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and Chung Shue Chen, Senior Member, IEEE

Abstract—Maximum completion time is a key performance
metric for future wireless applications that have stringent latency
requirements. This letter studies its optimization in uplink multi-
subcarrier non-orthogonal multiple access (NOMA) networks.
The joint optimization problem of power allocation, user pairing
and scheduling is analyzed and proved to be NP-hard. To
tackle the problem, the power allocation subproblem for a single
NOMA pair is first derived. Next, for the joint user pairing and
scheduling subproblem, an optimal algorithm for a special case
is constructed and a suboptimal algorithm for the general case is
designed. Our proposed scheme is applicable to data aggregation
in wireless federated learning networks, and simulation results
validate its superior performance.

Index Terms—NOMA, scheduling, maximum completion time,
power allocation, user pairing

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has been con-
sidered in many practical applications, such as mobile edge
computing (MEC) [1], cache-enabled networks [2], and wire-
less federated learning [3]. Since many applications have
stringent delay requirements, the delay minimization problem
is investigated in NOMA-enabled Internet of Things (IoT),
MEC, and mmWave-MEC networks in [4], [5], [6], and [7],
respectively. Those works, however, consider only the single-
subcarrier case. For multi-subcarrier systems, the problem is
more complicated and the performance metric can be defined
in different ways. The work [8] formulates the problem and
adopts the maximum completion time as the optimization
criterion. It assumes for the superposition of two packets,
when a user finishes its transmission, the other user can
transmit without interference and increase the code rate for
the remaining part of his packet. Such an assumption, however,
increases overhead and complexity in practical systems.

In this letter, we re-formulate the completion-time max-
imization problem with the more practical assumption of
constant transmission rate of one packet. In addition, we
consider the power allocation problem, which is ignored in [8].
Power allocation and user pairing are to be jointly optimized
with the scheduling problem, and the scheduling algorithm is
redesigned. We derive an optimal power allocation scheme for
one NOMA pair. We prove that the joint optimization problem
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is NP-hard. Especially, we propose an optimal scheduling
algorithm for the special case when the number of users is
twice of the number of subcarriers. A suboptimal algorithm
is also given for the general case. In simulation, we further
validate the good performance of our proposed scheme com-
pared to orthogonal multiple access (OMA) and the algorithm
proposed in [8]. Moreover, we apply our proposed NOMA
scheme for data aggregation in practical wireless federated
learning scenario and show its good performance in terms of
transmission time.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the uplink of a wireless network with one base sta-
tion (BS) and K IoT devices indexed by K ≜ {1, 2, . . . ,K}.
The total bandwidth of the system is denoted by B, which
consists of M subcarriers, each of bandwidth W = B/M .
We assume that these subcarriers are narrowband and undergo
flat block fading [9]. We denote the channel gain between
each IoT device k and the BS by hk, which may include both
large scale fading and small scale fading, and is assumed to
be constant during one transmission round, as in [10]. The
transmission round is defined as the time period until all K
devices finish transmitting one packet. The noise power of
each subcarrier at the BS is denoted by n = N0W , where
N0/2 is the noise spectral density. Besides, each IoT device k
has one packet of Lk bits, to be uploaded to the BS. We
assume that each IoT device can only occupy one subcarrier
to upload the data and all Lk bits are to be transmitted to the
BS via one packet transmission without splitting. For example,
in practical synchronous distributed learning or computing
systems, the devices will have some computed data to transmit
to the server for data aggregation. The transmit data of each
device will be sent in one packet without splitting to reduce
overheads. The power constraint for each IoT device is denoted
by P . To shorten the transmission delay, we assume NOMA
is applied and there are at most two packets superposed for
one transmission considering the decoding complexity and
the error propagation problem of the successive interference
cancellation (SIC) receiver. Without loss of generality, K is
assumed an even number, for otherwise we may add one
dummy device with 0 bit to transmit.

Suppose that devices i, j ∈ K are superposed to transmit in
one subcarrier with power pi and pj , respectively, and the SIC
receiver is applied at the BS. Assume that the receiver decodes
the packet of device i first, subtracts it from the received signal,
and then decodes the packet of device j. The transmission rates
of devices i and j are given by:
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Fig. 1. Illustration of maximum completion time.

