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Harmonic disturbance compensation of a system
with long dead-time, design and experimental

validation*
Can Kutlu Yüksel, Tomáš Vyhlídal#, Jaroslav Bušek, Milan Anderle, Silviu-Iulian Niculescu

Abstract—An internal model control scheme is proposed to
compensate both a long dead-time of a system and a harmonic
disturbance. The controller is based on an inversion of the first-
order model used to approximate the system dynamics together
with an input delay. Two other components of the controller
consist of a filter and an additional delay by which the harmonic
modes are targeted via adjusting the control loop gain and
phase shift. The design of the filter-delay pair is fully analytical
and the implementation of the scheme is straightforward. The
main attention is paid to the complete compensation of a single
harmonic disturbance. Besides, an extension of the scheme is
proposed to target a double harmonic disturbance. Increased
attention is paid to the robustness aspects of the schemes.
Outstanding performance in terms of harmonic disturbance
compensation of the proposed schemes is demonstrated on a
series of laboratory experiments.

Index Terms—Periodic disturbance, internal model, time delay,
frequency methods

I. INTRODUCTION

The ability of a system to generate accurate periodic signals
is of crucial importance when the system is subjected to such
signals either in the form of reference or disturbance. If it is
desired to make the system work repetitively, such as for a
robotic manipulator, then the system is fed with a periodic
reference. On the other hand, if there are rotating or vibrating
elements in the working environment, the system may have
to execute its task despite the disturbances caused by the
environment with periodic characteristics. Regardless of how
this periodic signal enters the system, the successful execution
of both tasks depends on the ability of the control system to
generate a periodic signal.

Arguably, the most common starting point for designing
such controllers is the Internal Model Principle (IMP). First
studied by Francis and Wonham [1], the IMP states that a
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control system can achieve asymptotic tracking or rejection of
an exogenous signal if the closed-loop encompasses a model
of the signal (explicitly or implicitly) and is stable.

A particularly popular realization of the Internal Model
Principle is the Repetitive control which uses a generic time-
delay model for periodic signals. The inclusion of a generic
compensator with a time-delay in the closed-loop brings
universal signal coverage; however, introducing a time-delay
sub-system with a marginally stable character raises questions
about the stability of the resulting control system.

To the best of the authors’ knowledge, the first repetitive
control design was introduced by Inoue et al. [2] to gener-
ate a specific periodic power signal required for the proton
synchrotron. The initial stability conditions derived in [2],
using the Small Gain Theorem, showed that the error stayed
bounded for continuous-time proper systems, but did not yield
anything for strictly proper systems. Later Hara et al. proved
in [3] that the repetitive control system in [2] cannot be
exponentially stable for strictly proper systems, and addressed
this issue by proposing the modified repetitive control in
which a low-pass filter is attached to the time-delay present
in the signal model. In parallel, the discrete-time counterpart
of the repetitive control was studied by Tomizuka et al. [4],
and appropriate conditions for asymptotic convergence were
derived.

A high-order repetitive controller design obtained by replac-
ing the time-delay component with an exponential polynomial
was proposed in [5]. The weights in the polynomial allowed
the controller to be tuned to further improve the non-periodic
performance of the repetitive control structure. It was also
proven in [6] and [7] that such a modification is also ben-
eficial in improving the robustness of the system to uncertain
frequency. Based on the original concepts, the extension of
repetitive control to more sophisticated systems has received
increasing attention. For instance, some nonlinear applications
have been carried out using sliding mode control [8], factor-
ization methods [9], and appropriate passivity properties [10].
Finally, techniques that deal with time-delay systems have
been addressed in [11], [12], [13] and [14].

To emphasize the significance of repetitive control, we
would like to highlight some of its recent applications, e.g.
in electrical stimulation-based wrist tremor suppression [15],
nanopositioning stages for high-speed scanning [16], [17], see
also [18] for a problem solution with resonant controllers,
valve timing control for a digital displacement hydraulic motor
[19], see also related problem of harmonic vibration control
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of cantilever beam [20].
Nevertheless, despite the attention it has received, repetitive

control is not the only way to address periodic signals.
Alternative realizations of IMP can be carried out through
various control schemes and finite-dimensional signal models
in contrast to the infinite-dimensional model used by the
repetitive control. For instance, a controller for nonlinear
systems with finite-dimensional signal model was proposed
in [21]. Controllers that employ adaptive finite-dimensional
signal models were studied in [22] and [23]. A modified
Smith’s predictor design for removing periodic disturbance
from time-delay systems was discussed in [24]. Methods
based on schemes like feed-forward and estimated disturbance-
feedback were studied extensively in [25]. A different method
was considered by [26], where an observer is proposed to es-
timate a biased single-harmonic disturbance with an unknown
frequency, which is compensated by a nonlinear controller for
an electrohydraulic actuator. Finally, in [27], a controller for
tracking a multi-harmonic and time-varying periodic signal
was proposed.

