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A B S T R A C T

During the draping of dry textile reinforcements, the high tensile stiffness of fibers and the possible slippage between them significantly modify the transverse
shear deformation mechanism. In order to show the limits of classical shell elements (Kirchhoff and Mindlin shell) for textile reinforcements, four-point bending
tests of multi- layer fibrous material were conducted and analyzed through experiment and simulation. In forming cases, the mid-surface deformation was
obtained by a finite element stress resultant shell, which takes the in-plane shear and bending behavior into account. Based on the quasi-inextensibility of fibers, a
kinematic modeling approach was then proposed to efficiently calculate the transverse shear strain. This approach has been implemented in Matlab software as a
post-processing application, and can therefore be carried out by any user, together with any finite element software. Different bending tests and hemispherical
forming experiments proved the effectiveness and correctness of the approach through comparisons between experimental and numerical results.

1. Introduction

Due to their outstanding performance (e.g., high specific stiffness,
strength, and high designability), fiber-reinforced composites have been
increasingly used for structural components in different fields such as
transportation and civil engineering. The Liquid Composite Molding
(LCM) process [1,2] provides a possible option for the fabrication of
composite components with high volume. The first step of the LCM
process is forming dry fabric into the desired shape in molds, followed
by an injection of resin to obtain the final composite part. To improve
forming efficiency and avoid the "trial and error" process, numerical
simulations are effective. The developed numerical approaches can be
classified into kinematic and mechanical approaches [3–5] The kine-
matic approaches are purely geometric and can give the fiber orientation
during deformation [6,7] Although these methods are fast, they do not
consider the mechanical behavior and therefore cannot simulate
external process parameters such as draping force. Mechanical ap-
proaches [8,9] have been developed at the different scales of textile
composite materials. Compared with the method conducted at the
microscale (on fibers) [10,11] and mesoscale (on yarn) [12,13],
macroscale modeling approaches consider the textile composites as a
continuous medium and is thus more computationally effective. This
continuity hypothesis has been verified in a variety of cases [5,14,15]

The textile fabric can be considered as thin or thick, but generally,
the thickness is much smaller than the two other dimensions. For this
reason, shell finite elements can be adopted in macroscale approaches.
Within the framework of classical shell elements (Kirchhoff or Mindlin),
the bending rigidity is determined by the tensile stiffness and thickness.
This cannot be applied to fibrous materials due to significant sliding
occurring between the fibers, leading to a low bending rigidity. Such a
weakness in bending has led to the development of membrane ap-
proaches (neglecting the bending behavior) [16–18] However, it has
been shown that the bending behavior plays an important role in textile
fabric forming, especially the formation and development of wrinkles
[19–22] To model this specific bending behavior, in the first proposed
approach, a single-layer fabric was modeled as a superimposition of
several elements [23–28] The stress resultant shell approach [29,30]
achieved the decoupling of bending and membrane behavior in a shell
element. These approaches have been shown to be effective in predicting
fabric mid-surface deformation, including the in-plane shear and
out-of-plane bending deformation. Nevertheless, they are based on the
classical shell theory which fails to predict the correct transverse shear
strain for textile composites, as discussed later.

The transverse shear strain is the rotational displacement of material
normals which are straight lines perpendicular to the initial mid-surface.
The transverse shear strain is important as it will determine the strain
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and stress state in the fibers at different thicknesses other than the mid-
surface. To predict the transverse shear strain, a direct approach would
be to model multiple fiber layers as a stack of shell elements [31,32] This
approach becomes extremely time-consuming when the number of
layers significantly increase. Different finite elements have been devel-
oped for this purpose, including solid elements [33–35] and fibrous shell
elements beyond the classical shell kinematics [36,37] To study the
structural response of laminated composites, such as buckling and vi-
bration [38–40], and thermomechanical properties [41–43], a lot of
effort in recent years has been devoted to the development of solid-shell
[44–46], single-layer (ESL) theories, zig-zag (ZZ) theories, Layerwise
(LW) theories [47–50], and Carrera unified formulation (CUF) models
[40,51] Most of these theories put effort into verifying the continuity of
displacement (or stress) fields in the thickness. However, the specific
behavior of dry reinforcements leads to significant sliding between plies.
In order to take these effects into account, it is possible to use interface
layers, but with a great increase in computational cost. High-order
theories (second gradient solid elements [52], Cosserat mediums [53,
54]) have also been applied recently to dry reinforcements. However, it
is still convenient and effective to apply classical shell theory, especially
in commercial finite element codes.

