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Abstract

We study the tail asymptotics of two functionals (the maximum and the sum

of the marks) of a generic cluster in two sub-models of the marked Poisson

cluster process, namely the renewal Poisson cluster process and the Hawkes

process. Under the hypothesis that the governing components of the processes

are regularly varying, we extend results due to [18] and [5] notably, relying on

Karamata’s Tauberian Theorem to do so. We use these asymptotics to derive

precise large deviation results in the fashion of [30] for the above-mentioned

processes.
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1. Introduction

In this paper, we study the asymptotic properties of processes exhibiting clustering

behaviour. Such processes are common in applications: for instance, earthquakes in
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seismology, where a main shock has the ability to trigger a series of secondary shocks

in a specific spatio-temporal neighbourhood; but also accidents giving rise to a series of

subsequent claims in non-life insurance or heavy rainfall in meteorology to name a few.

We will focus on two different processes that have effectively been used in these fields.

The Hawkes process has been introduced in the pioneer works of [57] and [44], and has

found applications in earthquake modeling (see e.g. [38]), in finance (see e.g. [8], [21]),

in genome analysis (see [48]) or in insurance (see [53]). The renewal Poisson cluster

process is a tool of choice in an insurance context for modelling series of claims arising

from a single event (see e.g. [35] for a reference textbook), as well as in teletraffic

modelling (see [18]) and in meteorology and weather forecast (see e.g. [19] or [45]).

The above processes, described heuristically and in specific contexts above, are part

of the class of the so-called point processes: for a comprehensive overview, see the

monographs of [12] and [13] or, more recently, and with connection to martingale

theory, see [7]. Point process theory is an elegant framework describing the properties

of random points occurring in general spaces. In both cases the temporal marked point

process N possesses a representation as an infinite sum of Dirac measures (recall that

the Dirac measure ε, defined on A, is the measure such that, for A ∈ A, εx(A) = 1 if

x ∈ A and εx(A) = 0 otherwise):

N(·) =
∞
∑

i=1

εTi,Ai
(·)

where Ti is the (random) time of occurrence of the ith event and Ai is its associated

mark. The specific temporal marked point processes that we are interested in are clus-

ter point processes. More specifically, we will assume that there exists an immigration

process, under which independent points arise at a Poissonian rate; then, each of these

immigrant events has the ability to trigger new points, called first generation offspring

events. We will then look at two submodels, one that stops here - the renewal Poisson

cluster process, the name coming from the fact that the times of the events form a

renewal sequence - and another one in which every point of the first generation has the

ability to generate new points, acting as an immigrant event, potentially generating

therefore a whole cascade of points, which is the Hawkes process. Each immigrant

event and its associated offspring events (whether direct children or indirect) form a

generic cluster.
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We will study the tail asymptotics of the partial maxima and sums of a transfor-

mation X = f(A), for some non-negative real valued function f , of the mark A of any

event of N . Determining the behaviour of the maximum and the sum at the level of

the cluster decomposition of a process is crucial to obtain limit theorems for partial

maxima and sums of the whole process over finite intervals, see e.g. [51], [28] or [5].

Thus, we describe first a generic cluster from each of the above-mentioned processes.

For the renewal Poisson cluster process, we will consider a distributional represen-

tation of the maximum of the marks in the generic cluster, denoted HR,

HR D
= X ∨

KA
∨

j=1

Xj

where X is a transformation f(A) of the mark A of the immigrant event, and Xj is

the mark of the jth first-generation offspring event. The number of offspring events,

KA, is random and possibly dependent on X . In particular, we will let the vector

(X,KA) be heavy-tailed, and assess whether the heavy-tailedness transfers to HR.

Details are relegated to Section 2. Note that under the hypothesis that X and KA are

independent the above distributional equation has received early consideration, e.g. in

[56] or [27], where it is shown that HR and X belong to the same maximum domain of

attraction of some extreme value distribution (MDA for short - see [46], [14] or [16] for

references on extreme value theory). A more recent advance in the case where X and

KA are dependent is to be found in [4], where a similar conclusion is reached about

the MDA. Our emphasis is on the Fréchet MDA, which allows a certain refinement on

the characterisation of the tail asymptotics.

We will also consider tail asymptotics for the sum functional, which for the very same

renewal Poisson cluster process, and for a generic cluster, possesses the distributional

representation

DR D
= X +

KA
∑

j=1

Xj

supposing again that (X,KA) is heavy-tailed, We will also assess whether the heavy-

tailedness of (X,KA) transfers to DR. This equation has received consideration under

the hypothesis that X and KA are independent, see [18]. We will retrieve their results

in our framework.
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We will then derive the very same kind of tail asymptotics, for the very same

functionals of a generic cluster in the context of the Hawkes process. The distributional

representation associated with the maximum of the marks in a generic cluster, denoted

HH , is given by

HH D
= X ∨

LA
∨

j=1

HH
j

where LA is the number of first-generation offspring events A of the event acting as

immigrant, and Hj is the maximum of the marks of the offsprings of the jth offspring

of the immigrant event considered, itself acting as immigrant for further subranches of

the cluster, emphasising once again the cascade structure of the Hawkes process. Note

that X = f(A) and LA are dependent through A. Letting LA be Poisson distributed

with parameter κA, and (X,κA) be heavy-tailed we assess whether this transfers to

HH . This functional has received attention in the recent work of [4], where it was

shown that HH has the same MDA as that of X .

The distributional representation associated with the sum of the marks in a generic

cluster in the Hawkes process, denoted DH , is given by

DH D
= X +

LA
∑

j=1

DH
j .

We will again let (X,κA) be heavy-tailed, and assess whether this transfers to DH .

This distributional equation, with cascade structure, has been extensively studied: see

e.g. [3]; but also, as a main stochastic modelling approach to Google’s PageRank

algorithm, see [31], [26], [58], [9] or [10]; in the context of random networks, see [34] or

[33]; for a recent, theoretical advance as well as application to queuing systems, see [1]

or [17].

The way we will deal with heavy-tailedness is through the classical notion of regular

variation, introduced by J. Karamata in the 20th century (see e.g. [29]), which specifies

that the functions of interest behave, in a neighbourhood of infinity, like power-law

functions. For a thorough, textbook treatment of the topic in univariate settings, see

[6]; we rely on [46], [47], [14] and [37] for the multivariate case.

The flexibility offered by our approach to the way we specify the regular variation of

the governing components of our processes allows us, in the sequel, to extend results due

to [49], [18], [25] or [15], that all studied the asymptotics of the tail of distributional
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quantities such as H and D in the above examples, but under various assumptions

on the relations of the tails of X and KA for the renewal Poisson cluster process,

respectively X and LA for the Hawkes process.

Finally, we use the results on the tails of H and D to derive (precise) large deviation

principles for our processes of interest, in the flavour of [41], [36]. The “precise” termi-

nology comes from the fact that we do not assume Cramér’s condition. Early results

on precise large deviations in the case of non-random maxima and sums can be found

in [39], [40], [23] and [11]. The case of random maxima and sums of extended regularly

varying random variables (a class containing regularly varying random variables) is to

be found in [30], and we will rely on their results to derive our very own precise large

deviation results. Contributions in this area for another subclass of subexponential

distributions, namely the class of consistently varying random variables, can be found

in [55] or [43]; for precise large deviations results on (negatively) dependent sequences,

see [54] or [32].

The organisation of the paper is as follows: in Section 2, we describe the main

processes of interest, that are part of the Poisson cluster process family; in Section 3, we

recall some important notions and characterisations of (multivariate) regular variation;

in Section 4, we derive the tail asymptotics for the maximum of the marks in a

generic cluster in the renewal Poisson cluster process; in Section 5, we derive the tail

asymptotics for the sum of the marks in a generic cluster in the renewal Poisson cluster

process; in Section 6, we derive the tail asymptotics for the maximum of the marks in

a generic cluster in the Hawkes process; in Section 7, we derive the tail asymptotics

for the sum of the marks in a generic cluster in the Hawkes process; in Section 8, we

use the results from Section 4 to Section 7 to derive (precise) large deviations results

for our processes of interest.

Notation

Vectors are usually in boldface. By “i.i.d.” we classically mean independent and

identically distributed and, consistently, “i.d.” means identically distributed. We let

⌈·⌉ denote the upper integer part, ⌊·⌋ the lower integer part. For two functions f and

g, we note f(x) = O(g(x)), as x → c whenever lim supx→c|f(x)| 6 M |g(x)|, for some
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finite M > 0 and c ∈ {0,∞}; we note f(x) = o(g(x)), as x → ∞ (resp. x → 0),

whenever for all δ, there exists X such that, for all x > X (resp. x 6 X), it holds that

limx→∞|f(x)| 6 δ|g(x)|. We write f(x) ∼ g(x), as x → c for c ∈ {0,∞}, whenever
limx→c f(x)/g(x) = 1. The product of two measures µ and ν is written as the tensor

product µ⊗ ν.

2. Random functionals of clusters

We formally introduce the general Poisson cluster process, a class which includes

the processes discussed in Section 1, keeping the spirit of the presentation and (most)

notations from [5]. As hinted in Section 1, this process is made up of two components:

an immigration process and an offspring process.

The immigration process, say N0, is a marked homogeneous Poisson process (or

marked PRM in short, for marked Poisson random measure) with representation given

by:

N0(·) :=
∞
∑

i=1

εΓi,Ai0(·).

This point process has mean measure νLeb ⊗ F , for ν > 0, on the space [0,∞) × A,

where Leb is the Lebesgue measure, F is the common distribution function to all marks

(Ai0)i∈N, which take values on a measurable space (A,A), and where A corresponds

to the Borel σ-field on A. In particular, this means that the sequence of times (Γi)i∈N,

corresponding to the arrivals of immigrant events, is a homogeneous Poisson process

with rate given by νLeb. Since the space A can be quite general, applying a trans-

formation f(·) : A → R+ is natural, especially in practical applications. For example,

in a non-life insurance context, supposing that Ai0 represents the characteristics of

the ith accident, f(Ai0) could represent the claim size pertaining to this accident. In

subsequent sections, and to ease the notation, we shall denote Xi0 := f(Ai0).

Conditioning on observing an immigration event at time Γi, the marked PRM N0 is

supplemented with an additional point process in Mp([0,∞)×A) (the space of locally

finite point measures on [0,∞) × A) that we denote by GAi0 . The cluster of points

GAi0 , occurring after time Γi, augments N0 with triggered, offspring points or events.

The offspring cluster process, conditioned on observing an immigrant event (Γi0, Ai0),
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admits the representation

GAi0(·) :=
KAi0
∑

j=1

εTij ,Aij
(·)

where (Tij)16j6KAi0
forms a sequence of nonnegative random variables indicating,

for a fixed j, the random time from the immigrant event occurring at time Γi and

the jth event of the cluster, and where KAi0 is a random variable with values in N0,

corresponding to the number of events in the ith cluster. These events are the offspring

of the immigrant event identified by (Γi, Ai0). A complete representation of the general

Poisson cluster process is given by

N(·) :=
∞
∑

i=1

KAi0
∑

j=0

εΓi+Tij ,Aij
(·)

providing we set Ti0 = 0 for all i ∈ N.

The first functional of interest is the maximum of the marks in the ith cluster,

defined by

Hi :=

KAi0
∨

j=0

Xij . (1)

The point process associated with the ith cluster is defined by

Ci(·) := ε0,Ai0(·) +GAi0(·).

It allows us to define the second functional of interest in this paper, namely the sum

of all marks in the ith cluster, by

Di :=

∫

[0,∞)×A

f(a)Ci(dt, da). (2)

In Section 8, we will look at the whole process on a subset of the temporal axis: at

the level of the point process N , the sum of all marks in the finite time interval [0, T ],

for T > 0, is given by

ST :=

∫

[0,T ]×A

f(a)N(dt, da). (3)

From Section 4 to Section 7, we propose tail asymptotics for Hi and Di in the

settings of mainly two different submodels of the general Poisson cluster process, briefly

described in the introduction, that we formally discuss next, keeping the presentation

in [5], but fully described in Example 6.3 of [12]. However, we refer to the former

reference for a complete description. In our work, we also assume that the sequence of

marks (Xij) :=
(

f(Aij)
)

is i.i.d.
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2.1. Mixed binomial Poisson cluster process

In this model, the assumptions on N0 are kept unchanged and the ith cluster has a

representation of the form

GAi0(·) =
KAi0
∑

j=1

εWij ,Aij
(·)

where (KAi0 , (Wij)j>1, (Aij)j>0)i>0 is an i.i.d. sequence, the sequence (Aij)j>0 is also

i.i.d. for any fixed i = 1, 2, . . . and, finally, (Aij)j>1 is independent of both KAi0

and (Wij)j>1 for any i = 1, 2, . . .. Note that this latter statement does not exclude

dependence between Ai0 and KAi0 (respectively (Wij)j>1). Additionally, it is assumed

that E [K] < ∞.

