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Abstract

The paper proposes a discretization (sampled-time implementation) algorithm for a class of homogeneous controllers for linear
time-invariant (LTI) systems preserving the finite-time and nearly fixed-time stability properties. The sampling period is
assumed to be constant. Both single-input and multiple-input cases are considered. The robustness (Input-to-State Stability)
of the obtained sampled-time control system is studied as well. Theoretical results are supported by numerical simulations.
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1 Introduction

By definition, the homogeneity is a dilation symmetry
introduced by Leonhard Euler in 18th century as follows:
f(λx) = λνf(x),∀λ > 0, where the coordinate trans-
formation x 7→ λx is know today as a standard (or Eu-
ler) dilation. A weighted (generalized) dilation is stud-
ied since 1950s. An introduction to stability theory of
weighted homogeneous Ordinary Differential Equations
(ODEs) can be found in [60]. Extensions of the homo-
geneity theory to various finite-dimensional and infinite-
dimensional dynamical models are proposed in [25], [24],
[12], [45]. Homogeneous differential equations/inclusions
form an important class of control system models [51],
[43], [3], [48]. They appear as local approximations [16]
or set-valued extensions [29] of nonlinear systems and in-
clude models of process control [57], mechanical systems
with frictions [42], fluid dynamics [45], etc. Stability and
stabilization problems were studied for both standard
[59], [2] and weighted homogeneous [9], [17], [50], [53],
[13], [38] systems which are the most popular today [42],
[29], [43], [3], [48], [34]. A homogeneous model predictive
control is introduced in [8].

An asymptotically stable homogeneous system is finite-
time stable in the case of negative homogeneity degree
and nearly fixed-time stable in the case of the positive
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homogeneity degree (see, e.g. [37], [4], [3]). However, the
finite/fixed-time stability is a fragile property, since an
arbitrary small measurement delay or an improper dis-
cretization of a finite-time or a fixed-time stable ODE
may result in a chattering [1], [30] or even in a finite-time
blow up [31]. Existing approaches to sampled-time im-
plementation of nonlinear controllers (see, e.g. [41], [40],
[18]) do not study these issues. The explicit discretiza-
tion (sampled-time implementation) of a finite-time con-
trol yields a chattering even if the original control law
is a continuous function of state [11], [23]. That is why
the discretization issues are very important for practical
implementation of finite/fixed-time control/estimation
algorithms [1], [26], [32], [27], [21], [5], [35], [15].

The concept of consistent discertization introduced in
[46] postulates that stability properties of a continuous-
time system must be preserved in its discrete-time
counterpart (approximation). Consistent discretiza-
tions for stable generalized homogeneous ODEs were
developed in [46], [52] based on Lyapunov function the-
ory. Some schemes with state dependent discretization
step were given in [10]. Being efficient for numerical
simulations, the mentioned schemes do not allow a con-
sistent discretization (sampled-time implementation)
of finite-time controllers in the general case. To the
best of authors’ knowledge, such implementations are
developed only for some particular first order (see, [1],
[20]) and some particular second order systems (see,
[21], [6]). This paper presents a consistent discretization
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for a homogeneous controller designed in [47], [45], [58]
for multidimensional linear plants. It is shown that the
sampled-time implementation of the controller accord-
ing to the developed scheme preserves the finite-time
and nearly fixed-time stability property of the original
closed-loop continuous-time system in the disturbance-
free case. We also prove an Input-to-State Stability
(ISS) of the obtained sampled-time control system with
respect to bounded additive perturbations and mea-
surement noises. Algorithms are developed for both
single-input and multi-input models. Numerical simula-
tions show an efficiency of this scheme and a complete
rejection of the so-called numerical chattering [1] caused
by a sampled-time implementation of a continuous-time
control algorithm. The preliminary version of this paper
[49] considers only the case of a finite-time stabilizer for
a planar (two-dimensional) system.

Notation: N is the set of natural numbers including 0; R
is the field of real numbers; R+ = {α ∈ R : α ≥ 0}; 0 is
the zero of a vector space; In ∈ Rn×n is the identity ma-
trix; ei = (0, ..., 0, 1, 0, ..., 0)> ∈ Rn is the i-th element of
the Euclidean basis; W � 0 means positive definiteness
of a matrix W = W> ∈ Rn×n and λmax(W ) is a max-

imal eigenvalue of W ; ‖x‖ =
√
x>Px is the weighted

Euclidean norm in Rn with P � 0 specified below in

each case when P is not arbitrary; ‖A‖ = supx 6=0
‖Ax‖
‖x‖

for A ∈ Rn×n; S = {x ∈ Rn : ‖x‖ = 1}; K is the class of
strictly increasing positive definite continuous functions
R+ 7→ R+; γ ∈ K is of the classK∞ if γ(s)→ +∞ as s→
+∞; σ : R+×R+ 7→ R+ is of the classKL if the function
s 7→ σ(s, τ) is of the class K for any fixed τ ∈ R+ and
the function τ 7→ σ(s, τ) is monotonically decreasing to
zero for any fixed s ∈ R+; L∞(R,Rn) is the space of the
essentially bounded measurable functions q : R 7→ Rn
and ‖q‖L∞((a,b),Rn) = ess supt∈(a,b) ‖q(t)‖; `∞ is a space

uniformly bounded sequences; diag{a1, ..., an} ∈ Rn×n
is a diagonal matrix.

2 Problem Statement

Let us consider a linear control system

ẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0 ∈ Rn, (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the
control input, A∈Rn×n, B∈Rn×m are known matrices.

Definition 1 Let the system (1) with a feedback control
u(t) = ũ(x(t)), ũ ∈ C(Rn\{0},Rm) be globally uniformly
finite-time 1 (resp. nearly fixed-time) stable. A family of

1 A system ẋ = f(t, x), x(0) = x0 is globally uniformly
• Lyapunov stable if ∃σ ∈ K∞: ‖x(t, x0)‖ ≤ σ(‖x0‖), ∀t ≥

0,∀x0∈Rn and for any solution x(t, x0) of the system;
• finite-time stable if it is globally uniformly Lyapunov sta-

ble and there exists a locally bounded function T : Rn 7→
R+ such that any trajectory of the system vanishes to zero

functions ũh : Rn 7→ Rm parameterized by a scalar h>0
is said to be a consistent discretization of ũ if

• Consistency of Stability: the system (1) with

u(t)= ũh(x(ti)), t∈ [ti, ti+1), ti= ih, i∈ N (2)

is globally uniformly finite-time (resp., nearly fixed-
time) stable for any h > 0;

• Control Approximation: ∀r1>0,∀r2>r1,∃ωr∈K :

sup
r1≤‖x‖≤r2

‖ũh(x)− ũ(x)‖ ≤ ωr(h), ∀h > 0. (3)

The first condition of Definition 1 asks the sampled-time
control system to preserve the stability property of the
original system for any fixed sampling period h > 0.
The second condition guarantees that the control ũh is,
indeed, an approximation of ũ, i.e., ũh(x)→ ũ(x) as h→
0+ uniformly on compacts from Rn\{0}. The origin is
excluded since a finite-time stabilizing feedback is always
non-smooth or even discontinuous at zero.

The aim of the paper is to propose a possible method of
consistent discretization of finite/fixed-time controllers
for LTI systems and to design a consistent discretiza-
tion for one particular class of generalized homogeneous
controllers studied in [47], [48], [45], [58]. First, we de-
sign a universal discretization being a mixture of feed-
forward/feedback algorithms, which guarantees an ex-
act tracking of the states of the original continuous-time
closed-loop system at time instances tnk, k ∈ N. Next,
we present the consistent (in the sense of the above def-
inition) discretization scheme and study its robustness
under the condition:

Assumption 1 The pair {A,B} is controllable, the ma-
trix A is nilpotent and m = 1.

Recall [58] that a linear system is generalized homoge-
neous of non-zero degree if and only if A is nilpotent.
Finally, we generalize both schemes to multi-input sys-
tems, which can be decomposed into a cascade of single-
input subsystems satisfying Assumption 1.

Assumption 2 Let us assume that

A=

[A1 ∗ ... ∗ ∗
0 A2 ... ∗ ∗
... ... ... ... ...
0 0 .... Am–1 ∗
0 0 .... 0 Am

]
, B=

[B1 0 ... 0 0
0 B2 ... 0 0
... ... ... ... ...
0 0 ... Bm–1 0
0 0 ... 0 Bm,

]
, (4)

where Ai ∈ Rni×ni , Bi ∈ Rni , n1 + n2 + .... + nm = n,
∗ is a (possibly) nonzero block. The pair {Ai, Bi} is con-
trollable and the matrices Ai are nilpotent, i = 1, ...,m.

in a finite time: ‖x(t, x0)‖=0,∀t≥T (x0), ∀x0∈Rn;
• nearly fixed-time stable if it is globally uniformly Lyapunov

stable and ∀r>0, ∃Tr>0: ‖x(t, x0)‖<r,∀t≥Tr, ∀x0∈Rn.
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If the pair {A,B} is controllable and rank(B) = m then
there exists a coordinate transformation [33] to a canon-
ical form similar to (4). Assumption 2 asks that {A,B}
is controllable, A is nilpotent, rank(B) = m and the sys-
tem admits a transformation to the block form (4).

3 Preliminaries: Homogeneous systems

3.1 Linear dilation and homogeneous norm

The so-called linear (geometric) dilation [45, Chapter 6]
in Rn is given by

d(s) = esGd =

∞∑
i=0

(sGd)i

i! , s ∈ R, (5)

where Gd ∈ Rn×n is an anti-Hurwitz matrix 2 known
as the generator of linear dilation. The latter guarantees
that d satisfies the limit property, ‖d(s)x‖ → 0 as s →
−∞ and ‖d(s)x‖ → +∞ as s → +∞, required for a
group d to be a dilation in Rn (see, e.g., [24]). The linear
dilation introduces an alternative norm topology in Rn
by means the so-called canonical homogeneous norm.

Definition 2 [45] The function ‖ · ‖d : Rn 7→ R+ given
by ‖x‖d = 0 for x = 0 and

‖x‖d =esx , where sx∈R : ‖d(−sx)x‖=1, x 6=0 (6)

is called the canonical homogeneous norm in Rn, where
d is a linear monotone dilation 3.

Notice that ‖x‖ = 1 (resp. ‖x‖ ≤ 1) is equivalent to
‖x‖d = 1 (resp. ‖x‖d ≤ 1). For the uniform dilation
d(s) = esIn, s ∈ R we have ‖ · ‖ = ‖ · ‖d.