The presented research had two objectives. The first was to present
the difficulty of classical shell elements in predicting the transverse
shear strain for fibrous composites. The four-point bending test of multi-
layer fibrous material was analyzed as direct evidence of these limita-
tions. This is presented in Section 2. The second was to present a remedy
approach within the framework of the classical shell element. In the
proposed approach, the mid-surface was first determined by the stress
resultant shell method (introduced in Section 3), then a complementary
post-processing method was proposed in Section 4 to obtain the trans-
verse shear. Section 5 compares numerical and experimental results in

various bending and forming tests to show the effectiveness of the
proposed approach.

2. The specificities of transverse shear behavior of fibrous
reinforcement

In this section, the four-point bending test of fibrous reinforcement is
presented and analyzed as direct evidence that the classical shell theory
is not applicable for the transverse shear deformation of fibrous
reinforcement.

2.2. The transverse shear in classical shell theory

Referring to an x1, x2, x3 Cartesian coordinate system, x1 and x2 are
on the shell mid-surface, and x3 is the coordinate in the normal direc-
tion. In the classical shell elements, the normals are supposed to remain
straight lines during the deformation. The bending curvatures χ and
transverse shear strain Г are related by shell kinematics [55]:
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Here θ1 and θ2 are the rotation of normals along the x1 and x2 di-
rections, and u3 is the mid-surface displacement in x3 direction. Note
that the curvature χ is not the mid-surface curvature χ which is the
second derivative of the mid-surface displacement (χ11 = − ∂2u3

∂2x1, χ22 =

∂2u3
∂2x2, χ12 = − 2 ∂2u3

∂x1∂x2). They are equal only under the condition that Γ =

0 (Kirchhoff shell). In the case of fibrous reinforcements, the bending
stiffness is experimentally characterized by the mid-surface curvature
and bending moment. Thus, Kirchhoff kinematics is implicitly used to
decouple the bending behavior from the membrane behavior.

By adding transverse shear strain (Γ ∕= 0), the Mindlin shell allows
the shell normals to rotate and not always be perpendicular to the mid-
surface. However, the transverse shear strain γα3 is determined by the
transverse shear stiffness Cs and the transverse shear stress resultant Qα3
(α takes value 1 or 2) [55–57]:
[

Q13
Q23

]

= Cs

[
γ13
γ23

]

(2)

It is shown next that the transverse shear stiffness Cs does not apply
to fibrous composite reinforcements. This was analyzed by four-point
bending test.

Fig. 1. Transverse shear in the four-point bending test of fibrous material. Two materials that shared the same bending physics are used: (a) 30 layers of paper. (b) 11
layers of interlock fabric G1151. In order to observe the no-zero transverse shear deformation, the mid-surface and material normals are all marked in the test.

Fig. 2. Transverse shear stress resultant distribution in the four-point bending
test. The shear stress is divided into three zones I, II, III. In zone I and II, the
shear stress is zero, where constant in zone III.



2.2. The transverse shear of fibrous reinforcement in a four-point bending
test

Fig. 1 shows the four-point bending test of fibrous materials (30
layers of paper in Figs. 1a, and 11 layers of interlock fabric G1151 in
Fig. 1b). The two materials shared the same physical properties: the
fibrous composition was almost inextensible, and relative slippage could
occur between the adjacent layers. Both the mid-surface and material
normals were marked to track the material deformation. It can be seen in
Fig. 1 that the angle between the normal directors and mid-surface was
far from 90◦ Thus, it was straightforward to conclude that the Kirchhoff
shell theory is not relevant. Moreover, in the Kirchhoff shell, only the
mid-surface could fulfill the quasi-inextensibility conditions, and the
material would be stretched/compressed on the top/bottom surface.
This is also inconsistent with the physics of a fibrous material.

In a four-point bending test, the transverse shear stress resultant can
be divided into three zones (neglecting gravity and friction). As shown in
Fig. 2, in zone I, the sample was free without constraint, and the shear
stress resultant was equal to zero. In zone II, the bending moment
changed evenly, and there was a constant shear stress resultant. In zone
III, the bending moment remained constant and the shear stress resul-
tant stayed at zero (pure bending test).

Since the transverse shear stresses in zone I and zone III were zero,
the shear strain given by the Mindlin shell would according to Eq. (2)
also be zero. This differed from the experimental results (Fig. 1). A
comparison of the shear strain is given in Table 1. The inconsistent shear
strain by the Mindlin shell theory did not ensure the quasi-
inextensibility of the fibers at different thicknesses. From the four-
point bending test, it was found that the transverse shear strain in the
fibrous materials should not be governed by the constitutive equation
(Eq. (2)), but rather by the quasi-inextensibility of the fibers and the
slippage between them.