In this paper, following the preliminary results in [28], we
propose and analyze a control scheme which compensates one
or two harmonic output disturbances under the presence of
long dead-time, i.e. dead-time larger than the system time
constant. From the point of view of robustness, despite the
filter-wise modifications, the repetitive compensator can bring
a certain stability risk due to the presence of the modes at or
near the stability boundary. The scheme we propose, which
is based on the application of Internal Model Control (IMC),
directly “targets” one or two modes. Thus, in our opinion, it is
much safer. Furthermore, all the delay terms are compensated
and the controller design is of finite order nature.

The rest of the paper is organized as follows. Problem
motivation and formulation are given in Section II. In Section
III, an IMC scheme with a third-order filter to suppress a single
harmonic disturbance is presented and analyzed. The prelim-
inary concepts proposed in [28] are supported by extensive
analysis and detailed proofs. Increased attention is given to
the robustness analysis against mismatch between nominal and
true excitation frequency. Additionally, the adjustment of the
scheme to suppress a two-mode harmonic signal is included.
Thorough experimental validation demonstrating the efficient
performance of the proposed schemes can be found in Section
IV. A brief summary of the paper and some discussions are
given in Section V.

II. PROBLEM FORMULATION

It is commonly accepted that complex dynamics of many
industrial processes can be captured by first- or second-order
models when combined with delay components [29], [30],
[31]. The low-order models essentially capture the dominant
time-constant and, if any, dominant oscillatory modes of the
complex process. The associated delay then captures all at
once the dead-time of the process and the effects of other
delay sources like transport or communication. As an example,
the hot-rolling mill, which formed the original motivation
to develop the controller proposed in this paper, can be

approximated by a first-order system with an input delay as
discussed in [28], despite the complex dynamics when shaping
the material. Likewise, the disturbances these processes are
exposed to, when a rotating element is involved within or
next to them, have a periodic form with one or two dominant
harmonics. For instance, once again in hot rolling mills, the
disturbance observed as surface defects are periodic with two
dominant harmonics and are caused by the rotating rolls with
eccentricities. For reasons stemming from these observations,
see e.g. [32] and [33], the paper proposes a controller design
for systems that can be approximated by a first-order model
with an input time delay of the form:

G(s) =
h(s)

H(s)
=

K

Ts+ 1
e−τms, (1)

with time constant T , static gain K and delay τm. The
resulting delay after approximation can end up being greater
than the identified time constant T , implying the need of
deliberate handling of the delay. Therefore, the goal of the
controller is to compensate for large delays and to suppress
the disturbances in the form:

d(t) = dd sin(ωdt+ ϕd) + ds sin(ωst+ ϕs) (2)

where ωd, ωs are target frequencies, dd, ds the amplitudes
and ϕd, ϕs phase shifts. At the first stage, a single frequency
case is assumed, i.e. ds = 0. Later on, the methodology is
extended to the double frequency problem. An experimental
validation of our method is proposed in Section IV, in which
the mechatronic set-up is designed to mimic the key aspects
of plate thickness control under roll eccentricity.

III. INTERNAL MODEL CONTROL SCHEME TO ATTENUATE
HARMONIC DISTURBANCE

As shown in [34], the Internal Model Control (IMC) [35]
is a favourable scheme to compensate a long input delay of a
system, i.e. the delay τm which is longer than the time constant
T of the considered model (1). Note that the IMC scheme was
studied in [36] to handle the periodic exogenous signals, but
without taking into account the input delay. The IMC with a
relatively complex filter was validated on the track-following
system of an optical disk drive. The proposed modification of

Fig. 1. Internal model control scheme for periodic disturbance compensation,
where d, r, y represent disturbance, set-point and controlled output; C is the
controller given by (7).

the standard IMC scheme to handle the periodic disturbance,
considered first as a single harmonic

d(t) = dd sin(ωdt+ ϕd), (3)
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is depicted in Fig. 1. The true system dynamics is considered
in the form

Gp(s) = Gi(s)e
−sτ , (4)

where Gi(s) is assumed as non-oscillatory, invertible (i.e.
free of non-minimum phase zeros) and possibly of higher
order subsystem, and τ is the input delay, representing, e.g., a
transportation phenomenon. The system (4) is assumed to be
approximated by the model

G(s) = Gm(s)e−sτm . (5)

Thus, for the considered model (1), we have

Gm(s) =
K

Ts+ 1
, (6)

and τm is the overall delay. If Gi(s) is of higher order, then
τm = τ + τd where τd approximates the Gi(s) dead-time.
In the design and analysis which follows, as well as in the
practical applications, it is assumed that the model (4) is not
known and only its approximation (5) is available obtained
from the process data by a standard identification method [37],
[31].

The controller is proposed as

C(s) =
e−sϑ

Gm(s)
F (s), (7)

where F (s) is a strictly proper filter satisfying

lim
s→0

F (s) = 1. (8)

Here, the delay ϑ is included for the purpose of harmonic
disturbance compensation. Notice that it is convenient to use
the approximate model (1) as it results in a low-complexity
controller (7) with the order determined by the filter order.

