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Introduction

Stochastic systems of N interacting particles and their mean-field limits for large N , the McKean-Vlasov stochastic differential equations (SDEs), were first described in [START_REF] Mac Kean | A class of Markov processes associated with nonlinear parabolic equation[END_REF]. They appeared later in various areas of applications: for the modelling of granular media in statistical physics ( [START_REF] Benedetto | A kinetic equation for granular media[END_REF]), in neurosciences (see e.g. [START_REF] Dawson | Critical Dynamics and Fluctuations for a Mean-Field Model of Cooperative Behavior[END_REF], [START_REF] Baladron | Mean field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons[END_REF]), for population dynamics and ecology ( [START_REF] Molginer | A non-local model for a swarm[END_REF], [START_REF] Carrillo | The derivation of swarming models: Mean-field limit and Wasserstein distances[END_REF]), for epidemics dynamics ( [START_REF] Ball | Stochastic SIR in Structured Populations[END_REF], [START_REF] Forien | Household epidemic models and McKean-Vlasov Poisson driven SDEs[END_REF]) , in finance (see e.g. [START_REF] Giesecke | Inference for large financial systems[END_REF] and the references therein). During the past decades, most contributions were devoted to their probabilistic properties (see e.g. among many references [START_REF] Sznitman | Topics in propagation of chaos[END_REF], [START_REF] Méléard | Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models[END_REF], [START_REF] Benachour | Nonlinear self-stabilizing processes -I Existence, invariant probability, propagation of chaos[END_REF], [START_REF] Benachour | Nonlinear self-stabilizing processes -II Convergence to invariant probability[END_REF], [START_REF] Herrmann | Large deviations and a Kramers'type low for selfstabilizing diffusions[END_REF], [START_REF] Kolokoltsov | Non linear Markov processes and kinetic equations 182[END_REF]). During the same period, statistical inference for these models remained unstudied except [START_REF] Kasonga | Maximum likelihood theory for large interacting systems[END_REF]. But recently, the interest for this topic is growing in two directions. Either, statistical studies are based on the direct observation of large interacting particle systems: see e.g. [START_REF] Della Maestra | Nonparametric estimation for interacting particle systems: McKean-Vlasov models[END_REF], [START_REF] Della Maestra | The LAN property for McKean-Vlasov models in a mean-field regime[END_REF], [START_REF] Giesecke | Inference for large financial systems[END_REF], [START_REF] Chen | Maximum likelihood estimation of potential energy in interacting particle systems from single-trajectory data[END_REF], [START_REF] Belomestny | Semiparametric estimation of McKean-Vlasov SDEs[END_REF], [START_REF] Comte | Nonparametric adaptive estimation for interacting particle systems[END_REF], [START_REF] Amorino | Parameter estimation of discretely observed interacting particle systems[END_REF], [START_REF] Pavliotis | Eigenfunction martingale estimators for interacting particle systems and their mean field limit[END_REF]. Or, statistical inference is based on the observation of the mean-field limit, the McKean-Vlasov process. Indeed, observing the whole N -particles system might seem too (1) : Université Paris Cité, MAP5, UMR 8145 CNRS, F-75006, FRANCE, email: valentine.genon-catalot@mi.parisdescartes.fr (2) : Université Paris Cité, Laboratoire de Probabilités, Statistique & Modélisation, LPSM, France email: catherine.laredo@inrae.fr.

demanding or unrealistic for large N . Thus, inference for the limiting process of one typical particle for large N is now the subject of several contributions: see e.g. [START_REF] Sharrock | Parameter Estimation for the McKean-Vlasov Stochastic Differential Equation[END_REF], [START_REF] Genon-Catalot | Probabilistic properties and parametric inference of small variance nonlinear self-stabilizing stochastic differential equations[END_REF], [START_REF] Genon-Catalot | Parametric inference for small variance and long time horizon McKean-Vlasov diffusion models[END_REF], [START_REF] Genon-Catalot | Inference for ergodic McKean-Vlasov stochastic differential equations with polynomial interactions[END_REF], [START_REF] Pavlotis | A method of moments for interacting particle systems and their mean-field limit[END_REF], [START_REF] Lu | Learning Interaction Kernels in Stochastic Systems of Interacting Particles from Multiple Trajectories[END_REF]. This latter point of view is adopted in this paper. More precisely, consider the one-dimensional McKean-Vlasov stochastic differential equation (SDE) [START_REF] Amorino | Invariant density adaptive estimation for ergodic jump diffusion processes over anisotropic classes[END_REF] dX t = -b(α, X t )dt -R Φ(β, X t -y)µ θ t (dy)dt + σdW t , X 0 = η where (W t ) is a Wiener process, η is independent of (W t ) and µ θ t is the distribution of X t . The functions b(α, x), Φ(β, x) depend on an unknown parameter θ = (α, β) belonging to a convex set

Θ α × Θ β ⊂ R d × R d .
The potential term b(α, x) is an usual drift term describing the geometry of the space and Φ(β, x) is an interaction term describing the interaction between particles in the original system. A solution of ( 1) is a couple ((X t , µ θ t ), t ≥ 0) composed with a process (X t ) and a family of distribution (µ θ t ) satisfying [START_REF] Amorino | Invariant density adaptive estimation for ergodic jump diffusion processes over anisotropic classes[END_REF]. When defined, (X t ) is a time-inhomogeneous Markov process. Assumptions for existence and uniqueness of a solution to [START_REF] Amorino | Invariant density adaptive estimation for ergodic jump diffusion processes over anisotropic classes[END_REF] and existence and uniqueness of an invariant distribution are known. Below, we assume that (1) admits an invariant distribution π θ and that the process is in stationary regime, i.e. η ∼ π θ . Our aim is to estimate θ from a continuous observation of (X t ) throughout a time interval [0, 2T ] with asymptotic framework T → +∞. A large number of contributions is concerned with statistical inference for ergodic diffusions (see e.g. the books [START_REF] Kutoyants | Statistical inference for ergodic diffusion processes[END_REF], [START_REF] Iacus | Simulation and inference for stochastic differential equations[END_REF], [START_REF] Kessler | Statistical methods for stochastic differential equations[END_REF], [START_REF] Höpfner | Asymptotic Statistics with a View to Stochastic Processes[END_REF] and a lot of papers (see e.g. [START_REF] Amorino | Invariant density adaptive estimation for ergodic jump diffusion processes over anisotropic classes[END_REF], [START_REF] Dalalyan | Asymptotic statistical equivalence for scalar ergodic diffusions[END_REF], [START_REF] Dalalyan | Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case[END_REF], [START_REF] Hoffmann | Adaptive estimation in diffusion processes[END_REF], [START_REF] Nickl | Nonparametric statistical inference for drift vector fields of multi-dimensional diffusions[END_REF], [START_REF] Masuda | Non-Gaussian quasi-likelihood estimation of SDE driven by locally stable Lévy process[END_REF]). For what concerns McKean-Vlasov SDEs in stationary regime, papers are not so numerous: to our knowledge, we can refer to [START_REF] Sharrock | Parameter Estimation for the McKean-Vlasov Stochastic Differential Equation[END_REF], [START_REF] Pavlotis | A method of moments for interacting particle systems and their mean-field limit[END_REF] and [START_REF] Genon-Catalot | Inference for ergodic McKean-Vlasov stochastic differential equations with polynomial interactions[END_REF] where the special McKean-Vlasov model with no potential term and with odd polynomial interaction term is considered. The McKean-Vlasov SDE studied here is much more general than in the latter paper and the approach quite different. Assuming that the initial variable η of process [START_REF] Amorino | Invariant density adaptive estimation for ergodic jump diffusion processes over anisotropic classes[END_REF] follows the invariant distribution implies that, for all t ≥ 0, the marginal distribution µ θ t (dy) is constant and equal to the invariant distribution π θ (dy). Therefore, the drift term of (1) does no longer depend on t and is given by [START_REF] Amorino | Parameter estimation of discretely observed interacting particle systems[END_REF] x → S(θ, x) := -b(α, x) -R Φ(β, x -y)π θ (dy) = -b(α, x) -Φ(β, .) π θ (x).

Nevertheless, the invariant distribution is not explicitely known so that, although the exact likelihood can be theoretically studied, it does not lead to computable estimators. To overcome this difficulty, we start by studying a kernel estimator π T (x) of the invariant density based on the sample path (X t , t ∈ [0, T ]). This estimator is studied in [START_REF] Castellana | On smoothed probability density estimation for stationary processes[END_REF], [START_REF] Leblanc | Density estimation for a class of continuous time processes[END_REF], [START_REF] Kutoyants | Statistical inference for ergodic diffusion processes[END_REF], [START_REF] Dalalyan | Asymptotic statistical equivalence for scalar ergodic diffusions[END_REF], [START_REF] Strauch | Adaptive invariant density estimation for ergodic diffusions over anisotropic classes[END_REF]. Its noteworthy property is that its variance rate is √ T , i.e. the parametric rate which is important for our parametric setting. Nevertheless, the existing results concerning this estimator cannot be directly applied. For our purpose, we study a weighted mean integrated risk fitted to our problem and moreover we prove a convergence in distribution result which, up to our knowledge, are new results of intrinsic interest. In a second step, we propose an approximate likelihood based on the sample (X t , t ∈ [T, 2T ]) where the unknown invariant density of the drift S(θ, x) is replaced by the kernel estimator, thus leading to the approximate drift:

(3) S T (θ, x) = S(θ, x) = -b(α, x) -Φ(β, .) π T (x),

Then, we study the asymptotic properties of the associated estimators of θ and prove their consistency and asymptotic normality with rate √ T . Examples of classes of models illustrate the theory.

Section 2 presents our assumptions to ensure existence and uniqueness of a solution to [START_REF] Amorino | Invariant density adaptive estimation for ergodic jump diffusion processes over anisotropic classes[END_REF] and existence of an invariant density. We prove a useful bound for the invariant density (Proposition 1) and obtain that the process (X t ) in stationary regime is identical to an ergodic diffusion (Proposition 2). Section 3 is devoted to statistical results. The statistical assumptions are presented. Then, we study the theoretical exact maximum likelihood estimator (MLE) of θ, prove its consistency an asymptotic normality and exhibit the asymptotic Fisher information (Section 3.1). Section 3.2 concerns the kernel estimator π T (x) based on (X t , t ∈ [0, T ]) (Theorem 1, Theorem 2 and Corollary 1). In Section 3.3, we define our approximate likelihood (contrast) which is the conditional likelihood of (X t , t ∈ [T, 2T ]) given X T where the unknown invariant distribution is replaced by the kernel estimator π T . We study the associated pseudo-Hessian matrix (Proposition 6) and pseudo-score function (Theorem 3). We conclude by stating the consistency and asymptotic normality of our maximum contrast estimator (MCE). In Section 4, several classes of models are detailed where we compare the asymptotic variances of the MCE and the exact MLE. Section 5 is devoted to lemmas (Lemmas 1 and 2) which are the backbone of the proofs of Section 3. Lemma 2 is especially difficult to obtain. Section 6 gives concluding remarks. Section 7 is an appendix where we recall results from [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF] concerning a central limit theorem for ergodic diffusions and properties of the infinitesimal generator, properties used all along the paper. Section 8, 9 and 10 contains all proofs.

Assumptions and preliminaries.