2.3. Numerical result of the four-point bending test with the Mindlin shell
element

To corroborate the theoretical analysis, numerical simulations of
four-point bending tests were carried out in the commercial software
Abaqus. In the simulation model, the material thickness was 15 mm, and
the length was 300 mm, i.e., the same as in the experiment of Fig. 1b. A
Mindlin shell element (S4) was used, and the element size was set as 5
mm × 5 mm. In order to take into account the friction between fibers,
the bending stiffness of 11 layers of G1151 was adopted in the simula-
tion measured by a three-point bending test [37] The transverse shear
stiffness in the (x1, x3) plane was set from 0.001 N/mm to 100 N/mm.
Since the shell transverse shear strain could not be directly visualized in
Abaqus, the shell cross-section was plotted in Matlab using the numer-
ical result of the shell mid-surface position and the orientation of ma-
terial normals, both given by Abaqus. The simulation is presented in
Fig. 3. Regardless of the value of the transverse shear stiffness, the
transverse shear strains in Zone I and III were zero, which corresponded
to the theoretical results in the Mindlin shells.

As depicted in Fig. 3a, the transverse shear stiffness was almost equal
to zero, and the normals were found to be quasi-vertical. In this situa-
tion, the orientation of the normals was close to the fibrous material
shown in Fig. 1. However, the mid-surface deformation was far from the

Table 1
Comparison of the transverse shear strain γ13 in the four-point bending test.

Zone I Zone II Zone III
Theoretical results in Mindlin shell γ13 = 0 γ13 ∕= 0 γ13 = 0
Experimental results of fibrous material γ13 ∕= 0 γ13 ∕= 0 γ13 ∕= 0

Fig. 3. The four-point bending simulation using Mindlin shell element with different transverse shell stiffness. (a) Cs = 0.001 N/mm (b) Cs = 0.005 N/mm (c) Cs =
0.025 N/mm (d) Cs = 100 N/mm. In these four tests, all the simulation settings and other material properties are the same. To visualize the transverse shear, the
simulation results are post-processed in Matlab to plot the material normals.

Fig. 4. Variation of the in-plane tensile strain over thickness in the Mindlin
shell. The simulation result corresponds to Fig. 3d, where a relatively large
transverse shear stiffness is used. The color bar represents tensile logarith-
mic strain.



experimental shape, and the reason for this was that the bending
deformation was replaced by transverse shear due to the low transverse
shear stiffness. Moreover, the transverse shear strain determined the in-
plane tensile strain at different thicknesses. According to Fig. 4, the
quasi-inextensibility of the fibers would not be ensured due to the
incorrect transverse shear strain.

The simulations confirm that neither Kirchhoff nor Mindlin is suit-
able for describing the transverse shear of a stack of fibrous material.
Nevertheless, the classical shell theory was quite effective for modeling

the specific in-plane shear and bending behavior to obtain the mid-
surface deformation. The following section proposes a post-processing
method to correct the transverse shear given by stress resultant shell
simulations that lie within the Kirchhoff theory.

3. The stress resultant shell approach for the mid-surface
deformation

The stress resultant shell approach was used to simulate the mid-
surface deformation by considering the independent bending behavior
of the textile reinforcement. With this aim, the internal virtual work
δWint was regarded as the sum of virtual works of the in-plane ten-
sionδWtension, in-plane shear δWshear and out-of-plane bendingδWbending:

Here, A is the shell mid-surface. δε11, δε22 are the axial strain in-
crements, δε12 is the in-plane shear strain increment, and δχ11, δχ22,δχ12
are the bending curvature increments. N11, N12, N22 are the stress re-
sultants andM11,M12,M22 are the stressmoments for which the direction
is shown in Fig. 5. The coupling componentM12 was neglected due to the
bending stiffness mainly originating from the warp and weft yarns.

Fig. 5. The elementary cell of woven reinforcement. Arrows represent the direction of stress resultants N11, N22, N12 and moments M11, M22 in the woven rein-
forcement that is interlaced by the warp and weft yarn. These components rotate along with the yarn direction under in-plane shear deformation.

Fig. 6. The orientation of the normals in the four-point bending test using the stress resultant shell approach. The angle between material normals and mid-surface is
highlighted by red arrows at two different positions.