2.2. Renewal Poisson cluster process

In this model, the ith cluster has the representation

GAi0(·) =
KAi0
∑

j=1

εTij ,Aij
(·) (4)

where all the assumptions from Section 2.1 hold, except that now, we denote the

occurrence time sequence of the offspring events by (Tij)j>1 to emphasise that this

forms a renewal sequence, that is, for any fixed i = 1, 2, . . ., Tij = Wi1+ · · ·+Wij . Note

that this process is such that every Poisson immigrant has only KAi0 first generation

offspring events. These points cannot generate further generations themselves, in

contrast with the Hawkes process that we will introduce next.

Applying the transformation f on the marks of the events, we will, in Section 4

and Section 5, derive tail the asymptotics of generic versions of Equation (1) and

Equation (2), given by:

1. for the maximum,

HR D
= X ∨

KA
∨

j=1

Xj ; (5)

2. for the sum,

DR D
= X +

KA
∑

j=1

Xj . (6)
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We isolate X := f(A) from the rest of the transformed claims (Xj) :=
(

f(Aj)
)

, to

emphasise the possible dependence between X and KA.

Remark 2.1. These two processes have been considered in the monographs [35]. The

mixed binomial Poisson cluster process and the renewal Poisson cluster process are

very similar in their description, and because their sole difference is the placement of

the points along the time axis, we focus - in what follows - on the renewal Poisson

cluster process. The results of Section 4 and Section 5 are directly applicable to the

mixed binomial Poisson cluster process; the results of Section 8 also apply, upon the

use of an alternative justification regarding the left-over effects to be discussed in that

section. We refer to [5] and [4] for justifications.

2.3. Hawkes process

The specificity of the Hawkes process is that the clusters have a recursive pattern,

in the sense that each point, whether immigrant or offspring, has the ability to act

as an immigrant and generate a new cluster. To obtain the representation of the ith

cluster GAi
, one typically introduces a time shift operator θt, as in [5]. Let m(·) =

∑∞
j=1 εtj ,aj

(·) be a point measure: then, the time-shift operator is defined by

θtm(·) =
∞
∑

j=1

εtj+t,aj
(·)

for all t > 0. Then, the (recursive) representation of the ith cluster, conditioning on

observing an immigration event (Γi, Ai0), is given by

GAi0(·) =
LAi0
∑

j=1

(

ετ1
ij ,A

1
ij
(·) + θτ1

ij
GA1

ij
(·)
)

where, given Ai0, the first-generation offspring process NAi0(·) :=
∑LAi0

j=1 ετ1
ij ,A

1
ij
(·) is

again a Poisson process, this time with (random) mean measure
∫

h(s, Ai0) ds⊗F , and

where the sequence (GA1
ij
)j>1 is i.i.d. and independent of the first-generation offspring

processNAi0 . Note that the sequence of times in the cluster representationGAi0 , hereby

denoted as (τij), is the sequence of times of the first-generation offspring events. The

function h(·) is referred to as the fertility function and controls both the displacement

and the expected number of offspring(s) of a specific event. Hence, by definition, the

number of first generation offspring events is Poisson and depends on the mark of the
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event acting as an immigrant to the stream of points considered. Note that the above

representation also emphasises the independence between the subclusters considered

at any point, from the immigrant perspective. There is a connection with Galton-

Watson theory that was historically used to show that the Hawkes process is a general

Poisson cluster process (see [22]); we define it as part of this family, but the Hawkes

process is classically introduced from the self-excitation perspective, that is, from the

specification of the function h(·) (see e.g. [20]).

We propose in Section 6 and Section 7 tail asymptotics for the generic versions of

Equation (2) and Equation (1), which satisfy, in the settings of the Hawkes process,

fixed-point distributional equations of the form:

1. for the maximum,

HH D
= X ∨

LA
∨

j=1

HH
j ; (7)

2. for the sum,

DH D
= X +

LA
∑

j=1

DH
j ; (8)

where LA|A ∼ Poisson(κA) and κA =
∫

(0,∞) h(t, A) dt and where (HH
j ) and (DH

j )

are i.i.d. copies of HH and DH , respectively. In this work, we always assume the

subcriticality condition (in the terminology of branching processes) E [κA] < 1, in

order for clusters to be almost surely finite. This also implies that the expected total

number of points in a cluster is given by 1
1−E[κA] , using a geometric series argument

(see Chapter 12 in [7]). Lastly, note that Equation (7) and Equation (8) emphasise the

cascade structure of the Hawkes process.

3. A word on regular variation

Throughout this paper, we will assume that the governing random components of

our processes of interest are regularly varying, that is, roughly speaking, exhibit heavy

tails. More specifically, we will assume that the random vector X is regularly varying.

For the renewal Poisson cluster process, this amounts to assume that X = (X,KA)

is regularly varying, where X and KA are defined as in Section 2.2; for the Hawkes

process, this amounts to assume that X = (X,κA) is regularly varying, where X and
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κA are defined in Section 2.3. The exact definition of regular variation varies in the

literature depending on the context (see e.g. [46], [47], [14], [24], [50]). Hence, we first

recall the definition of regular variation we use in this text in full generality, borrowing

notations from [37]. We let Rd
0
= Rd\{0} with 0 = (0, 0, . . . , 0). We let |·| be any

norm on Rd (by their equivalence). Note that, in subsequent sections, our framework

is restricted to the case where d = 2.

Definition 3.1. (Definition 2.2.8 in [37].) Let X be a random vector with values in

Rd. Suppose that |X| is regularly varying with index α > 0. Let (an) be a real sequence

satisfying nP (|X| > an) → 1, as n → ∞. The random vector X (and its distribution)

are said to be regularly varying if there exists a non-null Radon measure µ on the Borel

σ-field of Rd
0
such that, for every µ-continuity set A, it holds that

µn(A) := nP
(

a−1
n X ∈ A

)

→ µ(A), as n → ∞.

In the above definition, two remarks are in order:

1. the regular variation of |X| is univariate; standard definition applies, namely that

the distribution of |X| has power-law tails, that is, P (|X| > x) = x−αL(x) for

x > 0, where L(·) is a slowly varying function;

2. the kind of convergence that takes place is vague convergence. The limiting

measure possesses various nice properties, among which one can cite homogeneity:

for any Borel set B ⊂ Rd
0
and t > 0, it holds that µ(tB) = t−αµ(B).

Rather than using the sequential form as in Definition (3.1), it is possible to use

an alternative continuous form. Additionally, a distinguished characterisation in the

literature is through a limiting decomposition into “spectral” and ‘radial” parts, see

[47].

Proposition 3.1. (Theorem 6.1 in [47].) A random vector X with values in Rd is

regularly varying with index α > 0 and non-null Radon measure µ on Rd
0
if and only

if one of the following relations holds:

1. (Continuous form): The random variable |X| is regularly varying with index

α > 0 and
P
(

x−1X ∈ ·
)

P (|X| > x)

V−→ µ(·), as x → ∞.
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2. (Weak convergence to independent radial/spectral decomposition): the following

limit holds

P

((

X

x
,
X

|X|

)

∈ ·
)

W−→ P ((Y,Θ) ∈ ·) , as x → ∞

where Y ∼ Pareto(α) with α > 0 and is independent of Θ, which takes values on

the unit sphere Sd−1 defined by Sd−1 = {x ∈ Rd : |x| = 1}.

The above characterisations have various consequences. The first property is a

continuous mapping theorem, first proved in [24] in the framework of metric spaces.

We use a simplified version fitting our settings, which we partially reproduce, from

[37].

Proposition 3.2. (Theorem 2.2.30 in [37].) Let X be a random vector with values in

R
d is regularly varying with index α > 0 and non-null Radon measure µ on R

d
0
. Let

g(·) : Rd → R be a continuous and positively homogeneous map of order γ, i.e. for

every x ∈ Rd, g(tx) = tγg(x) for some γ > 0. Moreover, suppose that for every ǫ > 0,

g−1({x ∈ R : |x| > ǫ}) is bounded away from 0. Then, the following limit relation

holds
P
(

x−1g(X) ∈ ·
)

P (|X|γ > x)

V−→ µ(g−1(·)), as x → ∞.

Note that for every ǫ > 0, µ(g−1({x ∈ R : |x| > ǫ})) < ∞. Moreover, if µ(g−1(·)) is

not the null measure on R0, then g(X) is regularly varying with index α/γ and with

non-null Radon measure
µ(g−1(·))

µ(g−1({x ∈ R : |x| > 1})) .

Example 3.1. It is easily seen that the map defined by the projection on any coordi-

nate of X is a continuous mapping satisfying the assumptions of Proposition (3.2) with

γ = 1. If d = 2, X = (X1, X2) and g(X) := X1, then by the homogeneity property of

the limiting Radon measure µ, as long as

µ({(x1, x2) ∈ R
2
0
: x1 > 1}) > 0

one obtains regular variation of X1 with index α > 0.

A second useful result, due to [50] again in the setting of metric spaces that we

simplify here, shows that one can actually replace the norm |·| by any modulus. A

modulus, as defined in Definition 2.2 of [50], is a function ρ : Rd → [0,∞) such that



Asymptotics of some Poisson cluster processes 13

ρ(·) is continuous, positively homogeneous of order 1, and for every ǫ > 0 it holds that

inf{ρ(x) : d(x,0) > ǫ} > 0, where d(·, ·) is a metric on Rd. Proposition 3.1 in [50] then

ensures the following.

Proposition 3.3. (Proposition 3.1 in [50].) A random vector X with values in Rd is

regularly varying with index α > 0 and non-null Radon measure µ on R
d
0
if and only

if there exists a modulus ρ such that ρ(X) is regularly varying with index α > 0, and a

random vector Θ taking values on Sd−1 := {x ∈ Rd : ρ(x) = 1} such that

P

(

X

ρ(X)
∈ ·
∣

∣

∣

∣

ρ(X) > x

)

W−→ P (Θ ∈ ·) , as x → ∞.

Finally, in subsequent sections, we shall also use an other characterisation via the

regular variation of linear combinations, proven by [2]. We denote the inner product

in Rd by 〈·, ·〉.

Proposition 3.4. (Proposition 1.1 in [2].) A random vector X with values in Rd is

regularly varying with noninteger index α > 0 if and only if there exists a slowly varying

function L(·) such that, for all t ∈ Rd, the following limit exists

lim
x→∞

P (〈t,X〉 > x)

x−αL(x)
= w(t),

and there exists one t0 6= 0 such that w(t0) > 0.

The above result states that a random vector X is regularly varying with index

α > 0 if and only if all linear combinations of its components are regularly varying

with the same index α > 0.

Finally, the last result of great importance in showing the transfer of regular varia-

tion in the subsequent sections is Karamata’s Theorem, which can be found as Theorem

8.1.6 in [6]. Let X be a random variable, denote its associated Laplace-Stieltjes

transform by ϕX(s) := E
[

e−sX
]

for s > 0, and its n-th derivative by ϕ
(n)
X (s) =

E
[

(−X)ne−sX
]

. Let Γ(·) define the Gamma function.

Theorem 3.1. (Karamata’s Tauberian Theorem, Theorem 8.1.6 in [6].) The following

statements are equivalent:

1. X is regularly varying with noninteger index α > 0 and slowly varying function

LX(·), i.e.
P (X > x) ∼ x−αLX(x), as x → ∞.



14 F. BAERISWYL, V. CHAVEZ-DEMOULIN, O. WINTENBERGER

2. For a noninteger index α > 0,

ϕ
(⌈α⌉)
X (s) ∼ Cαs

α−⌈α⌉LX(1/s), as s → 0+,

for LX(·) a slowly varying function, where Cα > 0 is a constant depending only

on α > 0, Cα = −Γ(α+ 1)Γ(1− α)/Γ(α− ⌊α⌋).

Remark 3.1. Note that when X is regularly varying with index α ∈ (n, n + 1), the

(n+1)-th moment does not exist. Observe that the above trivially implies that, when

α ∈ (n, n+1), ϕ
(n+1)
X (s) = ϕ

(⌈α⌉)
X (s) → ∞, as s → 0+, a property we will use repeatedly

in subsequent sections.

4. Tail asymptotics of maximum functional in renewal Poisson cluster

process

We now prove a single big-jump principle for the tail asymptotics of the distribution

of the maximum functional of a generic cluster in the settings of the renewal Poisson

cluster process. As mentioned in Remark (2.1), the conclusions reached for this process

are of course valid for the mixed binomial Poisson cluster process.