Theorem 1 [44] If d is a monotone dilation and ‖x‖ =√
x>Px with a symmetric matrix P ∈ Rn×n satisfying

PGd+G>dP � 0, P � 0 then the canonical homogeneous
norm ‖ · ‖d is continuous on Rn and smooth on Rn\{0}:

∂‖x‖d
∂x = ‖x‖dx

>d>(− ln ‖x‖d)Pd(− ln ‖x‖d)
x>d>(− ln ‖x‖d)PGdd(− ln ‖x‖d)x

, ∀x 6=0; (7)

Moreover, σ(‖x‖) ≤ ‖x‖d ≤ σ(‖x‖),∀x ∈ Rn, with

σ(r) =
{
r1/α if r≥1,

r1/β if r<1,
σ(r) =

{
r1/β if r≥1,

r1/α if r<1,

where α =0.5λmax

(
P 1/2GdP

−1/2+P−1/2G>dP
1/2
)
>0

and β =0.5λmin

(
P 1/2GdP

−1/2+P−1/2G>dP
1/2
)
>0.

Below the canonical homogeneous norm is utilized as a
Lyapunov function for analysis and control design.

2 A matrix Gd ∈ Rn×n is anti-Hurwitz if −Gd is Hurwitz.
3 A dilation in Rn is monotone if for any x ∈ Rn\{0} the
function s 7→ ‖d(s)x‖, s ∈ R is strictly increasing.

Remark 1 (On computation of ‖ · ‖d) Since the ca-
nonical homogeneous norm is defined implicitly, a com-
putational algorithm is required for its practical imple-
mentation. Issues of numerical estimation of ‖ · ‖d are
studied in [47], [48] based on a bisection method. In [45,
Chapter 9.2.4] a scheme for an approximation of ‖ · ‖d
by an explicit homogeneous function is presented.

3.2 Homogeneous continuous-time systems

Definition 3 [24] A vector field f : Rn 7→ Rn (resp. a
function h : Rn 7→ R) is said to be d-homogeneous of de-
gree µ ∈ R if f(d(s)x) = eµsd(s)f(x) (resp. h(d(s)x) =
eµsh(x)), for all x ∈ Rn, s ∈ R.

If f is d-homogeneous of degree µ then solutions of ẋ=
f(x) are symmetric [24]: x(e−µst,d(s)x0)=d(s)x(t, x0),
where x(t, z) denotes a solution with x(0) = z. For in-
stance [58], the linear vector field x 7→ Ax, A ∈ Rn×n is
d-homogeneous of the degree µ 6= 0 ⇔ A is nilpotent
⇔ AGd = (µIn +Gd)A.

The homogeneity degree specifies the convergence rate.

Theorem 2 [4], [36] Let f : Rn 7→ Rn be d-
homogeneous of a degree µ ∈ R. If the system ẋ = f(x)
is asymptotically stable then it is globally uniformly
finite-time (nearly fixed-time) stable for µ < 0 (µ > 0).

The homogeneous control systems are robust (ISS) with
respect to a rather large class of perturbations [19], [3].

3.3 Homogeneous stabilization of linear plant

The following theorem merges results of [47], [58], [39].

Theorem 3 Let a pair {A,B} be controllable. Then

1) any solution Y0 ∈ Rm×n, G0 ∈ Rn×n of the linear
algebraic equation

AG0 −G0A+BY0 = A, G0B = 0 (8)

is such that the matrix G0 − In is invertible, the ma-
trix Gd = In + µG0 is anti-Hurwitz for any µ ∈
[−1, 1/ñ], where ñ is a minimal natural number such
that rank[B,AB, ..., Añ−1B] = n, the matrix A0 =
A+BY0(G0 − In)−1 satisfies the identity

A0Gd = (Gd + µIn)A0, GdB = B; (9)

2) the linear algebraic system

A0X+XA>0 +BY +Y >B>+ρ(GdX+XG>d )=0,

GdX +XG>d � 0, X = X> � 0
(10)

has a solution X ∈ Rn×n, Y ∈ Rm×n for any ρ > 0;
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3) the canonical homogeneous norm ‖ · ‖d induced by the

weighted Euclidean norm ‖x‖ =
√
x>Px with P =

X−1 is a Lyapunov function of the system (1) with

u = K0x+ ‖x‖1+µ
d Kd(− ln ‖x‖d)x, (11)

K0 = Y0(G0 − In)−1, K = Y X−1, (12)
where d is a dilation generated by Gd; moreover,

d
dt‖x‖d = −ρ‖x‖1+µ

d , x 6= 0; (13)

4) the feedback law u given by (11) is continuously differ-
entiable on Rn\{0}, u is continuous at zero if µ > −1
and u is discontinuous at zero if µ = −1;

5) the system (1), (11) is d-homogeneous of degree µ.

Obviously, due to (13) the closed-loop system (1),(11)
is uniformly finite-time stable if µ < 0 and it is nearly
fixed-time stable if µ > 0. For µ = 0 the control (11)
becomes u = K0x+Kx. Such a control law (under some
variations and/or simplifications) has been presented in
the literature as a solution to a finite-time stabilization
problem for linear plants [28], [50], [47].

Remark 2 Under Assumption 1, the equation (8) has
a unique solution such that Y0 = 0 (i.e., A0 = A) and
∃J ∈ Rn×n : J−1G0J = −diag{n − 1, ..., 1, 0}. This
follows from the fact then the system (1), in this case, is
equivalent to a controlled integrator chain.

A topological equivalence of any stable d-homogeneous
system to a standard homogeneous one [44] allows an
explicit representation of solution for (1), (11) to be de-
rived.

Corollary 1 (Explicit representation of solutions)
Under conditions of Theorem 3 with µ 6= 0, a solution of
the closed-loop system (1), (11) is unique and

x(t+ τ) = Qτ (‖x(t)‖d)x(t), (14)

where τ, t ≥ 0, Qτ (0) = 0 and for r > 0 one has

Qτ (r)=

{
eGdln rQ̂

(
ln(1+µρτrµ)

ρµ

)
e−Gdln r if 1

rµ
>−µρτ,

0 if 1
rµ
≤−µρτ,

(15)

Q̂(ŝ)=e−ρGdŝe(A+B(K0+K)+ρGd)ŝ, ŝ ≥ 0. (16)

The proof of this corollary, as well as the proofs of
other main and auxiliary results, are given in the Ap-
pendix. The matrix-valued function Qnh(·) can be eas-
ily computed, since elements of a matrix exponential
esM can always be represented as polynomial func-
tions of s, eρi , cos(ωis) and sin(ωis), where ρi + iωi
are eigenvalues of the matrix M ∈ Rn×n. Moreover, if
A0 = A + BK0, B,K,Gd satisfy (10) then the matrix
X1/2(A0 +BK + ρGd)X−1/2 is skew-symmetric and

e(A0+BK+ρGd)φ = X−1/2R(φ)X1/2, (17)

where R(φ) is a rotation matrix for any φ ∈ R, i.e.,
R(φ)R>(φ) = R>(φ)R(φ) = In.

Corollary 2 (On cascade homogeneous control)
Let Assumption 2 be fulfilled. Let Gdi ∈ Rni×ni ,
Ki ∈ R1×ni , Pi ∈ Rni×ni and the control ui(xi) with
xi ∈ Rni be defined by Theorem 3 for the pairs {Ai, Bi}
and some µi ∈ [−1, 1/ñi], ρi > 0 , respectively. Then
the system (1) with the control u = (u1, ..., um) is glob-
ally uniformly finite-time stable if µi < 0 (resp., nearly
fixed-time stable if µi>0) for all i = 1, 2, ...,m.

4 Discretization of Homogeneous Control

4.1 Single-input case

Let us represent the system (1) with the sampled-time
control u(t) = u(tk) for t ∈ [tk, tk+1) in the form:

xk+1 = Ahxk +Bhu(tk), k ∈ N, (18)

where xk=x(tk), tk=kh, Ah=ehA and Bh=
∫ h

0
esABds.

The system (18) can be rewritten as follows:

xk+n = Bhu(tk+n−1)+ ...+An−1
h Bhu(tk)+Anhxk. (19)

The controllability of the pair {A,B} implies the con-
trollability of the pair {Ah, Bh} and the invertability of

Wh = [Bh, AhBh, ...., A
n−1
h Bh] (20)

(see the formulas (45), (44) and Lemma 5 in Appendix).

Let parameters of a stabilizing homogeneous controller
(11) be designed as in Theorem 3 for µ 6= 0. By Corollary
1, to track a trajectory of the continuous-time closed-
loop system (1), (11), the sampled-time control just has
to fulfill the following identity

Qnh(‖xk‖d)xk=Bhu(tk+n−1)+...+An−1Bhu(tk)+Anhxk.

Indeed, if a sampled-time control is implemented as[
u(tk+n−1)

...
u(tk)

]
= W−1

h (Qnh(‖xk‖d)−Anh)xk, (21)

then the discrete-time system (18), (21) tracks any tra-
jectory of the continuous-time system (1), (11) at t =
tkn, k ∈ N. In particular, if µ < 0 then for any x0 ∈ Rn
there exists k∗ ∈ N such that xk = 0,∀k ≥ k∗.

Theorem 4 The system (1) with the sampled-time con-
trol (21) is globally uniformly finite-time stable if µ < 0
(nearly fixed-time stable if µ > 0).

Since u(tk+i−1) depends on xk = x(tk) but not on
x(tk+i−1), then the discretization (21) of the control
(11) could be useful, for example, if the control sam-
pling is n times faster than a measurement sampling. In
other cases, the control (21) is a mixture of feedforward
and feedback algorithms, where the state measurements
x(tk+i−1) for i = 2, ..., n − 1 are simply omitted during
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the control implementation. This could badly impact
to a robustness and to a precision of the sampled-time
controller. To avoid this drawback, let us consider the
static feedback law

ũh(xk) = K̃h(‖xk‖d)xk, (22)

K̃h(‖xk‖d) = e>nW
−1
h (Qnh(‖xk‖d)−Anh) , (23)

which is obtained from (21) selecting only u(tk).

Proposition 1 (Approximation property) Let u be
a homogeneous control (11) designed by Theorem 3 under
Assumption 1. Then ũh(x)→ u(x) as h→ 0+ uniformly
on compacts from Rn\{0}.