δWint = δWtension + δWshear + δWbending

=
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Hypoelastic laws were adopted in the simulation approach to
compute the objective time derivative of the stress resultantsN∇ and the
stress momentsM∇:
N∇ = C : ε̇ M∇ = D : χ̇ (4)

With Eq. (4), the stress resultantNwas linked to the membrane strain
ε through the membrane stiffness matrix C, and the stress moment M
was linked to the bending curvature χ through the bending stiffness
matrix D. The membrane and bending response were thus naturally
independent thereby satisfying the requirement of the textile material.

The stress resultant shell approach has been implemented in the
Abaqus/Explicit subroutine VUGENS [30] According to the internal
virtual work expressed in Eq. (3), no transverse shear energy is consid-
ered in the simulation approach. However, to account for the friction
between fibers during transverse shearing, the bending stiffness used in
Eq. (4) is measured on a multilayer material, rather than bending
deduced from a single-layer experiment. This is a simple and effective
way to obtain the bending deformation of the mid-surface without
complicating the approach [36].

To verify the normal transformation in the stress resultant shell
approach, one can conduct a numerical simulation of the four-point
bending test. The simulation settings were the same as those given in
Section 2.3, and the simulation result can be seen in Fig. 6. The mid-
surface bending deformation was close to the experiment (shown in
Section 5.2.2). However, it was found that the normals remained
perpendicular to the deformed mid-surface which was not consistent
with the fibrous material shown in Fig. 1.

4. The kinematic modeling approach for transverse shear of
textile fabric

After determining the mid-surface position by the stress resultant
shell method, the transverse shear would be geometrically calculated
based on the quasi-inextensibility of the fibers. This is presented in the
next section.

4.1. Kinematic hypothesis

The fibrous domain that contains parallel fibers is considered in this
research. The objective of the modeling approach was to re-calculate the
transverse shear strain in the fibrous reinforcement draping. Three ki-
nematic hypotheses were put forward according to results from bending
experiments (Fig. 1):

• The material director remained in straight lines during the fabric
deformation, but was not necessarily perpendicular to the mid-
surface. The hypothesis of straightness was not fulfilled when the
reinforcement became very thick, but it could be verified for low or
medium thicknesses which are representative of most cases involving
fibrous reinforcement drapings.

• The thickness along the material director could be stretched. How-
ever, neglecting the delamination in some draping cases, the material
thickness h in the normal direction remained constant as it was the
sum of the thicknesses of thousands of fibers.

Fig. 7. Schematic diagram of the calculation of the fibrous nodes in the top and bottom surfaces (a) Draping in one fiber direction. (b) Draping in two fiber directions.
The obtained material normals of the nodes in the mid-surface are marked blue.



• Parallel fibers could slip in relation to each other along the thickness,
but the in-plane slippage between the warp and weft yarn directions
was neglected.

4.2. Modeling process

The numerical simulation of the mid-surface gave the position of the
nodes in the mid-surface and the orientation of the normals under the
global coordinate system. According to the previous analysis, the output
normals remained perpendicular to the deformed mid-surface. Thus, the
position of the nodes in the bottom and top surfaces can first be deter-
mined with:

V
(
Bk

m

)
= V(B) + ( − 1)α nBh

2‖ nB ‖
(5)

Here, V(Bkm) is the position vector of the node Bkm,m belongs to the set
(1, 2) (m= 1 represents the bottom surface andm = 2 represents the top
surface), V(B) is the position vector of a random node B in the mid-
surface, h is the shell thickness which remains constant with the initial
value and nB is the shell normal vector output from the simulation. As
shown in Fig. 7a, the shell normals nA,nB are perpendicular to the mid-
surface, and the nodes Ak1, Ak2, Bk1, Bk2 calculated by the Eq. (5) were thus
marked as Kirchhoff nodes with the superscript k in this research. To
ensure the quasi-inextensibility of the fibers in the top and bottom sur-
faces, they had to be adjusted to the fibrous nodes (marked with the
superscript f).

In the case of drapings in one fiber direction, the Kirchhoff node Bkm,
was adjusted along the fiber direction to the fibrous node Bfm according
to (shown in Fig. 7a):
(

xAk
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− xBf
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α
, yBf
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Here, A, B are the nodes in the mid-surface, and Akm is the Kirchhoff
node whose normals remained perpendicular to the deformed mid-
surface under the applied boundary conditions. The adjustment needs
to start from these starting points to ensure that the calculated fibrous

nodes in the top and bottom surfaces corresponded to each other. K(xBfα ,
yBfα ) is the line equation of AkmBkm determined by Eq. (5), and LAB is the
distance between points A and B. Since the mid-surface deformation was
simulated by the classical shell elements with a small length, the straight
line distance was used in Eq. (6) for the sake of simplicity.