Proposition 4.1. Suppose the vector (X,KA) in Equation (5) is regularly varying

with index α > 1 and non-null Radon measure µ. Then,

P
(

HR > x
)

∼ (1 + E [K])P (X > x) , as x → ∞.

Moreover, if µ({(x1, x2) ∈ R2
+,0 : x1 > 1}) > 0, then HR is regularly varying with

index α > 1.

Proof of Proposition (4.1). By conditioning and using the independence of X and

Xj , j ≥ 1, and that of KA and Xj , j ≥ 1, we obtain

P
(

HR > x
)

= 1−
∞
∑

k=0

P
(

X 6 x | KA = k
)(

P (X 6 x)
)k
P (K = k)

= 1−
∞
∑

k=0

P
(

X 6 x | KA = k
)

exp
(

k log
(

1− P (X > x)
))

P (K = k) .

(9)
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A Taylor expansion on the exponential term, as x → ∞ (and hence, as P (X > x) →
0 by the integrability of X), gives

exp
(

k log
(

1− P (X > x)
))

= exp
(

− kP (X > x) − o
(

kP (X > x)
))

=
(

1− kP (X > x) + o
(

kP (X > x)
))

exp
(

− o
(

kP (X > x)
))

where the last equality follows by another Taylor expansion of the first exponential

term in the second equality, as x → ∞.

Plugging the above expansion in Equation (9) yields

P
(

HR > x
)

= 1−
∞
∑

k=0

P (X 6 x,KA = k) exp
(

− o
(

kP (X > x)
))

+ P (X > x)

∞
∑

k=0

kP (X 6 x,KA = k) exp
(

− o
(

kP (X > x)
))

− o(P (X > x))

∞
∑

k=0

P (X 6 x,KA = k) exp
(

− o
(

kP (X > x)
))

=: 1−B1 +B2 −B3.

We treat each term separately. For term 1 − B1, remarking that 1 = P (X 6 x) +

P (X > x), we obtain

1−B1 = P (X > x) +

∞
∑

k=0

P (X 6 x,KA = k)
(

1− exp
(

− o(kP (X > x))
))

Using the basic inequality 1− e−x 6 x, term 1−B1 is bounded by

0 6 1−B1 6 P (X > x) + o(E [K]P (X > x)), as x → ∞.

For term B2, we can write

B2 = P (X > x)
∞
∑

k=0

k
(

P (X 6 x,KA = k) exp
(

− o(kP (X > x))
)

+ P (K = k)− P (K = k)
)

= P (X > x)E [K]− P (X > x)

∞
∑

k=0

kP (X > x,KA = k)

+ P (X > x)

∞
∑

k=0

kP (X 6 x,KA = k)
(

exp
(

− o(kP (X > x))
)

− 1
)

=: B21 −B22 +B23.
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Note that B22 is bounded above by B22 6 E [K]P (X > x) , and hence, by a dominated

convergence argument and the integrability of X , we have that

P (X > x)

∞
∑

k=0

kP (X > x,KA = k) = o
(

P (X > x)
)

, as x → ∞.

For term B23, which is negative since for all k > 0, 0 6 e−o(kP(X>x)) 6 1, we bound

it below by

−P (X > x)

∞
∑

k=0

kP (X 6 x,KA = k)

6 P (X > x)

∞
∑

k=0

kP (X 6 x,KA = k)
(

exp
(

− o(kP (X > x))
)

− 1
)

6 0,

and hence, by a dominated convergence argument, we obtain that, as x → ∞,

P (X > x)

∞
∑

k=0

kP (X 6 x,KA = k)
(

exp
(

− o(kP (X > x))
)

− 1
)

= o
(

P (X > x)
)

.

Collecting the above results, we see that, essentially,

B2 = P (X > x)E [K] + o
(

P (X > x)
)

, as x → ∞.

Finally, by very similar arguments to those employed for B2 and omitted for brevity,

B3 = o
(

P (X > x)
)

, as x → ∞.

Collecting the above, it essentially follows that

P (HR > x) = P (X > x) + P (X > x)E [K] + o
(

P (X > x)
)

, as x → ∞.

The desired result follows at once by taking the limit, as x → ∞, and upon using the

assumption that the limiting Radon measure is non-null on the subspace {(x1, x2) ∈
R2

+,0 : x1 > 1}, which implies by means of Example (3.1) that HR is regularly varying

with index α > 1. �

Remark 4.1. In the case of non-random KA, i.e. when the number of events in a

generic cluster is known, to prove that X and HR share the same maximum domain of

attraction is standard and well known (see standard extreme value theory monographs
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such as [46], [14] or [16]). In the case where X and KA are independent, we refer to

[27] or to [56], where it is shown in Proposition 7 that

P (‖(X,X1, . . . , XK)‖ > x) ∼ (E [K] + 1)P (X > x) , as x → ∞,

where ‖·‖ is a regular norm, (X,X1, X2, . . . , XK) is a sequence of i.d. (not necessarily

independent) regularly varying random variables, with common distribution F and

α > 0, of random length K, which has finite moment of order 1 + α + ǫ, for ǫ > 0.

The added value of our approach is to allow dependence between K and the sequence

(X,X1, . . . , XK), even though we assume that our sequence of marks (Xj)16j6K forms

a sequence of i.i.d. elements.

A closer result to that of Proposition (4.1) is to be found in [4]: in similar settings,

with possible dependence between X and KA, under the additional assumption that

KA is a stopping time with respect to a filtration including the information about the

sequence (Xij), it is shown in their Theorem 2.4 and Proposition 3.2 that HR falls in

the same MDA as X . What we propose in Proposition (4.1) is merely a refinement for

the Fréchet MDA, describing explicitly the tail of HR.

5. Tail asymptotics of the sum functional in renewal Poisson cluster

process

We now prove a result concerning the sum functional of a generic cluster in the

settings of the renewal Poisson cluster process. Again, this extends easily to the mixed

binomial Poisson cluster process.

Proposition 5.1. Suppose the vector (X,KA) in Equation (6) is regularly varying

with noninteger index α > 1. Then, DR is regularly varying with the same index α.

More specifically,

P
(

DR > x
)

∼ P (X + E [X ]KA > x) + E [K]P (X > x) , as x → ∞.

Proof of Proposition (5.1). First, note that the Laplace-Stieltjes transform of DR
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in Equation (6) is given by

ϕDR(s) := E

[

e−sX−s
∑KA

j=1 Xj

]

= E

[

E

[

e−sXe−s
∑KA

j=1 Xj
∣

∣ A
]]

= E

[

e−sXeKA log E[e−sX ]
]

=: E
[

e−sX+KA logϕX(s)
]

upon recalling that X := f(A) and KA are independent conditionally on the ancestral

mark A, and that (Xj)j>1 are i.i.d. and independent of A. We first show that, for any

noninteger α ∈ (n, n+ 1), n ∈ N,

ϕ
(n+1)

DR (s) ∼ ϕ
(n+1)
X+E[X]KA

(s) + E [K]ϕ
(n+1)
X (s), as s → 0+,

where ϕX+E[X]KA
(s) := E

[

e−sX−sE[X]KA
]

, and where ϕ
(n)
X is the nth derivative of the

Laplace-Stieltjes transform of a random variable X .

Case where α ∈ (1, 2):

Additional care is required for this range of α since some quantities, as we will see,

are infinite. Consider the difference

∣

∣

∣

∣

ϕ
(2)

DR(s)− ϕ
(2)
X+E[X]KA

(s)− E [K]ϕ
(2)
X (s)

∣

∣

∣

∣

=

∣

∣

∣

∣

E

[

(

−X +KA
ϕ
(1)
X (s)

ϕX(s)

)2

e−sX+KA logϕX(s)

]

+ E

[

K
ϕ
(2)
X (s)

ϕX(s)
e−sX+KA logϕX (s)

]

− E

[

(

−X − E [X ]KA

)2

e−sX−sE[X]KA

]

− E [K]E
[

(−X)2e−sX
]

− E

[

K
ϕ
(1)
X (s)

ϕ2
X(s)

e−sX+KA logϕX (s)

]

∣

∣

∣

∣

=:
∣

∣B1 +B2 −B3 −B4 − C2

∣

∣.

Consider first the difference B1 − B3. The following set of inequalities, directly due

to the convexity of the function logϕX(·), will prove useful in controlling the above

difference: for s > 0, we have

−sE [X ]K 6 K logϕX(s) 6 sK
ϕ
(1)
X (s)

ϕX(s)
6 0 6 −sK

ϕ
(1)
X (s)

ϕX(s)
6 −K logϕX(s) 6 sE [X ]K.

(10)
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Using the basic decomposition (a2−b2) = (a−b)(a+b) and Equation (10), the difference

B1 − B3 is bounded above by

∣

∣B1 −B3

∣

∣ 6

∣

∣

∣

∣

E

[

(

KA
ϕ
(1)
X (s)

ϕX(s)
+ E [X ]KA)

)(

− 2X +KA
ϕ
(1)
X (s)

ϕX(s)
− E [X ]KA

)

e−sX+KA logϕX(s)

]

∣

∣

∣

∣

6

∣

∣

∣

∣

(

ϕ
(1)
X (s)

ϕX(s)
+ E [X ]

)

E

[

−2KAXe−sX+KA logϕX(s)
]

+

(

ϕ
(1)
X (s)

ϕX(s)
+ E [X ]

)

E

[

K2
A

ϕ
(1)
X (s)

ϕX(s)
e−sX+KA logϕX(s)

]

−
(

ϕ
(1)
X (s)

ϕX(s)
+ E [X ]

)

E

[

K2
A

(

− E [X ]
)

e−sX+KA logϕX(s)
]

∣

∣

∣

∣

=:
∣

∣G(B11 +B31 −B32)
∣

∣

by letting G :=
ϕ

(1)
X

(s)

ϕX(s) + E [X ] . Using Equation (10), it turns out that G is positive,

and hence that term B11 is negative. Using the basic inequality xe−x 6 e−1, and the

fact that KA logϕX(s) is negative, it follows that

|GB11| =
G

s
E

[

2K(sX)e−sX+KA logϕX(s)
]

6
G

s
E
[

2Ke−1
]

.

Now, note that we can rewrite G as

G

s
=

ϕ
(1)
X (s)

ϕX(s) + E [X ]

s

=

ϕ
(1)
X

(s)

ϕX(s) − ϕ
(1)
X (s) + ϕ

(1)
X (s) + E [X ]

s

= ϕ
(1)
X (s)

( 1
ϕX(s) − 1

s

)

+
ϕ
(1)
X (s) + E [X ]

s

The limit as s → 0+ of
1

ϕX (s)
−1

s is the derivative of 1/ϕX(s) at s = 0 and hence is

finite; it follows that

ϕ
(1)
X (s)

( 1
ϕX(s) − 1

s

)

= O
(

ϕ
(1)
X (s)

)

, as s → 0+.

Now note that, for the second term, if first X has negligible tails with respect to

X + E [X ]KA, by Lemma (A.2), it follows that

ϕ
(1)
X (s) + E [X ]

s
= o
(

ϕ
(2)
X+E[X]KA

(s) + E [K]ϕ
(2)
X (s)

)

, as s → 0+.
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If X is regularly varying with the same index asX+E [X ]KA, then clearly, by adapting

the proof of Lemma (A.2), it follows that

ϕ
(1)
X (s) + E [X ]

s
= O

(

ϕ
(2)
X+E[X]KA

(s) + E [K]ϕ
(2)
X (s)

)

, as s → 0+.

By a dominated convergence argument, E
[

2K(sX)e−sX
]

= o(1), as s → 0+, and

combining with the arguments above, this proves that, no matter if X is lighter or as

heavy as the modulus X + E [X ]KA,

B11 = o
(

ϕ
(2)
X+E[X]KA

(s) + E [K]ϕ
(2)
X (s)

)

, as s → 0+.

Consider now B31. Using Equation (10) again, xe−x 6 e−1, and the fact that G is

positive while
ϕ

(1)
X (s)

ϕX(s) is negative, yields

∣

∣GB31

∣

∣ =
G

s
E

[

K2
A

∣

∣

∣

∣

s
ϕ
(1)
X (s)

ϕX(s)

∣

∣

∣

∣

e−sX+KA logϕX(s)

]

6
G

s
E
[

KAe
−1
]

,

and by a dominated convergence argument, E
[

K2
A

(

− logϕX(s)
)

e−sX+KA logϕX(s)
]

=

o(1), as s → 0+. Using a similar argument as for the term B11, this essentially shows

that
∣

∣GB41

∣

∣ = o
(

ϕ
(2)
X+E[X]KA

(s) + E [K]ϕ
(2)
X (s)

)

, as s → 0+.