Ri = W log2(1 +
hipi

hjpj + n
), (1)

Rj = W log2(1 +
hjpj
n

) (2)

The transmission time for device k and the completion time
for device pair (i, j) are Tk = Lk

Rk
and Tij = max(Ti, Tj),

respectively. Note that Tji represents the completion time for
decoding the packet of device j first and is not equal to Tij in
general. Let τij ≜ min(Tij , Tji) be the completion time of the
NOMA pair (i, j) and thus τij = τji. Besides, the transmission
rate of each device remains unchanged for any single packet
because we assume the channel coding and the modulation
scheme cannot be adaptively changed within a packet.

Let the binary indicator Imi,j = Imj,i = 1 when devices i, j ∈
K, i ̸= j, are superposed to transmit on subcarrier m ∈ M,
otherwise Imi,j = Imj,i = 0. The total completion time of
subcarrier m, denoted by Cm, is given by:

Cm =

K∑
i=1

K∑
j=i+1

Imi,jτij . (3)

In this paper, we consider how to pair up these devices
and schedule these pairs on the subcarriers to minimize the
maximum completion time, i.e., Cmax ≜ maxm∈M Cm, see
Fig. 1. The problem can be formulated mathematically as:

min
I,p

Cmax, (4)

subject to

C1 : 0 ≤ pk ≤ P, ∀k ∈ K,

C2 : Imi,j ∈ {0, 1}, ∀i, j ∈ K,∀m ∈ M,

C3 :
∑

m∈M

∑
j∈K

Imi,j = 1, ∀i ∈ K,
(5)

where I = (I1, I2, . . . , IM ), Im = [Imi,j ] is a symmetric
matrix and p = (p1, p2 . . . , pK). C1 represents the power
constraint, C2 represents the binary constraint on Imi,j , and
C3 ensures that every device is paired up with exactly one
device and assigned to exactly one channel, and thus the
packets of all devices will be uploaded to the BS. In this letter,
we will investigate the joint optimization problem of power
allocation, user pairing, and the scheduling of the NOMA
pairs to minimize the maximum completion time in uplink
multicarrier NOMA NB-IoT systems. We call this problem
MIN-NOMA-DELAY.

III. POWER ALLOCATION SCHEME OF A DEVICE PAIR

To investigate the optimization problem, we first consider
the power allocation subproblem to minimize the transmission
time of a pair of devices sharing the same channel using
NOMA, which is defined as the time that both devices to
complete their transmissions.

Consider devices i and j, which form such a pair. The
completion time for device pair (i, j), τij , depends on pi and
pj , and the decoding order of the pair. To minimize τij , we
need to solve the following problem:

min τij ≜ min(Tij , Tji), (6)

subject to
0 ≤ pi ≤ P, 0 ≤ pj ≤ P. (7)

First, consider the optimal power allocation for minimizing
Tij , where the BS decodes the packet of device i before that
of device j.

Proposition 1. To minimize Tij , an optimal power allocation
scheme for user i and j is (p∗i , p

∗
j ) = (P,min(p̃j , P )), where

p̃j is the root of the following equation:

(1 +
hjpj
n

)Li = (1 +
hiP

hjpj + n
)Lj . (8)

Proof. Since the signal of device i is decoded first and will
not affect the data rate of device j as can be seen from (2), it
is clear from (1) that we can maximize Ri by setting p∗i = P ,
which is optimal.

Note that (8) is obtained from (1) and (2) by letting Ti = Tj ,
i.e.,

Li/Ri = Lj/Rj . (9)

When pj increases from 0 to ∞, the left-hand expression
increases monotonically from 1 to ∞ while the right-hand
expression decreases monotonically from a certain value to
1. Therefore, there is a unique positive real number p̃j such
that (8) and (9) hold when pj = p̃j . Note that the value of
p̃j can be numerically obtained by one-dimensional search
methods such as the bisection search.