The sensitivity function of the IMC scheme with (7) in Fig. 1
is given by

S(s) =
y(s)

d(s)
=

1− 1
Gm(s)F (s)Gm(s)e−s(τm+ϑ)

1 + 1
Gm(s)F (s)

(
Gi(s)e−s(τ+ϑ) −Gm(s)e−s(τm+ϑ)

) , (9)

while the complementary sensitivity function is given by

T (s) =
y(s)

r(s)
=

1
Gm(s)F (s)Gi(s)e

−s(τ+ϑ)

1 + 1
Gm(s)F (s)

(
Gi(s)e−s(τ+ϑ) −Gm(s)e−s(τm+ϑ)

) . (10)

For the design purposes, assume that the model Gm(s) and
system Gi(s) transfer functions are identical and τm = τ in
the nominal form with the controller C(s) given by (7). Then,
the sensitivity functions can be simplified to

S(s) = 1− F (s)e−s(τm+ϑ), (11)

T (s) = F (s)e−s(τm+ϑ). (12)

A. Filter design

The design goal is to find a suitable IMC controller such that
it enables the system with long dead-time to asymptotically
track the reference r while 2π

ωd
-periodic signal d(t) acts on

the plant’s output as the external disturbance. Taking into
consideration the nominal form of the sensitivity function (11),
the filter should satisfy the following conditions:

Proposition 1: A filter F (s) and the delay ϑ satisfying the
following properties

|F (jωd)| = 1, (13)

argF (jωd) < 0, (14)

ϑ =
2lπ + argF (jωd)

ωd
− τm, (15)

with

l =

⌊
τmωd − argF (jωd)

2π

⌋
+ 1 (16)

lead to a complete compensation of the harmonic disturbance
(3) of the frequency ωd.
Proof. The total cancellation of the harmonic disturbance (3)
with frequency ωd leads to the condition

1− F (jωd)e
−jωd(τm+ϑ) = 0, (17)

which can be turned to

1− |F (jωd)|eargF (jωd)−jωd(τm+ϑ) = 0. (18)

This equality requires that (13) should hold simultaneously
with

argF (jωd)− ωd(τm + ϑ) = 2kπ, k = 0, 1, 3..., (19)

from which (15) is derived. Assuming (14), the selection of l
by (16) implies the smallest possible delay ϑ. □

In what follows, we propose a low-complexity filter with a
structure that is both easy to read and practical to implement.
The key benefit is also in its fully analytic parameterization.

Proposition 2: The filter in the form

F (s) = F̄ (s)F̃ (s), (20)

with
F̄ (s) =

αTfs+ 1

Tfs+ 1
, (21)

F̃ (s) =
Ω2

s2 + 2ξΩs+Ω2
, (22)

where the gain 0 < α < 1 and time constant

Tf >
α

1
α−1

ωd
(23)

are adjustable parameters, fulfills the conditions (13) and (14),
by setting

ξ =

√√√√1− Tfωd

√
1−α2

T 2
f ω

2
d+1

2
, (24)

Ω =
ωd√

1− 2ξ2
. (25)
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Proof. The magnitude of the filter (21) is given by:

|F̄ (jω)| =

√
α2T 2

f ω
2 + 1

T 2
f ω

2 + 1
. (26)

Since 0 < α < 1, (26) is a decreasing function with a limit

lim
ω→∞

|F̄ (jω)| = α. (27)

The filter also satisfies limω→0 |F̄ (jω)| = 1. In Fig. 2, other
important points of (26) in logarithmic scale are shown, see
the Appendix for the outline of their derivation. The inflection
point is at

PI =

[
1

Tf
√
α
,
√
α

]
. (28)

Note that the tangent of the response at this point is indepen-
dent of Tf and it is given as α−1

α+1 . The breaking points are
determined as

PL =

[
1

Tfα
α

α−1
, 1

]
, PR =

[
α

1
α−1

Tf
, α

]
. (29)

The inequality (23) implies that the point PR is located to the
left of ωd.

The magnitude of filter (22), also satisfying
limω→0 |F̃ (jω)| = 1, is given by:

|F̃ (jω)| = Ω2√
(Ω2 − ω2)2 + 4ξ2Ω2ω2

. (30)

Consider 0 < ξ < 1√
2

. Then the magnitude maximum
intentionally placed at the target frequency ωd, which results
to (25), satisfies |F̃ (jωd)| > 1 and takes place at the point

PM =

[
ωd,

1

2ξ
√
1− ξ2

]
. (31)

Thus, the target condition (13), shown in Fig. 2 at point PA =
[ωd, 1], leads to

1

2ξ
√
1− ξ2

∣∣F̄ (jωd)
∣∣ = 1. (32)

Equation (32) can be expressed as:

4ξ4 − 4ξ2 +
∣∣F̄ (jωd)

∣∣2 = 0, (33)

Fig. 2. Amplitude frequency response of the proposed filter (20) in logarith-
mic scale with the important design values and break points of its components
(21) and (22).

which yields the solutions:

ξ1..4 = ±

√√√√1±
√
1−

∣∣F̄ (jωd)
∣∣2

2
. (34)

Taking into account 0 < ξ < 1√
2

, the only solution within the
limits is given by (24), where (26) is substituted for |F̄ (jωd)|.
The argument shift of (20) at ωd is given by:

argF (jωd) = atan
−Tf (1− α)ωd

αT 2
f ω

2
d + 1

+ atan
−2Ωξωd

Ω2 − ω2
d

. (35)

