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Abstract. In sensitive applications, such as drug development, offering
experts an explanation for why data mining operations arrive at certain
results adds a very valuable facet. In this work we benefit from modelling
the task as a Constraint Satisfaction Problem (CSP) twice: by adding
multiple constraints to the mining process and by deriving pattern failure
explanations. We illustrate experimentally how to apply our method on
data originally retrieved from the ChEMBL database [14]. We also report
some interesting dependencies discovered by our method which are not
easy to observe when analysing data manually.

Keywords: Itemset mining · Constraint programming · Explainable AI

1 Introduction

With the recent surge in applications of machine learning, mainly deep learning,
techniques to a variety of fields, the need for explanations for those techniques
has also increased. Most of the techniques explaining machine learning models
exploit the supervised nature of the problem setting, solving problems such as:

– Can we learn a symbolic model giving the same predictions?
– What are the minimal changes that need to be done to a data instance to

change its predicted label?
– Can we identify features or image regions that contribute strongly to the

prediction result?

In unsupervised data mining, however, especially in constraint-based pattern
mining, labeled examples are typically not available, increasing the challenge. As
a result, there are arguably more workshops for (interesting) work-in-progress
papers on explainable data mining than there are publications that were accepted
for conference proceedings or journals on the subject. The ones that do exist
ignore explanations of itemset mining, a classical data mining task.

In addition, the questions change: since mined patterns are often starting
points for further development, for instance in drug development, or “food for
thought” that help formulate research hypothesis, their plausability and persua-
siveness need to be supported.
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Finally, this is clearly an application dependent subject. There are a number
of applications in sensitive areas such as pharmaceutical or medical domains for
which explanations are obligatory. As a common example, a chemical compound
selected by a black-box classifier from a database of molecules cannot be ap-
proved by a pharmacist as a drug candidate, because of the high risks associated
with the following production process costs [6].

Indeed, due to such considerations, our partner researchers at CERMN3 are
in need of explanations for their itemset mining and motivated this study. Their
task requires finding molecular sub-structures which are able to discriminate be-
tween active and inactive molecules. In addition, they are obliged to use multiple
constraints regarding the structure and properties of the resulting patterns, and
they would like to have explanations on top of that.

More precisely, the answers to the following questions are desired:

– Why is this pattern not frequent/closed/emerging?
– Why could this constraint not be satisfied?
– How did the mining algorithm arrive at this particular solution satisfying

the constraint(s)?

Straight-forward answers to these questions, e.g. “the pattern doesn’t have
enough overall support” or “the pattern has too much support in the class that
was not targeted” are tautological and not very satisfying. Instead, a practitioner
would be interested in knowing what element of the pattern or which other
constraint forced the support below a given threshold or lead to the inclusion of
transactions that reduce the growth rate.

These are questions that have already been asked in similar form in the con-
straint programming (CP) community [18, 12]. We formulate our problem setting
as one of constraint-based itemset mining, for which CSP solutions have been
proposed [7, 15]. In addition, past work has added explanations to CSP solvers
[3, 13]. We therefore base our work in part on proposals made to answer explana-
tory questions in CP. In this work, we develop an approach for pattern failure
explanations, which is our main contribution. We demonstrate the application
of it on data derived from the ChEMBL database.

The rest of the paper is organised as follows. Section 2 highlights important
works related to the topic. Section 3 outlines the problem setting and used
formalisms, including how to derive explanations for itemset mining based on
constraint failure. Section 4 shows and discusses the results of our case study
on the ChEMBL data. Finally, we review and discuss future improvements in
Conclusion.

2 Related Work

Following [9], we define data mining as the search for valid, novel, potentially
useful, and ultimately understandable patterns in the data. One of the seminal
3 Centre d’Etude et de Recherche du Médicament de Normandie:
https://cermn.unicaen.fr
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tasks in data mining is itemset mining, for which a number of more specialized
problems, such as frequent itemset mining, frequent closed itemset mining, dis-
criminative or emerging itemset mining and others have been defined [11]. In
this paper, we mainly focus on those first three tasks.

Traditional approaches for itemset mining take the form of specialized breadth-
first [1, 2, 31] and depth-first algorithms [32, 16]. An alternative approach involves
using CP [7, 15], a general declarative methodology for solving constraint satis-
faction problems. Constraint programs specify the problem and a general solver
tries to find a solution. A clear advantage lies in the universality of this approach.
The new task could be modelled by adding new constraints while in traditional
approaches the algorithm must be redesigned from scratch each time. Another
advantage of CP systems is a possibility of result explanation [3, 13]. In this work
we benefit from the latter by modelling the itemset mining task with CP.

Most of the works on explainable AI are focused on explanations for machine
learning [27, 25]. While work on directly explainable data mining are rare, inter-
active data mining has been proposed as a first approximation of interpretable
data mining involving both the miner and the domain expert, as well as the data
itself [22, 17]. The ultimate goal of such a process is to make pattern mining more
practically useful by making the end user understand during the mining process
how mining results come to pass. Discrimination-aware data mining exists for
more than a decade now [26, 19]. It mainly focuses on developing methods for
protecting from unfair classification models, especially when they might affect
somebody’s life. Work on visual data mining [10, 30, 4] attempt to make the
data mining process understandable through visualization. Some of them offer
explanations for clustering or binary classification tasks [29, 5]. Finally, there are
few works which use explanations for improving the data mining results. For
instance, [21] tries to mix data mining with domain expert knowledge in order
to improve the quality of discovered patterns in the medical domain. Likewise,
[20] developed an approach for mining surprising patterns and generating expla-
nations. Based on association rule mining, the approach that they proposed uses
expert knowledge to improve the search and provide explanations.