Now consider term B32. Since ϕX(s) is differentiable at 0, by the integrability of

X , one trivially obtains

lim
s→0+

− logϕX(s)

s
= − logϕ

(1)
X (0)

ϕX(0)
= −E [−X ] ⇐⇒ lim

s→0+
− logϕX(s) = sE [X ]

and, by a similar argument, −2 logϕX(s) → 2sE [X ] , as s → 0+. Hence, there exists

s > 0 small enough such that

sE [X ] 6 −2 logϕX(s).

Upon reusing the inequality xe−x 6 e−1 and taking s > 0 small enough,

|GB32| 6
G

s
E

[

K2
A

(

− 2 logϕX(s)
)

e−sX+KA logϕX (s)
]

6
G

s
E

[

2KA

(

−KA logϕX(s)
)

eKA logϕX(s)
]

6
G

s
E
[

2KAe
−1
]

,
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and by similar arguments as above, sinceKA is integrable, a dominated convergence ar-

gument shows that E
[

2KA

(

−KA logϕX(s)
)

eKA logϕX(s)
]

= o(1) as s → 0+, implying

again by similar reasoning as for the term B11 that

B32 = o
(

ϕ
(2)
X+E[X]KA

(s) + E [K]ϕ
(2)
X (s)

)

, as s → 0+.

Now consider the difference B2 −B4. In particular,

|B2 −B4| =
∣

∣

∣

∣

E

[

KA

(

ϕ
(2)
X (s)

ϕX(s)
− ϕ

(1)
X (s)

ϕ2
X(s)

)

e−sX+KA logϕX(s)

]

− E [K]E
[

(−X)2e−sX
]

∣

∣

∣

∣

=

∣

∣

∣

∣

ϕ
(2)
X (s)

ϕX(s)
E

[

KA

(

e−sX+KA logϕX(s) − 1
)

]

+

(

ϕ
(2)
X (s)

ϕX(s)
− ϕ

(2)
X (s)

)

E [K]− ϕ
(1)
X (s)

ϕ2
X(s)

E

[

KAe
−sX+KA logϕX(s)

]

∣

∣

∣

∣

=:
∣

∣B21 +B41 − B22

∣

∣.

B21 is actually negative because of the integrand, which implies that

|B21| =
ϕ
(2)
X (s)

ϕX(s)
E

[

KA

(

1− e−sX+KA logϕX(s)
)

]

6
ϕ
(2)
X (s)

ϕX(s)
E [K]

and, by the integrability of KA, this implies, by a dominated convergence argument,

that E
[

KA

(

1− e−sX+KA logϕX (s)
)]

= o(1), as s → 0+ and, hence, that

B21 = o(ϕ
(2)
X (s)), as s → 0+,

and consequently that

B21 = o
(

ϕ
(2)
X+E[X]KA

(s) + E [K]ϕ
(2)
X (s)

)

, as s → 0+.

On the other hand, for B41, which is positive, we simply observe that

|B41| = ϕ
(2)
X (s)

(

1

ϕX(s)
− 1

)

E [K] ,

and by the integrability of KA, this term is again

B41 = o
(

ϕ
(2)
X (s)

)

= o
(

ϕ
(2)
X+E[X]KA

(s) + E [K]ϕ
(2)
X (s)

)

, as s → 0+.

Finally, a direct, similar argument based on the fact that ϕ
(1)
X (s) is finite shows that

B22 = o
(

ϕ
(2)
X+E[X]KA

(s) + E [K]ϕ
(2)
X (s)

)

, as s → 0+.
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Lastly, consider term C2. This term is finite when α ∈ (1, 2): indeed, KA is

integrable, and ϕ
(1)
X (s) is finite for the same reason (X is integrable). Hence, using

Theorem (3.1) and Remark (3.1), it holds that

C2 = o
(

ϕ
(2)
X+E[X]KA

(s) + E [K]ϕ
(2)
X (s)

)

, as s → 0+.

All in all, collecting the above, this shows that, as s → 0+,

∣

∣

∣

∣

ϕ
(2)
DR(s)−

(

ϕ
(2)
X+E[X]KA

(s) + E [KA]ϕ
(2)
X (s)

)

∣

∣

∣

∣

= o
(

ϕ
(2)
X+E[X]KA

(s) + E [K]ϕ
(2)
X (s)

)

,

and hence, that

ϕ
(2)

DR(s) ∼ ϕ
(2)
X+E[X]KA

(s) + E [K]ϕ
(2)
X (s), as s → 0+.

Case where α ∈ (n, n+ 1) for n ∈ N \ {1}:

We have to consider the following expression:

∣

∣

∣

∣

ϕ
(n+1)

DR (s)−
(

ϕ
(n+1)
X+E[X]KA

(s) + E [K]ϕ
(n+1)
X (s)

)

∣

∣

∣

∣

=

∣

∣

∣

∣

E

[

(

−X +KA
ϕ
(1)
X (s)

ϕX(s)

)n+1

e−sX+KA logϕX(s)

]

+ E

[

KA
ϕ
(n+1)
X (s)

ϕX(s)
e−sX+KA logϕX(s)

]

− E

[

(

−X − E [X ]KA

)n+1

e−sX−sE[X]KA

]

− E [K]E
[

(

−X
)n+1

e−sX
]

+ Cn+1

∣

∣

∣

∣

=:
∣

∣B1 +B2 −B3 −B4 + Cn+1

∣

∣.

(11)

Consider first the difference
∣

∣B1−B3

∣

∣. Using the basic decomposition (an+1−bn+1) =
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(a− b)
∑n

k=0 a
n−kbk as well as Equation (10) yields

∣

∣B1 −B3

∣

∣ 6

∣

∣

∣

∣

(

ϕ
(1)
X (s)

ϕX(s)
+ E [X ]

)

· E
[

KA

( n
∑

k=0

(

−X +KA
ϕ
(1)
X (s)

ϕX(s)

)n−k(

−X − E [X ]KA

)k)

e−sX+KA logϕX (s)

]

∣

∣

∣

∣

6

∣

∣

∣

∣

(

ϕ
(1)
X (s)

ϕX(s)
+ E [X ]

)(

E

[

KA

(

−X +KA
ϕ
(1)
X (s)

ϕX(s)

)n

e−sX+KA logϕX(s)

]

+ E

[

KA

(

−X − E [X ]KA

)n

e−sX+KA logϕX(s)

]

+ E

[

KA

( n−1
∑

k=1

(

−X +KA
ϕ
(1)
X (s)

ϕX(s)

)n−k(

−X − E [X ]KA

)k)

e−sX+KA logϕX(s)

]

)∣

∣

∣

∣

=:
∣

∣G(B11 +B12 +B13)
∣

∣.

where G is defined as before.

We then treat each term separately. First, consider B11. Using the binomial

theorem, we have that

(

−X +KA
ϕ
(1)
X (s)

ϕX(s)

)n

=
n
∑

j=0

(

n

j

)(

−X

)j(

KA
ϕ
(1)
X (s)

ϕX(s)

)n−j

.

Using linearity of expectations, we separate the cases. Let j = 0. Because G > 0,

KA
ϕ

(1)
X

(s)

ϕX(s) < 0, using Equation (10) and the basic inequality xe−x 6 e−1, we get:

∣

∣

∣

∣

GE

[

KA

(

KA
ϕ
(1)
X (s)

ϕX(s)

)n

e−sX+KA logϕX(s)

]

∣

∣

∣

∣

6
G

s
E

[

Kn−1
A

∣

∣

∣

∣

(

ϕ
(1)
X (s)

ϕX(s)

)n−1∣
∣

∣

∣

(

−KA logϕX(s)

)

eKA logϕX(s)

]

6
G

s
E

[

Kn−1
A

∣

∣

∣

∣

(

ϕ
(1)
X (s)

ϕX(s)

)n−1∣
∣

∣

∣

e−1

]

(12)

Now, note that, using the definition of the derivative, as s → 0+,

lim
s→0+

G

s
= lim

s→0+

ϕ
(1)
X (s)

ϕX(s) + E [X ]

s
=

ϕ
(2)
X (s)

ϕX(s)
− (ϕ

(1)
X (s))2

(ϕX(s))2
< ∞

which is finite since α ∈ (n, n+ 1) for n > 2. Because ϕ
(1)
X (s) is finite, Equation (12)

is finite. Upon applying Theorem (3.1), it follows that, as s → 0+,

∣

∣

∣

∣

GE

[

KA

(

KA
ϕ
(1)
X (s)

ϕX(s)

)n

e−sX+KA logϕX(s)

]

∣

∣

∣

∣

= o
(

ϕ
(n+1)
X+E[X]KA

(s) + E [K]ϕ
(n+1)
X (s)

)

.
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The treatment of terms where j > 0 is easier: it is sufficient to note that, whenever

X appears in the product, one can always “lose a power”: suppose without loss of

generality that j = 1 in the decomposition due to the binomial theorem above; we are

left to consider the following term

∣

∣

∣

∣

GE

[

KA

{(

n

1

)(

−X

)1(

KA
ϕ
(1)
X (s)

ϕX(s)

)n−1}

e−sX+KA logϕX(s)

]

∣

∣

∣

∣

.

This then is smaller than

G

s
E

[

(

n

1

)

Kn
A

∣

∣

∣

∣

(

ϕ
(1)
X (s)

ϕX(s)

)n−1∣
∣

∣

∣

(

sX
)

e−sX

]

6
G

s
E

[

(

n

1

)

Kn
A

∣

∣

∣

∣

(

ϕ
(1)
X (s)

ϕX(s)

)n−1∣
∣

∣

∣

e−1

]

,

and by similar reasoning as above, the expectation is finite. All in all, this shows that,

as s → 0+,

∣

∣

∣

∣

GE

[

KA

{(

n

1

)(

−X

)1(

KA
ϕ
(1)
X (s)

ϕX(s)

)n−1}

e−sX+KA logϕX(s)

]

∣

∣

∣

∣

= o
(

ϕ
(n+1)
X+E[X]KA

(s) + E [K]ϕ
(n+1)
X (s)

)

Upon applying the same arguments on all terms making up B11, using at times Hölder’s

inequality to justify that expectations of the form E

[

KA

(

−X
)j−1(

KA
ϕ

(1)
X

(s)

ϕX (s)

)n−j
]

for

2 6 j 6 n−1 are finite, since α > 2, and one X is factorised as in the reasoning above,

this further shows that

∣

∣GB11

∣

∣ = o
(

ϕ
(n+1)
X+E[X]KA

(s) + E [K]ϕ
(n+1)
X (s)

)

, as s → 0+.

A completely analogous approach - omitted for brevity - shows that

∣

∣GB12

∣

∣ = o
(

ϕ
(n+1)
X+E[X]KA

(s) + E [K]ϕ
(n+1)
X (s)

)

, as s → 0+

replacing only the appeal to Equation (10) by the fact that we can always find s > 0

small enough such that sE [X ]KA 6 −2 logϕX(s).

Finally, consider
∣

∣GB13

∣

∣. The sum given can be factorised as

n−1
∑

k=1

(

−X +KA
ϕ
(1)
X (s)

ϕX(s)

)n−k(

−X − E [X ]KA

)k

=

(

−X +KA
ϕ
(1)
X (s)

ϕX(s)

) n−1
∑

k=1

(

−X +KA
ϕ
(1)
X (s)

ϕX(s)

)n−1−k(

−X − E [X ]KA

)k
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Now this yields, upon using Equation (10) and the basic inequality xe−x 6 e−1 in

the last step,

|GB13| =
G

s
E

[

KA

∣

∣

∣

∣

(

− sX +KAs
ϕ
(1)
X (s)

ϕX(s)

)∣

∣

∣

∣

e−
(

sX−KA logϕX(s)
)

·
n−1
∑

k=1

∣

∣

∣

∣

(

−X +KA
ϕ
(1)
X (s)

ϕX(s)

)n−k−1(

−X − E [X ]KA

)k∣
∣

∣

∣

]

6
G

s
E

[

KA

(

sX −KA logϕX(s)

)

e−
(

sX−KA logϕX (s)
)

·
n−1
∑

k=1

∣

∣

∣

∣

(

−X +KA
ϕ
(1)
X (s)

ϕX(s)

)n−k−1(

−X − E [X ]KA

)k∣
∣

∣

∣

]

6
G

s
E

[

KAe
−1

n−1
∑

k=1

∣

∣

∣

∣

(

−X +KA
ϕ
(1)
X (s)

ϕX(s)

)n−k−1(

−X − E [X ]KA

)k∣
∣

∣

∣

]

.

The highest order of the product of the summands above is of power n: again, since

α ∈ (n, n+ 1), using Hölder’s inequality, the expectation is finite. Overall, this shows

once again that

∣

∣GB13

∣

∣ = o
(

ϕ
(n+1)
X+E[X]KA

(s) + E [K]ϕ
(n+1)
X (s)

)

, as s → 0+.