Finally, as Ω > ωd, (14) applies too. □

B. Robustness analysis

First, we address robustness against variation between the
true and nominal target frequency ωd. Analogously to [38], the
tolerance of the control system to frequency variations of the
suppressed signal is characterized by the characteristic slope
of the cones observed in the magnitude-frequency curve of the
sensitivity at frequency ωd. The characteristic slope is defined
as:

κ := lim
∆v→+0

|S(j(ωd +∆v)| − |S(jωd)|
∆v

, (36)

where ∆v is the frequency variation. Since S(jωd) = 0,

κ = lim
∆v→+0

|S(j(ωd +∆v))|
∆v

= |S′(jωd)| . (37)

Intuitively, the lower the κ is, the wider the cone is, imply-
ing that the sensitivity is more stagnant to the disturbance
frequency and the system is less sensitive to its variations.
On the contrary, higher κ values imply increased sensitivity.
Consequently, in the case of rejection of periodic disturbances,
one wishes to make κ as small as possible for every consti-
tuting frequency. Interestingly, an estimate of the κ value can
be obtained in a simple way as follows:

Lemma 1: The value of the characteristic slope is predom-
inantly determined by

κ ∼= τm + ϑ+
1

ξΩ
(38)

Proof. To simplify the notations, consider ν = (τm+ϑ). Then

S′(s) = −F ′(s)e−sν + νF (s)e−sν

= νF (s)e−sν −
(
F̄ ′(s)F̃ (s) + F̄ (s)F̃ ′(s)

)
e−sν , (39)

where
F̄ ′(s) = − Tf (1− α)

(Tfs+ 1)2
, (40)

F̃ ′(s) =
−Ω2(2s+ 2ξΩ)

(s2 + 2ξΩs+Ω2)2
. (41)

By rearranging the polynomials in the transfer functions,
Equation (39) can be rewritten as:

S′(s) = νF (s)e−sν + F (s)e−sν
(
H̄(s) + H̃(s)

)
, (42)

where
H̄(s) =

Tf (1− α)

(Tfs+ 1)(αTfs+ 1)
, (43)
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and

H̃(s) =
2(s+ ξΩ)

s2 + 2ξΩs+Ω2
. (44)

Substituting jωd for s in (42), due to (17), we have
F (jωd)e

−jωdν = 1 and

S′(jωd) = ν + H̄(jωd) + H̃(jωd). (45)

Taking into account (25), H̃(jωd) can be simplified to:

H̃(jωd) =
2(ξΩ+ jωd)

Ω2 − ω2
d + 2ξΩjωd

=
2(ξΩ+ jωd)

2ξ2Ω2 + 2ξΩjωd
=

1

ξΩ
.

(46)
The other function reads as

H̄(jωd) = AejΦ, (47)

where

A =
Tf (1− α)√

T 2
f ω

2
d + 1

√
α2T 2

f ω
2
d + 1

, (48)

and Φ = atan(−Tfωd) + atan(−αTfωd). Define γ = Tfωd.
Then

A =
γ(1− α)

ωd

√
γ2 + 1

√
α2γ2 + 1

=

1− α

γΩ
√
1− 2ξ2

√
1 + 1

γ2

√
α2 + 1

γ2

. (49)

Assuming γ ≫ 1, the magnitude can be approximated by

A ∼=
(1− α)

γαΩ
√
1− 2ξ2

. (50)

In order to justify neglecting the contribution of H̄(jωd) to
the magnitude of (42) as it is considered in (38), the following
condition needs to be satisfied:

(1− α)

γαΩ
√
1− 2ξ2

≪ 1

ξΩ
. (51)

For γ ≫ 1, the condition (23) holds and |F̄ (jωd)| → α. Thus,
from (24), we have

ξ ∼=

√
1−

√
1− α2

2
.

Taking this approximation into account, inequality (51) can be
turned to:

(1− α)

√
1−

√
1−α2

2

α 4
√
1− α2

≪ γ, (52)

which holds as the left side is upper bounded by 1/2 for α →
0.

Note also that the assumption γ ≫ 1 is practically mean-
ingful. For smaller values of α, it applies directly from (23).
Considering the oscillation period of the disturbance Td = 2π

ωd
,

the strong inequality is satisfied already for Tf > 10
2πTd. To

achieve a filtration effect by the controller with respect to
the oscillation period, the inequality should be even stronger,
which justifies considering γ ≫ 1.

□

Next, we address robustness against parameter variations,
for which the standard H∞ norm analysis is used. The filter
has a favorable effect on the H∞ norm of the sensitivity
given in the following Lemma:

Lemma 2: Consider the filter F (s) given by (20)–(25). Then
the H∞ norms of the sensitivity functions (11) and (12) satisfy

||S(jω)|| < 2 + ϵ, (53)

||T (jω)|| < 1 + ϵ, (54)

where ϵ ≪ 1.
Proof. For the complementary sensitivity (12), it is easy to
observe that ||T (jω)|| = ||F (jω)|| . Define

δ(ω) = |F̄ (jω)| − α. (55)

Then, the filter magnitude can be expressed as

|F (jω)| = |F̃ (jω)|(α+ δ(ω)). (56)

If for a fixed α, the parameter Tf is selected to satisfy the
condition (23), then the breaking point PR of (26) is located
to the left of ωd. As a consequence, in the vicinity of ωd, one
has:

|F̃ (jω)|α ≫ |F̃ (jω)|δ(ω). (57)

Thus, for the peak value point PH = [ωH , 1 + ϵ] of |F (jω)|,
visualized in sub-figure of Fig. 2 it follows that ϵ ≪ 1 and the
condition (54) holds.

