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Abstract:
This paper presents a filter structure that allows the user to place desired poles and the necessary
zeros to achieve periodic regulation to the closed-loop sensitivity through Internal Model Control
framework. The periodic regulation is aimed at stable SISO linear systems suffering from input
dead-time and having no closed right-half plane zeros. The negative effects of the dead time on
tracking/rejection are compensated by introducing another delay which is tuned independently
from the filter thanks to its structure. The main focus is given to constructing the filter with
polynomials. However, it can be readily extended to quasi-polynomials. The findings are verified
with a computer simulation of a vibration control task.
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1. INTRODUCTION

Periodic output regulation aims to ensure that the partic-
ular system under control performs in the desired man-
ner when subjected to periodic exogenous signals. If this
exogenous signal is received from the reference, the con-
troller’s objective becomes to follow the reference without
lag or imperfection. If the signal acts on the system output
as a disturbance, then the goal is also to cancel the effects
caused by this disturbance. From a systems theory per-
spective, these two goals are identical and the celebrated
Internal Model Principle (IMP) stated by Francis and
Wonham (1976) forms a roadmap to achieve them.

The IMP states that perfect tracking/rejection of a signal
can be achieved when the close-loop control system encap-
sulates a model of the signal and is guaranteed to be stable.
This translates to placing the poles of the signal model
as the zeros of a stable sensitivity function and hence the
perfect tracking/rejection. The renowned repetitive control
strategy for periodic regulation, introduced in Inoue et al.
(1981), is a particular realization of this principle derived
by employing a time-delay model of the periodic signal
expressed by the transfer function
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Gsignal(s) =
1

1− F (s)e−sTd
, (1)

where F (s) is a low-pass filter and Td is the period of
the signal. It is easy to observe that the ideal model that
captures every possible signal with period Td is achieved
when F (s) = 1. However, employing such a model leads to
a closed-loop sensitivity whose dynamics can be described
by delay-differential equations of neutral type, and, as
shown in Hara et al. (1988), is only BIBO stabilizable
for systems with relative degree zero. Therefore, with the
expense of a degraded signal model, the associated low-
pass filter, with sufficient bandwidth, is utilized to make
the overall setup applicable to (strictly) proper systems
with achievable stability. As expected, the degradation in
the signal model is due to the fact that the filter alters
the ideal harmonic pole distribution. In such a case, the
filter bandwidth is what determines the number of finitely
targeted harmonic poles; those harmonic frequencies that
lie outside the bandwidth diverge from their ideal position
drastically.

Inspired by this approach, there have been many general-
izations or alternatives of the signal model (1) for reasons
to improve the transient performance, robustness, and
applicability of the strategy to more sophisticated systems.
Among these, one particular generalization is obtained
by replacing the lumped delay e−sTd with an exponential
polynomial over R, as in

Gsignal(s) =
1

1− F (s)W (s)
, (2)

where W (s) =
∑m

i=1 wie
−msTd with wi ∈ R. Such con-

figurations with model (2) have been referred to as the



high-order repetitive control, and tuning of the weights
wi to improve performance and robustness was studied in
Inoue (1990); Chang et al. (1995); Steinbuch et al. (2007);
Pipeleers et al. (2008) mainly for discrete-time systems.
Model (2) is of particular interest because it marks an im-
portant observation: despite the known negative impacts
of delays on system stability, the presence of more delays
in the model can lead to greater flexibility to optimize with
respect to a desired property. Intuitively, the increased
capability for further improvement can be reasoned by the
fact that model (2) describes a signal based on multiple
past values in contrast to Model (1) where only one past
information is utilized. With similar motivation, an alter-
native transport equation representation of the signal was
proposed in Astolfi et al. (2021).

Nevertheless, all these signal models can prove their func-
tionality only if the closed-loop system is stable, and it
is a known fact that such a property can be easily lost
due to uncounted additional delays that can occur in
the loop through true or approximation of the controlled
system. Thankfully, many notions of stability analysis for
finite dimensional systems, mainly eigenvalue-based and
Lyapunov-based approaches, carry over to infinite dimen-
sional systems under which many time-delay systems are
categorized.