In the sequel, the notation means ≤ up to a constant. Let us set

(4) V (α, x) = x 0 b(α, y)dy, W (β, x) = x 0 φ(β, y)dy.
We assume that, for all α ∈ Θ α and all β ∈ Θ β , these functions satisfy:

• [H1] The function W (β, .) is even. The functions x → V (α, x) and x → W (β, x) are C 2 and convex, one of the two being strictly convex: there exist constants K(α) and λ(β) such that ∀x,

∂ 2 V ∂x 2 (α, x) ≥ K(α) ≥ 0, ∂ 2 W ∂x 2 (β, x) ≥ λ(β) ≥ 0 and K(α) + λ(β) > 0. • [H2] The functions x → ∂V ∂x (α, x), ∂W ∂x (β, x) are locally Lipschitz with polynomial growth, i.e. there exist c = c(α, β) > 0, = (α, β) ∈ N * such that ∀x, y ∈ R, | ∂V ∂x (α, x)) - ∂V ∂x (α, y))| + | ∂W ∂x (β, x) - ∂W ∂x (β, y)| ≤ c|x -y|(1 + |x| + |y| ). • [H3] The functions x → ∂V ∂x (α, x), ∂ 2 V ∂x 2 (α, x), ∂W ∂x (β, x), ∂ 2 W ∂x 2 (β, x) have polynomial growth: there exists a constant c = c(α, β) such that | ∂V ∂x (α, x)| + | ∂ 2 V ∂x 2 (α, x)| + | ∂W ∂x (β, x)| + | ∂ 2 W ∂x 2 (β, x)| ≤ c(1 + |x| ).
According to [START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF], [START_REF] Benachour | Nonlinear self-stabilizing processes -I Existence, invariant probability, propagation of chaos[END_REF], [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non-uniformly convex case[END_REF], [START_REF] Herrmann | Large deviations and a Kramers'type low for selfstabilizing diffusions[END_REF], under [H1]-[H3], equation (1) admits a unique solution ((X t , µ θ t )), t ≥ 0). For what concerns invariant distributions, two cases are to be distinguished. If V (α, .) is strictly convex (K(α) > 0), model (1) admits a unique invariant distribution π θ such that R x 2 π θ (x)dx < +∞. If V (α, .) ≡ 0, (1) admits a one-parameter family of invariant distributions, the parameter being the expectation of the distribution. Thus, the invariant distribution is unique once its expectation is specified (see also more details in [START_REF] Genon-Catalot | Inference for ergodic McKean-Vlasov stochastic differential equations with polynomial interactions[END_REF]). If the initial variable X 0 of (1) follows an invariant distribution, then, for all t, L(X t ) = L(X 0 ). This is why, in what follows, to cover all cases, we assume

• [H4] Either [H1]-[H2] hold with K(α) > 0 and X 0 = η follows the unique invariant distribution π θ of (1) or V (α, .) ≡ 0, [H1]-[H2] hold with λ(β) > 0 and X 0 = η ∼ π θ , where π θ is the unique centered invariant distribution. In the latter case, π θ is symmetric.

Under [H4], the invariant distribution π θ has density π θ (x) given as the solution of the implicit equation

(5) π θ (x) = 1 Z θ exp [- 2 σ 2 (V (α, x) + W (β, .) π θ (x))],
where

Z θ = R exp [-2 σ 2 V (α, y) + W (β, .
) π θ (y)]dy. Contrary to classical SDEs, the invariant distribution is not explicit. Nevertheless, we have:

Proposition 1. Under [H4], V (α, x) + W (β, .) π θ (x) ≥ (K(α) + λ(β)) x 2 2 + ax + b (a = ∂V ∂x (α, 0) -λ(β) yπ θ (y)dy, b = λ(β)
2 y 2 π θ (y)dy). Thus, the invariant distribution satisfies

(6) π θ (x) exp [- (K(α) + λ(β)) σ 2 (x + a K(α) + λ(β) ) 2 ].
As an obvious consequence, the invariant distribution has moments of any orders and (6) implies that, for all k ∈ R and all ε > 0,

(7) R exp (kx)(π θ (x)) ε dx < +∞.
This property is crucially used in proofs for various values of ε.

Under [H4], the initial variable η follows an invariant distribution π θ (x)dx. Then, the distribution L(X t ) = µ θ t (dy) satisfies that ∀t ≥ 0, µ θ t (dy) = π θ (y)dy. Therefore, the following holds (see [START_REF] Amorino | Parameter estimation of discretely observed interacting particle systems[END_REF]): [START_REF] Benedetto | A kinetic equation for granular media[END_REF] 

dX t = -(b(α, X t ) + Φ(β, .) π θ (X t ))dt + σdW t = S(θ, X t )dt + σdW t , X 0 = η ∼ π θ (x)dx.
Proposition 2. Assume [H4] and consider the stochastic differential equation (see (2)) ( 9)

dY t = S(θ, Y t )dt + σdW t .
Then (Y t ) is a positive recurrent diffusion with stationary density given by [START_REF] Belomestny | Semiparametric estimation of McKean-Vlasov SDEs[END_REF].

If Y 0 ∼ π θ (x)dx, it is ergodic. Moreover, -If Y 0 = X 0 , (Y t ) ≡ (X t ). -If Y 0 = X 0 = η ∼ π θ (x)dx, then X t = Y t for all t ≥ 0.
The result simply follows from the uniqueness of solutions. Thus, under [H4], (X t ) is equal to the solution of a classical SDE in stationary regime and is ergodic. This result has important consequences. One can apply to (X t ) results for classical ergodic SDEs. If f satisfies |f (x)|π θ (x)dx < +∞, the ergodic theorem (see e.g. [START_REF] Rogers | Diffusions, Markov Processes and Martingales[END_REF], Chap. V-7), yields

(10) 1 T T 0 f (X s )ds → a.s. f (x)π θ (x)dx.
More results are given in Section 7. They rely on the infinitesimal generator of the SDEs ( 8):

(11) Lg = (σ 2 /2)g -(b(α, .) + Φ(β, .) π θ (.))g .
The operator L acts on L 2 (π θ (x)dx) and is defined on the domain D,

(12) D = {g ∈ L 2 (π θ (x)dx), g abs. continuous, Lg ∈ L 2 (π θ (x)dx), lim |x|→∞ g (x)π θ (x) = 0}.

Estimation results.

From now on, we assume that [H4] holds for all θ and study the estimation of θ = (α, β) from the continuous observation of (X t , t ∈ [0, 2T ]) satisfying [START_REF] Benedetto | A kinetic equation for granular media[END_REF].

Throughout this study, we assume that σ 2 is fixed, known or unknown, but since it is identifiable from the continuous observation of (X t ) on [0, 2T ], we are not concerned by its estimation. Clearly, the invariant density of (X t ) defined by the implicit equation ( 5) also depends on σ 2 . Since it is fixed, we omit for sake of clarity, its dependence with respect to σ 2 and just write π θ (.), as well as in all statistical notations used in the sequel.

We detail first a maximum likelihood approach (Section 3.1) which is theoretical. Then, we propose a tractable contrast method which relies on a nonparametric estimator of the invariant density whose properties are studied in Section 3.2. The contrast is studied in Section 3.3.

We denote by P θ the distribution on C([0, 2T ]) of (X t , t ∈ [0, 2T ]) and by θ 0 the true value of the parameter. For M a matrix or a vector, we denote by M its transpose. Recall the notation (2) and set

K(θ 0 , θ) = R (S(θ, x) -S(θ 0 , x)) 2 π θ 0 (x)dx, (13) 
K(θ 0 , θ) = R {b(α, x) -b(α 0 , x) + [Φ(β, .) -Φ(β 0 , .)] π θ 0 (x)} 2 π θ 0 (x)dx. (14) 
These two quantities are well defined since, under [S1], b(α, .) and Φ(β, .) π θ have polynomial growth and, by ( 6) π θ has moments of any order. Statistical assumptions are required.

• [S0] The parameter space Θ = Θ α × Θ β is compact and the true value θ 0 belongs to Θ.

• [S1] The functions (α, x) → V (α, x) and (β, x) → W (β, x) are respectively defined on U α × R and U β × R where U α (resp. U β ) is an open set containing Θ α (resp. Θ β ) and are such that all the derivatives

(α, x) → ∂ i+j V ∂x i ∂α j (α, x), (β, x) → ∂ i+j W ∂x i ∂β j (β, x)
exist, are continuous respectively on U α × R (resp. U β × R) and have polynomial -growth with respect to x, uniformly in α, β.

• [S2] {K(θ 0 , θ) = 0} ⇒ {θ = θ 0 }. • [S3] For all α, β, and for z 1 , z 2 ∈ R d × R d , {z 1 .∇ α S(θ, x) + z 2 .∇ β S(θ, x) ≡ 0} ⇒ {z 1 = z 2 = 0}
where ∇ α (resp. ∇ β ) denotes the gradient vector w.r.t. α (resp. β) and x.y denotes the Euclidian scalar product of two vectors x, y.

• [S4] { K(θ 0 , θ) = 0} ⇒ {θ = θ 0 }. • [S5] For all α, β, and for z 1 , z 2 ∈ R d × R d , {z 1 .∇ α b(α, x) + z 2 .[∇ β Φ(β, .)] π θ (x) ≡ 0} ⇒ {z 1 = z 2 = 0}.
Assumptions [S0]-[S1] are standard for MLEs or MCEs. As we can see from the expression (15), the likelihood is not explicitly known so that the MLE is not computable. Therefore, we introduce an explicit contrast (pseudo-likelihood) leading to computable estimators. Assumptions [S2]-[S3] are the identifiability conditions for the MLE (resp. [S4]-[S5] for the MCE). Assumption [S3] (resp. [S5]) concerns the invertibility of the Fisher (resp. pseudo-Fisher ) information matrix required for the asymptotic normality of the MLE (resp. MCE). By direct computation, comparing [START_REF] Comte | Estimation nonparamétrique. 2nd Edition[END_REF] and ( 14) is not straightforward, except on specific examples (see Section 4). Below, Proposition 3 (resp. Proposition 5) states that [S2] ensures the consistency of the MLE (resp. [S4] of the MCE). Therefore, the statistical theory ensures that if [S4] holds, [S2] holds.

3.1. Maximum Likelihood Estimator based on (X t , t ∈ [0, T ]) and (X t , t ∈ [0, 2T ]). To estimate θ from (X t , t ∈ [0, T ]), let us first look at the conditional log-likelihood of (X t , t ∈ [0, T ]) given X 0 . The Girsanov formula holds for (X t ) and using (2) yields ( 15)

T (θ) = 1 σ 2 T 0 S(θ, X t )dX t - 1 2 T 0 S 2 (θ, X t )dt .
From (2), we see that S(θ, x) depends on π θ given by the implicit equation (see [START_REF] Belomestny | Semiparametric estimation of McKean-Vlasov SDEs[END_REF]) and is not explicit. Therefore, (15) cannot lead to computable estimators of θ since the derivatives of the log-likelihood depend on the derivatives w.r.t. θ of π θ . Nevertheless, a theoretical study of the MLE is possible. A first step is the following proposition which determines the rate of the problem and the parameters that can be identifiable on this model.

Proposition 3. Assume [H4], [S1].
Then, as T tends to infinity, under P θ 0 , using (13),

1 T [ T (θ) -T (θ 0 )] → a.s. - 1 2σ 2 R [S(θ, x) -S(θ 0 , x)] 2 π θ 0 (x)dx = - 1 2σ 2 K(θ 0 , θ).
The proof of Proposition 3 is standard as (X t ) is identical to (Y t ) an ergodic diffusion process, and therefore satisfies [START_REF] Castellana | On smoothed probability density estimation for stationary processes[END_REF]. Now, let us define the MLE as [START_REF] Dalalyan | Asymptotic statistical equivalence for scalar ergodic diffusions[END_REF] θ T = arg sup θ∈Θ T (θ).

Under [S0]-[S2], K(θ 0 , θ) possesses a unique minimum at θ = θ 0 , which leads to the consistency of θ T . Moreover, Proposition 3 implies that the estimation rate of θ is √ T as for ergodic diffusions. We can define the (d + d ) matrix ( 17)

I(θ) = I 11 (θ) I 12 (θ) [I 12 (θ)] I 22 (θ),
, where

I 11 (θ) = R ∂S ∂α i (θ, x) ∂S ∂α k (θ, x)π θ (x)dx i,k=1,...,d , I 12 (θ) = R ∂S ∂α i (θ, x) ∂S ∂β j (θ, x)π θ (x)dx i=1,...,d;j=1...d I 22 (θ) = R ∂S ∂β j (θ, x) ∂S ∂β (θ, x)π θ (x)dx j, =1,...,d
, and

∂S ∂α i (θ, x) = ∂b ∂α i (α, x)+Φ(β, .) ∂π θ ∂α i (θ, x), ∂S ∂β j (θ, x) = [ ∂Φ ∂β j (β, .) π θ ](θ, x)+[Φ(β, .) ∂π θ ∂β j ](θ, x).
Then, under [S1], the Fisher information matrix associated with

T (θ) is σ -2 I(θ) (see Proposition 4). As usual, [S2] implies [S3] as K(θ 0 , θ 0 + h) = h I(θ 0 )h + o( h ) 2
) but the reverse is not true. Note that σ 2 implicitly appears in the I ij (θ), i, j = 1, 2 through π θ . As S(θ, .) depends on π θ , the derivation of the MLE requires, additionally to the ability of differentiating π θ w.r.t θ, the knowledge of σ 2 . This is specific to McKean-Vlasov diffusions. We can state:

Proposition 4. Assume [H4], [S0]-[S2]-[S3]. Then, the MLE θ T is consistent and √ T ( θ T -θ 0 ) converges in distribution under P θ 0 to the Gaussian law N d+d (0, σ 2 I -1 (θ 0 )).
The proof of this result is standard. However, the result remains theoretical as the MLE is not computable. Besides, one cannot easily check either [S2] or [S3] (see Section 4).