Collecting all of the above bounds, this shows that

∣

∣B1 −B3

∣

∣ = o
(

ϕ
(n+1)
X+E[X]KA

(s) + E [K]ϕ
(n+1)
X (s)

)

, as s → 0+.

Consider the difference
∣

∣B2 − B4

∣

∣, and note that, very similarly to the case where

α ∈ (1, 2),

∣

∣B2 −B4

∣

∣ =

∣

∣

∣

∣

ϕ
(n+1)
X (s)

ϕX(s)
E

[

KA

(

1− e−sX+KA logϕX(s)
)

]

+ ϕ
(n+1)
X (s)

(

1

ϕX(s)
− 1

)

E [K]

∣

∣

∣

∣

=:
∣

∣B21 +B22

∣

∣.

Now, by a dominated convergence argument as before, one has that E
[

KA

(

1− e−sX+KA logϕX(s)
)]

=

o(1), as s → 0+, and hence, that

∣

∣B21

∣

∣ = o
(

ϕ
(n+1)
X (s)

)

= o
(

ϕ
(n+1)
X+E[X]KA

(s) + E [K]ϕ
(n+1)
X (s)

)

, as s → 0+.

Similarly, by the integrability of KA,

∣

∣B22

∣

∣ = o
(

ϕ
(n+1)
X (s)

)

= o
(

ϕ
(n+1)
X+E[X]KA

(s) + E [K]ϕ
(n+1)
X (s)

)

, as s → 0+.
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Collecting the above, this implies that

∣

∣B2 −B4

∣

∣ = o
(

ϕ
(n+1)
X+E[X]KA

(s) + E [K]ϕ
(n+1)
X (s)

)

, as s → 0+.

Lastly, the terms making up Cn+1 when α ∈ (n, n + 1) are similar to the term C2

when α ∈ (1, 2): they are of order strictly lower than n + 1 and are finite. It follows

by Theorem (3.1) that

Cn+1 = o
(

ϕ
(n+1)
X+E[X]KA

(s) + E [K]ϕ
(n+1)
X (s)

)

, as s → 0+.

All in all, this essentially shows that, as s → 0+,

∣

∣

∣

∣

ϕ
(n+1)
DR (s)−

(

ϕ
(n+1)
X+E[X]KA

(s) +E [K]ϕ
(n+1)
X (s)

)

∣

∣

∣

∣

= o
(

ϕ
(n+1)
X+E[X]KA

(s) +E [K]ϕ
(n+1)
X (s)

)

,

and hence that

ϕ
(n+1)

DR (s) ∼ ϕ
(n+1)
X+E[X]KA

(s) + E [K]ϕ
(n+1)
X (s), as s → 0+

which, combining with the case where α ∈ (1, 2), shows that this equivalence holds for

any α ∈ (n, n+ 1), n ∈ N.

Because the modulus X + E [X ]KA is regularly varying whenever (X,KA) is - see

Remark (5.1) - Karamata’s Theorem (3.1) implies that

ϕ
(n+1)
X+E[X]KA

(s) ∼ Cαs
α−⌈α⌉LX+E[X]KA

(1/s), as s → 0+

for some slowly varying function LX+E[X]KA
(·). Then, suppose first that X is not

regularly varying and has negligible tails with respect to the modulus X + E [X ]KA.

Then Lemma (A.1) yields that

ϕ
(n+1)
X (s) = o

(

ϕ
(n+1)
X+E[X]KA

(s)
)

, as s → 0+

and hence, this implies that

ϕ
(n+1)

DR (s) ∼ Cαs
α−⌈α⌉LX+E[X]KA

(1/s)
(

1 + o(1)
)

, as s → 0+

which yields by re-applying Karamata’s Tauberian Theorem (3.1), that

P
(

DR > x
)

∼ x−αLDR(x) ∼ x−αLX+E[X]KA
(x)
(

1 + o(1)
)

, as x → ∞.
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In the case where X is regularly varying, by Example (3.1), and because X has the

same index α > 1 as the modulus X + E [X ]KA, if the limiting Radon measure is

non-null on the correct subspace, Karamata’s Tauberian Theorem (3.1) yields,

ϕ
(n+1)
X (s) ∼ Cαs

α−⌈α⌉LX(1/s), as s → 0+.

Then, for each n ∈ N

ϕ
(n+1)

DR (s) ∼ 2Cαs
α−⌈α⌉

(

LX+E[X]KA
(1/s) + E [K]LX(1/s)

)

, as s → 0+,

and because the sum of two slowly varying function is still a slowly varying functions,

LR
D(·) := LX+E[X]KA

(·) + E [K]LX(·) is slowly varying. Applying again Karamata’s

Tauberian Theorem (3.1) in the other direction, this yields

P
(

DR > x
)

∼ x−αLDR(x) ∼ x−α
(

LX+E[X]KA
(x) + E [K]LX(x)

)

, as x → ∞

which yields the desired result and the proof is complete. �

Remark 5.1. Note that the assumption that the random vector (X,KA) is regularly

varying with index α > 1 ensures, by Proposition (3.3), that X+E [X ]KA is regularly

varying with the same index α > 1. Indeed, it can be easily seen that ρ(X,KA) :=

X + E [X ]KA is a modulus (in the sense made precise in Section 3), providing that

E [X ] 6= 0, which is a natural assumption to make, since X is taken to be nonnegative.

Remark 5.2. Similar results to those of Proposition (5.1) are known since quite some

time: in a very early contribution in the case the elements of the sequence (Xij)

are i.i.d. and regularly varying with index α ∈ [0, 1), if E [K] < ∞, X and KA are

independent, then [52] shows in Theorem 5.1 that

P
(

DR > x
)

∼ E [K]P (X > x) , as x → ∞.

By letting X and KA be independent, with a common distribution for the elements

of the sequence (Xij) to be subexponential (a class that includes regularly varying

distribution, see [16]), whereas the distribution of KA is light-tailed, then [16] show in

their Theorem A3.20 that

P
(

DR > x
)

∼ E [K]P (X > x) , as x → ∞.
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In a more recent contribution, [49] show that, if the distribution of KA is inter-

mediate regularly varying (see exact definition in the aforementioned reference), if

E
[

X1+ǫ
]

< ∞ for some ǫ > 0, and if the dependence between KA and X is as weak

as to fulfill xP (X > x) = o(P (K > x)), as x → ∞, then

P
(

DR > x
)

∼ P (K > x/E [X ]) , as x → ∞.

Focusing on the class of regularly varying distributions again, the findings of Propo-

sition (5.1) are consistent with the findings of [18]: in particular, if X and KA are

independent which is the setting in the aforementioned paper, but even if X and KA

are asymptotically independent, i.e. if

P (X > x,E [X ]KA > x) = o
(

P (X > x)P (E [X ]KA > x)
)

, as x → ∞,

then the proposed asymptotics of Proposition (5.1) encompass the three results con-

sisting of Proposition 4.1, Proposition 4.3 and Lemma 4.7 in [18]. Indeed, depending

on the relation between X and KA:

1. when P (K > x) = o(P (X > x)), as x → ∞, then P (X + E [X ]KA > x) ∼
P (X > x), as x → ∞. From Proposition (5.1), this means that

P
(

DR > x
)

∼ P (X > x) + E [K]P (X > x) ∼ (E [K] + 1)P (X > x) , as x → ∞

which is equivalent to Proposition 4.1 in [18];

2. when P (X > x) = o(P (K > x)), as x → ∞, then P (X + E [X ]KA > x) ∼
(E [X ])αP (K > x), as x → ∞. From Proposition (5.1), this means that

P
(

DR > x
)

∼ (E [X ])αP (K > x) , as x → ∞

which is equivalent to Proposition 4.3 in [18];

3. lastly, when P (K > x) ∼ cP (X > x), as x → ∞, for c > 0, then P (X + E [X ]KA > x) ∼
P (X > x)+c(E [X ])αP (X > x) , as x → ∞. From Proposition (5.1), this means

that

P
(

DR > x
)

∼
(

E [K] + 1 + c(E [X ])−α
)

P (X > x) , as x → ∞

which is equivalent to Lemma 4.7 in [18].
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Our approach offers a more flexible framework for dependence between the governing

components of the clusters, namely X and KA. We shall also mention the work of [25],

[15], [34] who looked at more general settings than our paper.

Note that the content of Proposition (5.1) is a kind of ”double” big-jump principle:

the heavy-tailedness introduced by letting the vector (X,KA) be regularly varying

implies that there is two ways for the sum DR to be large; either through a combination

of the dependent variables X and KA or through the classical single big-jump coming

from the additional term E [K]P (X > x) consisting of the offspring events.

6. Tail asymptotics of the maximum functional in Hawkes process

We now propose a single big-jump principle concerning the maximum functional of

a generic cluster in the settings of the Hawkes process.

Proposition 6.1. Suppose the vector (X,κA) in Equation (7) is regularly varying with

index α > 1 and non-null Radon measure µ. Then,

P
(

HH > x
)

∼ 1

1− E [κA]
P (X > x) , as x → ∞.

Moreover, if µ({(x1, x2) ∈ R2
+,0 : x1 > 1}) > 0, then HH is regularly varying with

index α > 1.

Proof of Proposition (6.1). By conditioning and using the independence of X and

HH , and that of LA and HH , we obtain as in the proof of Proposition (4.1)

P
(

HH > x
)

= 1−
∞
∑

k=0

P
(

X 6 x | LA = k
)

exp
(

k log
(

1− P
(

HH > x
) ))

P (LA = k) .

A Taylor expansion on the exponential term, as x → ∞ (and hence, as P
(

HH > x
)

→ 0

by the integrability of HH), yields, as x → ∞,

exp
(

k log
(

1− P
(

HH > x
) ))

=
(

1− kP
(

HH > x
)

+ o
(

kP
(

HH > x
) ))

exp
(

− o
(

kP
(

HH > x
) ))

.

From here on, the proof follows the same lines as that of Proposition (5.1), except

that the tail of HH appears here rather than the tail of X . The proof is omitted for
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brevity, but we retrieve

P (HH > x) = P (X > x) + E [LA]P (H > x) + o
(

P (H > x)
)

, as x → ∞

which yields the desired result. �

Remark 6.1. As hinted in Section 1, a closely related work concerning the maxima

of the marks in a generic cluster of the Hawkes process can be found in [4]. Under

the assumption that KA is a stopping time with respect to a filtration including the

information about (Xij), it is shown in their Lemma 4.4 that HH falls in the same

MDA as X . What we propose in Proposition (6.1) is merely a refinement for the

Fréchet MDA, describing explicitly the tail of HH .

7. Tail asymptotics of the sum functional in Hawkes process

We now propose another ”double” big-jump principle concerning the sum functional

of a generic cluster in the setting of the Hawkes process. The tail approximation ob-

tained in Proposition (7.1) below is in fact very similar to the one in Proposition (5.1),

where both a single big-jump principle and a combination of the effects of the dependent

variables X and κA yield large values for DH .

Proposition 7.1. Assume that (X,κA) in Equation (8) has a regularly varying distri-

bution with noninteger index α > 1. Then, (X,LA) is regularly varying with the same

index α. Further, DH is regularly varying with index α. In fact,

P
(

DH > x
)

∼ 1

1− E [κA]
P

(

X +

(

E [X ]

1− E [κA]

)

κA > x

)

, as x → ∞.

Proof of Proposition (7.1). Recall that the assumption that (X,κA) is regularly

varying with index α > 1 is equivalent to the regular variation of the linear com-

binations t1X + t2κA for all t1, t2 ∈ R+ by Proposition (3.4). If we can show, at any

order (n+1) for n ∈ N, and for any t1, t2 ∈ R+, that the behaviour of ϕ
(n+1)
t1X+t2κA

(s) :=

∂n+1

∂sn+1

(

E
[

e−s(t1X+t2κA)
] )

, and that of ϕ
(n+1)
t1X+t2LA

(s) := ∂n+1

∂sn+1

(

E
[

e−s(t1X+t2LA)
] )

, as

s → 0+ are comparable, i.e. if

ϕ
(n+1)
t1X+t2κA

(s) ∼ ϕ
(n+1)
t1X+t2LA

(s), as s → 0+,
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then by Karamata’s Theorem (3.1), we have

P (t1X + t2κA > x) ∼ P (t1X + t2LA > x) , as x → ∞.

But this essentially means, reapplying Proposition (3.4), that (X,LA) is regularly

varying. Just as in the proof of Proposition (5.1), we will again prove the equivalences

sequentially.