This paper proposes a controller design that can simulta-
neously achieve periodic regulation and input-delay com-
pensation as in Vyhĺıdal and Źıtek (2001); Yuksel et al.
(2021a,b). The design steps for periodic regulation differ
from the approach seen in repetitive control: rather than a
time-delay signal model, a model of the system is employed
in the loop, and the required zeros for regulation are
introduced one by one to the sensitivity with a special filter
in contrast to first placing infinitely many zeros through
the signal model and then drastically drifting them away
from the imaginary axis except those which are of inter-
est. The proposed individual treatment of zeros ensures
the harmonic zeros to stay on the imaginary axis and
prevents unwanted zeros from occurring between targeted
frequencies. Other features of the design are that it does
not require the system model to be of first-order as was
the case in the previous works of the authors, and the
controller is derived directly from a reference sensitivity
that specifies the desired spectrum. Therefore, stability is
assured from the very beginning for the ideal case, and
furthermore, all possible controllers fulfilling the demands
are parameterized by the location of the stable poles of
the sensitivity. Clearly, having controllers meeting the
demands parameterized makes the approach suitable for
optimization, though discussion on this topic is not in the
scope of the paper, and only some remarks are given in
the subsequent sections.

The aim of the paper is to introduce the reader to a
straightforward yet effective design concept and to con-
tribute to the previous works of the authors. It is organized
in the following manner: Section 2 covers the controller
design and introduces the Internal Model Control scheme,
which forms the framework for the design. The section also
elaborates on the conditions that need to be satisfied by
the filter within the controller and the additional delay for
regulation/compensation and proceeds to the state-space
formulation due to the convenience it brings to implement

and impose the conditions. Section 3 gives remarks about
the proposed controller, including the generalization of
the filter via quasi-polynomials and methods to improve
the performance of the control system to delay variations.
Section 4 numerically validates the effectiveness of the con-
troller structure introduced in Section 2 via a simulation of
a vibration control applied to a fourth-order system with
input delay. Finally, the paper is concluded with Section
5.

2. CONTROLLER DESIGN

The controller design begins by specifying a stable sensi-
tivity with the desired zeros for periodic regulation and
deduces the controller structure and the conditions based
on Internal Model Control scheme.

We consider a stable SISO plant G(s) of the form

G(s) =
Y (s)

U(s)
=

sα + aα−1s
α−1 + ...+ a1s+ a0

bβsβ + bβ−1sβ−1 + ...+ b1s+ b0
e−sτp ,

(3)
where the polynomials in the numerator and the denomi-
nator are Hurwitz with β ≥ α and τp > 0.

The exogenous signal v(t) to be ideally tracked/rejected is
assumed to have a finite Fourier series expansion i.e.

v(t) = v0 +

k∑
i=−k

vie
jωit, (4)

where frequencies ωi are commensurate i.e. integer multi-
ples of a base frequency ωb, vi is the corresponding Fourier
coefficient and k ∈ N \ {∞}. In accordance with IMP, this
implies that the sensitivity transfer function S(s) of the
closed-loop needs to be stable and have zeros at s = 0 and
s = ±jωi for i = 1, ..., k i.e.

S(s) =
z(s)

p(s)
, (5)

where z(s) and p(s) are the numerator and denominator of
the sensitivity, respectively, and such that z(0) = z(jωi) =
0 and p(s) is Hurwitz.

More specifically, if z(s) and p(s) happen to be polynomi-
als, the desired sensitivity has the form

S(s) =
s
∏k

i=1(s
2 + ω2

i )
∏

m(s− zm)∏
n(s− pn)

, (6)

where pn ∈ C− and zm denote the poles and the additional
zeros, respectively.

2.1 Internal Model Control

Internal Model Control (IMC) is the control arrangement
depicted in Figure 1, in which the model of the controlled
plant is employed in the control loop to compare the
actual output of the plant with the estimated one. The
features of the IMC scheme were extensively studied by
Garcia and Morari (1982). Further adaptive extensions
of this scheme was proposed in Hahn et al. (2002) for
delay compensation. A robust filter-based IMC design for
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Fig. 1. The internal model control scheme

removing periodic disturbance from systems approximated
by first-order models with dead-time was proposed by
Vyhĺıdal and Źıtek (2001) and Yuksel et al. (2021a).