Now we prove by contradiction that p∗j = min(p̃j , P ) is
optimal. First, consider the case where p∗j = p̃j ≤ P . Suppose
the optimal solution for pj is p̂j ̸= p∗j . If p̂j < p̃j , from (2),
we have R̂j < R̃j and thus T̂j > T̃j . If p̂j > p̃j , from (1),
we have R̂i < R̃i and thus T̂i > T̃i. Therefore, for both
conditions, T̂ij > T ∗

ij , which leads to a contradiction. The
second case where p∗j = P < p̃j can be proved similarly.

With p∗i and p∗j , the minimum transmission time T ∗
ij of the

(i, j) pair can be determined for decoding i first. Following the
same procedure, we can calculate the minimum transmission
time T ∗

ji, for which the packet of j is decoded first. Thus, we
obtain τ∗ij = min(T ∗

ij , T
∗
ji).

For some special cases, we can decide the optimal decoding
order without determining explicitly both T ∗

ij and T ∗
ji.

Proposition 2. If a NOMA pair (i, j) ∈ K2 satisfies the
following condition:

(1 +
hjP

n
)Li ≤ (1 +

hiP

hjP + n
)Lj , (10)
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decoding the packet of device i first is optimal.

Proof. From (10), we can obtain that:

Li

W log2(1 +
hiP

hjP+n )
≤ Lj

W log2(1 +
hjP
n )

= T ∗
ij . (11)

Besides, we have:
Lj

W log2(1 +
hjP
n )

≤ Lj

W log2(1 +
hjP

hip∗
i +n )

≤ T ∗
ji, (12)

where Lj

W log2(1+
hjP

hipi+n )
represents the transmission time for

device j when decoding the packet of device j first and it is
no more than T ∗

ji. Hence, it is obvious that T ∗
ij ≤ T ∗

ji and thus
we should always decode the packet of device i first if device
pair (i, j) satisfies (10).

IV. NP-HARDNESS OF MIN-NOMA-DELAY

In this section, we will show the NP-hardness of MIN-
NOMA-DELAY by proving that its decision version, NOMA-
DELAY, is NP-complete. The question of the decision version
is this: Can the devices, which are paired up via NOMA
and assigned to transmit on each subcarrier, finish all the
transmissions within time T ?

We will show the NP-completeness of NOMA-DELAY
by a reduction from the OMA-DELAY problem, which is
equivalent to the multiprocessor scheduling problem, an NP-
complete problem [8]. The instance of OMA-DELAY is the
same as that of NOMA-DELAY, while the question of OMA-
DELAY is: Can the packets of the devices, assigned to transmit
on each subcarrier, finish all the transmissions within time
T ? To prove the NP-completeness of NOMA-DELAY, for
clarity, we first calculate the minimum transmission time for
each device k ∈ K in OMA-DELAY, denoted by T k

OMA, as
T k

OMA = Lk

W log2(1+
hkP

n )
. In wireless networks, the channel

gains are random, and thus T k
OMA’s are all distinct with

probability 1. Assume the devices are indexed in such a way
that T 1

OMA < T 2
OMA < · · · < TK

OMA.

Proposition 3. NOMA-DELAY is NP-complete.

Proof. Given any instance of OMA-DELAY, we reduce it
to an instance of NOMA-DELAY by adding one dummy
device k′ ∈ K′ for each device k ∈ K, where K′ denotes
the set of the dummy devices. For each device k ∈ K, the
corresponding dummy device k′ ∈ K′ is with channel gain
hk′ = δ and Lk′ = µT k

OMA, where δ is an arbitrarily small
positive number, and µ = W log2(1 + δP

n−δP ). Besides, let
the noise power at the BS be n − δP . The reduction can be
done in polynomial time. We claim that after some optimal
NOMA pairing algorithm, the transmission time for all NOMA
pairs of the instance from NOMA-DELAY are the same as the
transmission time of all OMA devices of the instance from
OMA-DELAY.