Consequently, as ||S(jω)|| = ||1−T (jω)|| with a potential
maximum at 2 + ϵ, the condition (53) follows. □

The above given bounds on H∞ already guarantee a certain
robustness level. In the case study below, it will be shown that,
by an appropriate choice of Tf and α, the robustness measures
can even be decreased.

C. Extended filter design

Although the main results are derived for suppressing a
single harmonic disturbance, the method can be extended to
suppress multiple frequency harmonic disturbance similar to
that of [39]. Here, we propose a filter for the IMC scheme to
compensate the effect of a harmonic disturbance (2) with two
frequencies.

Assume two filter-delay pairs [Fd(s), ϑd] and [Fs(s), ϑs]
tuned independently according to Propositions 1 and 2 to target
frequencies ωd and ωs, respectively. With this assumption, one
merges the filters to

FD(s) = Fd(s)e
−sϑd + Fs(s)e

−sϑs

− Fd(s)Fs(s)e
−s(ϑd+ϑs+τm). (58)

Proposition 3: With the assumptions above, the IMC con-
troller (with the scheme in Fig. 1) in the form

C(s) =
1

Gm(s)
FD(s) (59)

fully compensates the double harmonic disturbance (2).
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Proof. By applying the controller (59), the nominal sensitivity
function of the IMC scheme reads as:

S(s) = 1− Fd(s)e
−s(ϑd+τm) − Fs(s)e

−s(ϑs+τm)

+ Fd(s)Fs(s)e
−s(ϑd+ϑs+2τm) = Sd(s)Ss(s), (60)

where Sd(jω) and Ss(jω) are the sensitivities (11) substituted
with [Fd(s), ϑd] and [Fs(s), ϑs], respectively. Consequently, it
is easy to see that the conditions S(jωd) = 0 and S(jωs) = 0
are satisfied simultaneously, which implies a complete com-
pensation of the double harmonic disturbance. □

The aforementioned method can be readily generalized to
increase the number of covered frequencies. However, it must
be noted that each added filter-delay pair contributes to the
overall delay of the resulting filter. An alternative approach
to target multiple frequencies has recently been proposed in
[40]. Compared to the fully analytic design method presented
here, the one of [40] is based on loop shaping with spec-
tral constraints. Besides, a multi-parameter distributed delay
is involved in the controller, which increases its structural
complexity compared to (7).

It can be easily seen from (60) that the H∞ norm of the
sensitivity with combined filters satisfies

||S(jω)|| ≤ ||Sd(jω)|| ||Ss(jω)|| . (61)

Similarly, by taking the derivative of (60) and substituting it
into (37) with frequency ωi, we can find the characteristic
slopes by

κi = |S′
i(jωi)| |Sk(jωi)| , (62)

where i, k ∈ [d, s] , i ̸= k.
Secondly, an extended filter is proposed for a single fre-

quency harmonic disturbance with an enhanced robustness
against mismatch between nominal and true excitation fre-
quency.

Proposition 4: Assume the filter-delay pair [F (s), ϑ] is
tuned to satisfy the conditions (13)-(16) and (20)–(25) to target
the frequency ωd. Then the controller

C(s) =
1

Gm(s)
FR(s), (63)

with the filter

FR(s) = 2F (s)e−sϑ − F (s)F (s)e−s(2ϑ+τm) (64)

applied at the IMC scheme in Fig. 1 results in an enhanced
robustness against frequency ωd variation with characteristic
slope κ = 0.
Proof. Applying the filter (64) the nominal sensitivity function
of the IMC scheme reads as

S(s) = 1− 2F (s)e−s(ϑ+τm) + F (s)F (s)e−s(2ϑ+2τm), (65)

which can be turned to

S(s) =
(
1− F (s)e−s(ϑ+τm)

)2

. (66)

Thus, when the filter-delay pair [F (s), ϑ] is designed to satisfy
the conditions (13)-(16) and (20)–(25) to target the frequency
ωd,

then
S(jωd) = 0, (67)

S′(jωd) = 0 (68)

are both satisfied. Due to (37), we have κ = 0 implying
enhanced robustness against variation of ωd. □

IV. EXPERIMENTAL CASE STUDY

In order to validate the proposed methods experimentally,
we designed and built a mechatronic set-up with the aim
to mimic dominant technological aspects of the eccentricity
compensation of hot rolling process, which motivated the
presented research. In particular, an inner control loop is
included to provide a higher order well-damped dynamics,
similarly as it is in the hydraulic inner control subsystem of
the rolling gap. Besides, we assume a long delay at the system
input consisting of a delay approximating the dead-time τd of
the inner control loop and dominant delay τ which is known
exactly.