The sensitivity transfer function S(s) of the IMC scheme
in Fig. 1 is given by

S(s) =
1−Q(s)Gm(s)e−s(τm+θ)

1 +Q(s)(Gp(s)e−s(τp+θ) −Gm(s)e−s(τm+θ))
,

(7)
and it is a retarded time-delay system with infinitely many
zeros and poles. Assuming that the ideal case holds i.e.
Gp(s) = Gm(s) = G(s) and τp = τm = τ , it reduces to

S(s) = 1−Q(s)Gm(s)e−s(τm+θ). (8)

Based on the proposed design by Vyhĺıdal and Źıtek
(2001), if the controller structure is constructed as

Q(s) =
1

Gm(s)
F (s), (9)

where F (s) is a low-pass filter, then reflecting this to the
ideal sensitivity in Equation (8) yields

S(s) = 1− F (s)e−s(τ+θ), (10)

Notice that, the inverse of Gm(s) can be utilized in
(9) thanks to having no non-minimum phase zeros. The
delay θ associated with the controller Q(s) is used to
compensate for the negative effects of the other delay.
Imposing the conditions on zeros of the sensitivity given
by (5) and studying Equation (10) in terms of its modulus
and argument yield the conditions need to be satisfied by
F (s) and θ:

lim
s→0

F (s) = 1 (11)

|F (jωi)|= 1 (12)

∠F (jωi)− ωi(τ + θ) = 2πh (13)

where h ∈ Z.

2.2 Ideal Filter Structure

Suppose initially that there are no delays in the loop, i.e.
τ = θ = 0. Then based on Equation (10), the filter that
results in the desired reference sensitivity expressed via (5)
can be found as

F (s) =
p(s)− z(s)

p(s)
, (14)

which is referred to as the ideal filter. Notice that, it
satisfies condition (11)-(12) and has no phase shift at
ω = ωi i.e. ∠F (jωi) = 0 since

F (jωi) =
p(jωi)− z(jωi)

p(jωi)
=

p(jωi)

p(jωi)
= 1. (15)

However, in order to make the controller Q(s) proper, the
filter needs to be proper with a relative degree nr ≥ β−α.
Throughout the paper, we consider filters that are strictly
proper i.e. nr ̸= 0, for being generally applicable to all
systems expressed by (3). For a filter to be strictly proper,
the terms with the highest power from p(s) and z(s) must
match. Hence, if the filter is derived through a sensitivity
based on monic polynomials as in (6) then the condition

n = 2k +m+ 1 (16)

must hold. Notice that, for each introduced additional
zeros, we need to place one additional stable pole and vice
versa.

2.3 State-Space Formulation

Even though the transfer function representation of the
ideal filter is straightforward, its direct implementation
is likely to lead to numerical problems. To overcome this
issue for filters with polynomials, the sensitivity and, later
on, the filter is expressed in a state-space form, which
allows employing numerically more reliable methods. In
addition, the conditions to achieve desired relative degree
for the filter can be posed as linear constraints, which can
subsequently be used to solve for the unknown system
matrices.

Let [A,B,C,D] denote the standard matrices of the state-
space representation of the sensitivity (6). Then from (14),
it simply follows that the filter is [A,B,−C, (1−D)].

The system matrix A is such that its characteristic equa-
tion corresponds to p(s) i.e det(λI − A) = p(s). Without
loss of generality, set C = [1 1 ... 1]

1×n
and D = 1. The

harmonic zeros zω ∈ {−jωk, ..., 0, ..., jωk} of the sensitivity
must satisfy

C(zωI −A)−1B = −D, (17)

which gives 2k + 1 equation:



CA−1

ℜ(C(jω1I −A)−1)
ℑ(C(jω1I −A)−1)

...
ℜ(C(jωkI −A)−1)
ℑ(C(jωkI −A)−1)

Bn×1 =



−D
−D
0
...

−D
0

 (18)

The other n−2k−1 equations required to have a solution
for B come from the conditions for the relative degree.
Notice that the required number of equations is equal to
the number of additional zeros m. It can be shown that
the relative degree of the filter in state space form can be
determined by the number of the terms of the sequence(
(1−D), −CB, −CAB, −CA2B, . . .

)
that are equal to

zero starting from the first one. The first term happens to
be zero thanks to setting D = 1, therefore the filter is at
least of relative degree one. For nr ≥ 2, the following set
of equations must be satisfied:




C
CA
...