In order to compare the estimators derived from the two methods (the MLE and the MCE below), assume now that the observation is (X t , t ∈ [0, 2T ]). We know that, under the same assumptions as in Proposition 4, √ 2T ( θ 2T -θ 0 ) converges in distribution under P θ 0 to the Gaussian law N d+d (0, σ 2 I -1 (θ 0 )). Therefore, √ T ( θ 2T -θ 0 ) converges in distribution under P θ 0 to the Gaussian law N d+d (0, σ 2 2 I -1 (θ 0 )).

3.2.

Nonparametric estimator of the invariant density. When there is no ambiguity, we drop in this section the index 0 and write θ instead of θ 0 . Before studying the second estimation method, we need properties for the nonparametric estimator of π θ (.) that we plug in S(θ, x).

Let K a nonnegative continuous even function with support [-A, A], A > 0 such that ( 18)

K(v)dv = 1, v 2 K(v)dv = σ 2 K < +∞, and set K h (x) = (1/h)K(x/h).
Then, a kernel density estimator of

π θ (x) is, if h T is a bandwidth satisfying h T = o(1), (19) π 
T (x) = 1 T T 0 K h T (X t -x) dt.
Note that he function π T (x) is a probability density.

For n i.i.d. observations, the mean integrated risk of a kernel density estimator is well known (see e.g. [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF], [START_REF] Comte | Estimation nonparamétrique. 2nd Edition[END_REF]). The rate of the integrated square-bias term is a power of the bandwidth and the rate of the integrated variance term is (nh) -1 , lower than the parametric rate. For i.i.d. observations on [0, T ] of diffusions paths with fixed T , similar results on the estimation of π T (x) = T -1 T 0 p t (x 0 , x)dt where p t (x 0 , x) is the transition density and x 0 the initial value, have been obtained by [START_REF] Rosier | Nadaraya-Watson Estimator for I.I.D. Paths of Diffusion Processes[END_REF]. For a kernel estimator such as π T based on the continuous observation of a one-dimensional stationary process, this risk was firstly investigated in [START_REF] Castellana | On smoothed probability density estimation for stationary processes[END_REF], see also for the case of ergodic diffusion processes, [START_REF] Leblanc | Density estimation for a class of continuous time processes[END_REF], [START_REF] Kutoyants | Statistical inference for ergodic diffusion processes[END_REF], [START_REF] Dalalyan | Asymptotic statistical equivalence for scalar ergodic diffusions[END_REF] for pointwise risk or [START_REF] Strauch | Adaptive invariant density estimation for ergodic diffusions over anisotropic classes[END_REF] for sup-norm risk or [START_REF] Comte | Super optimal rates for nonparametric density estimation via projection estimators[END_REF]. The results are different from the i.i.d. case. Indeed, under appropriate assumptions, the variance rate of the kernel estimator is the parametric rate T -1 which is unusual for nonparametric density estimation. This is why it is interesting in our model to replace the unknown density π θ by the kernel estimator π T as this substitution will not affect the rate of convergence of our parametric estimators. However, these results are not sufficient for our purpose and we need to study a weighted mean integrated risk fitted to our problem together with a convergence in distribution result which, up to our knowledge, have not yet been studied. Theorem 1. Assume [H4]. We have, for all p ≥ 0, using (18), ( 19),

(1) There exists a continuous function f θ : R → R + such that

B 2 T (p, θ) = B 2 T (p) = R (1 + |x| p )(E θ π T (x) -π θ (x)) 2 dx ≤ h 4 T σ 4 K sup |t|≤A f θ (t).
(2) There exists a constant C θ (p) such that

V T (p, θ)) = V T (p) = R Var θ ( π T (x))(1 + |x| p )dx ≤ C θ (p) T .
The invariant density is twice continuously differentiable by [H1] so that the rate of the bias term is consistent with previous results.The second result on the variance term is new and difficult to obtain. It strongly relies on property [START_REF] Benachour | Nonlinear self-stabilizing processes -II Convergence to invariant probability[END_REF] of the invariant distribution. 

√ T R ψ(y)( π T (y) -E θ π T (y))dy = σ √ T T 0 g ψ (X s )dW s + O P ( 1 √ T ) + O P ( √ T h T ), (20) 
where g ψ satisfies Lg ψ (y) = -(ψ(y) -ψ(y)π θ (y)dy) := -ψ c (y), L is the infinitesimal generator defined in [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non-uniformly convex case[END_REF], so that, using Remark 1 of the Appendix (Section 7),

(21) g ψ (x) = 2σ -2 π -1 θ (x) x -∞ ψ c (y)π θ (y)dy = -2σ -2 π -1 θ (x) +∞ x ψ c (y)π θ (y)dy.
The above result is original and useful for the study of the asymptotic properties of our MCE.

Corollary 1. Under the assumptions of Theorem 2, if √ T h T = o(1), under P θ , as T tends to infinity, √ T R ψ(y)( π T (y) -π θ (y))dy → L N (0, σ 2 (g ψ (x)) 2 π θ (x)dx).
As our aim is parametric inference, we do not seek a square bias-variance compromise. But, we need a sufficient condition to erase the bias and obtain a √ T global rate.

Maximum contrast estimator.

To derive this estimator, we use the interval [0, T ] to build the nonparametric estimator π T (x) of π θ (x) and substitute, in the conditional likelihood of (X t , t ∈ [T, 2T ]), given X T , π θ (x) by π T (x). Recall (see ( 3)):

S T (θ, x) = S(θ, x) = -b(α, x) -Φ(β, .) π T (x),
and consider the pseudo-likelihood or contrast

(22) Λ T (θ) = 1 σ 2 2T T S(θ, X s )dX s - 1 2 2T T ( S(θ, X s )) 2 ds .
The stochastic integral is well defined as π T (x) is computed using (X t , 0 ≤ t ≤ T ). The following proposition clarifies the identifiability assumption [S3] associated with the contrast [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF].

Proposition 5. Assume [H4], [S1].
Then, as T tends to infinity, under P θ 0 , the contrast defined in [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF] with π T given in [START_REF] Della Maestra | Nonparametric estimation for interacting particle systems: McKean-Vlasov models[END_REF], satisfies (see [START_REF] Comte | Nonparametric adaptive estimation for interacting particle systems[END_REF]),

1 T [Λ T (θ) -Λ T (θ 0 )] → a.s. - 1 2σ 2 K(θ 0 , θ). Analogously, Assumption [S4] implies [S5].
The identifiability assumption for Λ T (θ) is not the same as for T (θ) as K(θ 0 , θ) = K(θ 0 , θ). The comparison of K(θ 0 , θ) and K(θ 0 , θ) is not straightforward. In Section 4, examples are given where it is possible. Now define the maximum contrast estimator (MCE) associated with [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF] by:

(23) θ T = arg sup θ∈Θ Λ T (θ)
Contrary to the MLE, this MCE does not require the knowledge of σ 2 and is explicit. Under [S0]-[S1]and [S4], we deduce standardly from Proposition 5 that the MCE is consistent.

To obtain the limiting distribution of the normalized MCE √ T ( θ T -θ 0 ), we have to study the derivatives of the contrast with respect to the α = (α j , j = 1, . . . d), β = (β k , k = 1 . . . , d ). This requires properties of the difference ( 24)

S(θ, x) -S(θ, x) = -Φ(β, .) ( π T -π θ )(x).
Let us define the

(d + d ) × (d + d ) pseudo Hessian matrix I T (θ) = I T,1,1 I T,1,2 [I T,1,2 ] I T,2,2 where 
I T,1,1 = ∂ 2 Λ T ∂α j ∂α j ) (θ) 1≤j,j ≤d , I T,2,2 = ∂ 2 Λ T ∂β k ∂β k ) (θ) 1≤k,k ≤d , I T,1,2 = ∂ 2 Λ T ∂α j ∂β k (θ) 1≤j≤d,1≤k≤d . Proposition 6. Assume [H4], [S1].
As T tends to infinity, under P θ , the normalized pseudo Hessian matrix 1 T I T (θ) converges to -σ -2 I(θ) where

(25) I(θ) = I 1,1 (θ) I 1,2 (θ) [I 1,2 (θ)] I 2,2 (θ)
, with

I 1,1 θ) = R ∂b ∂α j (α, x) ∂b ∂α j (α, x)π θ (x)dx 1≤j,j ≤d , I 1,2 (θ) = R ∂b ∂α j (α, x) ∂Φ ∂β k (β, .) π θ (x)π θ (x)dx 1≤j≤d,1≤k≤d I 2,2 (θ) = R ∂Φ ∂β k (β, .) π θ (x) ∂Φ ∂β k (β, .) π θ (x)π θ (x)dx 1≤k,k ≤d . Note that I(θ) is invertible if and only if , for z = (z 1 , z 2 ) ∈ R d × R d , z I(θ)z = 0 ⇒ {z 1 = z 2 = 0}. Now z I(θ)z = (z 1 .∇ α b(α, x) + z 2 .∇ β φ(β, .) π θ (x)) 2 π θ (x)dx. Therefore, z I(θ)z = 0 ⇔ z 1 .∇ α b(α, x) + z 2 .∇ β φ(β, .) π θ (x) ≡ 0. Thus, [S5].
Let us study now the pseudo-score function. For this, define j = 1, . . . , d, k = 1, . . . , d ,

(26) Ψ j (θ, y) = ∂b ∂α j (α, x)Φ(β, x -y)π θ (x)dx; Ψ j,c (θ, y) = Ψ j (θ, y) -Ψ j (θ, z)π θ (z)dz, (27) 
Ξ k (θ, y) = ∂Φ ∂β k (β, .) π θ (x)Φ(β, x -y)π θ (x)dx; Ξ k,c (θ, y) = Ξ k (θ, y) -Ξ k (θ, z)π θ (z)dz.
By Proposition 9, there exist functions g j , h k satisfying (28) 

Lg j (θ, .)(y) = -Ψ j,c (θ, y); Lh k (θ, .)(y)= -Ξ k,c (θ, y), j = 1, . . . , d; k = 1, . . . ,
H 11 (j, j ) = g j (θ, x)g j (θ, x)π θ (x)dx, H 12 (j, k) = g j (θ, x)h k (θ, x)π θ (x)dx, H 22 (k, k ) = h k (θ, x)h k (θ, x)π θ (x)dx.
Here, g j (θ, x), h k (θ, x) denote the derivatives of g j (θ, x), h k (θ, x) w.r.t. x (see ( 26), ( 27), ( 28)).

Theorem 3. Assume [H4], [S1] and that h T tends to 0 in such a way that h T √ T = o(1). Then,

σ 2 √ T ∇ α Λ T (θ) ∇ β Λ T (θ)
satisfies that, under P θ , for j = 1, . . . , d; k = 1, . . . , d ,

σ 2 √ T ∂Λ T ∂α j (θ) = - σ √ T 2T T ∂b ∂α j (α, X t )dW t + T 0 g j (θ, X t )dW t + o P (1), σ 2 √ T ∂Λ T ∂β k (θ) = - σ √ T 2T T ∂Φ ∂β k (β, .) π θ (X t )dW t + T 0 h k (θ, X t )dW t + o P (1). Therefore, σ 2 √ T ∇ α Λ T (θ) ∇ β Λ T (θ)
converges in distribution to N d+d (0, Σ(θ)) with, using (25), ( 29), ( 30)

Σ(θ) = Σ 11 (θ) Σ 12 (θ) [Σ 12 (θ)] Σ 22 (θ) , where Σ ij (θ) = σ 2 (I ij (θ) + H ij (θ)) for i, j = 1, 2.
To clarify the previous results, let us describe the main terms occurring in ∂Λ T ∂α (θ) assuming d = d = 1. We have, under P θ ,

σ 2 √ T ∂Λ T ∂α (θ) = - σ √ T 2T T ∂b ∂α (α, X t )dW t -A 2,T + o P (1), A 2,T = 1 T 2T T ∂b ∂α (α, X t ) √ T (Φ(β, .) ( π T -π θ ))(X t ) = √ T R ( π T (y) -π θ (y)) 1 T 2T T ∂b ∂α (α, X t )Φ(β, X t -y)dy.
Substituting 1 T 2T T ∂b ∂α (α, X t )Φ(β, X t -y)dy by its limit Ψ(θ, y) = ∂b ∂α (α, x)Φ(β, x -y)π θ (x)dx as T → ∞ yields that the main term of A 2,T is equal to

A 2,T = √ T R Ψ(θ, y)( π T (y) -π θ (y))dy + o P (1) = σ √ T T 0 g (X s )dW s + o P (1),
where, applying Theorem 2, g satisfies Lg = -Ψ c (θ, .).