The scheme of the proposed set-up and inner control loops
is shown in Fig. 3. It consists of a series of two mechanical
oscillators, described by the model

m1ẍ1(t) + (c1 + c2)ẋ1(t) + (k1 + k2)x1(t) =

c2ẋ2(t) + k2x2(t) + u1(t)− u2(t), (69)

m2ẍ2(t) + c2ẋ2(t) + k2x2(t) = c2ẋ1(t) + k2x1(t) + u2(t),
(70)

where x1, x2 denote the positions of the bodies, and u1, u2

control forces. The parameters m1,m2 denote masses of the
bodies, k1, k2 stiffness and c1, c2 damping of the links. The
system output to be controlled by the IMC scheme is the
position of the main body x1, i.e.

y(t) = x1(t). (71)

In order to turn the oscillatory fourth-order system into a well-
damped system which can be approximated by (1), the inner
control loops are applied as

u1(t) = ro1(u(t)− x1(t))− rd1ẋ1(t), (72)

u2(t) = ro2(dset(t)−∆x(t))− rd2∆ẋ(t), (73)

where ∆x(t) = x2(t) − x1(t), u is the control input of the
IMC scheme, and dset is the set-point of the disturbance -
the position ∆x generating the disturbance force effect to the
body with m1. The parameters to be tuned are the proportional
ro1, ro2 and derivative rd1, rd2 gains.

A. Instrumentation and mechatronic design

The implementation of the experimental set-up depicted in
Fig. 3 is shown in Fig. 4, together with the implementation
of the control scheme. The two carts with m1 and m2 are
interconnected with a pair of springs. Another pair of springs
is used to fix the main body cart (m1) to the left and right
base elements. Both the carts slide on rails - the m2-cart rails
are fixed to the m1-cart while the rails of m1-cart are fixed
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Fig. 3. Scheme of the experimental set-up and inner control loops

Fig. 4. Mechatronic implementation of the set-up and its control system

to the base. The carts are actuated by two voice-coil linear
motors generating forces u1 and u2. The damping in the cart
dynamics is mainly caused by the viscous friction between
the bearings and the rails. The positions x1, x2 of the carts
are measured by incremental position sensors.

The discrete version of the proposed IMC control scheme
for harmonic disturbance compensation depicted in Fig. 1,
obtained by zero-order hold method, was implemented in
LabVIEW™ and performed using the CompactRIO controller
with 1 kHz sampling. The CompactRIO controller consists of
a microprocessor and an FPGA module. The microprocessor
computes the nominal forces u1 and u2. The control action u1

is exerted by the main control loop composed of the master
IMC scheme and inner PD loop. The other control action u2

generating the disturbance is exerted by the other PD control
loop. The FPGA module is used to (i) read the quadrature
incremental signals RS-422 from position sensors via digi-
tal input-output card NI9401, (ii) decoding to increment or
decrement the relative positions x1 and x2, and (iii) command

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-2
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0

1

2

3
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Fig. 5. Transient response of the inner control loop of the set-up and its
approximation by the model (1), with the visualization of the identified input
delay τm = 0.211[s]

an industrial control unit (ICU) to control voice-coil motors.
Both voice-coil motors run in the force regime. The nominal
value of the forces u1 and u2 to be applied on the movable
carts is transmitted from serial card NI9870 via RS-232 into
the industrial control unit. Both the reading of the quadrature
signals together with its decoding and the transmission of
the reference forces via RS-232 were also implemented in
LabVIEW™.

B. Parameter Identification

In the model (69)-(70) the masses m1 = 1.1 kg, m2 =
0.514 kg were obtained by weighting the carts. The stiffness
coefficients k1 = 1768Nm−1, k2 = 424Nm−1, were mea-
sured utilizing the force gauge, while the damping coefficients
c1 = 4.43N sm−1, c2 = 2.41N sm−1 were determined
experimentally from a series of responses. The parameters of
the PD controllers have been pre-tuned analytically by using
the standard pole placement methodology and, subsequently,
adjusted experimentally to obtain the well-damped response
shown in Fig. 5. Consequently, the approximate model (1)
parameters have been assessed as K = 0.47, T = 0.038 s
and τd = 0.011 s. As the identified delay is relatively small, it
was software-wise increased by delaying the variable u(t− τ)
with τ = 0.2 s. As it can be seen in Fig. 5, the model fits
the measured response fairly well. Furthermore, it is easy to
observe that the overall delay of the system τm = 0.211 s is
substantial with respect to the time constant T . Consequently,
its robust compensation by the IMC scheme is crucial to
achieve favourable responses.

C. Single-frequency harmonic disturbance compensation

The performance of the proposed IMC control scheme is
initially validated for the single harmonic disturbance (3) with
ωd = 8Hz (50.27 s−1). The first step in designing the filter
(20) according to Proposition 2 is selecting α and Tf . Based
on the theoretical analysis provided above, we select α = 0.3
and Tf = 1 s, providing γ = Tfωd = 50.27 safely satisfying
the required inequality γ ≫ 1. By (24) and (25), the other
two parameters result as ξ = 0.152 and Ω = 51.47 s−1. The
last parameter of the controller (7) is the delay ϑ = 0.010 s
determined from (15).