CA(nr−2)

B =


0
0
...
0

 (19)

Hence, the relationship between the number of additional
zeros and the relative filter order corresponds to

m = nr − 1. (20)

Combining Equations (18) and (19) gives in total n equa-
tions from which B can be uniquely found.

Subsequently, the inverse model dynamics is added to the
filter to give the state space model of the controller Q(s):

AQ = Ã =

[
A 0

−BαC Aα

]
(21)

BQ = B̃ =

[
B
0

]
(22)

CQ = [bβ bβ−1 . . . b1 b0]


C̃Ãβ

C̃Ãβ−1

...

C̃

 (23)

DQ = bβC̃Ã(β−1)B̃ (24)

where [Aα, Bα, Cα, Dα] is a minimal state-space realiza-
tion of Gα(s) = (sα + aα−1s

α−1 + ... + a1s + a0)
−1 and

C̃ = [−DαC Cα]. Note that, [Ã, B̃, C̃, 0] is obtained
when the filter is combined with Gα(s) and it has a relative
order not less than β. Using this fact yields the controller.

2.4 Delay Adjustment

Compensation for the negative effects of system delay τ on
periodic tracking/rejection is achieved by tuning the user-
definable delay θ to satisfy the argument condition (13).
Since the phase-shift induced by the filter (14) is zero at
harmonic frequencies, the condition reduces to

ωi(τ + θ) = 2πl, (25)

where l = −h. The assumption that all frequencies ωi

are commensurate implies that there exists a frequency,
so-called the base frequency ωb, such that ωb ≤ ωi and
ωi

ωb
= γ ∈ Z. Utilizing this base frequency yields an

equation for the smallest θ satisfying (25) which is valid
for all frequencies ωi:

θ =
2lbπ

ωb
− τ ≥ 0, (26)

where lb =
⌊
τωb

2π

⌋
+1. Note that, if ωb(τ + θ) is an integer

multiple of 2π then so as ωi(τ + θ) = γωb(τ + θ).

It is clear from Equation (8) that the resulting sensitivity
in the presence of delays is different than the sensitivity
taken as a reference to form the ideal filter. In fact, it
attains infinitely many zeros since the numerator corre-
sponds to a quasi-polynomial. However, when θ is chosen
according to Equation (26) the resulting sensitivity encap-
sulates the harmonic zeros from the reference sensitivity
and has identical poles.

3. FURTHER REMARKS

To this point, the only condition on the poles has been
for them to lie on the left half plane of the complex
space. Even though this is sufficient to guarantee the
stability of the close loop for the ideal case, the real-life
application of the controller requires the close-loop to be
robust to inevitable mismatches between the plant and
the model. Furthermore, not every pole distribution leads
to a desirable response performance. For this reason, the
placing of the poles must be carried out with respect to
a chosen robustness and/or performance measure, such as
the H∞-norm of the sensitivity. Such an operation can
be done either analytically or numerically by posing an
optimization problem. However, in doing so, one must
make sure that the computations comply with the nature
of time-delay systems. For instance, a method to compute
the H∞ norm of SISO time-delay systems was proposed
by Gumussoy and Michiels (2015).

The proposed filter is also suitable for applying delay
adaptive methods thanks to Equation (25). For instance,
a wavelet-based algorithm for θ to compensate for varying
plant delays was recently proposed in Peichl et al. (2022).

Additionally, the filter does not necessarily have to con-
sist of polynomials. In fact, if the utilization of quasi-
polynomials is permitted, one can attain dynamics other-
wise not achievable and can lower the order of the overall
filter. For instance, the distributed delay approach stud-
ied by Yuksel et al. (2021b) for first-order systems with
input-delay, corresponds to choosing z(s) to be the quasi-
polynomial of the form

z(s) = s−
∑
k

ake
−sθk , (27)

with p(s) = s. The zeros are placed by tuning the coeffi-
cients ak associated with fixed delays. Such configuration
was shown to lead to a pole-less sensitivity which made
the response dynamics governed by a difference equation.

