y))2(1 + |y|p)dy
∫

1 + y2c

1 + |y|p
dy

1

T

∫ 2T

T
(1 +X2c

s )ds

= OP (
1

T
).

� For D22(H,G), we proceed analogously applying Proposition 1.
� For D23(H,G), we use the Cauchy Schwarz inequality and the above to conclude.

2



28 V. GENON-CATALOT, C. LARÉDO

Proof of Lemma 2. By assumption, there exists a constant c > 0 such that , for all x,
|ϕ(x)|+ |H(x)| ≤ c(1 + |x|c). We can write

√
T (D11(ϕ,H) = IT + JT ,

where

IT =

∫
dy
√
T (π̂T (y)− Eθπ̂T (y))ψθ(y)dy, ψθ(y) =

∫
ϕ(x)H(x− y)πθ(x)dx,

JT =

∫
dy
√
T (π̂T (y)− Eθπ̂T (y))∆T (Xs, y)

where ∆T (Xs, y) =
1

T

∫ 2T

T
ϕ(Xs)H(Xs − y)ds− ψθ(y).

The term IT has been studied in Theorem 2 and satisfies

IT =
σ√
T

∫ T

0
g′(Xs)dWs +OP (

1√
T

) +OP (
√
ThT )

with g given in Lemma 2. We now prove that JT = O(1/
√
T ).

We have

J2
T ≤

∫
(1 + |y|p)T (π̂T (y))− Eθπ̂T (y))2dy ×

∫
∆2
T (Xs, y)

dy

(1 + |y|p)
.

We have already seen that the first factor above is OP (1). It remains to check that the second
one tends to 0 for well chosen p.
Set

L(ξ, y) = ϕ(ξ)H(ξ − y)− ψθ(y).

Define Gy such that LGy = −L(ξ, y), i.e. Gy(x) =
∫ x

0 G
′
y(ξ)dξ with

G′y(ξ) =
−2

σ2πθ(ξ)

∫ ξ

−∞
L(z, y)πθ(z)dz =

2

σ2πθ(ξ)

∫ +∞

ξ
L(z, y)πθ(z)dz.

We have

E∆2
T (Xs, y) ≤ 2σ2

T

∫
R

(G′y(x))2πθ(x)dx+
4

T 2

∫
R
G2
y(x)πθ(x)dx.

Let us set

I =

∫
R

1

1 + |y|p

[∫
R

(G′y(x))2πθ(x)dx

]
dy, J =

∫
R

1

1 + |y|p

[∫
R
G2
y(x)πθ(x)dx

]
dy.

We have I = I+ + I− where

I+ =
4

σ4

∫
R

1

1 + |y|p

[∫ +∞

0

1

πθ(x)

(∫ +∞

x
L(z, y)πθ(z)dz

)2

dx

]
dy

I− =
4

σ4

∫
R

1

1 + |y|p

[∫ 0

−∞

1

πθ(x)

(∫ x

−∞
L(z, y)πθ(z)dz

)2

dx

]
dy

We only treat I+ as the other one is analogous. By the assumptions of polynomial growth, we
have |L(z, y)| . 1 + |y|2c + |z|2c and if z < z′, |L(z, y)L(z′, y)| . 1 + |y|4c + |z′|4c. Therefore, we
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can write:

I+ =
4

σ4

∫
y∈R,x>0,z>x,z′>x

1

1 + |y|p
1

πθ(x)
L(z, y)L(z′, y)πθ(z)πθ(z

′)dydxdzdz′

=
8

σ4

∫
0<z<z′

πθ(z)πθ(z
′)

∫ z

0

1

πθ(x)
dx

(∫
R

dy

1 + |y|p
L(z, y)L(z′, y)

)
dzdz′.

Choosing p− 4c > 1, this yields, using (39),

|I+| .
∫

0<z<z′
πθ(z)πθ(z

′)

∫ z

0

1

πθ(x)
dx(1 + |z′|4c)dzdz′

.
∫
z>0

πθ(z)[πθ(z)]
1/2

∫ z

0

1

πθ(x)
dx

∫ +∞

z

(
πθ(z

′)

πθ(z)

)1/2

(1 + |z′|4c)[πθ(z′)]1/2dz′

.
∫
z>0

πθ(z)[πθ(z)]
1/2

∫ z

0

1

πθ(x)
dxe−(C/2)z

∫ +∞

0
e(C/2)z′(1 + |z′|4c)[πθ(z′)]1/2dz′dz

.
∫
z>0

[πθ(z)]
1/2

∫ z

0

πθ(z)

πθ(x)
dxe−(C/2)zdz =

∫
z>0

[πθ(z)]
1/2

∫ z

0
eC(z−x)dxe−(C/2)zdz

.
∫
z>0

[πθ(z)]
1/2
(
|e(C/2)z − e−(C/2)z|

)
dz < +∞.

Now, we look at J = J + + J − with

J + =

∫
1

1 + |y|p

[∫ +∞

0

(∫ x

0
G′y(v)dv

)2

πθ(x)dx

]
dy,

J − =

∫
1

1 + |y|p

[∫ 0

−∞

(∫ 0

x
G′y(v)dv

)2

πθ(x)dx

]
dy.

We have, for p− 4c > 1,

J + ≤
∫

1

1 + |y|p

[∫ +∞

0
x

∫ x

0
[G′y(v)]2dvπθ(x)dx

]
dy

.
∫

1

1 + |y|p

(∫
x>0,0<v<x,v<z<z′

dxdvdzdz′|L(z, y)L(z′, y)|πθ(x)πθ(z)πθ(z
′)

π2
θ(v)

)
dy

.
∫
x>0,0<v<x,v<z<z′

dxdvdzdz′(1 + |z′|4c)πθ(x)πθ(z)πθ(z
′)

π2
θ(v)

.

We can write, for 0 < v < x, v < z < z′, using (39),
πθ(x)πθ(z)πθ(z

′)

π2
θ(v)

= [πθ(x)]1/3[
πθ(x)

πθ(v)
]2/3][

πθ(z)

πθ(v)
]2/3][

πθ(z
′)

πθ(v)
]2/3][πθ(z)πθ(z

′)]1/3

. [πθ(x)]1/3[πθ(z)πθ(z
′)]1/3e(2/3)C(x−v)e(2/3)C(z−v)e(2/3)C(z′−v).

Thus,

J + .
∫
x>0,0<v<x,v<z

dxdvdz

(
x[πθ(x)]1/3e(2/3)Cze−Cv[πθ(z)]

1/3

∫ +∞

z
[πθ(z

′)]1/3(1 + |z′|4c)e(2/3)Cz′dz′
)

.
∫ +∞

0
x(

∫ x

0
e−Cvdv)[πθ(x)]1/3dx

∫ +∞

0
[πθ(z)]

1/3e(2/3)Czdz < +∞.

We can proceed analogously for J −.
Finally, we find that JT = OP ((1/

√
T ). 2
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