In the case of drapings in two fiber directions, the adjustment of the
Kirchhoff nodes occurs simultaneously along the weft and warp yarn
directions. In order to obtain the starting points for each yarn, the
adjustment is first conducted on the points that lay on a given boundary
condition. For these points, they only need to be adjusted along one fiber
direction. As shown in Fig. 7b, they are points B and C. Referring to point
A, whose normal keeps perpendicular to the deformed mid-surface, Eq.
(6) is used to obtain the corresponding fibrous nodes Bfm and Cfm. For a
random point D, the adjustment to obtain the coordinate of the fibrous
nodes Dfm is done with the following equation:
(
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Here, LBD and LCD are the line distance. F(xDfm , yDfm , zDfm ) is the top or
bottom surface function determined by the nodes obtained in Eq. (5).
Based on the inextensibility of the fibers, Eq. (7) has been adopted in the
kinematic approaches for the calculation of the mid-surface deformation
[6,7] After determining the fibrous nodes Dfm, the orientation of the
normals was obtained by connecting the corresponding fibrous nodes in
the bottom and top surfaces.

The computation process is purely geometric, giving this approach a
low computation cost. This approach combines the advantage of me-
chanical approaches and kinematic approaches. It can also be an
extension of other methods [23–28] developed to obtain mid-surface
deformation. Based on the kinematics mechanism, the approach ex-
tends the deformation in the mid-surface to the planes in the different
thickness positions, which can be meaningful for the simulation of fabric
forming with significant nonzero transverse shear strain.

5. Comparison of numerical and experimental results

The objective of the proposedmodeling approach was to simulate the
transverse shear deformation in the textile composite draping. In order
to verify its correctness and effectiveness, several bending and hemi-
spherical forming tests were carried out and compared with the nu-
merical results obtained by the kinematic modeling approach.

5.1. Introduction to the studied textile

The textile reinforcement studied in this work was the interlock
carbon fabric G1151. The geometry parameters are listed in Table 2.

Table 2
Geometry parameters of interlock fabric G1151.
The studied G1151 fabric: Manufacturer: Hexcel

Weave pattern: Interlock
Fibers: Carbon 6K
Areal density: 630 g/m2

Thickness of single layer: 1.3 mm

X-ray tomography [58]: Yarn density: 7.5 yarns/cm (Warp)
7.4 yarns/cm (Weft)

Table 3
Mechanical properties of the single layer fabric G1151.
Mechanical properties Value
Tensile behavior Cαα = 21500 N/mm
dNαα = Cααdεαα (α= 1 or 2)
In-plane shear behavior
dN11 = C12dγ
C12 = K0 + K1|γ| + K2|γ|2 + K3|γ|3 + K4|γ|4

K0 = 0.09 N/mm
K1 = − 0.83 N/mm
K2 = 2.92 N/mm
K3 = − 4.01 N/mm
K4 = 2.03 N/mm

Bending behavior Dαα = 7.45 Nmm
dMαα = Dααdχαα (α= 1 or 2)



The properties of a single-ply G1151 fabric are listed in Table 3. The
in-plane shear behavior was obtained through the bias-extension test
[59–63], and the bending behavior was measured from the cantilever
test under gravity [8,64–66] A very large and constant tensile stiffness
was chosen as input to ensure the quasi-inextensibility of the fibers
during the numerical simulation.

5.2. Bending tests of fibrous stacks

In this section, the specimens consist of parallel fibers (paper or

reinforcement) that can slide relative to each other. Cantilever and four-
point bending tests with large displacement are considered in order to
obtain significant transverse shear deformation. Experimental results
are then compared to numerical simulations.

5.2.1. Cantilever bending test
The cantilever bending test was conducted on a book consisting of

130 pages [36] The properties of a single sheet of paper are given in
Table 4. Since the friction between the sheets was negligible, the prop-
erties of the stack could be deduced from it. The experimental geometry
is given in Fig. 8a. The specimen is bent under gravity and the experi-
mental bending result is shown in Fig. 8b. The mid-surface simulation
was conducted using the stress resultant shell approach. The simulation
setting was the same as that described in Section 2.3. The simulation
result of the mid-surface is presented in Fig. 9a, and was found to be
close to the experimental outcome.