Case where α ∈ (1, 2):

It is possible to write ϕt1X+t2LA
(·) as a function of κA instead of LA. Using the

Tower property and recalling that LA|A ∼ Poisson(κA) yields

ϕt1X+t2LA
(s) = E

[

E
[

e−st1X−st2LA | A
]]

= E

[

e−st1X−(1−e−st2 )κA

]

.

From this, simple derivations and collection of terms lead to the expression

∣

∣ϕ
(2)
t1X+t2LA

(s)− ϕ
(2)
t1X+t2κA

(s)
∣

∣ =

∣

∣

∣

∣

E

[

(

− t1X
)2(

e−st1X−(1−e−st2 )κA − e−st1X−st2κA
)

]

+ 2E
[

(

− t1X
)(

− t2κA

)(

e−st1X−(1−e−st2 )κA−st2 − e−st1X−st2κA
)

]

+ E

[

(

− t22κA

)

e−st1X−(1−e−st2 )κA−st2
]

+ E

[

(

− t2κA

)2(
e−st1X−(1−e−st2 )κA−2st2 − e−st1X−st2κA

)

]

∣

∣

∣

∣

=:
∣

∣B1 +B2 +B3 + C2

∣

∣.

The following bounds will be useful:

1. By a Taylor expansion, as s → 0+,

s− (1− e−s) 6 s2/2. (13)

2. For s > 0 small enough,

− (1− e−s) 6 −s/2. (14)

Consider term B1. Using the basic inequality xe−x 6 e−1, as well as Equation (13)
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and Equation (14)

|B1| = E

[

(t1X)2e−st1X
(

e−(1−e−st2 )κA − e−st2κA
)

]

6 E

[

(t1X)2e−st1Xe−(1−e−st2)κAκA(st2 − 1 + e−st2)
]

6 E

[

(t1X)2e−st1Xe−st2κA/2κA(st2)
2/2
]

6 E

[

(st1Xe−st1X)

(

st2κA

2
e−st2κA/2

)

t1t2X

]

6 E
[

e−2t1t2X
]

By the integrability of X (see Example (3.1)), B1 is bounded above by a finite term.

Hence, it follows, using Karamata’s Theorem (3.1) and Remark (3.1), that

B1 = o
(

ϕ
(2)
t1X+t2κA

(s)
)

, as s → 0+.

Consider term B2. By a similar reasoning as for term B1, using Equation (13) and

Equation (14) and the basic inequality xe−x 6 e−1, it follows that

|B2| = 2E
[

t1t2XκAe
−st1X

(

(e−(1−e−st2 )κA−st2 − e−st2κA−st1)− (e−st2κA − e−st2κA−st1)
)

]

6 2E
[

t1t2κ
2
AXe−st1Xe−(1−e−st2 )κA(st2 − 1 + e−st2)

]

6 2E

[

t1t2κ
2
AXe−st1Xe−st2κA/2 (st2)

2

2

]

6 2E

[

(st1Xe−st1X)

(

st2κA

2
e−st2κA/2

)

t22κA

]

6 2E
[

e−2t22κA

]

.

By the integrability of κA (see Example (3.1)), using Karamata’s Theorem (3.1) and

Remark (3.1), this shows that

B2 = o
(

ϕ
(2)
t1X+t2κA

(s)
)

, as s → 0+.

Notation-wise, as in the proof of Proposition (5.1), C2 consists of terms of lower order

than 2 and is trivially finite by the integrability of κA, and hence, using Karamata’s

Theorem (3.1) and Remark (3.1),

C2 = o
(

ϕ
(2)
t1X+t2κA

(s)
)

, as s → 0+.
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Finally, for B3, using similar steps as for term B1, and using again Equation (13)

and Equation (14) and the basic inequalities xe−x 6 e−1 and x2e−x 6 4e−2, it follows

that

|B3| = E

[

(t2κA)
2e−st1X

(

(e−(1−e−st2 )κA−2st2 − est2κA−2st2)− (e−st2κA − e−st2κA−2st2)
)

]

6 E

[

(t2κA)
2e−st1X(e−(1−e−st2 )κA−2st2 − est2κA−2st2)

]

6 E

[

(t2κA)
2e−(1−e−st2 )κA(st2κA − (1− e−st2)κA)

]

6 2E
[

t22κ
3
A(st2/2)

2e−st2κA/2
]

6 2E
[

t22κA4e
−2
]

,

and by the integrability of κA, this shows once again, using Karamata’s Theorem (3.1)

and Remark (3.1), that

B3 = o
(

ϕ
(2)
t1X+t2κA

(s)
)

, as s → 0+.

Collecting the above results, it follows that

∣

∣ϕ
(2)
t1X+t2κA

(s)− ϕ
(2)
t1X+t2LA

(s)
∣

∣ = o
(

ϕ
(2)
t1X+t2LA

(s)
)

, as s → 0+

that is

ϕ
(2)
t1X+t2κA

(s) ∼ ϕ
(2)
t1X+t2LA

(s), as s → 0+.

Case where α ∈ (n, n+ 1), n > 2:

We now consider the difference given by

∣

∣ϕ
(n+1)
t1X+t2LA

(s)− ϕ
(n+1)
t1X+t2κA

(s)
∣

∣ =

∣

∣

∣

∣

E

[

(−t1X)n+1
(

e−st1X−(1−e−st2 )κA − e−st1X−st2κA
)

]

+ I1E
[

(−t1X)n(−t2κA)
(

e−st1X−(1−e−st2κA)κA−I2st2 − e−st1X−st2κA
)

]

+ ...

+ IjE
[

(−t1X)(−t2κA)
n
(

e−st1X−(1−e−st2κA)κA−Ikst2 − e−st1X−st2κA
)

]

+ E

[

(−t2κA)
n+1
(

e−st1X−(1−e−st2 )κA−(n+1)st2 − e−st1X−st2κA
)

]

+ Cn+1

∣

∣

∣

∣

=:
∣

∣B1 +B21 + ...+B2j +B3 + Cn+1

∣

∣

where the constants of product terms (B21, . . . , B2j) I1, I2, . . . , Ij , Ik ∈ N depend on n.



34 F. BAERISWYL, V. CHAVEZ-DEMOULIN, O. WINTENBERGER

Consider term B1. Using the same approach as for term B1 (details omitted for

brevity) in the case where α ∈ (1, 2), it can be shown, using Equation (13) and

Equation (14) and the basic inequality xe−x 6 e−1, that

|B1| 6 E
[

e−2t2(t1X)n
]

,

and by the finiteness of the nth moment of X when α ∈ (n, n + 1), the expectation

above is finite. Hence, it follows, using Karamata’s Theorem (3.1) and Remark (3.1),

that

B1 = o
(

ϕ
(n+1)
t1X+t2κA

(s)
)

, as s → 0+.

Consider one representative for the cross-product terms, say, without loss of generality,

B21. Then, proceeding as before, i.e. for term B2 in the case α ∈ (1, 2), using

Equation (13) and Equation (14) and the basic inequality xe−x 6 e−1, yields (details

omitted for brevity)

|B21| 6 I1E
[

e−2
(

t1X
)n−1

t2κA

]

.

Using Hölder’s inequality, because the order of the product of Xn−1 and κA is n, one

obtains that the above expectation is finite. It follows from Karamata’s Theorem (3.1)

and Remark (3.1), that

B21 = o
(

ϕ
(n+1)
t1X+t2κA

(s)
)

, as s → 0+,

and similarly for each cross product term B22, . . . , B2j .

Consider now B3. Just as before, using Equation (13) and Equation (14) and the

basic inequality x2e−x 6 4e−2, yields (details omitted for brevity)

|B3| 6 E
[

4e−2(t2κA)
n
]

which essentially shows once again, using Karamata’s Theorem (3.1) and Remark (3.1),

that

B3 = o
(

ϕ
(n+1)
t1X+t2κA

(s)
)

, as s → 0+.

Lastly, making up the remainder Cn+1 are terms of smaller order than n + 1 (just

as C2 in the case where α ∈ (1, 2)). These are finite and trivially, using Karamata’s

Theorem (3.1) and Remark (3.1),

Cn+1 = o
(

ϕ
(n+1)
t1X+t2κA

(s)
)

, as s → 0+.
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Collecting all of the above results, it follows that

∣

∣ϕ
(n+1)
t1X+t2LA

(s)− ϕ
(n+1)
t1X+t2κA

(s)
∣

∣ = o(ϕ
(n+1)
t1X+t2κA

(s)), as s → 0+

which essentially means that, for all n ∈ N

ϕ
(n+1)
t1X+t2LA

(s) ∼ ϕ
(n+1)
t1X+t2κA

(s), as s → 0+.

Now, by Karamata’s Theorem (3.1), this means that, for all t1, t2 ∈ R+

P (t1X + t2LA > x) ∼ P (t1X + t2κA > x) , as x → ∞,

and using Proposition (3.4), this means that (X,LA) is regularly varying with index

α > 1. We conclude by applying Theorem 1 in [1] which yields the desired result. �

Remark 7.1. Proposition (7.1) is essentially about showing that if (X,κA) is regularly

varying, then (X,LA) is also regularly varying, furthermore with the same index α > 1.

The equivalence between the regularly varying property of κA and that of LA is easy

to prove and is to be found, for example, in [31]. The crucial step to obtain the tail

asymptotic of DH and its regularly varying property in Proposition (7.1) relies on

Theorem 1 in [1]. In their even more general setting, the distribution of X + cLA is

intermediate regularly varying, for all c ∈ (E
[

DH
]

− ǫ,E
[

DH
]

+ ǫ) for some ǫ > 0:

this assumption encompasses the case where (X,LA) is regularly varying, but also the

cases where X (respectively LA) is intermediate regularly varying and LA (respectively

X) is lighter, in the sense that P (LA > x) = o(P (X > x)), as x → ∞ (respectively

P (X > x) = o(P (LA > x)), as x → ∞).

Proposition (7.1) extends Lemma 5.2 in [5] by letting (X,κA) be regularly varying,

while it is shown in the aforementioned paper that DH is regularly varying in the case

X is itself regularly varying and with noninteger α ∈ (0, 2). In the aforementioned

paper, three cases are distinguished, with various assumptions on the relation between

X and LA. Note that we do not cover the case α ∈ (0, 1) in Proposition (7.1), which

is studied in [5].

It was mentioned in the introduction that versions of Equation (8) have been studied

in the context of Google’s PageRank algorithm: in [31], and under a simpler form, the

authors study the equation given by

DH D
= (1 − c) + c

LA
∑

j=1

1

d
DH

j ,
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where c ∈ (0, 1), d ∈ N is the Out-Degree, and LA is the In-Degree of a generic page.

In Theorem 4.5, they show that LA is regularly varying with noninteger index α > 1 is

equivalent to the regular variation of DH with the same noninteger index α, and that

the tails are comparable, up to a constant depending on α, c and d.

In more general settings, [26] study the (more complete) distributional equation

behind Google’s PageRank algorithm

DH D
= X +

LA
∑

j=1

CjD
H
j

where (Cj) is an i.i.d. sequence of non-negative random variables, independent of DH .

The authors derive tail asymptotics and transfer of regular variation for DH , but under

three different settings in which one of either X , LA or C is regularly varying with

index α > 0 dominating the others. It is not possible for these random quantities to

be all regularly varying with the same index, and while dependence is allowed between

X and LA, it is at the cost of moment conditions. Additionally, it is not possible to

consider the case where Cj = 0 in the aforementioned paper, which is precisely our

setting. In the Google PageRank literature, one should also mention [58] for similar

results.

8. Precise large deviations of cluster process functionals

In this section, we make use of the cluster asymptotics from Section 4 to Section 7

to derive (precise) large deviation results for the renewal Poisson cluster process as

well as for the Hawkes process.

Notation wise, we let

NT =
∣

∣{(i, j) : 0 6 Γi 6 T, 0 6 Γi + Tij 6 T }
∣

∣

represent the number of events occurring in the time interval [0, T ], for T > 0, and we

let

JT =
∣

∣{(i, j) : 0 6 Γi 6 T, T 6 Γi + Tij}
∣

∣

represent the number of (ordered) events coming from clusters that started in the

time interval [0, T ], but occurring after time T > 0. We will also need the following
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decomposition of the maximum: for x > 0

{

max
16i6CT

Hi − max
16j6JT

Xj > x

}

⊆
{

max
16i6NT

Xi > x

}

⊆
{

max
16i6CT

Hi > x

}

(15)

where CT ∼ Poisson(νT ) is the number of clusters starting in the interval [0, T ], for

T > 0, andHi is as in Equation (1). This is due to the fact that the immigration process

is the classical homogeneous Poisson process with parameter ν > 0, see Section 2. The

upper bounding set in decompositions (15) overshoots by taking the maximum over all

the events belonging to clusters initiated before time T > 0, i.e. this includes events

occurring after time T > 0. This is convenient, since CT and H are independent.