Finally σ 2 √ T ∂Λ T ∂α (θ)
is the sum of two uncorrelated terms and converges in distribution to a Gaussian random variable with variance

Σ 11 = σ 2 ( ∂b ∂α (α, x)) 2 + (g (x)
) 2 π θ (x)dx using the central limit theorem [START_REF] Kasonga | Maximum likelihood theory for large interacting systems[END_REF]. Now, the convergence in distribution of the MCE derives classically from the previous results. [START_REF] Genon-Catalot | Probabilistic properties and parametric inference of small variance nonlinear self-stabilizing stochastic differential equations[END_REF] is consistent and satisfies that, under P θ 0 , using (25), [START_REF] Höpfner | Asymptotic Statistics with a View to Stochastic Processes[END_REF],

Proposition 7. Assume [H4], [S0]-[S1], [S4]-[S5]. The MCE defined in
√ T ( θ T -θ 0 ) → L N d+d 0, I -1 (θ 0 )Σ(θ 0 )I -1 (θ 0 ) .
Note that this variance satisfies, using (29), σ -2 (I -1 (θ) + I -1 (θ)H(θ)I -1 (θ)).

Examples

Example 1 is the Ornstein-Uhlenbeck McKean-Vlasov process. Example 2 deals with the case where b(α, x) = αb(x) is linear in the parameter α and Φ(β, x) = βx, α, β ∈ R. For this family of models, we can compare K(θ 0 , θ), K(θ 0 , θ) and I(θ), I(θ). In Example 3, we consider b(α, x) ≡ 0 and x → Φ(β, x) an odd polynomial. Thus, we compare the present approach with the one developped in [START_REF] Genon-Catalot | Inference for ergodic McKean-Vlasov stochastic differential equations with polynomial interactions[END_REF], which is devoted to the study of McKean-Vlasov models with nul potential term and odd polynomial interaction term. For sake of simplicity, we focus on the comparison of the estimators θ T (16) (instead of θ 2T ) and θ T [START_REF] Genon-Catalot | Probabilistic properties and parametric inference of small variance nonlinear self-stabilizing stochastic differential equations[END_REF].

Example 1. V (α, x) = αx 2 /2, W (β, x) = βx 2 /2, α > 0, β > 0. Equation (1) is dX t = -αX t dt -β(X t -E θ X t )dt + σdW t , ((23) so that E θ X t = E θ X 0 e -αt .
Therefore, the invariant distribution is necessarily centered, and

dX t = -(α + β)X t dt + σdW t . The invariant distribution π θ is the Gaussian distribution N (0, σ 2 /2(α + β)) and S(θ, x) = -(α + β)x. Here, K(θ 0 , θ) = [α + β -(α 0 + β 0 )] 2 x 2 π θ 0 (x)dx = σ 2 2(α 0 +β 0 ) [α + β -(α 0 + β 0 )] 2 . The only identifiable parameter is τ = τ (θ) = α + β ([S2], [S3] not satisfied). The MLE of τ is τ = - T 0 X t dX t T 0 X 2 t dt and √ T ( τ -τ ) → L N (0, 2τ ).
Let us look at the contrast Λ T (θ). We have

S(θ, x) = -αx -β (x -y) π T (y)dy = -(α + β)x - β y π T (y)dy = S(θ, x) -β T T 0 X t dt since y π T (y)dy = 1 T h T T 0 R yK( y -X t h T )dy = 1 T T 0 R (X t + vh T )K(v)dv = 1 T T 0 X t dt.
We have

K(θ 0 , θ) = K(θ 0 , θ). With τ = τ (θ) = α + β, σ 2 Λ T (τ, β) = 2T T [-τ X t -β 1 T T 0 X t dt]dX t ) - 1 2 2T T [-τ X t -β 1 T T 0 X t dt] 2 dt).
Thus, the MCE satisfies

1 T I T τ T β T = 1 T 2T T X s dX s -1 T T 0 X t dt 2T T dX s with I T = - 2T T X 2 s ds 1 T T 0 X t dt 2T T X s ds 1 T T 0 X t dt 2T T X s ds -( 1 T T 0 X t dt) 2
.

For given T , I T /T is invertible but, as T grows to infinity, it converges to the non invertible matrix -σ 2 /2τ 0 0 0 . After some computations, we find

τ T = 1 1 T 2T T X 2 s ds -( 1 T 2T T X t dt) 2 - 1 T 2T T X t dX t + 1 T 2T T dX s 1 T 2T T X s ds .
By the ergodic theorem, 1 T T 0 X t dt converges almost surely to yπ θ (y)dy = 0. Then, we apply the result of Proposition 8 to

f c (x) = x with Lg(x) = (σ 2 /2)g -(α + β)xg . The function g(x) = x/(α + β) satisfies Lg(x) = -x. Therefore, σ 2 (f c ) = σ 2 /(α + β) 2 . Thus, √ T ( 1 T T 0 X t dt) → L X ∼ N (σ 2 /(α + β) 2 ).
This allows to study τ T and we can prove that √ T ( τ T -τ T ) = o P (1). We can compute β T , but there is no result for it. Note that z 1

∂b ∂α (α, x) + z 2 ∂Φ ∂β (β, .) π θ (x) = (z 1 + z 2 )x ≡ 0 does not imply z 1 = z 2 = 0. So [S5] is not satisfied. Example 2. Consider the class of models b(α, x) = αb(x), α > 0, with b twice continuously differentiable, Φ(β, x) = βx with αb (x) + β ≥ K > 0, b (x) ≡ 0. Assumption [H4] is satisfied
and the model has a unique invariant density π θ ,

π θ (x) = 1 Z θ exp - 2 σ 2 α x 0 b(y)dy + β( x 2 2 -xγ 1 (θ)) ,
where γ 1 (θ) = yπ θ (y)dy is not explicitly known and Z θ is the unknown normalization constant. Now, we compare K(θ 0 , θ), K(θ 0 , θ) and I(θ), I(θ).

The equation for X t is given by

X t = X 0 + α t 0 [b(X s ) + β(X s -E θ (X s ))]ds + σW t .
When X 0 ∼ π θ , the process is in stationary regime. Thus, taking expectations yields

(31) b(x)π θ (x)dx = 0.
This implies,

K(θ 0 , θ) = [(α -α 0 )b(x) + (β -β 0 )(x -γ 1 (θ 0 )) + β(γ 1 (θ 0 ) -γ 1 (θ)] 2 π θ 0 (x)dx = K(θ 0 , θ) + β 2 (γ 1 (θ) -γ 1 (θ 0 )) 2 .
Assume that K(θ 0 , θ) = 0. Then, for all x, (α -α 0 )b(x) + (β -β 0 )(x -γ 1 (θ 0 ) = 0. Since b is not identically nul, this implies α = α 0 and β = β 0 . Thus, by the contrast Λ T (θ), both parameters are identifiable. One sees that, if [S4] holds, [S2] holds. So, both parameters are also identifiable by the likelihood method. We have

σ 2 T (θ) = - T 0 [αb(X t ) + β(X t -γ 1 (θ))dX t - 1 2 2T T [αb(X t ) + β(X t -γ 1 (θ)] 2 dt, σ 2 Λ T (θ) = - 2T T [αb(X t ) + β(X t -m T )dX t - 1 2 T 0 [αb(X t ) + β(X t -m T )] 2 dt, with m T = T -1 T 0 X s ds.
Here, we again see that the MLE of θ is not explicitly computable as there is no explicit expression of the function θ → γ 1 (θ) and its derivatives w.r.t. θ = (α, β). Nevertheless, we can compute the Fisher information matrix which is σ -2 I(θ), where, using [START_REF] Iacus | Simulation and inference for stochastic differential equations[END_REF] and [START_REF] Dalalyan | Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case[END_REF], I(θ) = (I ij (θ)) 1≤i,j≤2 , with

I 11 (θ) = b 2 (x)π θ (x)dx + (β ∂γ 1 ∂α (θ)) 2 , I 22 (θ) = (x -γ 1 (θ)) 2 π θ (x)dx + (β ∂γ 1 ∂β (θ)) 2 , I 12 (θ) = b(x)(x -γ 1 (θ))π θ (x)dx + β 2 ∂γ 1 ∂α (θ) ∂γ 1 ∂β (θ).
Note that

I(θ) = b(x) x -γ 1 (θ) b(x), x -γ 1 (θ) π θ (x)dx + β ∂γ 1 ∂α (θ) β ∂γ 1 ∂β (θ) β ∂γ 1 ∂α (θ), β ∂γ 1 ∂β (θ) .
Hence, for z = (z 1 , z 2 ) , z I(θ)z = 0 is equivalent to for all x, z 1 (b(x) + β ∂γ 1 ∂α (θ)) + z 2 (x -γ 1 (θ) + β ∂γ 1 ∂β (θ)) = 0. This, in turn implies, since b (x) ≡ 0, z 1 = z 2 = 0. So the matrix I(θ) is invertible. The MLE converges to N (0, σ 2 I -1 (θ)).

Contrary to the MLE, the MCE of θ is explicit and solution of the linear system:

-I T α T β T = 2T T b(X t )dX t 2T T (X t -m T )dX t with I T = 2T T b 2 (X t )dt 2T T b(X t )(X t -m T )dt 2T T b(X t )(X t -m T )dt 2T T (X t -m T ) 2 dt .
The matrix I T /T converges as T tends to infinity to (see [START_REF] Genon-Catalot | Inference for ergodic McKean-Vlasov stochastic differential equations with polynomial interactions[END_REF])

I(θ) = b 2 (x)π θ (x)dx (x -γ 1 (θ))b(x)π θ (x)dx (x -γ 1 (θ))b(x)π θ (x)dx (x -γ 1 (θ)) 2 π θ (x)dx . The relation z 1 b(x)+z 2 (x-γ 1 (θ)) ≡ 0 implies z 1 = z 2 = 0: [S4] is satisfied and I(θ) is invertible.
In this model, we can compute the functions g, h of Theorem 3. Indeed, we have, using [START_REF] Iacus | Simulation and inference for stochastic differential equations[END_REF],

Ψ(θ, y) = β b(x)(x -y)π θ (x)dx = β xb(x)π θ (x)dx, Ξ(θ, y) = (x -γ 1 (θ))β(x -y)π θ (x)dx = β x(x -γ 1 (θ))π θ (x)dx
Thus, y → Ψ(θ, y) and y → Ξ(θ, y) are constant so that g ≡ h ≡ 0. Therefore, Σ(θ) = σ 2 I(θ).

The asymptotic variance of the MCE is equal to (σ 2 I(θ)) -1 . Note that

I(θ) = I(θ) + β ∂γ 1 ∂α (θ) β ∂γ 1 ∂β (θ) β ∂γ 1 ∂α (θ), β ∂γ 1 ∂β (θ) .
This shows that there is a loss of information when using the contrast Λ T (θ) instead of the exact log-likelihood which is not surprising.