Subsequently, the directors of the normals were computed using the
modeling approach presented in Section 4, and the obtained cross-

Table 4
Properties of a single sheet of paper.
Properties Values
Tensile stiffness C = 230 N/mm
Bending stiffness D = 0.4 N mm
Areal density 81 g/m2

Thickness 0.1 mm

Fig. 8. 130-layer paper cantilever bending test under gravity. (a) Geometry. (b) Experimental results [36]. In the experiment, the material normals that are
perpendicular to the initial mid-surface are marked black. (c) Numerical results using resultant shell finite element calculation, and kinematic approach for the
calculation of transverse shear. Four different positions 1–4 are marked in order to compare the material normals.

Fig. 9. Comparison between the experiment outcome and the numerical results in the 130-layer paper cantilever bending test. (a) The mid-line. (b) The normals
rotation. (c) The thickness.



section is shown in Fig. 8c. Four positions (Fig. 8b) were selected to
compare the rotation angle and thickness of normals between experi-
mental and numerical results. The compared results of the rotation
angle, given in Fig. 9b, showed good agreement. The thickness of the
normals, cf Fig. 9c, exhibited the same tendency with some deviations.

The experimental thickness of the normals was higher than those ob-
tained the by modeling approach. This may be related to delamination
occurring during the experiment.

Fig. 10. Four-point bending of an 11-layer interlock fabric G1151. (a) Geometry. (b) Experimental results. In the experiment, the mid-surface and material normals
are marked white. (c) Numerical results using resultant shell finite element calculation, and kinematic approach for the calculation of transverse shear. Five different
positions 1–5 are marked to verify the correctness of numerical results.

Fig. 11. Comparisons between experimental and numerical results in four-point bending test of an 11-layer interlock fabric G1151. (a) The mid-line. (b) The rotation
of the normals. (c) The thickness.



5.2.2. Four-point bending test
The four-point bending test was performed on a stack of 11 layers of

interlock fabric G1151 in which the fibers in each layer were parallel to
each other. The experimental geometry is given in Fig. 10a. The punch
displacement was 50 mm, and the final deformed shape is shown in
Fig. 10b.

Fig. 11a displays a comparison between experimental and numerical
results of the mid-surface shape. Good agreement was found. The
calculated cross-section through the modeling approach is shown in
Fig. 10c. The rotation angle and thickness of the normals were compared
with experimental results in Fig. 11b and 11c, respectively, and were
found to be close, which cannot be obtained by classical shell elements.

5.3. Hemisphere forming experiment

The hemisphere is a benchmark shape for the textile reinforcements
forming analysis [67–73]. The experimental setting is given in Fig. 12.
The specimen was placed between the blank holder and the die, the final
displacement of the punch was set at 75 mm, and the forming speed was
2.5 mm/s. To observe and record the material deformation, the blank
holder and die were made transparent and two cameras were positioned:
one at the top and the other at the bottom.

Two types of fabric stack sequences were investigated separately in
the experiment, including a four-layer stack in 0◦/90◦ configuration and
a four-layer stack in ±45◦ configuration. The final deformed fabric
shapes are portrayed on the right-hand sides of Figs. 14a and 15a. None
of them exhibited wrinkles.

Fig. 12. Schematic diagram of the forming experiment. The material is placed between transparent blank holder and die mold. Two cameras are used to capture the
material deformation on the top and bottom surfaces.

Fig. 13. Experimental and numerical results of the shear angle in hemispherical forming of a four-layer ±45◦ fabric. The upper part of the figure shows the
experimental results: left-hand image is given by the bottom camera (bottom view), and right-hand image is given by the top camera (top view). The lower part of the
figure gives the corresponding numerical results on top and bottom layers. Shear angle γ is compared at two different positions.



Fig. 14. Four-layer 0◦/90◦ hemispherical forming. (a) Initial and deformed fabric, the selected eight marker points are located in the fiber and symmetry directions.
(b)(d) Numerical results of the cross-section along the fiber and symmetry directions. The orientation of normals at the selected maker points is highlighted with red
lines. (c)(e) Normals rotation comparison along the fiber and symmetry directions.



The corresponding simulation to obtain the mid-surface was carried
out as follows. The blank holder, die, and punch were modeled as rigid
bodies. Triangle shell elements were adopted to mesh the fabric, and the
element side length was 5 mm × 5 mm. The Coulomb friction model
was used to describe the contact between the fabric and the forming
tools, and the coefficient was 0.2. The deformation on the top and bot-
tom surfaces was calculated using the proposed modeling approach, and

the numerical shape of the four-layer ±45◦ fabric is presented at the
bottom of Fig. 13.