When devices k ∈ K and k′ ∈ K′ transmit the packets to the
BS on one subcarrier using OMA, respectively, the minimum
transmission time for k and k′, denoted by T ∗

k and T ∗
k′ , can

be derived as follows:

T ∗
k =

Lk

W log2(1 +
hkP
n−δP )

, T ∗
k′ =

Lk′

W log2(1 +
δP

n−δP )
. (13)

It is obvious that T ∗
k < T ∗

k′ = T k
OMA. Therefore, we have

T ∗
1 < T ∗

1′ < T ∗
2 < T ∗

2′ < · · · < T ∗
K < T ∗

K′ since we can let
δ be arbitrarily small to make sure that T ∗

k′ < T ′
k+1. Suppose

k and k′ are paired up and the packet of device k is decoded
first. We have:

Lk

W log2(1 +
hkP

δP+n−δP )
=

Lk′

W log2(1 +
δP

n−δP )
, (14)

where the left term and the right term represent the trans-
mission time for device k and k′ when decoding the packet
of device k first, respectively. Besides, (14) satisfies (9) and
thus we have T ∗

kk′ = T ∗
k′ = T k

OMA. Since the transmission
time of a NOMA pair cannot be smaller than its constituents,
T ∗
kk′ = T k

OMA is the minimum transmission time for pair (i, j).
For the instance of NOMA-DELAY, the devices are paired

up into NOMA pairs and scheduled for transmission. After
some NOMA pairing algorithm, there are K NOMA pairs.
Without loss of generality, we assume the NOMA pairs are
ordered in the ascending order of the transmission time, i.e.,
τ1 ≤ τ2 ≤ · · · ≤ τK , where τk represents the transmis-
sion time for the k-th NOMA pair. Suppose devices (ik, jk)
form the k-th NOMA pair. Since the transmission time of
each NOMA pair cannot be smaller than the transmission
time of its constituents, i.e., τ∗ij ≥ max(T ∗

i , T
∗
j ), we have

τ1 ≥ max(T ∗
i1
, T ∗

j1
) ≥ max(T ∗

1′ , T
∗
1 ) = T ∗

1′ . Then we have
τ2 ≥ max(T ∗

i2, T
∗
j2) and τ2 ≥ τ1 ≥ max(T ∗

i1
, T ∗

j1
), and thus

τ2 ≥ max(T ∗
i2, T

∗
j2, T

∗
i1, T

∗
j1) ≥ max(T ∗

2′ , T
∗
2 , T

∗
1′ , T

∗
1 ) = T ∗

2′ .
By induction, we have that τk ≥ T ∗

k′ , k = 1, 2, . . . ,K, no
matter how the devices are paired up. An optimal NOMA
pairing algorithm is to pair up each device k ∈ K with the
corresponding dummy device k′ ∈ K′ since we can obtain
τk = T ∗

k′ = T k
OMA by (14), which also proves our claim.

Therefore, it is obvious that all transmissions of the derived
NOMA-DELAY instance can finish within time T if and only
if all transmissions of OMA-DELAY can finish within time T .

The problem NOMA-DELAY is clearly in NP, since it is
efficiently verifiable. Therefore, it is NP-complete.

V. USER PAIRING AND SCHEDULING ALGORITHM

In this section, we propose user pairing and scheduling
algorithms for MIN-NOMA-DELAY. Though MIN-NOMA-
DELAY is NP-hard, we can solve it optimally with an efficient
algorithm when K = 2M . Then we propose a suboptimal two-
step algorithm for the general optimization problem.

A. An Optimal Scheduling Algorithm for K = 2M

When K = 2M , after some NOMA pairing algorithm,
there are M NOMA pairs. It is optimal to schedule exactly
one NOMA pair to one distinct subcarrier. The optimization
problem degenerates to the NOMA pairing problem, which is
to pair the devices up to minimize the maximum transmission
time for the NOMA pairs. The problem can be represented by
a graph. Let G = (V,E) be a complete weighted graph, where
V represents the set of the K devices. Define wij = τ∗ij as
the weight of each edge eij ∈ E. To minimize the maximum
transmission time, we can simply remove the edges in the
graph G one by one in descending order of wij until we
find the edge without which the remaining edges do not
contain a perfect matching. Hence, the weight of this edge,
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Algorithm 1 Binary Search for NOMA Pairing
Input: G = (V,E);
Output: Cmax;
1: Initialize l := |V |/2, r := |E|;
2: Sort all edges eij’s in descending order of wij’s;
3: while TRUE do
4: let m := ⌊ r+l

2 ⌋;
5: if Ipm(V,E(m)) = 0 then
6: let l := m+ 1;
7: else
8: if Ipm(V,E(m− 1)) = 0 then
9: return Cmax = maxeij∈E(m) wij ;