This proposition, in particular, implies that for a suffi-
ciently small h > 0 the system (18), (22) behaves simi-
larly to the continuous-time system (1), (11) at least on
small intervals of time. Let us denote

Lh = Bhe
>
nW

−1
h , Fh = Ah − LhAnh, h > 0, (24)

Mh(‖x‖d)x = (Fh + LhQnh(‖x‖d))x, x ∈ Rn, (25)

and rewrite the discrete-time system (18), (22) as follows

xk+1 = zh(xk) := Mh(‖xk‖d)xk. (26)

Lemma 1 (Homogeneity of discretization) The
system (18), (22) is d-homogeneous as follows :

zh(d(s)x) = d(s)zeµsh(x) , (27)

ũh(d(s)x) = es(1+µ)ũeµsh(x), (28)

for all s ∈ R, for all h > 0 and for all x ∈ Rn

The dilation symmetry established by Lemma 1 guar-
antees that a global asymptotic stability of the discrete-

time system (18), (22) for some h = ĥ > 0 is equivalent
to the global asymptotic stability of this system for any
h > 0. For simplicity, we select

ĥ := (|µ|ρn)−1. (29)

As shown below, the key feature of the proposed control
discretization is the nilpotence of the matrix Fh, i.e.,
Fnh = 0. Together with properties ofQnh(‖xk‖d)xk, this
allows the controller (22) to preserve stability properties
of the original system in its sampled-time counterpart.

Lemma 2 Let u be a homogeneous control (11) designed
by Theorem 3 under Assumption 1. Then the closed-loop
discrete-time system (18), (22) is

1) locally uniformly finite-time stable for µ<0 and

‖x0‖d≤r
−(ĥ/h)1/µ ⇒ xk=0, ∀k≥n,

where ‖x‖d is the canonical homogeneous norm in-

duced by the weighted Euclidean norm ‖x‖ =
√
x>Px

with P = X−1 and r–>0 is any number such that

max
i∈{1,...,n}

‖F i−1

ĥ
d(ln r–)‖<1;

2) globally practically 4 finite-time stable for µ < 0 and

the set Ω− =
{
x ∈ Rn : ‖x‖d ≤ r−(ĥ/h)1/µ

}
is in-

variant and finite-time stable for some r− ≥ r−;
3) globally practically fixed-time stable for µ > 0:

‖xk‖d ≤ r+(ĥ/h)1/µ, ∀k ≥ n

for all x0 ∈ Rn, where r+> max
‖vi‖≤1

∥∥∥∑n
i=1 F

i−1

ĥ
Lĥvi

∥∥∥
d

;

4) locally asymptotically stable for µ > 0 and the set

Ω+ =
{
x∈Rn : ‖x‖d≤r+(ĥ/h)1/µ

}
is an invariant

attraction domain for some r+ ∈ (0, r+].

The latter lemma proves that the discretization (22) of
the controller (11), indeed, preserves a stability property
of the original system at least locally (close to zero and
close to infinity). The discrete-time system with h =

ĥ behaves similarly to the continuous-time system for
‖xk‖d < r± and ‖xk‖d > r±. Hence, if the set Ω̃± =
{x : r± < ‖x‖d < r±} does not contain an invariant
set of the discrete-time system then the discretization is
globally consistent. Lemma 2 does not provide explicit
estimates for r− and r+. So, a criterion of the global
consistency of the discretization (22) has be obtained in
a different manner.

Let us consider a family of mappings Θk : (0,+∞)×S 7→
Rn×n defined recursively as follows: Θ0(δ, v)=In and

Θk+1(δ, v)=Mδĥ(‖Θk(δ, v)v‖d)Θk(δ, v), k∈N, (30)

where δ ∈ R, v ∈ S, the parameter ĥ > 0 is defined by
(29) and S = {x ∈ Rn : ‖x‖ = 1} is the unit sphere.

Lemma 3 Any solution of the discrete-time system

(18), (22) with h= ĥ and x0 6=0 admits the representation

xk = d(ln ‖x0‖d)Θk (‖x0‖µd, v0) v0, (31)

where v0 = d(− ln ‖x0‖d)x0 ∈ S.

The following theorem presents a necessary and suffi-
cient condition of the consistency of the discretization
(22) for the controller (11).

Theorem 5 (Consistent discretization) Let u be a
homogeneous control (11) designed by Theorem 3 under
Assumption 1 for µ 6= 0. Then ũh given by (22) is a
consistent discretization of the control u if and only if
there exists k∗ ≥ 1 such that

‖Θk∗(δ, v)v‖d < 1, ∀δ ∈ (0, r∗], ∀v ∈ S, (32)

where r∗ = (r−)µ if µ < 0 and r∗ = (r+)µ if µ > 0.

4 Practical finite-time and fixed-time stability is introduced
using the same definitions by replacing a norm (distance to
0) with a distance to a set being a neighborhood of zero.

5



0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

Fig. 1. The minimal eigenvalue of the matrix ∆(δ) for
µ=−1/2, ρ=2

Therefore, the discrete-time system (18), (22) is uni-
formly finite-time(or nearly fixed-time) stable if and only
if the canonical homogeneous norm ‖ · ‖d is a kind of a
homogeneous Lyapunov function. Indeed, (31) and (32)
simply means that ‖xk∗‖d<‖x0‖d, ∀x0 :‖x0‖µd∈(0, r∗).

Remark 3 (On feasibility of condition (32)) For
k∗ = 1 the condition (32) is equivalent to the nonlinearly
parameterized matrix inequality

Mδĥ(1)>X−1Mδĥ(1)> <X−1, ∀δ∈(0, r∗], (33)

which can be checked numerically on a sufficiently dense
grid in (0, r∗] because of a continuous dependence of
Mδĥ(1) on the parameter δ. Denoting ∆(δ) = X−1 −
M>
δĥ

(1)X−1Mδĥ(1)) we conclude that the condition (33)

is fulfilled if λmin(∆(δ)) > 0 for all δ ∈ (0, r∗]. For ex-
ample, for n = 2, µ = −1, ρ = 2,A = [ 0 1

0 0 ] , B = [ 0
1 ]

Theorem 3 gives Gd = diag{2, 1}, K = Y X−1 with

X = x11X̃, x11 > 0, X̃ =
[

1 −ρ(1−µ)

−ρ(1−µ) 7(2–µ)2ρ2(1–µ)/8

]
,

Y = ρ2(2−µ)(1−µ)x11 [ 8−7(2–µ)
8

−7ρ(2–µ))
8 ] . In this case,

we have r∗ = 1 and Figure 1 depicts the evolution of
the function δ 7→ λmin(∆(δ)), which confirms that (33)
is fulfilled. For k∗ > 1 a similar (but a bit more compli-
cated) numerical procedure can be developed.

4.2 Robustness analysis

It is well known [19], [3] that homogeneous systems are
Input-to-State Stable (ISS) with respect to sufficiently
large class of perturbations. Recall [54] that a system

ẋ = f(t, x, q), t > t0 (34)

is practically ISS with respect to q ∈ L∞(R,Rl) if there
exist, c > 0, ξ ∈ KL and γ ∈ K such that

‖x(t)‖ ≤ c+ ξ(‖x0‖, t− t0) + γ(‖q‖L∞((t0,t),Rl)). (35)

If c = 0 then the system is ISS. Local ISS restricts ad-
ditionally the set of initial conditions ‖x0‖ ≤ rx and/or
the maximal magnitude of the input ‖q‖ ≤ rq.

Let us consider the system

ẋ(t) = Ax(t) +Bu(t) + q(t), t > 0,

u(t) = u(tk), t ∈ [tk, tk+1),
(36)

where u(tk) is given by (21) and q ∈ L∞(R,Rn) is an
exogenous input.

Theorem 6 The system (36) is 1) locally ISS; 2) prac-
tically fixed-time stable if µ > 0; 3) ISS if µ > −β, where
β > 0 is defined in Theorem 1.

The ISS can be established for consistent discretization
of homogeneous controller. Let us consider the system

ẋ(t) = Ax(t) +Bu(t) + qp(t), t > 0,

u(t) = ũh(x(tk) + qm(tk)), t ∈ [tk, tk+1)
(37)

where ũh given by (22) is a discretization of a control
(11) designed by Theorem 3 under Assumption 1 and
the exogenous input q = (q>p , q

>
m)> ∈ L∞(R,R2n) is

such that {qm(tk)} ∈ `∞. Here qp models an external
perturbation and qm is a measurement noise.

Theorem 7 The system (37) is 1) locally ISS; 2) prac-
tically fixed-time stable if µ > 0; 3) practically ISS if
µ > −β; 4) ISS if µ > −β and the unperturbed system
(q=0) is globally asymptotically stable.

Notice that q may contain an output of another system.
In this case, a stability analysis of a cascade system can
be based on ISS [54], [7]. We follow this idea for the design
of the consistent discretization in the multi-input case.

4.3 Multi-input case

Let the control u be designed using Corollary 2 under
Assumption 2. Since Ai is nilpotent then, as before,
K0 = 0 in Theorem 3 and in Corollary 1. Let Qnih(·)
be defined by the formula (15) for Ai, Bi,Ki, Gdi , Pi, µi,
i = 1, ...,m. Let us denote

Wh,i = [Bh,i, Ah,iBh,i, ...., A
n−1
h,i Bh,i], (38)

Ah,i = ehAi , Bh,i =
∫ h

0
eτAidτB, and introduce the fol-

lowing discretization of the controllers ui:[
ui(tk+n–1)

...
ui(tk)

]
=W−1

h,i

(
Qnih(‖xi(tk)‖d)−Anh,i

)
xi(tk). (39)

Corollary 3 Under Assumption 2, the system (18) with
the control (39) is globally uniformly finite-time stable if
µi < 0 (nearly fixed-time stable if µi > 0), ∀i = 1, ...,m.

Similarly to the single input case, a consistent discretiza-
tion of the multi-input control system is designed as

ui(xk,i) = K̃i(‖xk,i‖di)xk,i, (40)

K̃i(‖xk,i‖di) = e>niW
−1
h,i

(
Qnh,i(‖xk,i‖di)−Anh,i

)
.
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Corollary 4 Let a control law u be designed by Corol-
lary 2 under Assumption 2. Then (40) is a consistent
discretization of u provided that conditions of Theorem
5 are fulfilled for µ = µi, ∀i=1, ...,m and maxµi<0 or
minµi>0.