4. ILLUSTRATIVE EXAMPLE

The proposed controller model is tested on a computer
simulation of a fourth-order model corresponding to the
serially connected mass-spring-damper with two actuators
depicted in Figure 2 where m1 = 1.1 kg, m2 = 0.514 kg,
k1 = 1768Nm−1, k2 = 424Nm−1, c1 = 4.43N sm−1,
c2 = 2.41N sm−1 and is described by,

m1ẍ1(t) + (c1 + c2)ẋ1(t) + (k1 + k2)x1(t) =

c2ẋ2(t) + k2x2(t) + u(t− τ)− d(t), (28)

m2ẍ2(t)+c2ẋ2(t)+k2x2(t) = c2ẋ1(t)+k2x1(t)+d(t). (29)

The goal is to control the position of mass m1 by actuator
u with output feedback despite the oscillations caused by
actuator d and artificially added input delay of τ=0.2 s.
The position response of massm1 to a unit step from input
u is as shown in Figure 3.

The disturbance is caused by forcing the masses in a
sawtooth manner with frequency fd = 2Hz, resulting in
m1 being exposed to oscillations with spectrum shown in
Figure 4.

The controller is designed to cancel the first 8 harmonics
of the disturbance and contains an all-polynomial filter



Fig. 2. Diagram of the controlled system

Fig. 3. Response ofm1 to a unit step input from u initiated
at t = 0s. Notice that the effect of the added input-
delay τ = 0.2s is visible in the beginning.

Fig. 4. Spectrum of the acting disturbance on m1.

with a relative order nr = 5, which is achieved by placing
m = 4 additional zeros. Hence, the order of the reference
sensitivity becomes n = 2 × 8 + 4 + 1 = 21. The placing
of the poles is chosen to make 16 of them close to the
harmonic zeros, and the rest to lie on the real axis.
The compensation for input delay is achieved by setting
θ = 0.3s since ωb = 12.56 [rad/s].

Figure 5 shows the Bode magnitude plot of the resulting
ideal sensitivity in the form (10) with filter (14). It is clear
from the figure that the chosen pole distribution gives a
favorable ||S(jω)||∞ < 2 for robustness.

Fig. 5. Bode Magnitude Plot of the Resulting Sensitivity

Figure 6 shows the pole-zero distribution, obtained via
QPmR by Vyhlidal and Źıtek (2009), of the ideal sen-
sitivity S(s) and the non-ideal sensitivity Sper(s) of the
form (7) with the system subjected to the perturbation,
Gp(s) = 0.9

0.05s+1Gm(s). As can be seen, the harmonic
zeros are placed and preserved, and the close loop remains
stable despite the perturbation. Note that, in the ideal
case, the close-loop has infinitely many zeros but finitely
many poles. However, in the non-ideal case, both the
zeros and the poles form chains that tend to each other
at infinity. Notice also that, after perturbation, the poles
moved dangerously close to the imaginary axis.
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Fig. 6. Pole Zero Distribution of the ideal sensitivity S(s)
of the form (6) and the perturbed sensitivity Sper(s)
of the form (7)(Top) Overall spectrum of S(s) and
Sper(s) (Bottom) Zoomed view showing the placed
harmonic zeros.

The transient rejection and tracking performance of the
ideal control system are demonstrated in Figures 7 and



8, respectively. The filter has a relatively slow rejection
performance with residual oscillation caused by the un-
accounted higher harmonics and a relatively fast tracking
performance with undesirable spiky behavior, indicating
the necessity of further optimization for the pole locations.

Fig. 7. Disturbance rejection performance of the proposed
controller with specified poles. The activation moment
t = 1s of the controller is indicated by the vertical
dashed line.

Fig. 8. Reference tracking performance of the proposed
controller under simultaneously suppressed distur-
bance. The step reference is given at t = 0s. Notice the
increased delay in response compared to the response
in Figure 3 due to θ + τ .

5. CONCLUSION

Alternative to the repetitive control, an analytical design
method is proposed to derive a controller that can achieve
both periodic regulation and input time-delay compensa-
tion for stable systems with dead-time and no closed right-
half plane zeros. The controller design does not necessarily
require a first-order model approximation of the plant,
as it was the case in the authors’ previous works. This
is achieved by utilizing the so-called ideal filter in the
IMC framework. The filter poles ensure the stability of
the close-loop. Nevertheless, the decision on the pole loca-
tions is an open question. Additionally, the proposed filter
structure can be further extended with quasi-polynomials,
forming a new perspective for employing delays in the
control loop. Future works will focus on this together with
experimentation and the placing of poles with respect to
a performance/robustness measure.
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