Example 3. b(α, x) ≡ 0, Φ(β, x) = β 1 x + β 3 x 3 with β = (β 1 , β 3 ), β 1 > 0, β 3 ≥ 0. Assume that (X t
) is in centered stationary regime. The invariant distribution π β is not only centered by also symmetric (see [H4]). Using this property, we obtain, with γ i (β) = y i π β (y)dy,

Φ(β, .) π β (x) = [β 1 (x -y) + β 3 (x -y) 3 ]π β (x)dx = (β 1 + 3β 3 γ 2 (β))x + β 3 x 3 .
Let us first study the MLE. If (β 10 , β 30 ) denotes the true value of the parameter,

K(β 0 , β) = [β 1 x + β 3 (x 3 + 3xγ 2 (β)) -(β 10 x + β 30 (x 3 + 3xγ 2 (β 0 )))] 2 π β 0 (x)dx.
Therefore, K(β 0 , β) = 0 implies that β 3 = β 30 and β 1 -

β 10 + 3β 30 (γ 2 (β) -γ 2 (β 0 )) = 0. Thus, Assumption [S2] holds if [C1] : ∀β 1 > 0, β 3 ≥ 0, 1 + 3β 3 ∂γ 2 ∂β 1 (β) = 0.
Due to the presence of γ 2 (β), Φ(β, .) π β (x) is not explicit so the MLE cannot be computed. We can compute I(β) (see ( 17)) and we get, for z = (z

1 z 2 ) ∈ R 2 , z I(β)z = x 2 z 1 (1 + 3β 3 ∂γ 2 ∂β 1 (β)) + z 2 (3γ 2 (β) + x 2 + 3β 3 ∂γ 2 ∂β 3 (β) 2 π β (x)dx.
Condition [C1] implies that z I(β)z = 0.The Fisher information matrix is obtained by:

I 11 (β) = (1 + 3β 3 ∂γ 2 ∂β 1 (β)) 2 γ 2 (β), I 12 (β) = (1 + 3β 3 ∂γ 2 ∂β 1 (β))(3(β 3 ∂γ 2 ∂β 3 (β) + γ 2 (β))γ 2 (β) + γ 4 (β)), I 22 (β) = γ 6 (β) + 6γ 2 (β)γ 4 (β) + 9γ 2 (β)(γ 2 (β) + β 3 ∂γ 2 ∂β 3 (β)) 2 + 6β 3 γ 4 (β) ∂γ 2 ∂β 3 (β).
Let us now study the Maximum Contrast method. We have

K(β 0 , β) = [(β 1 -β 10 )x + (β 3 - β 30 )(x 3 +3xγ 2 (β 0 ))] 2 π β 0 (x)dx. Therefore, Assumption [S4] is satisfied and β 1 , β 3 are identifiable.
Note that, if β 1 , β 3 are identifiable with the contrast method (i.e. can be consistently estimated), β 1 , β 3 are identifiable with the likelihood method. Thus, [S3] holds and this shows that [C1] holds. We have: ∂Φ(β, .)

∂β 1 π β (x) = x, ∂Φ(β, .) ∂β 3 π β (x) = x 3 + 3x 2 γ 2 (β).
We can compute I(β) (see [START_REF] Genon-Catalot | Inference for ergodic McKean-Vlasov stochastic differential equations with polynomial interactions[END_REF]).

I(β) = γ 2 (β) γ 4 (β) + 3γ 2 2 (β) γ 4 (β) + 3γ 2 2 (β) γ 6 (β) + 6γ 2 (β)γ 4 (β) + 9γ 3 2 (β) Thus, z I(β)z = x 2 z 1 + z 2 (3γ 2 (β) + x 2 ) 2 π β (x)dx ⇒ Assumption [S5] is satisfied.
Let us study Λ T (β). Setting m i (T ) = y i π T (y)dy, we obtain that

Φ(β, .) π T (x) = β 1 Γ 1 (x) + β 3 Γ 2 (x), with Γ 1 (x) = x -m 1 (T )and Γ 2 (x) = x 3 -3x 2 m 1 (T ) + 3x m 2 (T ) -m 3 (T ). Therefore, the MCE ( β 1 , β 3 ) satisfies -Γ T β 1 β 3 = 2T T Γ 1 (X s )dX s 2T T Γ 2 (X s )dX s with Γ T = 2T T Γ 2 1 (X s )ds 2T T Γ 1 (X s ) Γ 2 (X s )ds 2T T Γ 1 (X s ) Γ 2 (X s )ds 2T T Γ 2 2 (X s )ds .
We can compute Σ(β). First, let us obtain H(β). Since the odd moments of π β are nul,

Ξ 1 (β, y) = β 1 γ 2 (β) + β 3 γ 4 (β) + 3β 3 γ 2 (β)y 2 ⇒ Ξ 1,c (β, y) = 3β 3 γ 2 (β)(y 2 -γ 2 (β)) Ξ 3 (θ, y) = β 1 (γ 4 (β) + 3γ 2 (β)) + β 3 (γ 6 (β) + 3γ 2 (β)γ 4 (β)) + 3β 3 (γ 4 (β) + 3γ 2 2 (β))y 2 ⇒ Ξ 3,c (β, y) = 3β 3 (γ 4 (β) + 3γ 2 2 (β))(y 2 -γ 2 (β)
). Let g(β, y) denote the solution of Lg(y) = -(y 2 -γ 2 (β)). Then, h 1 (β, y) = 3β 3 γ 2 (β)g(β, y) and h 3 (β, y) = 3β 3 (γ 4 (β) + 3γ 2 2 (β))g(β, y). Therefore,

H(β) = 9β 2 3 (g (β, y)) 2 π β (y)dy γ 2 2 (β) γ 2 (β)(γ 4 (β) + 3γ 2 2 (β)) γ 2 (β)(γ 4 (β) + 3γ 2 2 (β)) (γ 4 (β) + 3γ 2 2 (β)) 2 , Σ(β) = σ 2 (I(β) + H(β)).
Therefore the asymptotic variance of the MCE is σ 2 (I -1 (β) + I -1 (β)H(β)I -1 (β)). This example is a special case of a previous work where estimation for ergodic McKean-Vlasov equations with polynomial interactions and no potential term was investigated ( [START_REF] Genon-Catalot | Inference for ergodic McKean-Vlasov stochastic differential equations with polynomial interactions[END_REF], Example 3 of Section 3.5.) The estimators, say ( β1 , β3 ) are obtained by means of an explicit relation linking them to the empirical moments of (X t ). Set γ2 (T ) = 1

T T 0 X 2 s ds, then β1 β3 = - 1 -3γ 2 (T ) 0 1 Ψ -1 T 2T T X s dX s 2T T X 3 s dX s where Ψ T = 2T T X 2 s ds 2T T X 4 s ds 2T T X 4 s ds 2T T X 6 s ds .
This estimator is consistent and the asymptotic variance of

√ T ( β -β) is σ 2 (Σ 1 (β) + Σ 2 (β)) with Σ 1 (β) = I(β) -1 and Σ 2 (β) = 9β 2 3 (g (β, y)) 2 π β (y)dy 1 0 0 0 .
Thus there is a slight loss of information when using the present nonparametric approach leading to ( β1 , β3 ) instead of the approach of [START_REF] Genon-Catalot | Inference for ergodic McKean-Vlasov stochastic differential equations with polynomial interactions[END_REF] leading to ( β1 , β3 ).

Of course, the method of [START_REF] Genon-Catalot | Inference for ergodic McKean-Vlasov stochastic differential equations with polynomial interactions[END_REF] only works when b(α, x) ≡ 0 and Φ(β, x) is an odd polynomial. The present method works with a non nul potential term and a more general interaction term. To be complete, we have seen that m 1 (T ) = T -1 T 0 X s ds. For i = 2, 3, the moments m i (T ) of π T satisfy, using that K is even and

σ 2 K = z 2 K(z)dz < ∞, m 2 (T ) = 1 T T 0 ds R (X s + hz) 2 K(z)dz = 1 T T 0 X 2 s ds + +σ 2 K h 2 T , m 3 (T ) = 1 T T 0 ds (X s + hz) 3 K(z)dz = 1 T T 0 X 3 s ds + +3σ 2 K h 2 T m 1 (T ).
As T → ∞, by the ergodic theorem, m 1 (T ) → yπ β (y)dy = 0, m 2 (T ) → y 2 π β (y)dy = γ 2 (β) and m 3 (T ) → y 3 π β (y)dy = 0. Therefore 1 T ( Γ T -Ψ T ) = o P (1).

Main lemmas

Proposition 5, Proposition 6 and Theorem 3 rely on the following Lemmas. Lemma 2 is especially difficult to obtain and used for Theorem 3. These lemmas use Propositions 1 and 2.

Lemma 1. Assume [H4] and that ϕ, H, G : R → R have polynomial growth, then, under P θ ,

D 11 (ϕ, H) = 1 T 2T T ϕ(X s )H ( π T -E θ π T )(X s )ds = O P ( 1 √ T ), D 12 (ϕ, H) = 1 T 2T T ϕ(X s )H (E θ π T -π θ )(X s )ds = O P (h 2 T ), D 21 (H, G) = 1 T 2T T H ( π T -E θ π T )(X s )G ( π T -E θ π T )(X s )ds = O P ( 1 T ), D 22 (H, G) = 1 T 2T T H (E θ π T -π θ )(X s )G (E θ π T -π θ )(X s )ds = O P (h 4 T ), D 23 (H, G) = 1 T 2T T H (E θ π T -π θ )(X s )G ( π T -E θ π T )(X s )ds = O P ( h 2 T √ T ).
Lemma 2. Assume [H4] and that ϕ, H : R → R have polynomial growth. Then, under P θ ,

√ T D 11 (ϕ, H) = 1 T 2T T ϕ(X s )H ( √ T ( π T -E θ π T ))(X s )ds = σ √ T T 0 g (X s )dW s + O P (h T √ T ) + O P ( 1 √ T ).
where

g solution of Lg = -Ψ θ,c , Ψ θ (y) = ϕ(x)H(x-y)π θ (x)dx, Ψ θ,c (x) = Ψ θ (x)-Ψ θ (y)π θ (y)dy.
The reason why we separate Lemma 1 and Lemma 2 is that Lemma 1 is enough to study the second derivatives of Λ T (θ) w.r.t. the parameters whereas Lemma 2 is required to study the first derivatives. We take h T = o(T -1/2 ) so that the middle term of √ T D 11 (ϕ, H) tends to 0.

Concluding remarks

In this paper, we study the estimation of θ = (α, β) for the process (X t ) given by ( 1) when the process is in stationary regime. Thus the distribution of X t is constant and equal to the invariant distribution π θ . In such a case, (X t ) is equal to an ergodic diffusion. The exact MLE of θ obtained from the continuous observation of (X t ) on [0, T ] can be studied theoretically but does not lead to computable estimators since the drift term of (X t ) depends on π θ and therefore is not explicitly known. To overcome this difficulty, we assume that (X t ) is observed on the time interval [0, 2T ] and we build an explicit contrast based on the conditional likelihood of (X t , t ∈ [T, 2T ] given X T , where π θ in the drift is replaced by a nonparametric estimator π T computed from (X t , t ∈ [0, T ]). This leads us to study a weighted mean integrated risk for π T yielding a new result for this estimator. Then, we prove that the MCE is asymptotically Gaussian with rate √ T with explicit iasymptotic variance. Several classes of models are discussed.

In the continuation of this work, it is interesting to consider the same estimation problem for discrete observations or multidimensional McKean-Vlasov diffusions. Here, our assumptions ensure uniqueness of an invariant distribution. But concrete models having more than one invariant distribution are proposed in [START_REF] Dawson | Critical Dynamics and Fluctuations for a Mean-Field Model of Cooperative Behavior[END_REF] or [START_REF] Herrmann | Non uniqueness of stationary measures for self-stabilizing diffusions[END_REF] (see also [START_REF] Pavlotis | A method of moments for interacting particle systems and their mean-field limit[END_REF]). The estimation problem in this case certainly raises new considerations, which are worthwhile.

Appendix

Based on the ergodic theorem (10), the central limit theorem for stochastic integrals (see e.g. [START_REF] Kutoyants | Statistical inference for ergodic diffusion processes[END_REF], Chap.1) can be proved and states that, if f ∈ L 2 (π θ (x)dx),

(32) 1 √ T T 0 f (X s )dW s → L N (0, f 2 (x)π θ (x)dx).
Consider now the central limit theorem associated with [START_REF] Castellana | On smoothed probability density estimation for stationary processes[END_REF], i.e. the limiting distribution of

√ T ( 1 T T 0 f (X s )ds -f (x)π θ (x)dx .
The results below can be found in [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF]. Let L denote the infinitesimal generator of the SDE (9) defined in [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non-uniformly convex case[END_REF]. The operator L acts on L 2 (π θ (x)dx) and is defined on the domain D (see [START_REF] Chen | Maximum likelihood estimation of potential energy in interacting particle systems from single-trajectory data[END_REF]). Note that

(33) Lg = σ 2 2π θ g π θ . Proposition 8. Assume [H4]. Let f ∈ L 2 (π θ (x)dx), set f c = f - R f (x)π θ (x)
dx and denote by ., . π θ the scalar product of L 2 (π θ (x)dx). If f c ∈ Range(D), where Range(D) = L(D) is the image of D by L, then, as T tends to infinity, under P θ , (34)

1 √ T T 0 f c (X s )ds → L N (0, σ 2 (f c ))
where σ 2 (f c ) = -2 f c , g π θ and g is any element of D satisfying Lg = f c . Moreover,

Var 1 √ T T 0 f c (X s )ds → σ 2 (f c ). The relation -2 f c , g π θ = -2 Lg, g π θ = σ 2 R (g (x)
) 2 π θ (x)dx holds. Proposition 8 is exactly Theorem 2.2 in [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF]. It is a well known result on ergodic diffusions. In the proofs, result (34) will be clarified when used.