Suitability of the selected α, Tf setting is confirmed in
Fig. 6, where the considered H∞ and κ robustness measures
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Fig. 6. Robustness analysis of the sensitivity function (11) with the filter F (s)
proposed for the set-up and single harmonic disturbance with ωd = 8Hz by
Propositions 1 and 2. (Top) H∞ of (11). (Bottom) Characteristic slope κ
given by (37) (solid) and its approximation (38) (dashed)

are shown with respect to α and Tf (The parameter couple
[α, Tf ] selected for the experiments is denoted by × marker
in Fig. 6). The measures were obtained numerically from
S(jω) by varying controller settings. Numerical determination
of H∞ was done by sweeping the frequency over a dense
and sufficiently wide range. In the κ sub-figure, also the
approximation (38) is shown. An almost perfect match is
confirmed with exact κ determined from (37). The figure
clearly shows that, from some value of Tf , smaller values
of α result in a smaller H∞ norm and a larger κ, and vice
versa. Notice also that from a certain value of Tf , the measures
remain almost constant. It indicates that a further increase of
Tf is dispensable.

Prior to the experimentation, the stability of the control
system with inevitable plant-model mismatch is assessed by
checking the spectrum of the non-ideal sensitivity (9) substi-
tuted with the identified first-order model Gm(s), overall delay
τm = 0.211 s, tuned low-pass filter and the exact system model

Gi(s) =
y(s)

u(s)
=

513.6s2 + 4.091 104s+ 5.093 105

s4 + 165s3 + 6384s2 + 1.348 105s+ 1.084 106
, (74)

analytically obtained from (69)-(73) together with the added
delay τ = 0.2 s. Thus, the delays τm and τ are not identical
and Gi(s) does not share the same structure as its model
Gm(s). In Fig. 7, the spectra of poles and zeros for the
non-ideal sensitivity (9), computed by QPmR algorithm [41],
are shown. As can be seen, the dominant zero is placed,
as required, at jωd. The rest of the zeros is located to the
left, forming the retarded chain [42]. Regarding the system’s
rightmost poles, they are all located safely to the left of the
imaginary axis, which implies the closed loop stability. As it

Fig. 7. Pole (+) - Zero (•) spectrum of the non-ideal sensitivity (9); ◦ -
desired position of the dominant zero at jωd . (Left) Overall distribution
(Right) Close-up view on the zeros compensating the harmonics.
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Fig. 8. Experimental results for single harmonic (ωd = 8Hz) disturbance
compensation. The IMC loop with filter (20) activated at t = 2s.

can also be seen, the poles also form a retarder chain which
tends to match the chain of zeros at high frequencies.

The experimental results are shown in Figs. 8 and 9. Fig. 8
demonstrates almost ideal harmonic disturbance compensa-
tion. As it can be seen, after activating the IMC loop at t = 2 s,
it generates the control action u which, after propagating
through the overall delay τm = 0.211 s and remaining loop
dynamics, silences the main cart y = x1 position to the
level of measurement noise. Meanwhile, the other cart with
position x2 monotonously oscillates, causing periodic force
disturbance at the main cart. In Fig. 9, a response to a reference
r step is shown under the periodic disturbance compensation.
It demonstrates a very good reference tracking feature towards
zero residual control error1. Let us note that the almost ideal

1Video record of the experiments is shown at
https://control.fs.cvut.cz/en/aclab/experiments/harmcomp
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Fig. 9. Experimental results for set-point response under single harmonic
(ωd = 8Hz) disturbance compensation, IMC loop with filter (20).

experimental results, achieved under approximating the fourth-
order dynamics by first-order dynamics and under the presence
of unmodelled nonlinearities, such as dry friction, demonstrate
enhanced robustness of the scheme imposed by the properly
configured filter.

D. Double-frequency harmonic disturbance compensation

Secondly, the IMC control scheme with the controller (59)
and extended filter-delay structure (58) is used to target
double-frequency signal (2) with ωd = 8Hz (50.27 s−1) and
ωs = 4Hz (25.13 s−1). For both the filters, the parameters
α = 0.3 and Tf = 1 s are considered. Thus, the filter-
delay pair [F1(s), ϑ1] is the same as for the above single
frequency case. For the filter F2(s), we have ξ = 0.153
and Ω = 25.74 rad/s by (24) and (25). By (15), we have
ϑ2 = 0.229s. The experimental results shown in Fig. 10 and
Fig. 11 reveal remarkably good performance towards double-
harmonic disturbance compensation by the IMC scheme with
the extended filter. Compared to the single frequency compen-
sation, a slight overshoot can be observed in Fig. 11. It results
from the overall filter composition (58) and cannot be removed
unless the filter form is modified. It could possibly be lowered
by considering longer Tf values. This would, however, lead
to slower control actions not only for the reference but also
for the disturbance, which is undesirable. Alternatively, the
overshoot can be removed by including a reference pre-filter,
which is commonly used in industrial control schemes.