5.3.1. Comparison of in-plane shear angle
The experimental shear angle was calculated according to the pain-

ted marker points, and the numerical shear angle at the top and bottom
surfaces were computed from adjacent fibrous nodes. From the

Fig. 15. Four-layer ±45◦ hemispherical forming. (a) Initial and deformed fabric, the selected eight marker points are located in the symmetry and fiber directions.
(b)(d) Numerical results of the cross-section along the symmetry direction and fiber direction. The orientation of normals at the selected maker points is highlighted
with red lines. (c)(e) Normal rotations comparison along the symmetry direction and fiber direction.



experimental results (top of Fig. 13), the in-plane shear angle at the top
and bottom surfaces of the fabric differed somewhat even when the
material remained flat between the blank holder and die mold. This
different shear angle would also cause a rotation of the material nor-
mals. The presented modeling approach was able to reproduce the in-
plane shear variation along the thickness. Numerical tendencies were
the same as their experimental counterparts, as shown in Fig. 13.

5.3.2. Comparison of rotation of normals
To study the rotation of the normals in the hemispherical forming,

eight marker points located in the fiber direction and the symmetry
direction were chosen. The rotation angle of the normals in the experi-
ment was calculated using the corresponding marker points on the top
and bottom surfaces. The two different stack sequences were then
analyzed.

(a) Four-layer stack at 0◦/90◦

The selected marker points (labeled 1 to 8) in the hemispherical
experiment of the four-layer stack at 0◦/90◦ are shown in Fig. 14a. The
hemispherical punch had a centrosymmetric shape, and the initial shape
of the specimen was a 300 mm × 300 mm square. The position of the
marker points thus changed during deformation, whereas the cross-
section of the specimen remained in the vertical plane.

The numerical results of the cross-section along the fiber and sym-
metry directions are presented in Fig. 14b and 14d. The normal directors
at the selected marker points (No.1–8) are also indicated. Point No.1
remained between the die and blank holder after the deformation. The

material normals stayed vertical, which was a consequence of the spe-
cific punch shape and the inextensibility of the fibers. Points No.2–4
were located in the hemispherical zone after deformation. The rotation
of the normals was found to be significant which was essential to ensure
the quasi-inextensible of the fibers. At points No.5–8, there was no
inextensibility constraint because of the absence of fibers. The rotation
of the normals occurred due to the shear deformation being different
between warp and weft yarns at the top and bottom surfaces.

As shown in Fig. 14c and 14e, the numerical results of the rotation
angle were found close to the corresponding experimental results. The
direction of material normals was important as it determined the strain
of the fibers in the different thickness positions. Unlike the proposed
kinematic modeling approach that can correctly predict the direction of
normals in hemisphere forming, other approaches listed in the intro-
duction only focus on the mid-surface deformation. Based on the clas-
sical shell kinematics, these alternative approaches would lead to the
normals being perpendicular to the mid-surface after the deformation
which would be incorrect for a fibrous medium.

(b) Four-layer stack at ±45◦

In the hemispherical experiment of the four-layer stack at ±45◦,
Fig. 15a shows the location of the selected marker point. Points No.1–4
were in the symmetry direction while points No.5–8 were placed along
the fiber direction. The numerical results of the cross-section where the
marked points were located are illustrated in Fig. 15b and 15d. The
orientation of the normals obtained by the modeling method is pre-
sented in Fig. 15c and 15e, and as can be seen, the outcome was in fair
agreement with the experimental results.

6. Discussion

Amethod was presented to deduce the response of multi-layer fabrics
from the mid-surface solution. After calculating the mid-surface defor-
mation through finite element analysis, it was in certain cases possible to
compute transverse shear using a kinematic approach relying on the
inextensibility of the fibers. This approach decoupled the calculation of
transverse shear from the bending curvature of the mid-surface. For
simple forming shapes, the solution of this two-step calculation was the
same as the more complex approaches like 3D shell elements [72].
Nevertheless, it should be noted the limitation of the presented
approach.