Corollary 2. Let h 1 , . . . , h p be functions belonging to Range(D) such that h j (x)π θ (x)dx = 0, for j = 1, . . . , p. Define

V θ (h i , h j ) = 4σ -2 R π -1 θ (x) x -∞ h i (y)π θ (y)dy x -∞ h j (y)π θ (y)dy dx so that σ 2 (h i ) = V θ (h i , h i ). The vector 1 √ T ( T 0 h i (X s )ds, i = 1, . . . , p) → L N p (0, V (θ)) with V (θ) = (V θ (h i , h j ), 1 ≤ i, j ≤ p).
Corollary 2 is a straightforward consequence of Proposition 8 using the Cramér-Wold device. The following proposition is little known, and its proof is given below.

Proposition 9. Assume [H4]. Let γ θ (x) = 2σ -1 (b(α, x) + Φ(β, .) π θ (x)). Then, (35) lim x→+∞ γ -1 θ (x) = 0, lim x→-∞ γ -1 θ (x) = 0.
This implies that Range(D) = {h ∈ L 2 (π θ (x)dx), h(x)π θ (x)dx = 0} so that the central limit theorem associated to [START_REF] Castellana | On smoothed probability density estimation for stationary processes[END_REF] holds for all f ∈ L 2 (π θ (x)dx).

Proof of Proposition 9. We rely on results stated in Proposition 2.2 in [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF]. First note that ∀g ∈ D, Lg(x)π θ (x)dx = 0 (see [START_REF] Chen | Maximum likelihood estimation of potential energy in interacting particle systems from single-trajectory data[END_REF]). Thus Range(D) ⊂ {h ∈ L 2 (π θ (x)dx), h(x)π θ (x)dx = 0}. But the other inclusion does not hold except if the process is ρ-mixing, that is if its generator has a spectral gap. In [START_REF] Genon-Catalot | Stochastic volatility models as hidden Markov models and statistical applications[END_REF], it is proved that condition ( 35) is a necessary and sufficient condition for ρ-mixing (Proposition 2.8). However, this proposition is stated for SDEs with locally Lipschitz coefficients having linear growth, which were standard assumptions for classical SDEs.

Here, this assumption is not satisfied by (Y t ) defined in [START_REF] Carrillo | The derivation of swarming models: Mean-field limit and Wasserstein distances[END_REF]. Nevertheless, this assumption is not mandatory, the only requirement being that the SDE admits a unique strong solution and an invariant distribution. (see the proof in the Appendix p.1074-1077). Therefore, we can apply these results here and check that γ θ satisfies [START_REF] Kutoyants | Statistical inference for ergodic diffusion processes[END_REF] to get Proposition 9. Set, for the proof, b(α

, x) = b(x), Φ(β, x) = Φ(x), π θ (x) = π(x), K(α) = K, λ(β) = λ and γ(x) = 2σ -1 (b(x) + Φ π(x)). We have γ(x) = 2σ -1 (V (x) + W π). As V (x) ≥ K, for x ≥ 0, V (x) ≥ Kx + V (0). For x ≤ 0, V (x) ≤ Kx + V (0). As W (x) ≥ λ and W is odd, we have for x ≥ 0, W (x) ≥ λx. For x ≤ 0, W (x) ≤ λx. Thus, for x ≥ 0, (36) V (x) + W π(x) ≥ (K + λ)x + V (0) -λ yπ(y)dy, which implies lim x→+∞ γ(x) = +∞ as K + λ > 0. Analogouly, for x ≤ 0, (37) 
V (x) + W π(x) ≤ (K + λ)x + V (0) -λ yπ(y)dy, which implies lim x→-∞ γ(x) = -∞. Hence, lim x→-∞ γ -1 (x) = 0. 2
Remark 1. Using (33) and (12), we can solve Lg = f c = f -R f (y)π θ (y)dy and obtain

g (x) = 2 σ 2 π θ (x) x -∞ f c (y)π θ (y)dy = - 2 σ 2 π θ (x) +∞ x f c (y)π θ (y)dy.
The above relation holds since +∞ -∞ f c (x)π θ (x)dx = 0. By Proposition 9, Condition (35) holds, so that, for all f ∈ L 2 (π θ (x)dx), the integral

σ 2 (f c ) = σ 2 R (g (x)) 2 π θ (x)dx = 4σ -2 R π -1 θ (x) x -∞ f c (y)π θ (y)dy 2 dx < ∞.
We can choose g(u)

= u 0 g (v)dv. Note that σ 2 (f c ) < ∞ is not obvious as π -1 θ (x)dx = +∞.
8. Proofs of Section 2.

Proof of Proposition 1. Under the assumptions of the proposition, (1) admits a unique invariant distribution having a finite second order moment. For the proof, set

V (α, .) = V , W (β, .) = W , π θ = π, K(α) = K, λ(β) = λ. By [H1], for all x ∈ R, V (x) ≥ K x 2 2 + V (0)x. And, as W is even, for all x ∈ R, W (x) ≥ λ x 2 2 . Therefore, W π(x) = R W (x -y)π(y)dy ≥ R λ (x -y) 2 2 π(y)dy = λ x 2 2 -λx R yπ(y)dy + λ 2 R y 2 π(y)dy.
Hence, the result.2

Proofs of Section 3

We first study the properties of the nonparametric estimator of π θ . 9.1. Proofs of Section 3.2. We study the properties of the nonparametric estimator of π θ under P θ .

Proof of Theorem 1.

(1) The beginning of the proof is classical (see Proposition 3.3 in [START_REF] Comte | Estimation nonparamétrique. 2nd Edition[END_REF] or [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF]). Set π θ = π, E θ = E. We have:

E π T (x) = R K h T (y -x)π(y)dy = K h T π(x) = K(v)π(x + vh T )dv.
By the Taylor formula, π(x

+ vh T ) -π(x) = vh T 1 0 π (x + τ vh T )dτ . As vK(v)dv = 0, E π T (x) -π(x) = vh T K(v)F (x, v)dv, F (x, v) = 1 0 [π (x + τ vh T ) -π (x)]dτ.
We apply the generalized Minkowski inequality which states that, for all r,

X V F (x, v)dν(v) r dµ(x) 1 r ≤ V X F r (x, v)dµ(x) 1 r dν(v) with r = 2, dµ(x) = (1 + |x| p )dx, dν(v) = |v|K(v)dv. This yields (38) 
R (1 + |x| p )(E π T (x) -π(x)) 2 dx ≤ h 2 T |v|K(v)dv F 2 (x, v)(1 + |x| p )dx 1/2 2
.

Next, we apply a second time the generalized Minkowski inequality with r = 2, dµ(x) = (1 + |x| p )dx, dν(τ ) = 1 [0,1] (τ )dτ . This yields

F 2 (x, v)(1 + |x| p )dx 1/2 ≤ 1 0 dτ (1 + |x| p )[π (x + τ vh T ) -π (x)] 2 dx 1/2
Now, we study, for t ∈ R,

(1 + |x| p )[π (x + t) -π (x)] 2 dx 1/2
Using the Taylor formula and the Cauchy-Schwarz inequality yields

[π (x + t) -π (x)] 2 ≤ t 2 1 0 [π (x + ut)] 2 du where π (x) = π(x)h(x), h(x) = - 2 σ 2 [b (x) + Φ π(x)] + 4 σ 4 [b(x) + Φ π(x)] 2 ] By [S1], we check that |h(x)| (1 + |x| 2 ). Thus, [π (x + t) -π (x)] 2 t 2 1 0 π 2 (x + ut)(1 + x 2 + (ut) 2 )du.
This implies,

(1 + |x| p )[π (x + t) -π (x)] 2 dx t 2 (1 + |x| p ) 1 0 π 2 (x + ut)(1 + x 2 + (ut) 2 )du t 2 1 0 du (1 + |x| p )π 2 (x + ut)(1 + x 2 + (ut) 2 )dx t 2 1 0 du (1 + |y -ut| p )π 2 (y)(1 + (y -ut) 2 + t 2 )dy.
Now, |y -ut| p (|y| p + |t| p ) and (y -ut) 2 (y 2 + t 2 ). Thus,

(1 + |x| p )[π (x + t) -π (x)] 2 dx t 2 (1 + (|y| p + |t| p ))(1 + y 2 + t 2 ))π 2 (y)dy = t 2 f (t),
where f is a positive continuous function on R. Next, using ( 38)

R (1 + |x| p )(E π T (x) -π(x)) 2 dx h 2 T dv|v|K(v) 1 0 dτ |τ vh T | f (τ vh T )dτ 2 .
We note that 0 < h T < 1, K has compact support [-A, A] and finally obtain

R (1 + |x| p )(E π T (x) -π(x)) 2 dx h 4 T v 2 K(v)dv 2 sup t∈[-A,A] f (t).
(2) Next, we study the mean integrated variance term. The proof uses definitions ( 12), ( 33), Proposition 1, Proposition 9 and Remark 1. [START_REF] Comte | Estimation nonparamétrique. 2nd Edition[END_REF]). Recall that K is even. We start by a property of the invariant distribution. For all (x, z),

Let F π (x) = x -∞ π(v)dv and set h T = h, K h T = K h (see
π(z) π(x) = exp {- 2 σ 2 [V (z) -V (x) + W π(z) -W π(x)]}.
Using (36), we get, for 0

≤ x ≤ z, V (z) -V (x) + W π(z) -W π(x) ≥ z x [(K + λ)t + c]dt = (K + λ) 2 (z 2 -x 2 ) + c(z -x),
where

K = K(α), λ = λ(β), c = ∂V ∂x (0) -λ yπ(y)dy. Therefore, ( 39 
) for 0 ≤ x ≤ z, π(z) π(x) ≤ exp [C(z -x)], C = - 2 σ 2 c.
Analogously, using (

z ≤ x ≤ 0, π(z) π(x) ≤ exp [C(z -x)], C = - 2 σ 2 c. 37), (40) for 
Now, we have:

π T (x) -E π T (x) = 1 T T 0 (K h (X t -x) -EK h (X t -x)) dt.
For each x, we look for

f x ∈ D such that Lf x (y) = -[K h (y -x) - R K h (z -x)π(z)dz]. Using (33) and Remark 1, we take f x (u) = u 0 g x (v)dv where g x (u) = 2 σ 2 π(u) u -∞ K h (y -x) - R K h (z -x)π(z)dz π(y)dy = - 2 σ 2 π(u) +∞ u K h (y -x) - R K h (z -x)π(z)dz π(y)dy Equivalently, g x (u) = - 2 σ 2 π(u) u -∞ K h (y -x)π(y)dy -F π (u) R K h (z -x)π(z)dz = - 2 σ 2 π(u) +∞ u K h (y -x)π(y)dy -(1 -F π (u)) R K h (z -x)π(z)dz .
By the Ito formula,

f x (X T ) -f x (X 0 ) = σ T 0 g x (X t )dW t + T 0 Lf x (X t )dt.
Therefore,

π T (x) -E π T (x) = - σ T T 0 g x (X t )dW t + 1 T [f x (X T ) -f x (X 0 )].
This implies

E ( π T (x) -E π T (x)) 2 ≤ 2 σ 2 T Eg 2 x (X 0 ) + 4 T 2 Ef 2
x (X 0 ). Therefore, it remains to prove that ( 41)

I = R (1 + |x| p )Eg 2 x (X 0 )dx < +∞, J = R (1 + |x| p )Ef 2 x (X 0 )dx < +∞.
Consider first I:

I = R (1 + |x| p ) R g 2 x (u)π(u)dudx = 4 σ 4 (I + + I -) with I + = u>0 1 π(u) du R (1 + |x| p ) +∞ u K h (y -x) - R K h (z -x)π(z)dz π(y)dy 2 dx ≤ 2(I (1) 
+ + I