5 Numerical Examples

5.1 Single-input system

Let n = 3, A =
[
0 I2
0 0

]
, µ = −0.25, ρ = 2. By Theo-

rem 3 we derive a finite-time homogeneous control (11)

with parameters K0 = 0, Gd =
[

1.5 0
0 1.25 0
0 0 1

]
and X =[

1.0000 −3.0000 6.4250
−3.0000 10.0750 −25.1875
6.4250 −25.1875 75.2507

]
, K = [−34.2751 −25.175 −7.5 ].

The numerical simulation has been done in MATLAB 5 .
Simulation results of the system (1) with the consistently
discretized control (2), (40) for x0 = [1 –1 0]>, h = 0.1
are presented on Fig. 2 (right). The system states con-
verge to zero in a finite time in the sense that ‖xk‖ ≤ ε,
∀k ≥ k∗ = 24, where ε = 1.11 · 10−16 is the machine
zero. Since ‖xk∗−1‖ ≈ 10−6 then tk∗ = 2.4 is the set-
tling time estimate obtained by the numerical simula-
tion, which coincides with the theoretical settling time
T (x0) = ‖x0‖−µd /(−µρ) ≈ 2.4526 up to an error of the
order h. This property is observed in all simulations,
for other initial conditions and other sampling periods,
confirming very high precision of the approximation of
the continuous time system by its sampled-time coun-
terpart. The results for the explicit discretization

u(t) = ũ(x(tk)), t ∈ [tk, tk+1) (41)

of the control (11) are depicted on Fig. 2 (left) for
comparison reasons. The system (1) with the explicitly
discretized homogeneous controller is not asymptoti-
cally stable and suffers of a chattering. For µ = 0.25,
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3
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0
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2

3

Fig. 2. The simulation results for the system (1) with ex-
plicitly (left) and consistently (right) discretized finite-time
control (11) for n = 3,m = 1, µ = −0.25, ρ = 2, h = 0.1.

5 https://gitlab.inria.fr/polyakov/hcs-toolbox-for-matlab

ρ = 2 we similarly derive a nearly fixed-time ho-
mogeneous control (11) with parameters K0 = 0,

Gd =
[

0.5 0
0 0.75 1
0 0 1

]
and X =

[
1.0000 −1.0000 0.4583
−1.0000 2.0417 −3.0625
0.4583 −3.0625 7.9863

]
,

K = [−3.2569 −7.0069 −4.5000 ]. The simulation re-
sults for the explicitly discretized controller with
x0 = 4.96873515 · [1 −1 0]> are depicted in Fig. 3
(left). With the explicit discretization, the system sim-
ply blows up for larger initial conditions. Simulations of
the consistently discretized control were made for initial
conditions with various magnitudes up to ‖x0‖ ≈ 1010.
They show the nearly fixed-time stability of the closed-
loop system as in Fig. 3 (right). ISS of both controllers
(for µ = −0.25 and µ = 0.25) with respect to addi-
tive perturbations and measurement noises was also
confirmed by simulations.
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-40
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-10

0
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40

Fig. 3. The simulation results for the system (1) with ex-
plicitly (left) and consistently (right) discretized fixed-time
control (11) for n = 3,m = 1, µ = 0.25, ρ = 2, h = 0.2.

5.2 Multi-input system

For the multi-input case we consider the above single-
input system (n1 = 3) with the finite-time control
(µ1 = −0.25, ρ1 = 1) in the cascade with the sec-
ond order system (n2 = 2) with the finite-time con-
trol (µ2 = −1, ρ2 = 1) considered in Remark 3, i.e.,

A =
[
A1 A12

0 A2

]
, B =

[
B1 0
0 B2

]
, A1 =

[
0 I2
0 0

]
, A12 =

[
1 0
0 0
0 0

]
,

A2 = [ 0 1
0 0 ] , B1 =

[
0
0
1

]
, B2 = [ 0

1 ] . The simulation re-

sults for the cascade system are shown on Fig. 4 for
x1(0) = [1 −1 0]>, x2(0) = [1 0]>. They confirm
finite-time stability of the closed-loop system with the
consistently discretized control.

6 Conclusions

In the paper, two types of discretization (sampled-time
implementation) schemes for a homogeneous control law
are developed. Both preserves the finite/fixed-time sta-
bility properties of the original continuous-time closed-
loop system. The first scheme gives a mixture of feed-
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Fig. 4. The simulation results for the cascade system (1)
with consistently discretized finite-time controllers with
n1 =3, n2 =2, µ1 =−0.25, ρ1 =1, µ2 =−1, ρ2 =−1, h=0.05.

forward and feedback algorithms. It can be utilized if
the control sampling is much faster than the sampling
of measurements, or in the model-predictive framework.
The second scheme (called consistent) provides a static
feedback law, which always preserves the stability prop-
erties, at least, locally (close to zero and close to infin-
ity). A necessary and sufficient condition of global con-
sistency is presented. A particular sufficient condition
is formalized in terms of a parametric LMI, which, by
numerical simulations, is shown to be feasible in some
cases. A development of numerical algorithms for control
parameters tuning based on the obtained conditions of
the consistency is an interesting problem for the future
research.

7 Appendix

7.1 Auxiliary results

Lemma 4 [14, page 136] If Z1Z2 − Z2Z1 = qZ2 with

q ∈ R and Z1, Z2 ∈ Rn×n then eZ1eZ2 = e
Z1+ q

1−e−q
Z2 .

Lemma 5 If Assumption 1 is fulfilled and d is a linear
dilation defined in Theorem 3 then

1) for all s ∈ R the following identities hold:

Ad(s)=eµsd(s)A, d(s)B=esB, d(s)eτA=ee
−µsτAd(s), (42)

d(s)
∫ h
0
eτAdτ = eµs

∫ e−µsh
0

eτAdτd(s); (43)

2) the matrix Wh given by (20) satisfies

Wh=d∗(lnh)
∫ 1

0
eτAdτ[B eAB ... e(n−1)AB], (44)

W−1
h

d∗(lnh)
∫ n
0
eτAdτB =

[
1
...
1

]
, (45)

where d∗ corresponds to d with µ = −1;
• the parameter β defined in Theorem 1 satisfies β = 1

for any µ < 0.

Proof. 1) Under Assumption 1 of Theorem 3 the dila-
tion d(s) = esGd is uniquely defined such that Gd satis-

fies (9) with A0 = A. We derive Ad(s)=A
∑+∞
i=0

siGid
i! =∑+∞

i=0
si(µIn+Gd)iA

i! =eµsd(s)A,d(s)B =
∑+∞
i=0

siGid
i! B =∑+∞

i=0
si

i!B, ∀s ∈ R. Hence, for all s ∈ R we have

d(s)eτA = d(s)
∑n−1
i=0

hiAi

i! =
∑n−1
i=0

e−µishiAid(s)
i! =

ee
−µsτAd(s) and d(s)

∫ h
0
eτAdτ =

∫ h
0
ee
−µsτAd(s)dτ.

and changing of the integration variable we derive (43).

2) On the one hand, since esA and
∫ h

0
eτAdτ commute for

any s ∈ R then taking into account Aih = eihA we derive

Wh = [Bh AhB A2
hBh ... An−1

h Bh] =
(∫ h

0
esAds

)
·

·[B; ehAB e2hAB ... e(n−1)hAB]. On the other hand,
the homogeneity identities (42) imply hB = d∗(lnh)B
and eihAd∗(lnh) = d∗(lnh)eiA,∀i ∈ N,∀h > 0. Hence,
we have

Wh =
(

1
h

∫ h
0
esAds

)
d∗(lnh)[B, eAB, e2AB, ..., e(n−1)AB].

Using the identity (43) we derive

d∗(− lnh)
(

1
h

∫ h
0
esAds

)
=
∫ 1

0
esAds d∗(− lnh),

so the formula (44) holds. Finally, since
∫ n
0 e
τnAdτ =∑n−1

i=0

∫ i+1
i eτAdτ =

∫ 1
0 e
τAdτ

∑n−1
i=0 e

iA then W−1
h d∗(lnh)·

·
∫ n
0 e

τnAdτB=[B eAB ... e(n−1)AB]–1
∑n–1
i=0e

iAB=
∑n
i ei.

3) For m = 1, under conditions of Theorem 3, we have
Gd = U−1diag{1 − µ(n − 1), ..., 1}U for some non-
singular matrix U ∈ Rn×n. The latter means that β = 1

Lemma 6 The function V : Rn 7→ R+ defined as
V (x) = σ−1(‖x‖d), x ∈ Rn is positive definite radially
unbounded and globally Lipschitz continuous with the
Lipschitz constant 1, where σ ∈ K∞ is as in Theorem 1.

Proof. The Lipschitz continuity for ‖x‖ ≥ 1 follows
from [44, Proposition 1]. For ‖x‖ ≤ 1 this fact can be
proven similarly (just replacing β with α). All other
properties of V are obvious.

Lemma 7 For any C∗>0 and any ε ∈ (0, 1) there exist
C >0 and r>0 such that

|u(x)− uĥ(x̃)| ≤ C min{‖x‖1+2µ
d , ‖x̃‖1+2µ}, (46)

for all x, x̃ satisfying (1− ε)‖x̃‖d≤‖x‖d≤ (1 + ε)‖x̃‖d,
‖x‖µd≤r, ‖d(− ln ‖x‖d)(x− x̃)‖≤C∗‖x‖µ.

Proof. Using approximation of ũh̃ (see, the proof of
Proposition 1) we conclude ∃h0 ∈ (0, 1),∃C0 > 0 such

that supy∈S |u(y) − ũh̃(y)| ≤ C0h̃, ∀h̃ < h0. Since u
is locally Lipschitz continuous on Rn\{0} then for any
δ ∈ (0, 1) there existsC1 such that |u(y)−u(z)| ≤ C1‖y−
z‖, ∀y ∈ S and ∀z : ‖y − z‖ ≤ δ. Using the Lipschitz
condition and the dilation symmetry of u and ũh (see
(28)) we derive
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|u(x)−ũĥ(x̃)|≤|u(x)−u(x̃)|+|u(x̃)−ũĥ(x̃)|=
‖x‖1+µ

d
|u(d(− ln ‖x‖d)x)−u(d(− ln ‖x‖d)x̃)|+

‖x̃‖1+µ
d
|u(d(− ln ‖x̃‖d)x̃)−u‖x̃‖µ

d
ĥ(d(− ln ‖x̃‖d)x̃)|≤

C1‖x‖1+µd
‖d(– ln ‖x‖d)x−d(– ln ‖x‖d)x̃‖+‖x̃‖1+µ

d
C0‖x̃‖µdĥ=

C1‖x‖1+µd
‖d(– ln ‖x‖d)x−d(– ln ‖x‖d)x̃‖+C2‖x̃‖1+2µ

d

provided that ‖d(− ln ‖x‖d)x − d(− ln ‖x‖d)x̃‖ ≤ δ

and ‖x̃‖µd ≤ h0/ĥ, where C2 = C0ĥ. Taking r ≤(
1−ε
1+ε

)|µ|
min

{
δ
C∗
, h0

ĥ

}
and C=(C1C∗+C2)

(
1+ε
1−ε

)1+2|µ|

we complete the proof.