10: else
11: let r := m− 1;
12: end if
13: end if
14: end while

ω∗
ij , is exactly the optimal solution to MIN-NOMA-DELAY

when K = 2M , i.e., C∗
max = ω∗

ij . However, this sequential
searching method is slow, and thus we further apply binary
search to find ω∗

ij . Let E(n) denote the set of n edges with
the n smallest weights. Let Ipm(V,E) be the indicator function
defined by Ipm(V,E) = 1 if there exists a perfect matching in
the graph G = (V,E), and Ipm(V,E) = 0 otherwise. Denote
the left and right boundaries of the binary search range by
l and r, respectively. We initialize l := |V |/2 since a perfect
matching exists only if the graph contains at least |V |/2 edges
and let r := |E|. The edges are sorted in descending order
of weights, wij’s. The search procedure is as follows: Let
the middle element in the search range be m := ⌊ r+l

2 ⌋.
If (V,E(m)) does not include a perfect matching, we let
l := m + 1 and repeat the search procedure. Otherwise,
we consider two sub-cases: (a) if (V,E(m − 1)) does not
include a perfect matching, the search is done, and returns
the maximum completion time Cmax = maxeij∈E(m) wij ;
(b) if (V,E(m − 1)) includes a perfect matching, we let
r := m − 1 and repeat the procedure. The pseudo-code for
the binary search NOMA pairing is shown as Algorithm 1.
The complexity of finding the perfect matching is the same as
finding a maximum cardinality matching, which can be solved
in O(

√
V E) time [11]. The complexity of the binary search

algorithm is O(logE). Therefore, the complexity of Algo-
rithm 1 is O(

√
V E logE) = O(K2.5 logK) since V = K

and E =
(
K
2

)
.

B. A Suboptimal Two-step Scheduling Algorithm for K > 2M

For the general case, we propose a two-step scheduling
algorithm, which first matches the users into NOMA pairs and
then schedules these pairs to the subcarriers. In the first step,
as a heuristic rule, we find the NOMA pairs that minimize the
total completion time. This is done by finding the maximum
weight matching in G′ = (V ′, E′), where G′ represents the
complete weighted graph and V ′ represents the set of K
devices. Define wij = ∆ − τ∗ij as the weight of each edge
e′ij ∈ E′, where ∆ is a number larger than all τ∗ij’s. After
the first step, the users have been paired up and the remaining
subproblem degenerates to the identical-machines scheduling

problem. The longest-processing-time-first (LPT) algorithm is
a classical scheduling algorithm to minimize the maximum
completion time in identical-machines scheduling problems
and the worst-case bound of LPT is 4/3 − 1/(3M) [12].
Therefore, in the second step, we apply the LPT algorithm to
schedule the NOMA pairs as follows: The NOMA pairs are
sorted in descending order of τ∗ij and placed in a queue. The
first pair in the queue is then assigned to the subcarrier that
has the earliest idle time. The idle time of that subcarrier is
then updated accordingly. The procedure is repeated until the
queue becomes empty. The complexity of maximum weight
matching is O(K3) [11] and the complexity of LPT is O(K).
The overall complexity of the heuristic scheduling algorithm
is O(K3).

VI. NUMERICAL RESULTS

In this section, we first compare the performance of our
proposed scheduling algorithm with OMA scheduling algo-
rithm. Besides, we conduct more experiments considering the
practical transmission time minimization problem in wireless
federated learning scenario.

A. Scheduling Performance
We consider an NB-IoT system in a single cell with radius

equal to 500 meters, where the BS is located at the center of
the cell and the K IoT devices are randomly distributed in the
cell. Each device wants to deliver a packet of size uniformly
distributed between 8 bits and 1024 bits. Following the NB-
IoT standard, the system bandwidth is assumed to be 180 kHz,
so the bandwidth W of each channel is 180/M kHz. The
number of subcarriers, M , varies from 5 to 25. The maximum
transmit power P of each user is assumed to be 20 dBm.
The channel between the IoT devices and the BS is modeled
as the combination of the large-scale fading and the small-
scale Rayleigh fading with variance equal to 1. The large-scale
path loss effect is 128.1+37.6 log10 d, where d represents the
distance from the IoT devices to the BS in kilometers. The
noise spectral density is −174 dBm/Hz.