+ ), where

I (1) + = u>0 1 π(u) du R (1 + |x| p ) +∞ u K h (y -x)π(y)dy 2 dx I (2) + = u>0 du (1 -F π (u)) 2 π(u) R (1 + |x| p )[ R K h (z -x)π(z)dz] 2 dx
and

I -= u<0 1 π(u) du R ((1 + |x| p ) u -∞ K h (y -x) - R K h (z -x)π(z)dz π(y)dy 2 dx ≤ 2(I (1) 
-+ I (2) 
-), with

I (1) - = u<0 1 π(u) du R (1 + |x| p ) u -∞ K h (y -x)π(y)dy 2 dx I (2) - = u<0 du (F π (u)) 2 π(u) R (1 + |x| p )[ R K h (z -x)π(z)dz] 2 dx.
Consider first I

+ . By the change of variables v = (y -x)/h, we obtain

I (1) + = u>0 1 π(u) du R (1 + |x| p ) (x+hv)≥u K(v)π(x + hv)dv 2 dx = u>0,v,v ∈[-A,A] 1 π(u) K(v)K(v )dudvdv (x+hv)≥u,(x+hv )≥u π(x + hv)π(x + hv )(1 + |x| p )dx.
By [START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF], for 0

≤ u ≤ x + hv, π(x+hv) π(u) ≤ exp C(x + hv -u) and for 0 ≤ u ≤ x + hv , π(x+hv ) π(u) ≤ exp C(x + hv -u). This implies, for 0 < h < 1, v, v ∈ [-A, A], π(x + hv)π(x + hv ) ≤ π 3/2 (u)π 1/2 (x + hv ) exp [(3C/2)(x -u) + Chv + (C/2)hv )] ≤ π 3/2 (u)π 1/2 (x + hv ) exp [(3C/2)(x -u)] exp (3A|C|/2).
Thus,

I (1) + ≤ u>0,-A≤v,v ≤A e (-2Cu) π 3/2 (u) π(u) K(v)K(v )dudvdv R e [(3C/2)x)] π 1/2 (x + hv )(1 + |x| p )dx. Now, since v ∈ [-A, A], R exp [(3C/2)x)]π 1/2 (x + hv )(1 + |x| p )dx R exp [(3|C|/2)(|z| + A))]π 1/2 (z)(1 + (|z| + A) p )dz := B < +∞.
Thus,

I (1) + B u>0,v,v ∈[-A,A] exp (-2Cu)π 1/2 (u)K(v)K(v )dudvdv = B u>0 exp (-2Cu)π 1/2 (u)du < +∞.
Now, we look at the other term I

+ . It holds that

I (2) + = u>0 du (1 -F π (u)) 2 π(u) v,v ∈[-A,A] K(v)K(v ) R (1 + |x| p )[π(x + hv)π(x + hv )dxdvdv u>0 du (1 -F π (u)) 2 π(u) R (1 + (|z| + A) p ))π(z)dz u>0 du (1 -F π (u)) 2 π(u) , as π is bounded. Now, u>0 du (1 -F π (u)) 2 π(u) = 2 +∞ 0 du π(u) u<v<v π(v)π(v )dvdv For 0 ≤ u ≤ v ≤ v , using (39) 
,

π(v)π(v ) = [π(v)π(v )] 1/4 [π(v)π(v )] 3/4 ≤ [π(v)π(v )] 1/4 [π(u)] 3/2 exp (C(v + v -2u).
Therefore,

u>0 du (1 -F π (u)) 2 π(u) ≤ 2 +∞ 0 π 1/2 (u) exp (-2Cu)du +∞ 0 exp (Cv)π 1/4 (v)dv 2 < +∞.
The term I -can be treated analogously using [START_REF] Rosier | Nadaraya-Watson Estimator for I.I.D. Paths of Diffusion Processes[END_REF]. Hence the first integral I of ( 41) is finite. We turn to the second one.

J = (1 + |x| p )π(u)( u 0 g x (v)dv) 2 dxdu ≤ J + + J -, with 
J + = (1 + |x| p ) u>0 uπ(u) u 0 g 2 x (v)dvdudx, J -= (1 + |x| p ) u<0 π(u)|u| 0 u g 2 x (v)dvdudx.
We only treat J + as J -is analogous. We have

g x (v) = - 2 σ 2 π(v) x+hz≥v K(z)π(zh + x)dz -(1 -F π (v)) K(z)π(x + zh)dz , so that g 2 x (v) ≤ 4 σ 4 1 π 2 (v) x+hz≥v K(z)π(zh + x)dz 2 + (1 -F π (v)) 2 ( K(z)π(x + zh)dz) 2 . Thus, J + ≤ 4 σ 4 (J (1) 
+ + J

+ ) where

J (1) + = (1 + |x| p ) u>0 π(u)u u 0 1 π 2 (v) x+hz≥v K(z)π(zh + x)dz 2 dudvdx J (2) + = (1 + |x| p ) u>0 π(u)u u 0 1 π 2 (v) (1 -F π (v)) 2 ( K(z)π(x + zh)dz) 2 dudvdx.
We look at J

+ .

J

+ = (1 + |x| p ) u>0 π(u)u u 0 1 π 2 (v) x+zh≥v,x+z h≥v K(z)K(z )π(zh + x)π(z h + x)dzdz dudvdx. (1) 
For 0 < v < u and v ≤ x + zh, v ≤ x + z h, we write

π(u)π(x + zh)π(x + z h) π 2 (v) = π 1/3 (u)[ π(u) π(v) ] 2/3 [ π(x + zh) π(v) ] 2/3 [ π(x + z h) π(v) ] 2/3 [π(x+zh)π(x+z h)] 1/3
where

[ π(u) π(v) ] 2/3 [ π(x + zh) π(v) ] 2/3 [ π(x + z h) π(v) ] 2/3 ≤ exp (2/3)C(u -v) exp ((2/3)C(x + zh -v) exp ((2/3)C(x + z h -v).
Therefore, as π is bounded, J

+ u>0

uπ 1/3 (u) u 0 exp (-2Cv)dv K(z)K(z ) R [π(x + zh)] 1/3 (1 + |x| p ) exp [(2/3)C(x + (z + z )h]dx dzdz du u>0 uπ 1/3 (u) u 0 exp (-2Cv)dvdu × R π 1/3 (y)(1 + |y| + A) p ) exp [(2/3)Cy]dy < +∞.
The fact that J

+ < +∞ is simpler and omitted. Therefore, we conclude that [START_REF] Masuda | Non-Gaussian quasi-likelihood estimation of SDE driven by locally stable Lévy process[END_REF] holds which implies the result.2

Proof of Theorem 2. Set π θ = π, E θ = E again. We study

I T = dy √ T ( π T (y) -E π T (y))ψ(y)dy, (42) 
with, for some non negative c, |ψ(x [START_REF] Molginer | A non-local model for a swarm[END_REF] and S(ξ) = ψ(ξ) -ψ(y)π(y)dy. As ψ is C 1 and 0 < h < 1,

)| + |ψ (x)| ≤ c(1 + |x| c ). Set F h (ξ, y) = K h (ξ -y) -K h π(y) = K h (ξ -y) -K(v)π(y + vh)dv. Thus, I T = 1 √ T T 0 S h T (X s )ds with S h (ξ) = dyψ(y)F h (ξ, y) = K(τ )ψ(ξ + τ h)dτ -dyψ(y) K(v)π(y + vh)dv = S(ξ) + K(τ )[ψ(ξ + τ h) -ψ(ξ)]dτ -dyψ(y) K(v)[π(y + vh) -π(y)]dv ( 
|ψ(ξ + hτ ) -ψ(ξ)| = |hτ 1 0 ψ (ξ + huτ )du| |hτ |(1 + |ξ| c + |τ | c ).
Therefore, as K is compactly supported,

| K(τ )[ψ(ξ + τ h) -ψ(ξ)]dτ | |h| (1 + |ξ| c ) |K(τ )|dτ + |K(τ )||τ | c dτ |h|(1 + |ξ| c ).
For the third term of ( 43), we can write: This yields:

dyψ(y) K(v)[π(y + vh) -π(y)]dv = dyψ(y) K(v)hv
E θ 1 √ T T 0 [S h T (X s ) -S(X s )]ds 2 ≤ T [S h T (x) -S(x)] 2 π(x)dx = T h 2 T O(1),
which implies

I T = 1 √ T T 0 S(X s )ds + O( √ T h T ).
By Propositions 8 and 9, we can find g ∈ L 2 (π) such that Lg = -S with g(x) =

x 0 g (u)du, g given by ( 21) and

1 √ T T 0 S(X s )ds = σ √ T T 0 g (X s )dW s + 1 √ T (g(X 0 ) -g(X T ) where 1 √ T (g(X 0 ) -g(X T ) = O P ( 1 √ T ) as (X t
) is stationary and g ∈ L 2 (π). Therefore, (42) can be written as

I T = σ √ T T 0 g (X s )dW s + O P ( 1 √ T ) + O P ( √ T h T ).
The proof of Theorem 2 is complete. 2

Proof of Corollary 1. We write

√ T ( π T (y) -π(y)) = √ T ( π T (y) -E π T (y)) + √ T (E π T (y) -π(y)). Next, choosing p -2c > 1, ψ(y) √ T (E π T (y) -π(y))dy 2 ≤ ψ 2 (y) 1 + |y| p ) dy × dy(E √ T ( π T (y) -π(y)) 2 (1 + |y| p )dy T h 4 T .
Thus,

ψ(y) √ T ( π T (y) -π(y))dy = ψ(y) √ T ( π T (y) -E π T (y))dy + O( √ T h 2 T ).
Thanks to Theorem 2 and the central limit theorem [START_REF] Kasonga | Maximum likelihood theory for large interacting systems[END_REF], the proof of Corollary 1 is complete.2 9.2. Proofs of Section 3.3. Assumptions [H2]-[H3] ensure that all the functions used in the proofs below satisfy the assumptions of Lemma 1 and Lemma 2. As for the likelihood, we have to study Λ T (θ) -Λ T (θ 0 ).

Proof of Proposition 5. We can write

σ 2 (Λ T (θ) -Λ T (θ 0 )) = - 1 2 2T T ( S(θ, X s ) -S(θ 0 , X s )) 2 ds + 2T T ( S(θ, X s ) -S(θ 0 , X s ))Φ(β 0 , .) ( π T -π θ 0 )(X s )ds + σ 2T T ( S(θ, X s ) -S(θ 0 , X s ))dW s = A T + B T + C T .
Under P θ 0 , by Lemma 1,

1 T 2T T (Φ(β, .) -Φ(β 0 , .)) ( π T -π θ 0 )(X s )ds = O P ( 1 √ T ) + O P (h 2 T ). Therefore, 1 T A T → - 1 2 [-b(α, x) + b(α 0 , x) -(Φ(β, .) -Φ(β 0 , .)) π θ 0 (x)] 2 π θ 0 (x)dx.
For the second term,

1 T B T = O P ( 1 √ T ) + O P (h 2 
T ) → 0 by Lemma 1. For C T , we have that 1

T < C T >= 1 T A T , so that, by the central limit theorem for stochastic integrals, 1 √ T C T converges in distribution. This implies 1 T C T → 0. Joining these results yields that, under P θ 0 . , using ( 14

), 1 T (Λ T (θ) -Λ T (θ 0 )) → -1 2σ 2 K(θ 0 , θ). 2 
Proof of Proposition 6. To obtain the limiting distribution of the normalized MCE under P θ , we need study the derivatives of the contrast with respect to the parameters α = (α j , j = 1, . . . d), β = (β k , k = 1 . . . , d ). Using (3) yields

σ 2 ∂Λ T ∂α j (θ) = - 2T T [ ∂b ∂α j (α, X t )]]dX t + 2T T S(θ, X t ) ∂b ∂α j (α, X t )]dt σ 2 ∂Λ T ∂β k (θ) = - 2T T ∂Φ ∂β k (β, .) π T (X t )dX t + 2T T S(θ, X t ) ∂Φ ∂β k (β, .) π T (X t )dt σ 2 ∂ 2 Λ T ∂α j ∂α j (θ) = - 2T T ∂ 2 b ∂α j ∂α j (α, X t )dX t + 2T T S(θ, X t ) ∂ 2 b ∂α j ∂α j (α, X t )dt - 2T T ∂b ∂α j (α, X t ) ∂b ∂α j (α, X t )dt σ 2 ∂ 2 Λ T ∂α j ∂β k (θ) = - 2T T ∂Φ ∂β k (β, .) π T (X t ) ∂b ∂α j (α, X t )dt σ 2 ∂ 2 Λ T ∂β k ∂β k (θ) = - 2T T ∂ 2 Φ ∂β k ∂β k (β, .) π T (X t )dX t + 2T T S(θ, X t ) ∂ 2 Φ ∂β k ∂β k (β, .) π T (X t )dt - 2T T ∂Φ ∂β k (β, .) π T (X t ) ∂Φ ∂β k (β, .) π T (X t )dt Therefore, using that S(θ, x) -S(θ, x) = -Φ(β, .) ( π T -π θ )(x) (see (24)), σ 2 ∂ 2 Λ T ∂α j ∂α j (θ) = - 2T T ∂ 2 b ∂α j ∂α j (α, X t )Φ(β, .) ( π T -π θ )(X t )dt -σ 2T T ∂ 2 b ∂α j ∂α j (α, X t )dW t - 2T T ∂b ∂α j (α, X t ) ∂b ∂α j (α, X t )dt = A T + B T + C T Applying Lemma 1 yields that 1 T A T is o P (1)
. By the central limit theorem for stochastic integrals, 1 √ T B T converges in distribution so that 1 T B T is o P (1). The last term satisfies 1 T C T → -∂b ∂α j (α, x) ∂b ∂α j (α, x)π θ (x)dx a.s..