7.2 The proof of Corollary 1

Denoting y = ‖x‖d(−‖x‖d)x, we derive ‖y‖ =
‖x‖d‖d(− ln ‖x‖d)x‖ = ‖x‖d and conclude that the
closed-loop system (1), (11) is topologically equivalent
(homeomorphic on Rn and diffeomorphic on Rn\{0},
see [44]) to the standard homogeneous system:

ẏ = ‖y‖µ(A0 +BK + ρ(Gd − In))y,

where the identities d(s)A0 = e−µsA0d(s) and d(s)B =
esB, ∀s ∈ R are utilized on the last step. In this case,
using (10) we conclude

d
dt‖y(t)‖= −ρ‖y(t)‖µ+1

and ‖y(t+τ)‖−µ = ‖y(t)‖−µ+µρτ, for ‖y(t)‖−µ+µρτ ≥
0. Obviously, ‖y(t+ τ)‖ = 0 if ‖y(t)‖−µ + µρτ ≤ 0. The
latter corresponds to the negative homogeneity degree
µ < 0 and the finite-time stability of the closed-loop
system. Hence, denoting Ã = A0 +BK+ρGd we obtain

y(t+ τ) = e
(Ã−ρIn))

∫ τ
0
‖y(t+σ)‖µdσ

y(t)

= e(Ã−ρIn) 1
µρ ln(1+µρτ‖y(t)‖µ)y(t).

Since ‖y(t)‖ = ‖x(t)‖d then returning to the original
coordinates we derive

x(t+ τ) = d(ln ‖y(t+ τ‖) y(t+τ)
‖y(t+τ)‖ = Qτ (‖x(t)‖d)x(t)

for all t ≥ 0 and all τ ≥ 0.

7.3 The proof of Corollary 2

Under Assumption 2, the model (1) is a system of inter-
connected subsystems with state vectors xi ∈ Rni and
control inputs ui∈R. By the formula (7), we derive

d
dt‖xi‖di = −ρi‖xi‖1+µi

di
+

‖xi‖di
x>i d>i (− ln ‖xi‖di )Pidi(− ln ‖xi‖di )

∑m

j=i+1
Aijxj

x>
i
d>
i

(− ln ‖xi‖di )PiGdi
di(− ln ‖xi‖di )xi

,

where Aij are over diagonal blocks of the matrix A. By

Theorem 3 the norm in Rni is defined as ‖z‖ =
√
z>Piz,

z ∈ Rni and ‖di(−‖xi‖di)xi‖ = 1. Taking into account
PiGdi +G>diPi � 0 we derive

x>i d>i (− ln ‖xi‖di)PiGdidi(− ln ‖xi‖di)xi ≥ βi > 0,

where βi = 0.5λmin(P
1/2
i GdiP

−1/2 + P
−1/2
i G>diP

1/2).
Applying the Cauchy-Schwartz inequality we obtain

x>i d>i (− ln ‖xi‖di )Pidi(− ln ‖xi‖di )
∑m

j=i+1
Aijxj

x>
i
d>
i

(− ln ‖xi‖di )PiGdi
di(− ln ‖xi‖di )xi

≤

1
βi

∥∥di(− ln ‖xi‖di)Σmj=i+1Aijxj
∥∥≤ ‖Σmj=i+1Aijxj‖

βiσi(‖xi‖di )
,

where σi = σ−1 and σ is given in Theorem 1 with α =

αi = 0.5λmax(P
1/2
i GdiP

−1/2 +P
−1/2
i G>diP

1/2) and β =

βi. The estimate obtained for d
dt‖xi‖di , the stability of

the m-subsystem and the cascade structure imply the
forward completeness of the whole system.

If Vi(xi) = σi(‖xi‖di) then for ‖xi‖di > 1 we have

dVi
dt = βi

Vi· ddt‖xi‖d
‖xi‖d ≤ −βiρiV

1+
µi
βi

i +
∥∥∥∑m

j=i+1Aijxj

∥∥∥ .
For 0 < ‖xi‖d < 1 we derive

dVi
dt =αi

Vi· ddt‖xi‖d
‖xi‖d ≤−αiρiV

1+
µi
αi

i + αi
βi

∥∥∥∑m
j=i+1Aijxj

∥∥∥
Since Vi locally Lipschitz continuous on Rni\{0} then
using the Clarke’s gradient for ‖xi‖di = 1 we have

dVi
dt ≤− λi(xi)αiρiV

1+
µi
αi

i − (1− λi(xi))βiρiV
1+

µi
βi

i

+
(
λi(xi)

αi
βi

+ 1− λi(xi)
)∥∥Σmj=i+1Aijxj

∥∥
with some λ(xi) ∈ [0, 1]. The latter means that xi 7→
Vi(xi) is an ISS Lyapunov function [56] of the i-th sub-
system with respect to the input

∑m
j=i+1Aijxj provided

that µi > −βi. Since the m-th subsystem is globally
uniformly asymptotically stable then using the cascade
structure and the ISS property of each sysbsystem we
conclude that the whole system is globally uniformly
asymptotically stable as well. Moreover, the obtained
estimate of d

dt‖xi‖di implies that the finite-time, ex-
ponential and nearly fixed-time convergence rates are
preserved as well dependently of the sign of µi for all
i = 1, ...,m. If µi ≤ −βi, then the each subsystem with
the zero input is finite-time stable. Taking into account
forward completeness and the cascade structure we con-
clude that the whole system is finite-time stable too.

7.4 The proof of Theorem 4

On the one hand, since xk+n = Qnh(‖xk‖d)xk then,
in the view of Corollary 1, the states of the discrete-
time system (18) with the control (21) coincides with the
states of the original continuous-time system (1), (11)
at time instances tkn, k = 0, 1, ..... In this case, if the
discrete-time system is globally Lyapunov stable then
the finite-time or nearly fixed-time stability property of
the original continuous-time system is preserved.

On the one hand, in the view of Theorem 3 and Corollary
1, we have ‖Qτ (‖x‖d)x‖−µd = ‖x‖−µd + µρτ for all x ∈
Rn : ‖x‖−µd + µρτ ≥ 0 and ∀τ > 0, and Qτ (‖x‖d)x = 0
otherwise. Hence, we conclude

9



‖Qτ (‖x‖d)x‖d = (‖x‖−µd + µρτ)−1/µ ≤ ‖x‖d ≤ σ(‖x‖),
where σ ∈ K∞ is defined in Theorem 1. In this case,
there exists ξ ∈ K∞ such that |u(tk+j)| ≤ ξ(‖xk+j‖)),
j = 0, 1, ..., n − 1 and there exists σ1 ∈ K∞ such
that ‖xk+j+1‖d ≤ σ1(‖xk+j‖d), j = 0, 1, ..., n − 1.
Consequently, there exists σn ∈ K∞ such that
‖xk+n‖d ≤ σn(‖xk‖d),∀k ∈ N. On the other hand,
by construction, we have xk+n = Qnh(‖xk‖d)xk,
so, taking into account ‖Qnh(‖xk‖d)xk‖d ≤ ‖xk‖d,
we derive ‖xk+n‖d ≤ min {‖xk‖d, σn(‖xk‖d)} and
‖xk‖d ≤ min {‖x0‖d, σn(‖x0‖d} ,∀k ≥ 0. Using Theo-
rem 1 we substantiated the global Lyapunov stability
of the system (18) (as well as the system (1)) with the
sampled-time control (21).

7.5 The proof of Proposition 1

First of all, notice that under Assumption 1 we have
K0 = 0 and A0 = A (see Theorem 3). Let us denote
sh = ln(1 + µρnhrµ)1/(ρµ) with r = ‖x‖d and show

K̃h(r)→ r1+µKd(− ln r) as h→ 0.

On the one hand, if d∗(s) is defined by Lemma 5 then

d∗(– lnh)e(A+BK+ρGd)sh =
∞∑
i=0

sihd∗(– lnh)(A+BK+ρGd)i

i! =

∞∑
i=0

sih(A+BKd∗(lnh)+ρhGd)id∗(− lnh)
hii! =

e
sh(A+ρhGd)

h d∗(− lnh) +
∑n−1
i=1

sih
hii!A

i−1BK +O(h).

Indeed, for i = 2 we have (A + BKd∗(lnh) +
ρhGd)2d∗(− lnh) = (A + ρhGd)2d∗(− lnh) + ABK +
O(h), and, by induction, we conclude (A+BKd∗(lnh)+
ρhGd)id(− lnh) = (A+ρhGd)id∗(− lnh) +Ai−1BK+
O(h). Since A is nilpotent then for i ≥ n + 1 we have
Ai−1 = 0 and (A + BKd∗(lnh) + ρhGd)id(− lnh) =
(A+ ρhGd)id∗(− lnh) +O(h).

On the other hand, since d(−s)Ad(s) = eµsA
then d(−s)eτAd(s) = ee

sµτA for all s, τ ∈ R and

Qnh(r) − Anh = d(ln r)Q̂(sh)d(− ln r) − enhA =

d(ln r)(Q̂(sh) − enhrµA)d(− ln r) where Q̂(sh) is given
by (16). Since d∗(s) commutes with d(τ), ∀s, τ ∈ R
then using the identities (42) and the estimate of
d∗(– lnh)e(A+BK+ρGd)sh we derive

d∗(− lnh)
(
e(A+BK+ρGd)sh − eρshGdenhr

µA
)

=

d∗(− lnh)e(A+BK+ρGd)sh − eρshGdenr
µAd∗(− lnh) =

n−1∑
i=0

sihA
i–1BK
hii! +

(
e
sh(A+ρhGd)

h −eρshGdenr
µA
)
d∗(–lnh)+O(h).