The precise large deviation results for the sum will necessitate another decomposi-

tion. Notation wise, rewriting Equation (3) using NT yields:

ST :=

NT
∑

j=1

Xj ,

and we let µST
denote the expectation of ST . Then we can decompose the deviation

as:

ST − µST
=

CT
∑

i=1

Di − E

[

CT
∑

i=1

Di

]

−
( JT
∑

j=1

f(Aj)− E





JT
∑

j=1

f(Aj)





)

=:
CT
∑

i=1

Di − E

[

CT
∑

i=1

Di

]

−
(

εT − E [εT ]
)

. (16)

As in decomposition (15), the first difference overshoots by summing marks of all events

belonging to clusters started before T > 0, and removing the left-over effect of events

occurring after time T > 0 in a second step, denoted by εT . Again, note that CT and

D are independent.

Furthermore, regarding the left-over effect, the following properties hold:

1. (Property 1) in [4], for both the renewal Poisson cluster process and the Hawkes

process, that E [JT ] = o(T ), as T → ∞;

2. (Property 2) in [5], for both the renewal Poisson cluster process and the Hawkes

process, that E [εT ] = o(
√
T ), as T → ∞; and hence, in our settings, the condi-

tion E [εT ] = o(T ), as T → ∞ holds as well.
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8.1. Large deviations of maxima over an interval [0, T ]

We now illustrate how the asymptotics of Proposition (4.1) and Proposition (6.1)

help to determine the asymptotic behaviour of the whole processes on an interval. In

what follows, we let H denote a generic maximum, i.e. it can either be HR or HD

from Section 4 and Section 6. At the end of the section, we present some related work.

Proposition 8.1. Suppose that the conditions of either Proposition (4.1) or those of

Proposition (6.1) hold. Then, as T → ∞, and for any γ > 0

lim
T→∞

sup
x>γνT

∣

∣

∣

∣

P (max16i6NT
Xi > x)

E [NT ]P (X > x)
− 1

∣

∣

∣

∣

= 0.

Proof of Proposition (8.1). Using decomposition (15)

P (max16i6CT
Hi −max16j6JT

Xi > x)

E [NT ]P (X > x)
6

P (max16i6NT
Xi > x)

E [NT ]P (X > x)
6

P (max16i6CT
Hi > x)

E [NT ]P (X > x)
.

Upper bound: By the remark following Theorem 3.1 in [30] for any γ > 0,

lim
T→∞

sup
x>γνT

∣

∣

∣

∣

P (max16i6CT
Hi > x)

E [CT ]P (H > x)
− 1

∣

∣

∣

∣

= 0, as T → ∞.

Using the asymptotics of Proposition (4.1) and of Proposition (4.1),

E [CT ]P (H > x) ∼ E [NT ]P (X > x) , as T → ∞

for the x-values considered, i.e. when x > γνT for any γ > 0.

Lower bound:

P (max16i6CT
Hi −max16j6JT

Xj > x)

E [NT ]P (X > x)
=

P (max16i6CT
Hi −max16j6JT

Xj > x,max16j6JT
Xj 6 xε)

E [NT ]P (X > x)

+
P (max16i6CT

Hi −max16j6JT
Xj > x,max16j6JT

Xj > xε)

E [NT ]P (X > x)

>
P (max16i6CT

Hi > x(1 + ε),max16j6JT
Xj 6 xε)

E [NT ]P (X > x)

>
P (max16i6CT

Hi > x(1 + ε))

E [NT ]P (X > x)

− P (max16i6CT
Hi > x(1 + ε),max16j6JT

Xj > xε)

E [NT ]P (X > x)
.

The very last term in the lower bound is bounded above by

P (max16i6CT
Hi > x(1 + ε),max16j6JT

Xj > xε)

E [NT ]P (X > x)
6

P (max16j6JT
Xj > xε)

E [NT ]P (X > x)
.
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Conditioning on the values of JT , using a union bound and the fact that the Xjs are

independent,

P

(

max
16j6JT

Xj > xε

)

=

∞
∑

k=1

P

(

max
16j6k

Xj > xε

)

P (JT = k)

6

∞
∑

k=1

k
∑

j=1

P (Xj > xε)P (JT = k)

6

∞
∑

k=1

kP (X > xε)P (JT = k)

6 E [JT ]P (X > xε) .

Using Property (1) above, and Remark (8.1), which essentially says that E [NT ] =

O(T ), as T → ∞, and under the assumption that x > γνT for every γ > 0, it holds

that TP (X > x) → 0 as T → ∞, and it follows that, for any fixed ǫ > 0,

P (max16j6JT
Xj > xε)

E [NT ]P (X > x)
= o(1), as T → ∞.

This implies that

P (max16i6CT
Hi −max16j6JT

Xj > x)

E [NT ]P (X > x)
>

P (max16i6CT
Hi > x(1 + ε))

E [NT ]P (X > x)
.

Using again the remark following Theorem 3.1 in [30], it follows, for any x > γνT , that

lim
T→∞

sup
x>γνT

∣

∣

∣

∣

P (max16i6CT
Hi > x(1 + ε))

E [CT ]P (H > x(1 + ε))
− 1

∣

∣

∣

∣

= 0, as T → ∞.

BecauseH is regularly varying with index α > 1, it follows that E [CT ]P (H > x(1 + ε)) =

(1+ ε)−αE [CT ]P (H > x) , as x → ∞, and using the asymptotics of Proposition (4.1)

and of Proposition (6.1),

E [CT ]P (H > x(1 + ε)) ∼ (1 + ε)−α
E [NT ]P (X > x) , as T → ∞.

Letting ǫ → 0, collecting the upper and lower bounds yields the desired result. �

Remark 8.1. Note that, by the independence of the clusters, we have:

1. for the renewal Poisson cluster process, E [NT ] = (E [K] + 1)νT ;

2. for the Hawkes process, E [NT ] =
νT

1−E[κA] (see e.g. Section 12.1 in [7]).
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8.2. Large deviations of sums over an interval [0, T ]

We finally illustrate how the results of Proposition (5.1) and Proposition (7.1) help

to derive results for the renewal Poisson cluster process as well as for the Hawkes on

an interval [0, T ]. Note that D denotes a generic sum of the marks, i.e. it can either

be DH or DR until specified.

Proposition 8.2. 1. Suppose the conditions of Proposition (5.1) hold. Then, as

T → ∞, for all γ > 0,

lim
T→∞

sup
x>γνT

∣

∣

∣

∣

P (ST − µST
> x)

νT
(

P (X + E [X ]KA > x) + E [K]P (X > x)
) − 1

∣

∣

∣

∣

= 0.

2. Suppose the conditions of Proposition (7.1) hold. Then, as T → ∞, for all γ > 0,

lim
T→∞

sup
x>γνT

∣

∣

∣

∣

P (ST − µST
> x)

E [NT ]P

(

X +

(

E[X]
1−E[κA]

)

κA > x

) − 1

∣

∣

∣

∣

= 0.

Proof of Proposition (8.2). We use decomposition (16), i.e.

P (ST − µST
> x) = P

(

CT
∑

i=1

Di − E

[

CT
∑

i=1

Di

]

−
(

εT − E [εT ]
)

> x

)

.

Upper bound: Note that

P (ST − µST
> x) 6 P

(

CT
∑

i=1

Di − E

[

CT
∑

i=1

Di

]

> x− E [εT ]

)

.

As T → ∞, we can rewrite x > γνT as x > γ
′

νT + E [εT ], for some 0 < γ
′

< γ.

Hence, under the assumption that x > γ
′

νT + E [εT ], then x − E [εT ] > γ
′

νT , and

since CT ∼ Poisson(νT ) is independent of D, using Lemma 2.1 and Theorem 3.1 in

[30] yields

lim
T→∞

sup
x>γ′νT

∣

∣

∣

∣

P

(

∑CT

i=1 Di − E

[

∑CT

i=1 Di

]

> x− E [εT ]
)

νTP (D > x− E [εT ])
− 1

∣

∣

∣

∣

= 0.

Recall that D is regularly varying with index α > 1. Using Property (2) above, we

can write x − E [εT ] = x − o(T ) as T → ∞. Using the Potter bounds (see Theorem

1.5.6 in [6]), for all I > 1, η > 0, there exists X such that, for all x− o(T ) > X ,

P (D > x− o(T ))

P (D > x)
6 Imax

{(

1− o(T )

x

)−α+η

,

(

1− o(T )

x

)−α+η}

.
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Because x > γνT + E [εT ], the above upper bound becomes uniformly close to 1,

as T → ∞. In combination with the above, it follows that, as T → ∞, uniformly for

x > γ
′

νT + E [εT ],

P (ST − µST
> x) 6 νTP (D > x) .

Lower bound: Let δ > 0, and note that

P (ST − µST
> x) = P

(

CT
∑

i=1

Di − E

[

CT
∑

i=1

Di

]

−
(

εT − E [εT ]
)

> x, εT − E [εT ] 6 xδ

)

+ P

(

CT
∑

i=1

Di − E

[

CT
∑

i=1

Di

]

−
(

εT − E [εT ]
)

> x, εT − E [εT ] > xδ

)

> P

(

CT
∑

i=1

Di − E

[

CT
∑

i=1

Di

]

−
(

εT − E [εT ]
)

> x, εT − E [εT ] 6 xδ

)

> P

(

CT
∑

i=1

Di − E

[

CT
∑

i=1

Di

]

> x(1 + δ)

)

− P

(

CT
∑

i=1

Di − E

[

CT
∑

i=1

Di

]

−
(

εT − E [εT ]
)

> x, εT − E [εT ] > xδ

)

> P

(

CT
∑

i=1

Di − E

[

CT
∑

i=1

Di

]

> x(1 + δ)

)

− P (εT − E [εT ] > xδ) .

By taking x > γ
′

νT + E [εT ], it follows that xδ > γ
′

(νT )δ + E [εT ] δ, and hence,

using Markov’s inequality

P (εT − E [εT ] > xδ) 6 P

(

εT > γ
′

νT δ + (δ + 1)E [εT ]
)

6
E [εT ]

γ′νT δ + (δ + 1)E [εT ]
.

Using Property (2) above, letting T → ∞, for a fixed δ > 0, the denominator in the

upper bound goes to infinity, and this implies that

lim
T→∞

P (εT − E [εT ] > xδ) = 0 for x > γ
′

νT + E [εT ] .

Since x > γ
′

νT + E [εT ] > γνT , using again Theorem 3.1 in [30], it follows that

lim
T→∞

sup
x>γνT

∣

∣

∣

∣

P

(

∑CT

i=1 Di − E

[

∑CT

i=1 Di

]

> x(1 + δ)
)

νTP (D > x(1 + δ))
− 1

∣

∣

∣

∣

= 0.

Since D is regularly varying with index α > 1, letting δ → 0 yields

νTP (D > x(1 + δ)) ∼ νT (1 + δ)−α
P (D > x) ∼ νTP (D > x) .
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It follows that, uniformly for x > γνT , and as T → ∞,

νTP (D > x) 6 P (ST − µST
> x) .

Collecting the above upper and lower bounds,

1. the asymptotics of Proposition (5.1) yields

lim
T→∞

sup
x>γνT

∣

∣

∣

∣

P (ST − µST
> x)

νT
(

P (X + E [X ]KA > x) + E [K]P (X > x)
) − 1

∣

∣

∣

∣

= 0.

2. the asymptotics of Proposition (7.1) yields

lim
T→∞

sup
x>γνT

∣

∣

∣

∣

P (ST − µST
> x)

E [NT ]P

(

X +

(

E[X]
1−E[κA]

)

κA > x

) − 1

∣

∣

∣

∣

= 0,

and recalling that νT
1−E[κA] = E [NT ], this concludes the proof.

�

Remark 8.2. Early contributions to the (non-uniform) precise large deviations results

for non-random sums of i.i.d. regularly varying random variables can be found in [39],

[40], [23], or [42].

The proofs of Proposition (8.1) and Proposition (8.2) heavily rely on the work of

[30], in which the authors show that, under the assumption that the process of integer-

valued non-negative random variables (NT )T>0 is such that

1. NT /λT
P−→ 1, as λT → ∞, where λT = E [NT ];

2. the following limit holds:

∑

k>(1+δ)λT

P (NT > k) (1 + ǫ)k → 0, as λT → ∞.