First, we examine the performance of our proposed scheme
under K = 2M . The OMA scheme is used as a benchmark,
which applies the LPT scheduling scheme. Besides, the UPaS
NOMA scheduling algorithm proposed in [8] is also used as
a benchmark, which is based on the shortest-processing-time-
first (SPT) scheme. In contrast to LPT, SPT schedules the users
in ascending order of their transmission times. The scheme
OMA-SPT used in [8] is adopted as another benchmark.
Fig. 2 shows the transmission time versus the number of
subcarriers. The number of users is set to be K = 2M .
From Fig. 2, we can see that our proposed optimal NOMA-
opt scheduling scheme performs better than other schemes.
When the number of subcarriers is K = 15, NOMA reduces
the completion times of OMA-LPT, UPaS, and OMA-SPT by
36.8%, 43.1%, and 53.3%, respectively. Besides, OMA-LPT
performs better than UPaS and OMA-SPT. The reason is that
LPT-based scheduling outperforms SPT-based scheduling in
terms of maximum completion time.

Next, we examine the performance of our proposed heuristic
algorithm for the general K > 2M case. The OMA-LPT,
OMA-SPT, and UPaS are used as benchmarks. We let M = 5
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and K varies from 20 to 60. Fig. 3 shows the maximum
completion time versus the number of users for the general
case. We can see that our proposed NOMA-LPT algorithm
has shorter completion time than the other schemes. When
the number of users are K = 20 and K = 60, NOMA-
LPT reduces the completion time of OMA-LPT by 11.7% and
18.3%, respectively. Besides, it reduces the completion time
of UPaS by 17.9% when K = 50.

B. Experimental Study on Federated Learning
To demonstrate the performance of our proposed algorithm

in practical systems, we implement our proposed scheme on
a practical wireless federated learning (FL) system for data
aggregation to mitigate the transmission delay. We train a
convolutional neural network (CNN) on the MNIST dataset
for handwritten digit recognition. The CNN network consists
of two 5 × 5 convolution layers followed by the ReLU
activations and the maxpooling layers with 32 and 64 neu-
rons, respectively, and final 10 fully connected layers with
softmax activation. There are 259,466 learnable parameters
for transmission. Following [13], we quantize each parameter
into 12 bits. We apply FedAVG algorithm. The total number
of users or workers, is set to be 100. The large-scale channel
gains are generated in the same way as in Section VI-A while
small-scale channel gains experience independent Rayleigh
fading for each communication round of the learning process.
The total bandwidth is set to be 5 MHz and the number of
subcarriers is 5. The learning parameters are set according to
[14]. The total number of the training data samples is 60,000
and the whole data set is randomly partitioned into 100 equal-
sized subsets. Each user stores one subset, i.e., 600 images.
The number of the communication rounds and local epochs
are set to be 300 and 5, respectively. The learning rate is 0.1.
The minibatch size is 10. The client fraction is 0.1, i.e., in
each round, 10 users are allowed to transmit the local updated
learnable variables to the BS for data aggregation. Besides,
the users are selected using random selection [9]. The selected
users transmit the learnable parameters to the server by either
OMA or NOMA. Fig. 4 shows the accuracy and maximum
completion time versus the number of communication rounds.
It can be seen that the performance of NOMA is much
better than OMA in terms of the transmission time. When the
number of communication rounds are 200 and 300, NOMA
outperforms OMA by 44.6% and 42.7%, respectively. Fig. 5
shows the accuracy versus the transmission time. It can be
seen that NOMA uses shorter transmission time to achieve
the same accuracy as OMA.

VII. CONCLUSION

This work proposes a joint power allocation, user pairing
and scheduling algorithm to minimize the maximum com-
pletion time in uplink multi-subcarrier NOMA networks. An
optimal scheduling algorithm and an efficient heuristic are
proposed for a special case and the general case, respectively.
The simulation results show its good delay performance of
the data aggregation of wireless federated learning. Hence,
it can be considered for many practical applications, such as
distributed learning and computing.
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