As introduced in Section 4.2, the presented algorithm requires the
normals rotation of the starting point and the two fiber directions
crossing the starting point as boundary conditions (BCs). For a case of
shapes with two symmetry planes (as in hemispherical forming), these
BCs are given: the normal rotation of the central node is zero, and the
two fiber directions are determined by the symmetry planes. In 3D
forming cases with less than two symmetry planes, the BCs are not
explicitly given, and additional assumptions have to be made. Note that
this is not a specific limitation of the presented approach, but it is
common to other kinematic approaches for calculating the mid-surface

Fig. A.1. Simulation of cantilever bending test with three different prescribed rotations at the clamped edge. (a) 0◦ rotation. (b). 15◦ rotation. (c) 30◦ rotation. The
dashed line in the figure represents the vertical direction. Four positions 1–4 are selected to compare to the rotation of normals under different boundary conditions.

Fig. A.2. Normal rotations under three different boundary conditions of
cantilever bending test. The double arrow shows the difference in rotation angle
at different node positions.



deformation [74,75].
Regarding normals rotation of the starting point, which is specific to

our multi-layer approach, further comments can be made. Let us sup-
pose that this BC is not given by symmetry conditions, and has to be
assumed. In this case, the algorithm will provide a family of solutions
depending on the chosen BC. As illustrated in Appendix A, the pre-
scribed BC will affect all the material directors in a non-linear way, but
all solutions can be mathematically related to one another based on the
quasi-inextensibility of the fibers. The final choice of the correct solution
could depend on an energy calculation. For example, the assumption can
be made that the best solution is the one that minimizes the integral of
transverse shear over the fabric. This is somehow related to the mini-
mization of dissipated energy from slippage between the plies of fabric
and the forming tools.

7 Conclusions

Through the example of a four-point bending test, this work first
presented the limitation of classical shell theories for forming simula-
tions of textile composite reinforcements. The Kirchhoff or Mindlin shell
theories can be applied to simulate the mid-surface deformation, but
neither of these theories can provide the correct transverse shear in
fibrous mediums. It is quite straightforward to establish that the
Kirchhoff shell was not relevant because of the zero transverse shear
hypothesis. Although the Mindlin theory authorizes transverse shear in
shells, it is not able to model transverse shear in fibrous stacks due to the
fact that the transverse shear should be governed by fiber inextensibility
in each layer outside the mid-plane, rather than by transverse shear
stiffness used in Mindlin shells. The transverse shear deformation is
important as it will determine the strain of fibers in the different
thickness positions.

In order to take advantage of the classical shell elements to describe
the specific bending behavior of fibrous material, a kinematic modeling
approach was proposed to calculate the transverse shear deformation
without complicating the shell approach. After simulating the mid-
surface response by stress-resultant finite element shell, the top and
bottom layer (and layer-wise) response of the fabric was deduced from
fiber inextensibility. This approach made it possible to extend the
deformation in the mid-surface to planes of different thicknesses. The
computation process is purely geometric, giving this approach a low
computation cost. Experimental bending tests and hemispherical form-
ing were compared to the solutions of the proposed approach, with good
agreement, proving its correctness and effectiveness. The modeling
approach can be implemented as a post-processing application, and can
therefore be used by any user, together with any finite element software.
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Appendix A. The solutions under varying normal rotations of the starting point

A 2D example, with a unique already known fiber direction, is illustrated here. Fig A.1 presents three different solutions of a cantilever test with the
same mid-plane solution given by the finite element analysis but three different normal rotations β at the clamped edge. The normal rotations at other
positions are simulated using the proposed modeling approach. It is shown in Fig A.2 that the prescribed BC will affect all the material directors in a
non-linear way.

After determining the corresponding node positions [xTop,yTop][xBot,yBot] on the top and bottom surfaces, respectively, the normal orientation θ can
be calculated according to:

θ = arctan
(

yTop − yBot

xTop − xBot

)

(A.1)

When there is a prescribed normal rotation β at the starting point, all node positions are updated based on fiber inextensibility. Displacement of the
top/bottom nodes are marked as Lc.

Lc =
h
2

cotβ (A.2)

Actualization of top and bottom nodes is given by:
⎡
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Top

⎤
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]

=
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xBot

yBot

]

+ Lc

[
− cosαBot

sinαBot

]
(A.3)

Here, αTop, αBot are the top and bottom angles between the fiber direction and the horizontal line, and can be obtained by the adjacent nodes on the
top or bottom surfaces. By combining Eq A.1–3, the new orientation of normal θc can be determined by:

θc = arctan

⎛

⎜
⎝

yTop − yBot −
h
2 cotβ

(
sinαTop + sinαBot

)

xTop − xBot +
h
2 cotβ

(
cosαTop + cosαBot

)

⎞

⎟
⎠ (A.4)

With Eq. (A.4), it is shown that all solutions can be mathematically related to one another based on the quasi-inextensibility of the fibers.
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