If Z1 = ρshGd, Z2 = nrµA, q = −µρsh then the
condition Z1Z2 − Z2Z1 = qZ2 of Lemma 4 is ful-

filled, so eZ1eZ2 = e
Z1+ q

1−e−q
Z2 or, equivalently,

eρshGdenr
µA = eρshGd+

sh
h A. Therefore, since sh =

ln(1+µρnhrµ)
ρµ =

µρnhrµ− (µρ2hrµ)2

2 +O(h3)

ρµ = hnrµ + O(h2)

then d∗(− lnh)
(
e(A+BK+ρGd)sh − eρshGdenhr

µA
)

=∑n−1
i=0

sihA
i−1BK
hii! + O(h) =

∑n−1
i=0

(nrµ)iAi−1BK
i! + O(h) =∫ nrµ

0
eτAdτBK +O(h). Since d(s) = esGd then

d∗(− lnh)(Qnh(r)−Anh) =

d(ln r)e−ρshGd
∫ nrµ

0
eτAdτBKd(− ln r) +O(h) =∫ nrµ

0
d(ln r − ρsh)eτAdτBKd(− ln r) +O(h) =∫ nrµ

0
ee
−µ(ln r−ρsh)τAdτd(ln r − ρsh)BKd(− ln r) +O(h) =∫ nrµ

0
e

1+µρnhrµ

rµ
τAdτ r

(1+µρnhrµ)1/µ
BKd(− ln r) +O(h) =∫ nrµ

0
e

1
rµ
τAdτBrKd(− ln r) +O(h) =∫ n

0
eτAdτBr1+µKd(− ln r) +O(h).

Therefore, using Lemma 5 and Remark 2 we conclude

K̃h(r) = e>nW
−1
n (Qnh(sh)−Anh) =

e>nW
−1
n d∗(lnh)

(∫ n
0
eτAdτBr1+µKd(− ln r) +O(h)

)
=

r1+µKd(− ln r) +O(h2),

and K̃h(r) → r1+µKd(− ln r) as h → 0 uniformly on r
from compacts belonging to (0,+∞).

7.6 The proof of Lemma 1

Let us show that (27) holds. Indeed, on the one hand,
since ‖d(s)x‖d = es‖x‖d then

Q̂
(

ln(1+µρnhe−µs‖d(s)x‖µ
d

)

ρµ

)
=Q̂

(
ln(1+µρnh‖x‖µ

d
)

ρµ

)
and ∀s ∈ R,∀x ∈ Rn we have

Qnhe−µs(‖d(s)x‖d) = d(s)Qnh(‖x‖d)d(−s).

On the other hand, using Lemma 5 we derive

We−µsh = d∗(−µs)Wh, Be−µsh = e−µs−sd(s)Bh,

Le−µshd(s) = d (s)Lh, d (s)Fh = Fe−µshd (s) ,

for all s ∈ R and for all h > 0, where the identi-
ties d∗(τ) = eτIn+τG0 and d(s) = esIn−sµG0 are uti-
lized for the analysis Lh in order to conclude that
e−s−µsd∗(µs)d(s) = In, where G0 is defined in Theo-
rem 3. Hence, we derive (27). The identity (28) can be
obtained in the same way.

7.7 The proof of Lemma 2

1) Local Finite-Time Stability for µ < 0. Let us
show that the matrix Fh is nilpotent. Notice that Fh can
be rewritten as follows

Fh =
(
In − [0 0 ... 0 Bh]W−1

h An−1
h

)
Ah =(

A1−n
h WhW

−1
h An−1

h − [0 0 ... 0 Bh]W−1
h An−1

h

)
Ah =

A1−n
h (Wh − [0 0 ... 0 An−1

h Bh])W−1
h Anh =

A1−n
h [Bh AhBh ... An−2

h Bh 0]W−1
h Anh

10



Since W−1
h [AhBh ... An−1

h Bh 0] = [e2 ... en 0] then

F 2
h =A1–n

h [Bh AhBh ... A
n−2
h Bh0][e2 e3 ... en0]W –1

h A
n
h=

A1–n
h [AhBh ... A

n−2
h Bh 0 0]W –1

h A
n
h.

Continuing the same considerations we derive Fnh =
0. On the one hand, since for µ < 0 we have
Q(‖x‖d) = 0 if ‖x‖d ≤ (−µρnh)−1/µ then the
closed-loop system becomes linear xk+1 = Fhxk for

‖xk‖d ≤ (−µρnh)−1/µ =
(
ĥ/h

)1/µ

. On the other

hand, the inequality ‖F ihx0‖d ≤
(
ĥ/h

)1/µ

is equiva-

lent to
∥∥∥d( 1

µ ln h
ĥ

)
F ihx0

∥∥∥ =
∥∥∥F i

ĥ
d
(

1
µ ln h

ĥ

)
x0

∥∥∥ ≤ 1,

and the inequality ‖x0‖d ≤ r−
(
ĥ/h

)1/µ

is equiva-

lent to
∥∥∥d(− ln r)d

(
1
µ ln h

ĥ

)
x0

∥∥∥ ≤ 1. Therefore, the

inequality ‖F i
ĥ
d(ln r–)‖ ≤ 1 yields

∥∥∥F i
ĥ
d
(

1
µ ln h

ĥ

)
x0

∥∥∥≤∥∥∥d(− ln r−)d
(

1
µ ln h

ĥ

)
x0

∥∥∥. Hence, we derive ‖xi‖d =

‖F ihx0‖d ≤
(
ĥ/h

)1/µ

for i = 1, ..., n − 1 provided that

‖x0‖d ≤ r−
(
ĥ/h

)1/µ

. Taking into account the nilpo-

tence of Fh, the latter implies local Lyapunov stability of
the closed-loop system and the finite-time convergence
of solutions to zero.

2) Practical Finite-time Stability for µ < 0. The
proof repeats the proof of Theorem 7, the case 1) for q =

0 and gives d‖x‖d
dt ≤ −0.5ρ‖x‖1+µ

d for all x : ‖x‖−µd ≥ r̃.
Using Lemma 1 we derive Ω− for h 6= ĥ with r−= r̃−1/µ,
where r̃ is defined in the proof of Theorem 7.

3) Practical Fixed-time Stability for µ > 0 Let us
prove, now, the practical fixed-time stability. On the one
hand, since, by Theorem 3 the canonical homogeneous
norm is a Lyapunov function of the system satisfying

d

dt
‖x(t)‖d = −ρ‖x(t)‖1+µ

d ,

then ‖x(t + nh)‖−µd = ‖x(t)‖−µd + µρnh, and for µ > 0

we have ‖x(t+nh)‖d < (µρnh)
−1/µ

=
(
ĥ
h

)1/µ

indepen-

dently of x(t). On the other hand, by Corollary 1, we have
x(t + nh) = Qnh(‖x(t)‖d)x(t), so ‖Qnh(‖x̃‖d)x̃‖d ≤(
ĥ
h

)1/µ

,∀x̃ ∈ Rn. Since the right-hand side of the sys-

tem can be represented as follows

zh(x) = Fhx+ LhQnh(‖x‖d)x, Lh := Bhe
>
nW

−1
h ,

then, for any x0 ∈ Rn the solution xk, k = 0, 1, 2, ... of
the discrete-time system (18), (22) satisfies

x1 = Fhx0 + Lhy1,

x2 = F 2
hx0 + FhLhy1 + Lhy2,

...

xn = Fnh x0 + Fn−1
h Lhy1 + Fn−2

h Lhy2 + ...+ Lhyn,

where yi = Qnh(‖xi−1‖d)xi−1, i = 1, 2, .... Since the
matrix Fh is nilpotent then Fnh = 0 and

xk=Fn−1
h Lhyk−n+1+Fn−2

h Lhyk−n+2+...+Lhyk,∀k≥n.

Since ‖yi‖d≤
(
ĥ
h

) 1
µ ⇔

∥∥∥d(1µ ln h

ĥ

)
yi

∥∥∥
d
≤1⇔

∥∥∥d(1µ ln h

ĥ

)
yi

∥∥∥≤
1 then∥∥∥d(1

µ ln
h
ĥ

)
xk

∥∥∥
d

=

∥∥∥∑n

i=1
d

(
1
µ ln

h
ĥ

)
F i−1
h

Lhd

(
–

1
µ ln

h
ĥ

)
vi

∥∥∥
d

,

where vi = d
(

1
µ ln h

ĥ

)
yk+n−i. Taking into account Fĥ =

d
(

1
µ ln h

ĥ

)
Fhd

(
− 1
µ ln h

ĥ

)
, Lĥ=d

(
1
µ ln h

ĥ

)
Lhd

(
− 1
µ ln h

ĥ

)
and ‖vi‖≤1 we derive

∥∥∥d( 1
µ ln h

ĥ

)
xk

∥∥∥
d
< r̄+,∀k≥n.

4) Local Asymptotic Stability for µ > 0. Since
d‖x‖d
dt ≤ −0.5ρ‖x‖1+µ

d for all x : ‖x‖µd ≤ r̃−1 then for
µ > 0 the closed-loop system is locally asymptotically
stable. Using Lemma 1 we derive Ω+ with r+ = r̃−1/µ.

7.8 The proof of Lemma 3

The symmetry proven by Lemma 1 yields Mh(‖x‖d)x =
d(s)Meµsh(‖d(−s)x‖d)d(−s)x for all x ∈ Rn, for all
s ∈ R and ∀h > 0. Hence, for any x0 ∈ Rn\{0} we

have x1 =Mh(‖x0‖d)x0 =d(ln ‖x0‖d)Θ1(‖x0‖µdĥ, v0)v0.
Since ‖x1‖d = ‖x0‖d ‖Θ1(‖x0‖µd, v0)v0‖d then x2 =

Mh(‖x1‖d)x1 =Mh(‖x1‖d)d(ln ‖x0‖d)Θ1(‖x1‖dĥ, v0)v0

= d(ln ‖x0‖d)M‖x0‖µdĥ
(‖x1‖d/‖x0‖d) Θ1 (‖x0‖µd, v0) v0

= d(ln ‖x0‖d)Θ2 (‖x0|µd, v0) v0. Repeating the above
considerations we derive (31).

7.9 The proof of Theorem 5

The approximation property is proven by Proposition
1. Let us prove the consistency of stability properties.
If the discrete-time system (26) is globally uniformly
finite-time stable for some h > 0 then due to dilation
symmetry (see Lemma 1) it is globally uniformly finite-

time stable for any h > 0, in particular, for h = ĥ.