Furthermore, if the process (NT ) is independent of the sequence (Xj), by their Theorem

3.1, if the distribution of X is extended regularly varying, for any γ > 0,

lim
T→∞

sup
x>γλT

∣

∣

∣

∣

P (ST − µST
> x)

λTP (X > x)
−1

∣

∣

∣

∣

= 0, and lim
T→∞

sup
x>γλT

∣

∣

∣

∣

P (max16j6NT
Xj > x)

λTP (X > x)
−1

∣

∣

∣

∣

= 0

where ST =
∑NT

j=1 Xj . Note that the authors show that the Poisson process CT

satisfies the assumptions above, but the second condition is difficult to show for more
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complicated processes. Hence, the trick is to bound our process by a process governed

by an independent variable, in our context CT which is Poisson and satisfies the settings

of [30].

Note that the work in [30] extends to the case of random sums identical precise large

deviations results studied, in the case of non-random sums, by [11].

In [55], the authors relax the two assumptions above of [30] to the single condition

that

E

[

Nβ+ǫ
T 1{NT>(1+δ)λT }

]

= O(λT ), as T → ∞,

for fixed ǫ, δ > 0 small and β the (upper) index of extended regular variation, and prove

similar precise large deviation results as [30]. In [43], the authors study another subclass

of the subexponential family, namely the consistently varying random variables, and

prove similar precise large deviations under the same conditions as [55].

Under the assumption that the sequence (Xj) exhibits negative dependence, i.e.

P





n
⋂

j=1

{Xj 6 xj}



 6 M

n
∏

j=1

P (Xj 6 xj) and P





n
⋂

j=1

{Xj > xj}



 6 M

n
∏

j=1

P (Xj > xj)

for some M > 0, all x1, . . . , xn ∈ R, more recent literature such as [54] or [32] propose

extensions and similar results to those of [43] under the same consistently varying

random variables.

While our framework is more restrictive on the aspect that our sequence (Xj)16j6NT

has elements that are regularly varying, which is a subclass of the extended regularly

varying distributions, and that furthermore the elements of the sequence are inde-

pendent, knowledge of the tail asymptotics of the cluster functionals allowed us to

derive expressions that resemble known precise large deviations principles for random

maxima and sums of independent random variables, even though, clearly, NT and (Xj)

are dependent over a time window [0, T ]. This comes at the cost of an extra term, for

the sums the marks over a finite time interval, of an extra left-over effect E [εT ] that

vanishes as T becomes large.

Appendix A. Appendix

We will need the following Lemma in order to prove Lemma (A.2) used in the proof

of Proposition (5.1):
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Lemma A.1. Suppose (X,KA) is regularly varying with index α ∈ (n, n + 1), for

n ∈ N. Additionally, suppose that X has negligible tails with respect to X + E [X ]KA,

i.e. P (X > x) = o(P (X + E [X ]KA > x)), as x → ∞. Then,

ϕ
(n+1)
X (s) = o

(

ϕ
(n+1)
X+E[X]KA

(s)
)

, as s → 0+.

Proof. Note that

ϕ
(n+1)
X (s) = E

[

(−X)n+1e−sX
]

=

∫ ∞

0

xn+1e−sx d(−P (X > x))

=
[

− xn+1e−sx
P (X > x)

]∞

0
+

∫ ∞

0

(

(n+ 1)xne−sx − sxn+1e−sx
)

P (X > x) dx.

The first term above vanishes; upon substituting, the second term yields

∫ ∞

0

(

(n+ 1)xne−sx − sxn+1e−sx
)

P (X > x) dx

=

∫ ∞

0

(

(n+ 1)(y/s)ne−y − s(y/s)n+1e−y
)

P (X > y/s)
dy

s

= s−(n+1)

∫ ∞

0

(

(n+ 1)yne−y − yn+1e−y
)

P (X > y/s) dy.

Fix ε > 0 small and split the above integral into

s−(n+1)

∫ ∞

0

(

(n+ 1)yne−y − yn+1e−y
)

P (X > y/s) dy

= s−(n+1)

(
∫ ε

0

(

(n+ 1)yne−y − yn+1e−y
)

P (X > y/s) dy

+

∫ ∞

ε

(

(n+ 1)yne−y − yn+1e−y
)

P (X > y/s) dy

)

=: I1 + I2.

Consider integral I2 first. For some values y ∈ [ε,∞) the expression (n + 1)yne−y −
yn+1e−y might be negative, so bound I2 above by its absolute value. Additionally,

upon using the hypothesis of negligibility of the tail of X with respect to the tail of

X+E [X ]KA, it follows that, for any δ > 0, and y large enough, there is s0 such that for

all s 6 s0, P (X > y/s) 6 δP (X + E [X ]KA > y/s) . All in all, because X + E [X ]KA
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is regularly varying with index α ∈ (n, n+ 1), this yields as an upper bound

I2 6 s−(n+1)

∫ ∞

ε

(

(n+ 1)yne−y − yn+1e−y
)

δP (X + E [X ]KA > y/s) dy

6 s−(n+1)

∫ ∞

ε

(

(n+ 1)yne−y − yn+1e−y
)

δ(y/s)−αLX+E[X]KA
(y/s) dy

6 sα−(n+1)δ

∫ ∞

ε

(

(n+ 1)yne−y − yn+1e−y
)

y−αLX+E[X]KA
(y/s) dy.

Because ((n+1)yne−y − yn+1e−y
)

y−α is integrable over [0,∞), it follows from Propo-

sition 4.1.2 (b) in [6] that, as s → 0+,

sα−(n+1)δ

∫ ∞

ε

(

(n+ 1)yne−y − yn+1e−y
)

y−αLX+E[X]KA
(y/s) dy

∼ sα−(n+1)LX+E[X]KA
(1/s)δ

∫ ∞

ε

(

(n+ 1)yne−y − yn+1e−y
)

y−α dy.

For each fixed value of ε > 0, and as s → 0+, it is possible to take δε > 0 as small

as needed so that to guarantee that

δε

∫ ∞

ε

(

(n+ 1)yne−y − yn+1e−y
)

y−α dy = o(1) as s → 0+.

This implies that, as s → 0+, ε → 0,

sα−(n+1)LX+E[X]KA
(1/s)δε

∫ ∞

ε

(

(n+ 1)yne−y − yn+1e−y
)

y−α dy

= o(sα−(n+1)LX+E[X]KA
(1/s)).

Consider now integral I1. Because X is stochastically dominated by X +E [X ]KA,

and using the regular variation of the latter quantity, this yields

I1 6 s−(n+1)

∫ ε

0

(

(n+ 1)yne−y − yn+1e−y
)

P (X + E [X ]KA > y/s) dy

6 sα−(n+1)

∫ ε

0

(

(n+ 1)yne−y − yn+1e−y
)

y−αLX+E[X]KA
(y/s) dy.

Because the function
(

(n+ 1)yne−y − yn+1e−y
)

y−α is integrable over [0, ε), it follows

by Proposition 4.1.2 (a) in [6] that, as s → 0+,

sα−(n+1)

∫ ε

0

(

(n+ 1)yne−y − yn+1e−y
)

y−αLX+E[X]KA
(y/s) dy

∼ sα−(n+1)LX+E[X]KA
(1/s)

∫ ε

0

(

(n+ 1)yne−y − yn+1e−y
)

y−α dy.
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Letting ε → 0, this yields, as s → 0+,

sα−(n+1)LX+E[X]KA
(1/s)

∫ ε

0

(

(n+ 1)yne−y − yn+1e−y
)

y−α dy

= o
(

sα−(n+1)LX+E[X]KA
(1/s)

)

.

Overall, this shows that

I1 + I2 = o
(

sα−(n+1)LX+E[X]KA
(1/s)

)

, as s → 0+

and because n + 1 = ⌈α⌉, and using Karamata’s Tauberian Theorem (3.1) implying

that ϕ
(n+1)
X+E[X]KA

∼ Cαs
α−⌈α⌉LX+E[X]KA

(1/s), as s → 0+, this shows that

ϕ
(n+1)
X (s) = o(ϕ

(n+1)
X+E[X]KA

), as s → 0+.

�

Lemma A.2. Suppose (X,KA) is regularly varying with index α ∈ (1, 2) and slowly

varying function LX+E[X]KA
(·) and X has a negligible tail compared to the modulus

X + E [X ]KA, i.e. P (X > x) = o(P (X + E [X ]KA > x)), as x → ∞. Then,

ϕ
(1)
X (s) + E [X ]

s
= o
(

ϕ
(2)
X+E[X]KA

(s) + E [K]ϕ
(2)
X (s)

)

, as s → 0+.

Proof. Let α ∈ (1, 2). We assess

ϕ
(1)
X (s) + E [X ]

s
= E

[

X
(

1− e−sX
)

s

]

=

∫ ∞

0

x(1− e−sx)

s
d(−P (X > x))

=

[

− x(1− e−sx)

s
P (X > x)

]∞

0

+

∫ ∞

0

(

(

1− e−sx
)

s
+ xe−sx

)

P (X > x) dx.

Since X is integrable, one has that xP (X > x) = o(1), as x → ∞, so that the first

expression on the right-hand side above vanishes; for the second integral, fix ε > 0

small and write
∫ ∞

0

(

(

1− e−sx
)

s
+ xe−sx

)

P (X > x) dx =

∫ ∞

0

s−2(1− e−y + ye−y)P (X > y/s) dy,

=

∫ ε

0

s−2(1− e−y + ye−y)P (X > y/s) dy

+

∫ ∞

ε

s−2(1 − e−y + ye−y)P (X > y/s) dy

=: (I1 + I2).
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Consider integral I2 first. A similar argument as in the proof of Lemma (A.1) for

integral I2 there yields the following upper bound

I2 6

∫ ∞

ε

s−2(1− e−y + ye−y)δεP (X + E [X ]KA > y/s) dy

6 sα−2δε

∫ ∞

ε

(1− e−y + ye−y)y−αLX+E[X]KA
(y/s) dy.

As ε → 0, the above integral diverges. But for a fixed value of ε > 0 small, upon using

Proposition 4.1.2 (b) in [6], as s → 0+,

sα−2

∫ ∞

ε

(1− e−y + ye−y)y−αδεLX+E[X]KA
(y/s) dy

∼ sα−2LX+E[X]KA
(1/s)δε

∫ ∞

ε

(1− e−y + ye−y)y−α dy.

As s → 0+, as in the proof of Lemma (A.1), it is possible to take δε > 0 as small as

needed in order to ensure that

δε

∫ ∞

ε

(1− e−y + ye−y)y−α dy = o(1) as s → 0+.

This implies that, as s → 0+,

sα−2LX+E[X]KA
(1/s)δε

∫ ∞

ε

(1− e−y + ye−y)y−α dy = o(sα−2LX+E[X]KA
(1/s)).

Consider now integral I1. Because X is stochastically dominated by X +E [X ]KA,

for a fixed ε > 0, we have

I1 6

∫ ε

0

s−2(1 − e−y + ye−y)P (X + E [X ]KA > y/s) dy

=

∫ ε

0

sα−2(1− e−y + ye−y)y−αLX+E[X]KA
(y/s) dy.

A Taylor expansion on the function f(y) = e−y + ye−y yields 1 = e−y − ye−y +

2ye−y − y2e−y + o(−y), and we get that

∫ ε

0

sα−2(1 − e−y + ye−y)y−αLX+E[X]KA
(y/s) dy

≈ sα−2

∫ ε

0

(2ye−y − y2e−y)y−αLX+E[X]KA
(y/s) dy.

Because the integral
∫ ε

0
(2ye−y − y2e−y)y−α dy < ∞ for α ∈ (1, 2) and ε > 0 small,

even if it is potentially large for values of α close to 2, it follows from Proposition 4.1.2.
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(a) in [6] that, as s → 0+,

sα−2

∫ ε

0

(2ye−y − y2e−y)y−αLX+E[X]KA
(y/s) dy

∼ sα−2LX+E[X]KA
(1/s)

∫ ε

0

(2ye−y − y2e−y)y−α dy.

Letting s → 0+ and then ε → 0, it follows that

sα−2LX+E[X]KA
(1/s)

∫ ε

0

(2ye−y − y2e−y)y−α dy = o(sα−2LX+E[X]KA
(1/s)).

All in all, this yields

(I1 + I2) = o(sα−2LX+E[X]KA
(1/s)), as s → 0+.

BecauseX+E [X ]KA is regularly varying, by Karamata’s Tauberian Theorem (3.1),

sα−2LX+E[X]KA
(1/s)

ϕ
(2)
X+E[X]KA

(s) + E [K]ϕ
(2)
X (s)

∼ sα−2LX+E[X]KA
(1/s)

Cαsα−2LX+E[X]KA
(1/s) + E [K]ϕ

(2)
X (s)

, as s → 0+.

Applying the result of Lemma (A.1), this yields that

sα−2LX+E[X]KA
(1/s) = O

(

ϕ
(2)
X+E[X]KA

(s) + E [K]ϕ
(2)
X (s)

)

, as s → 0+.

This yields the desired result. �
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