E. Robust single-frequency harmonic disturbance compensa-
tion

Finally, we apply the IMC scheme with controller (63) and
robust filter structure (64) considering F (s) and ϑ taken from
the Sub-section IV-C to target ωd = 8Hz. The results in
Figs. 12 and 13 show very good disturbance compensation
in the nominal case as well as good reference tracking with a
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Fig. 10. Experimental results for double harmonic (ωd = 8Hz, ωs = 4Hz)
disturbance compensation. The IMC loop with filter (58) turned on at t = 2 s.
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Fig. 11. Experimental results for set-point response under double harmonic
(ωd = 8Hz, ωs = 4Hz) disturbance compensation, IMC loop with filter
(58).

slight overshoot, which can be adjusted analogously to the
double-frequency disturbance scheme discussed above. The
enhanced robustness against ωd variation is shown at the
bottom of Fig. 14. Experimentally, the residual amplitude
was determined for IMC with nominal filter structure (20)
and the robust filter structure (64) for the frequency range
ω ∈ [7.2, 8.8] Hz. In Fig. 14, next to the measured character-
istics, the characteristics obtained from the transfer functions
are shown. From the comparison, a very good match can be
seen. The figure also confirms the enhanced robustness against
ωd mismatch. The characteristic slope of the first configuration
is obtained as κ = 0.349 and agrees with both estimated
and measured response. For the double frequency case, the
characteristic slopes for frequencies 4Hz and 8 Hz are found to
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Fig. 12. Experimental results for single harmonic (ωd = 8Hz) disturbance
compensation. The IMC loop with robust filter (64) turned on at t = 2s.
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Fig. 13. Experimental results for set-point response under single harmonic
(ωd = 8Hz, IMC loop with robust filter (64).

be κ = 0.473 and κ = 0.312, respectively. For the robust filter
configuration, κ = 0 can be observed as predicted. Finally, the
sensitivity magnitudes for the considered cases are shown in
the upper part of Fig. 14. Next to the stop-band feature at
the targeted frequencies, the maxima of the magnitudes are
of interest. It reveals a smaller robustness against parameter
variation for the sensitivity function with the extended filter
(64).

V. CONCLUSIONS

A complete analytical and practical method to compensate
harmonic disturbance of a system with long dead-time was
proposed, analysed with respect to robustness measures and
experimentally validated. The method is based on an extended
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Fig. 14. Amplitude responses of the sensitivity function S(jω) with the
considered harmonic disturbance cases (Top) Simulated on a large frequency
range. (Bottom) Comparison of measured and simulated in the vicinity of the
target mode ωd = 8Hz.

internal model control scheme. A crucial task stems in the
filter design with two optional parameters allowing to balance
robustness against variation of the frequency of oscillation and
the robustness against parameter variation based on H∞ norm
of sensitivity function.

The main results have been derived for a single harmonic
disturbance compensation. Following that, the scheme is ex-
tended to double frequency harmonic disturbance compen-
sation. By the later extended scheme, enhanced robustness
against single frequency cases can be achieved. The presented
research was motivated by the eccentricity compensation of the
hot-rolling process, where the dead-time plays an important
role in the dynamics. The compensation of such dead-time
is necessary in order to have a sufficiently fast controller to
perform the harmonic compensation efficiently. Note that the
standard repetitive control scheme does not involve the delay
compensation. Thus, the infinite dimensionality of the loop
dynamics needs to be taken into account in the repetitive
controller design, which is not the case with the proposed
IMC method.

In order to validate the theoretical results experimentally,
a mechatronic set-up has been proposed and implemented.
The proposed control system consisting of the extended IMC
scheme and inner PD control loops has been implemented in
LabVIEW™ on the industrial NI-CompactRIO platform. The
experimental results revealed outstanding ability in simulta-
neous compensation of both long dead-time and harmonic
disturbance. Validation on the hot-rolling process is the next
challenging task.

APPENDIX

In order to determine the inflection point (28) and braking
points (29) of the amplitude response of the filter (21) in the
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logarithmic scale, as shown in Fig. 2, we express the filter
magnitude as

log |F̄ (jω)| = 1

2

(
log(α2T 2

f ω
2 + 1)− log(T 2

f ω
2 + 1)

)
.

(75)
Substituting ϖ = logω leads to

A(ϖ) =
1

2

(
log(α2T 2

f 10
2ϖ + 1)− log(T 2

f 10
2ϖ + 1)

)
. (76)

The inflection point (28), is determined by solving d2A(ϖ)
dϖ2 =

0, which can be simplified to the condition

104ϖT 4
f α

2 − 1 = 0. (77)

The solution of (77) given by ϖI = log 1
Tf

√
α

implies the
inflection point coordinates ωI = 1

Tf
√
α

and |F̄ (jωI)| =
√
α.

Evaluating dA(ϖ)
dϖ |ϖ=ϖI

= α−1
α+1 leads to the tangent at the

inflection point

log Φ(ω) = log
√
α+

α− 1

α+ 1

(
logω − log

1

Tf
√
α

)
, (78)

which can be simplified to

log Φ(ω) = log
√
α+

α− 1

α+ 1
log(Tf

√
αω). (79)

Thus, the points (29) can be obtained as solution of (79)
by substituting Φ(ω) = 1 for PL and Φ(ω) = α for PR,
respectively.
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