Necessity. Let us consider the case µ < 0. The uni-
formity of the finite-time stability and Lemma 2 guar-
antee that there exists k∗ ≥ 1 such that for any x0 :
‖x0‖d ≥ r− we have ‖xk∗‖d < ‖x0‖d. The latter means
that ‖x0‖d‖Θk∗ (‖x0‖µ, v0) v0‖d < ‖x0‖d and

‖Θk∗ (rµ, v0) v0‖d < 1,∀r ≥ r−,∀v0 ∈ S.
Denoting δ = rµ for µ < 0 we derive the inequality (32).
The case µ > 0 can be treated similarly.
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Sufficiency. Let us denote r∗ = (r−)µ for µ < 0 and
r∗ = (r+)µ for µ > 0. Let us consider the candidate
Lyapunov function V : Rn 7→ R+ defined as follows

V (x) =

{
‖d(−µ−1 ln r∗)x‖pd if ‖x‖µd ≤ r∗,
‖d(−µ−1 ln r∗)x‖ if ‖x‖µd ≥ r∗,

(47)

where p = β if µ < 0 and p = α if µ > 0, where α, β are
given by Theorem 1. By construction, V is positive def-
inite, radially unbounded and globally Lipschitz contin-
uous with the Lipschtiz constant L = ‖d(−µ−1 ln r∗)‖
due to Lemma 6.

a) Let us show that V is a Lyapunov function for
‖x0‖µd ∈ [r∗, r

∗]. Since (δ, v) 7→ ‖Θk∗(δ, v)v‖d is a con-
tinuous function on the compact [r∗, r

∗]× S then using
(32) we derive γ = maxδ∈[r∗,r∗] ‖Θk∗(δ, v)v‖d < 1 and
for ‖x0‖µ ∈ [r∗, r

∗] we have ‖xk∗‖d ≤ γ‖x0‖d. Since
‖xk∗‖d ≤ γ‖x0‖d ⇔ ‖d(s)xk∗‖d ≤ γ‖d(s)x0‖d,∀s ∈ R
then V (xk∗) ≤ γpV (x0) for ‖x0‖µd ∈ [r∗, r

∗].

b) Let us show that V is a Lyapunov function for

‖x0‖µd ≤ r∗. Since d‖x‖d
dt ≤ −0.5ρ‖x‖1+µ

d for all
x : ‖x‖µd ≤ r∗ (see the proof of Lemma 2, case 2), then
‖x1‖d ≤ γ∗(‖x0‖µd)‖x0‖d,∀x0 : ‖x0‖µd ≤ r∗, or equiv-
alently, V (x1) ≤ γp∗(‖x0‖µd)V (x0),∀x0 : ‖x0‖µd ≤ r∗,

where γ∗(s) = (1 + 0.5ρµs)−1/µ with s > 0.

c) Let us show that V is a Lyapunov function for ‖x0‖µd ≥
r∗. If ‖x0‖µd > r∗ then for all k ≥ n we have ‖xk‖ = 0 if
µ < 0 and ‖d(−µ−1 ln r∗)xk‖ < 1 if µ > 0 (see the proof
of Lemma 2). This means that there exist γ∗ ∈ (0, 1)
such that V (xk) ≤ γ∗V (x0), ‖x0‖µ > r∗.Without loss
of generality we may assume that k∗ ≥ n (otherwise we
just take nk∗ instead of k∗ in all above considerations).

d) Therefore, for any r̄∗ ∈ (0, r∗) and for any finite r̄∗ >
r∗ there exists γ̄ ∈ (0, 1) such that

V (xk∗) ≤ γ̄V (x0), ∀x0 : r̄∗ ≤ ‖x0‖µ ≤ r̄∗.

Taking into account local finite-time (resp., asymptotic)
stability and practical finite-time (resp., fixed-time) sta-
bility proven by Lemma 2 for µ < 0 (resp., µ > 0) we
complete the proof.

7.10 The proof of Theorem 6

In a discrete time, the system (36) can be rewritten as

xqk+n = Qnh(‖xqk‖d)xqk +

n−1∑
i=0

An−ih q̃k+i

where q̃k =
∫ h

0
eA(h−τ)qp(tk + τ)dτ is the sampled-time

realization of the external perturbation, so {q̃k} ∈ `∞

for any h > 0. Let V be defined as in Lemma 6. Since
‖Qnh(‖x‖d)x‖−µd = ‖x‖−µd + µρnh for all x ∈ Rn :

‖x‖−µd +µρnh ≥ 0 then
∥∥xqk+n−q̄k

∥∥−µ
d

=‖xqk‖
−µ
d +µρnh,

where q̄k =
∑n−1
i=0 A

n−i
h q̃k+i. Moreover, since q̄k is uni-

formly bounded, then for µ > 0 it guarantees a practical
fixed-time stability. In this case, we derive

V (xq
k+n

)−V (xq
k
)=V (xq

k+n
)−V (xq

k+n
−q̄k)+V (xq

k+n
−q̄k)−V (xq

k
)

≤‖q̄k‖+V (xq
k+n
−q̄k)−V (xq

k
)=‖q̄k‖+σ−1(‖xq

k
−q̄k‖d)−V (xq

k
)

=‖q̄k‖+W (V (xq
k
)),

where W (V )=σ−1(σ(V )−µ+µρnh)−1/µ−V. For µ>−β
we haveW ∈K∞ and V is an ISS Lyapunov function [22].

7.11 The proof of Theorem 7

In a discrete time, the system (37) can be rewritten as

xqk+1 = Ahx
q
k +BhK̃h(‖xqk + q̂k‖)(xqk + q̂k) + q̃k, (48)

where {q̂k}, {q̃k} ∈ `∞ for any h > 0, q̂k = qm(tk) is the
sampled-time realization of the measurement noise and

q̃k =
∫ h

0
eA(h−τ)qp(tk+τ)dτ is the sampled-time realiza-

tion of the external perturbation. Denote qk = (q̃>k , q̂
>
k ).

Due to the dilation symmetry proven by Lemma 1 it is

sufficient to analyze ISS of (48) for h = ĥ.

1) Let us prove local ISS and practical ISS of (37). If
x = eAhtxqk + Bht ũĥ(xqk + q̂k) + q̃ht , ht = t − tk and

q̃ht =
∫ ht

0
eA(ht−τ)qp(tk + τ)dτ then x corresponds to a

solution of the system (37) for t ∈ [tk, tk + ĥ). Let us
denote q1

k = d(− ln ‖xqk‖d)q̂k, q2
k=d(− ln ‖xqk‖d)q̃ht .

a) Let us show that ‖xqk‖d is close to ‖x‖d for a suffi-

ciently large ‖xqk‖
−µ
d and sufficiently small qik, i = 1, 2.

Using dilation symmetry (see (28)) we derive

x = d(ln ‖xqk‖d)
(
eAht‖x

q
k
‖µ
dvk+Bht‖xqk‖

µ
d
ũĥ‖xq

k
‖µ (vk+q1k)+q2k

)
,

with vk = d(− ln ‖xqk‖d)xqk ∈ S, Since eAhts → In as
s → 0 and Bhts → 0 as s → 0 then for any ε ∈ (0, 1)
there exist rε > 0 and δε > 0 such that∣∣∣∥∥∥eAht‖xqk‖µdvk+Bht‖xqk‖

µ
d
ũĥ(vk + q1

k) + q2
k

∥∥∥
d
−1
∣∣∣≤ε

for ‖xqk‖
−µ
d > rε and ‖qik‖ ≤ δε, i = 1, 2. Hence, we

have (1− ε)‖xqk‖d≤‖x‖d≤(1 + ε)‖xqk‖d and ∃C̃0, C̃1>

0 : ‖d(– ln ‖x‖d)q̂k‖=
∥∥∥d(– ln ‖x‖d‖xq

k
‖d

)
q1
k

∥∥∥≤ C̃0‖q1
k‖ and

‖d(− ln ‖x‖d)xqk‖ < C̃1 for ‖xqk‖
−µ
d >rε and ‖qik‖ ≤ δε.

b) Let us show that uh(xqk + q̂k) is close to u(x) for

a sufficiently large ‖xqk‖
−µ
d and sufficiently small ‖qik‖.

Using Lemma 5 and the identity xqk = e−Ahtx −
e−AhtBht ũĥ(xqk + q̂k)− e−Aht q̃ht we derive
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d(− ln ‖x‖d)x−d(− ln ‖x‖d)(xq
k
+q̂k)=

d(− ln ‖x‖d)(In−e−Aht )x+d(− ln ‖x‖d)e−AhtBht ũĥ(xq
k
+q̂k)

+d(− ln ‖x‖d)e−Aht q̃ht+d(− ln ‖x‖d)q̂k=

−d(− ln ‖x‖d)
∫ ht
0
AeAτdτx+e

−Aht‖x‖
µ
dd(− ln ‖x‖d)Bht ũĥ(xq

k
+q̂k)

+e
−Aht‖x‖

µ
dd(− ln ‖x‖d)q̃ht+d(− ln ‖x‖d)q̂k=

−
∫ ht‖x‖µd
0

AeAτdτd(− ln ‖x‖d)x

+e
−Aht‖x‖

µ
d ·Bht‖x‖µd

· ũ‖x‖µ
d
ĥ(d(− ln(‖x‖d/‖xqk‖d))(vk+q1k))

+e
−Aht‖x‖

µ
dd(− ln(‖x‖d/‖xqk‖d))q2k+d(− ln ‖x‖d)q̂k.