Lemma 1 and the ergodic theorem yield that

σ 2 T ∂ 2 Λ T ∂α j ∂β k (θ) → a.s. -∂b ∂α j (α, x) ∂Φ ∂β k (β, .) π θ (x)π θ (x)dx. Finally, σ 2 ∂ 2 Λ T ∂β k ∂β k (θ) = 2T T ∂ 2 Φ ∂β k ∂β k (β, .) π T (X t )Φ(β, .) ( π T -π θ )(x)dt + σ 2T T ∂ 2 Φ ∂β k ∂β k (β, .) π T (X t )dW t - 2T T ∂Φ ∂β k (β, .) π T (X t ) ∂Φ ∂β k (β, .) π T (X t )dt
Similarly, the first two terms of the equation above are o P (T ) and

σ 2 T ∂ 2 Λ T ∂β k ∂β k (θ) → -∂Φ ∂β k (β, .) π θ (x) ∂Φ ∂β k (β, .) π θ (x)π θ (x)dx. 2 
Proof of Theorem 3. To simplify notations, we do the proof for d = d = 1. We have:

σ 2 √ T ∂Λ T ∂α (θ) = - σ √ T 2T T ∂b ∂α (α, X t )dW t + 1 T 2T T ∂b ∂α (α, X t )[Φ(β, .) √ T (π θ -π T ) (X t )dt
Using the notations of Lemmas 1 and 2, we can write:

- 1 T 2T T ∂b ∂α (α, X t )[Φ(β, .) √ T (π θ -π T ) (X t )dt = √ T D 11 (ϕ 0 , H 0 ) + √ T D 12 (ϕ 0 , H 0 ) with ϕ 0 = ∂b ∂α (α, .), H 0 = Φ(β, .). Thus √ T D 11 (ϕ 0 , H 0 )+ √ T D 12 (ϕ 0 , H 0 ) = σ √ T T 0 g (θ, X s )dW s +O P (h T √ T )+O P ( 1 √ T )+O P ( √ T h 2 T )
where g(θ, .) is given by Lg(θ, .)(y) = -S(y) with

S(y) = Ψ(θ, y) -Ψ(θ, z)π θ (z)dz, Ψ(θ, y) = ∂b ∂α (α, x)Φ(β, x -y)π θ (x)dx
and L is the infinitesimal generator given by ( 11)- [START_REF] Kessler | Statistical methods for stochastic differential equations[END_REF]. Therefore,

σ 2 √ T ∂Λ T ∂α (θ) = - σ √ T 2T 0 1 [T,2T ] (t) ∂b ∂α (α, X t ) + 1 [0,T ] (t)g (θ, X t ) dW t + o P (1).
Next,

σ 2 √ T ∂Λ T ∂β (θ) = - σ √ T 2T T ∂Φ ∂β (β, .) π T (X t )dW t + 2T T
( S(θ, X s ) -S(θ, X s )) ∂Φ ∂β (β, .) π T (X s )

Therefore, using (2),( 24) The convergence in distribution follows from the central limit theorem (32). 2 10. Proofs of Section 5.

σ 2 √ T ∂Λ T ∂β (θ) = - σ √ T 2T T ∂Φ ∂β (β, .) π θ (X t )dW t - 1 √ T 2T T ∂Φ ∂β (β, .) π θ (X s ) × Φ(β, .) ( π T -π θ )(X s )ds
Proof of Lemma 1.

We have: The term I T has been studied in Theorem 2 and satisfies

I T = σ √ T T 0 g (X s )dW s + O P ( 1 √ T ) + O P ( √ T h T )
with g given in Lemma 2. We now prove that J T = O(1/ √ T ). We have

J 2
T ≤ (1 + |y| p )T ( π T (y)) -E θ π T (y)) 2 dy × ∆ 2 T (X s , y) dy (1 + |y| p ) .

We have already seen that the first factor above is O P [START_REF] Amorino | Invariant density adaptive estimation for ergodic jump diffusion processes over anisotropic classes[END_REF]. It remains to check that the second one tends to 0 for well chosen p. Set L(ξ, y) = ϕ(ξ)H(ξ -y) -ψ θ (y).

Define G y such that LG y = -L(ξ, y), i.e. G y (x) = Choosing p -4c > 1, this yields, using [START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF],

|I + | 0<z<z π θ (z)π θ (z ) π θ (v) ] 2/3 ][π θ (z)π θ (z )] 1/3
[π θ (x)] 1/3 [π θ (z)π θ (z )] 1/3 e (2/3)C(x-v) e (2/3)C(z-v) e (2/3)C(z -v) .

Thus, We can proceed analogously for J -. Finally, we find that J T = O P ((1/ √ T ). 2

J + x>0,

Theorem 2 .

 2 Assume [H4], [S1]. Then, if ψ : R → R is a C 1 function such that ψ and ψ have polynomial growth, under P θ ,

1 0π 1 0

 11 (y + hτ v)dτ dv = dτ hvK(v)dv dzψ(z -hτ v)π (z). By our assumptions, |π (z)| π(z)(1 + |z| c ) and for v ∈ [-A, A], |ψ(z -hτ v)| (1 + |z| c + A c). This yields dyψ(y) K(v)[π(y + vh) -π(y)]dv |h|. Therefore, |S h (ξ) -S(ξ)| |h|(1 + |x| c ).

2 B 2 ,T = - σ √ T T 0 h

 220 .) ( π T -π θ )(X s ) Φ(β, .) ( π T -π θ )(X s )ds -.) ( π T -π θ ) (X t )dW t . The third integral is in the form of D(H, G) = 1 √ T 2T T H ( π T -π θ )(X t )G (π T -π θ )(X t )dt is O P (1/ √ T ) by Lemma 1. We have 1 T 2T T [ ∂Φ ∂β (β, .) ( π T -π θ ) (X t )] 2 dt = o P (1) by Lemma 1, so that, .) ( π T -π θ ) (X t )dW t = o P (1). .) π θ (X s ) × Φ(β, .) ( √ T ( π T -π θ ))(X s )ds = √ T ( π T (y) -π θ (y.) π θ (X s ) × Φ(β, X s -y)ds.Setting Ξ(θ, y) = ∂Φ ∂β (β, .) π θ (x) × Φ(β, x -y)π θ (x)dx, we have, applying Theorem (X s )dW s + o P (1), with h satisfying Lh = -(Ξ(θ, .) -Ξ ( θ, y)π θ (y)dy). Therefore,σ 2 √ T ∂Λ T ∂β (θ) = -σ √ T 2T T ∂Φ ∂β(β, .) π θ (X t )dW t -σ √ T T 0 h (X s )dW s + o P (1).

D 11 (/2 1 TT( 1 + 1 TT 2 ≤ 2T T( 1 ++ y 2c 1 + |y| p dy 1 For D 22 2 Proof of Lemma 2 .

 1111122T1112222 s ) H(X s -y))( π T (y) -E θ π T (y))dy ds= ( π T (y) -E θ π T (y)) 1 T 2T T ϕ(X s )H(X s -y))ds dyBy assumption, there exists a constant c > 0 such that , for all x, |ϕ(x)| + |H(x)| ≤ c(1 + |x| c ). Therefore, |ϕ(x)H(x -y)| (1 + |x| 2c )(1 + |y| 2c ). Choosing p -4c > 1, this implies |D 11 (ϕ, H)| ( π T (y) -E θ π T (y)) 2 (1 + |y| p )dy (1 + |y 2c ) 2 1 + |y| p dy 12T |X s | 2c ds Now, 2T (1+|X s | 2c )ds = O P (1)and by the concavity of x → √x and Proposition 2, we obtainE θ ( π T (y) -E θ π T (y)) 2 (1 + |y| p )dy 1/E θ ( π T (y) -E θ π T (y)) 2 (1 + |y| p )dyThe proof for D 12 (ϕ, H) is identical except that we replace π T (y) -E θ π T (y) by E θ π T (y)π θ (y) and use Proposition 1 instead of Proposition 2.We haveD 21 (H, G) = 1 T 2T T H(X s -y))( π T (y) -E θ π T (y))G(X s -z))( π T (z) -E θ π T (z))dydz ds = ( π T (y) -E θ π T (y))( π T (z) -E θ π T (z)) 1 T 2T T H(X s -y))G(X s -z)ds dydz Using that H 2 (x -y) (1 + |x| 2c )(1 + y 2c ) and G 2 (x -z) (1 + |x| 2c )(1 + z 2c ) yields s -y))G(X s -z)ds| 1 T X 2c s )ds[(1 + y 2c )(1 + z 2c )] 1/2 .Thus, choosing p such that p -2c > 1 and applying Proposition 2 yields|D 21 (H, G)| | π T (y) -E θ π T (y)|(1 + y 2c ) (y) -E θ π T (y)) 2 (1 + |y| p )dy 1 (H, G),we proceed analogously applying Proposition 1. For D 23 (H, G), we use the Cauchy Schwarz inequality and the above to conclude. By assumption, there exists a constant c > 0 such that , for all x, |ϕ(x)| + |H(x)| ≤ c(1 + |x| c ). We can write √ T (D 11 (ϕ, H) = I T + J T , where I T = dy √ T ( π T (y) -E θ π T (y))ψ θ (y)dy, ψ θ (y) = ϕ(x)H(x -y)π θ (x)dx, J T = dy √ T ( π T (y) -E θ π T (y))∆ T (X s , y) where ∆ T (X s , y) = 1 T 2T T ϕ(X s )H(X s -y)ds -ψ θ (y).

x 0 G 2 R G 2 y 2 y 1 +

 02221 y (ξ)dξ withG y (ξ) = -2 σ 2 π θ (ξ) ξ -∞ L(z, y)π θ (z)dz = 2 σ 2 π θ (ξ) +∞ ξ L(z, y)π θ (z)dz.We haveE∆ 2 T (X s , y) ≤ 2σ 2 T R (G y (x)) 2 π θ (x)dx + 4 T (x)π θ (x)dx. (x)) 2 π θ (x)dx dy, J = (x)π θ (x)dx dy.We have I = I + + I -where , y)π θ (z)dz 2 dx dy We only treat I + as the other one is analogous. By the assumptions of polynomial growth, we have |L(z, y)| 1 + |y| 2c + |z| 2c and if z < z , |L(z, y)L(z , y)| 1 + |y| 4c + |z | 4c . Therefore, we can write: y)L(z , y)π θ (z)π θ (z |y| p L(z, y)L(z , y) dzdz .

e

  0<v<x,v<z dxdvdz x[π θ (x)] 1/3 e (2/3)Cz e -Cv [π θ (z)] 1/3 +∞ z [π θ (z )] 1/3 (1 + |z | 4c )e (2/3)Cz dz -Cv dv)[π θ (x)] 1/3 dx +∞ 0 [π θ (z)] 1/3 e (2/3)Cz dz < +∞.

  d .

	Next, define the square d + d matrix		
	(29)	H(θ) =	H 11 (θ) H 12 (θ) [H 12 (θ)] H 22 (θ)	,

where H 11 ,H 12 , H 22 are respectively the d × d, d × d and d × d matrices for j, j = 1, . . . , d, k, k = 1, . . . , d ,