Since ∃C̃2 > 0 :
∥∥∥∫ ht‖x‖µd0

AeAτdτ
∥∥∥ ≤ C̃2‖x‖µd and

∃C̃3 > 0 :
∥∥∥Bh̃‖x‖µ

d

∥∥∥ =
∥∥∥∫ ht‖x‖µd0

eAτdτB
∥∥∥ ≤ C̃3‖x‖µd

then for any C̃4 > 0 there exist C3 > 0 such
that ‖d(− ln ‖x‖d)x − d(– ln ‖x‖d)(xqk + q̂k)‖ ≤
C3‖x‖µd for ‖x‖−µd ≥ r̃ε = ( 1+ε

1−ε )|µ|rε, ‖qik‖ ≤ δε

and ‖d(− ln ‖x‖d)q̂k‖ ≤ C̃4‖x‖µd. In this case, by
Lemma 7 there exists C > 0 and r > 0 such that
‖ũĥ(xqk + q̂k) − u(x)‖ ≤ C‖x‖1+2µ. for ‖x‖−µd ≥
max{r̃ε, r−1}, all t ∈ [ti, ti+1) and ‖qik‖ ≤ δε and

‖d(− ln ‖x‖d)q̂k‖ ≤ C̃4‖x‖µd.

c) Adding and subtracting u(x) we derive

d‖x‖d
dt =

‖x‖dx>d>(– ln‖x‖d)Pd(– ln ‖x‖d)(Ax+Bũĥ(xk+q̂k)+qp)

x>d>(− ln‖x‖d)PGdd(− ln ‖x‖d)x
=

x>d>(– ln‖x‖d)P (B(ũĥ(xk+q̂k)−u(x))+‖x‖dd(– ln‖x‖d)qp)

x>d>(− ln ‖x‖d)PGdd(− ln ‖x‖d)x
−ρ‖x‖1+µ

d

≤β‖B(ũĥ(xk+q̂k)−u(x))‖+β‖x‖d‖d(− ln ‖x‖d)qp‖−ρ‖x‖1+µd

≤‖x‖1+µ
d

(β‖B‖C‖x‖µ
d
−ρ)+β‖x‖d‖d(− ln ‖x‖d)qp‖

that for ‖x‖−µd ≥ r′ = max{r̃ε, r−1}, t ∈ [ti, ti+1),

‖qik‖ ≤ δε and ‖d(− ln ‖x‖d)q̂k‖ ≤ C̃4‖x‖µd.

d) Let us show that ‖ · ‖d is an ISS Lyapunov function
(close to zero for µ > 0 and close to infinity for −β <
µ < 0). Let σ(s) = sµσ−1(s), where σ ∈ K∞ is given
in Theorem 1 and s ≥ 0. For ‖qp‖ ≤ 0.25β−1ρσ(‖x‖d)

we derive β‖x‖d‖d(− ln ‖x‖d)qp‖ ≤ 0.25ρ‖x‖1+µ
d . No-

tice that ‖qm‖ ≤ δεσ
−1(‖x‖d) implies ‖q1

k‖ ≤ δε,

‖qm‖ ≤ δ0σ(‖x‖d) with δ0 = C̃−1
0

(
1−ε
1+ε

)|µ|
implies

C0‖q1
k‖ ≤

(
1−ε
1+ε

)|µ|
‖xqk‖

µ
d and ‖d(− ln ‖x‖d)q̂k‖ ≤ ‖x‖µd

for ‖x‖−µ ≥ r′. For a sufficiently small δ′ > 0 the in-

equalities ‖xqk‖
−µ
d ≥ rε (or, equivalently, ‖x‖−µd ≥ r̃ε)

and ‖qp‖ ≤ δ′σ(‖x‖d) imply ‖q2
k‖ ≤ δε.

Selecting r̃ = max{r′, 0.5ρ(β‖B‖C)−1} we derive
d‖x‖d
dt ≤ −0.25ρ‖x‖1+µ

d for ‖x‖−µd ≥ r̃, ‖qp‖ ≤ δ̃σ(‖x‖d),
‖qm‖ ≤ δ0σ(‖x‖d) and ‖qm‖ ≤ δεσ(‖x‖d), where

δ̃ = min{0.25β−1ρ, δ′}. The function σ belongs to the
class K∞ if µ > −β. Therefore, the system (37) is prac-
tically ISS if −β < µ < 0 and locally ISS if µ > 0 even
when the conditions of Theorem 5 do not hold.

e) Let us show that the system (37) is practically fixed-
time stable and practically ISS for µ > 0. Since Fn

ĥ
= 0

(see the proof of Lemma 2) then

xq1 =Fĥx
q
0 + Lĥy1 + q̄1, q̄1 = q̃0 − LĥA

n
ĥ
q̂0,

xq2 =F 2
ĥ
xq0+FĥLĥy1+Lĥy2+q̄1, q̄2 =Fĥq̄1 +q̃1−LĥA

n
ĥ
q̂1,

... ...

xqn=Fn−1

ĥ
Lĥy1+...+Lĥyn+q̄n, q̄n=Fĥq̄n–1+q̃n–1−LĥA

n
ĥ
q̂n–1,

where yi+1 = Qnĥ(‖xqi + q̂i‖d)(xqi + q̂i), i = 0, ..., n − 1.
Since for µ > 0 we have ‖yk+i‖ ≤ 1 (see the proof of
Lemma 2, case 3) and ‖q̄i‖ ≤ C max

j=0,...,i−1
‖qj‖ for some

C > 0, then the system (37) with µ > 0 is practically
fixed-time stable and practically ISS.

f) Let us show that the system (37) is locally ISS for
µ ≥ −1. For ‖xqk + q̂k‖d ≤ r− we have xqk+1 = Fĥx

q
k +

q̃k−LĥA
n
ĥ
q̂k, whereFh is a Schur stable nilpotent matrix.

Since asymptotically stable linear system is ISS w. r. t.
additive perturbations then (37) is locally ISS.

2) Let us show that the system (37) is ISS for µ >
−β provided that the unperturbed system is globally
asymptotically stable. Our goal is to show ISS of

xq(p+1)k∗=Ξ(xqpk∗ , qpk∗ , ..., q(p+1)k∗−1), p=0, 1, ... (49)

which describes evolution of (48) with the discrete step
k∗. The latter would imply ISS of (37). Notice that the
local and practical ISS of (37) guarantees the local and
practical ISS of the system (49). Let k∗ ≥ 1, V , r̄∗,
r̄∗, γ̄ ∈ (0, 1), L = ‖d(−µ−1 ln r∗)‖ be defined as in the
proof of Theorem 5. Let xk ∈ Rn denote a solution of
the non-perturbed system with x0 = xq0.

a) Let us show there exists ωk∗ ∈ K∞:

‖xqk∗ − xk∗‖ ≤ ωk∗(max{‖q0‖, ..., ‖qk∗−1‖})

for r̄∗ ≤ ‖x0‖µd ≤ r̄∗. Since the system (37) is practically
ISS then for any σ̃ ∈ K∞ there exists a compact set
Ω̃ ⊂ Rn such that xqi ∈ Ω̃ for all i ∈ 0, ..., k∗ provided
that r̄∗ ≤ ‖x0‖µd ≤ r̄∗ and max

j=0,...,k∗−1
‖qj‖ ≤ σ̃(‖x0‖d).

Denoting q̄0 = 0 and q̄k = Fhq̄k−1+q̃k+Lh(Qnĥ(‖xk−1+
q̄k−1+q̂k‖d)(xk−1+q̄k−1+q̂k)−Qnĥ(‖xk−1‖d)xk−1) for
k ≥ 1 we derive xqk = xk + q̄k. Since the function x 7→
Qτ (‖x‖d)x is continuous on Rn then by Heine-Cantor

Theorem it is uniformly continuous on Ω̃ and there exists
ω0 ∈ K∞ such that ‖Qτ (‖z1‖d)z1 − Qτ (‖z2‖d)z2‖ ≤
ω0(‖z1 − z2‖) for all z1, z2 ∈ Ω̃ and

‖q̄1‖ ≤ ‖q̃0‖+ ‖Lh‖ω0(‖q̂0‖).

Repeating the above consideration, on k∗-th step, we
derive that ∃ωk∗ ∈ K∞: ‖q̄k∗‖ ≤ ωk∗( max

j=0,...,k∗−1
‖qj‖)

for r̄∗ ≤ ‖x0‖µd ≤ r̄∗ and max
j=0,...,k∗−1

‖qj‖ ≤ σ̃(‖x0‖d).

b) Since V (xqk∗) = V (xqk∗)−V (xk) +V (xk) ≤ L‖q̄k∗‖+

γ̄V (x0) ≤ γ̃+1
2 V (xq0) for r̄∗ ≤ ‖x0‖µd ≤ r̄∗ and ‖q̄k∗‖ ≤

1−γ̄
2L V (x0) then V (xqk∗) ≤

γ̃+1
2 V (xq0) for r̄∗ ≤ ‖x0‖µd ≤ r̄∗

13



and max
j=0,...,k∗−1

‖qj‖ ≤ min
{
σ̃(‖x0‖d), ω−1

k∗

(
1−γ̄
2L V (x0)

)}
.

Taking into account the local and practical ISS proven
above, the latter guarantees global ISS of (49) by [22].

7.12 The proof of Corollaries 3 and 4

Denote δi(t) =
∑m
j=i+1Aijxi(t), where i = 1, ...,m is

a number of subsystem in the system (1), (2), (39) and
the matrices Aij are defined in the proof of Corollary
2. By Theorem 4, each subsystem with δi = 0 is finite-
time (for µi < 0) or nearly fixed-time (for µi > 0) sta-
ble. Moreover, it is forward complete 6 if δi is uniformly
bounded. The case µi < 0. Since the m-th subsystem is
finite-time stable then ∃Tm > 0 such that δm−1(t) = 0
for all t ≥ Tm. Considering subsequently the systems
m − 1, m − 2,...,1 we conclude that the system (18),
(39) is finite-time stable. The case µi > 0. Since the
m-th subsystem is fixed-time stable then dm−1 is uni-
formly bounded and (m − 1)-th subsystem practically
fixed-time stable (see Theorem 6), but the ISS property
guarantees its global uniform asymptotic stability [55].
Using the cascade structure of the system we complete
the proof of Corollary 3. The proof of Corollary 4 is lit-
erally the same but it uses Theorems 5 and 7 instead of
Theorem 4 and 6, respectively.
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[8] J.-M. Coron, L. Grüne, and K. Worthmann. Model
predictive control, cost controllability, and homo-
geneity. SIAM Journal on Control and Optimiza-
tion, 58(5):2979–2996, 2020.

[9] J.-M. Coron and L. Praly. Adding an integrator
for the stabilization problem. Systems & Control
Letters, 17(2):89–104, 1991.

[10] D. Efimov, A. Polyakov, and A. Aleksandrov. Dis-
cretization of homogeneous systems using euler
method with a state-dependent step. Automatica,
109(11):108546, 2019.

[11] D. Efimov, A. Polyakov, A. Levant, and W. Perru-
quetti. Realization and discretization of asymptot-
ically stable homogeneous systems. IEEE Trans-
actions on Automatic Control, 62(11):5962–5969,
2017.

[12] G. Folland. Subelliptic estimates and function
spaces on nilpotent Lie groups. Arkiv for Matem-
atik, 13(1-2):161–207, 1975.
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