In this paper, we take a step towards explaining itemset mining, one of the
core tasks of data mining. This is the first work in this direction to the best of
our knowledge.

3 Preliminaries

As described above, the result of a constraint-based pattern mining operation
is a set of patterns. A user might want to know now why certain patterns were
included and others were not. The straight-forward answer is simple: the pat-
terns satisfied the specified constraints (or not). This might not be sufficient
information, however: specifying constraints and deciding on threshold values is
not an easy task, and a small change may lead to a large change in results. In
addition, especially when a number of complex constraints are combined, their
interplay can lead to the inclusion or exclusion of patterns in unexpected man-
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Fig. 1. An example of a CSP (top) and the result of its filtering (bottom)

ners, which are not easy to understand without additional explanation. Gaining
such understanding will help in formulating future constraints. Our proposal for
fournishing such explanations is to exploit pattern failure explanations in CSPs.
In this section, we lay out the itemset mining problem, the CSP framework, and
how to model itemset mining, as well as how to derive explanations.

3.1 Itemset Mining

The pattern mining task we address in this paper is the classical itemset mining
one: given a set of items I = {i1, . . . , im}, a transaction set T = {t1, . . . , tn |
ti ⊆ I}, and a (combination of) constraint(s) C : I × T 7→ {true,false}, find
Th(I, T , C) = {p ⊆ I | C(p, T ) = true}.

The support of an itemset is the cardinality of the set of transactions in
which it is contained: supp(p, T ) = |{t ∈ T | p ⊆ t}|. Given a threshold θf
the minimum support (frequency) constraint is defined as freq(p, T ) = true ⇔
supp(p, T ) ≥ θf . An itemset is closed if none of its strict specializations has the
same support: closed(p, T ) = true⇔ ∀p′ ⊃ p : supp(p′, T ) < supp(p, T ).

Finally, given a labeling l : I 7→ {+,−}, T + = {t ∈ T | l(t) = +}, T − =
T \ T +, a quality measure σ : I × T + × T − 7→ R, a threshold θd, an itemset is
emerging/discriminative: disc(p, T ) = true⇔ σ(p, T +, T −) ≥ θd.

3.2 Constraint Programming

General CSP Context A classical CSP is defined by a triplet (V,D,C) in
which V = {X1, X2, ..., Xn} is a set of variables, D = {D1, D2, ..., Dn} the set of
domains of variables, with Di a finite set containing the possible values for the
variable Xi, and C = {c1, c2, ..., ck} a set of constraints. A solution of the CSP
is a complete instantiation S such that all the constraints C are satisfied by S.

Consider an example with V = {X1, X2, X3}, D1 = {1, 3, 5}, D2 = {2, 3, 4},
D3 = {2, 3, 7} and c1 : X1 < X2, c2 : X2 = X3 (Fig. 1). There are two possible
solutions for this problem: X1 = 1, X2 = 2, X3 = 2 or X1 = 1, X2 = 3, X3 = 3.
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Explanations for CSPs The CSP framework is not only a powerful tool for
modelling different type of constraints, but also for providing explanations (Sec-
tion 2). In this work, we deal with explanations for value removal as the simplest
to implement and interpret.

An explanation for value removal is a subset of the set of constraints C such
that the conjunction of these constraints leads to the removal of the value a from
the domain of the variable Xi. In case of multiple explanations, this expression
becomes a disjunction of conjunctions:

Expl(Xi 6= a) =
∨( ∧

i∈[1..k]

ci =⇒ Xi 6= a
)
.

An example of such explanations for the CSP in Fig. 1: Expl(X1 6= 5) = c1
(there is no value > 5 in the domain of X2), Expl(X2 6= 4) = c2 (there is no
value = 4 in the domain of X3), Expl(X1 6= 3) = c1 ∧ Expl(X2 6= 4) = c1 ∧ c2
(c2 removes the value 4 from X2, and c1 in turn removes 3 from X1).

Modeling Itemset Mining as a CSP To model the itemset mining prob-
lem with CP, we follow [15]: the CSP must be defined by a triplet (V,D,C),
in which V = I ∪ T a set of variables s.t.: I = {I1, I2, ..., Im} a set of items,
T = {T1, T2, ..., Tn} a set of transactions, D = {DI1 , ..., DIm , DT1

, ..., DTn
} a set

of domains of variables with Di = {0, 1}, C = {c1, c2, ..., ck} a set of constraints.
As for the latter refined constraints proposed by [15] can be used according to
the task.

Consider a toy example. Given a set of transactions T = {ACD,ABD,CD}
and minimum frequency θs = 2, we would like to find all frequent closed patterns.
To model the problem as a CSP, we defineDB = {{1, 0, 1, 1}, {1, 1, 0, 1}, {0, 0, 1, 1}},
V = {I1, I2, I3, I4, T1, T2, T3}, D = {DI1 , DI2 , DI3 , DI4 , DT1 , DT2 , DT3} with
DXi

= {0, 1}, C = {c1, c2, ..., c11} with the constraints defined as in Fig. 2.
There are three solutions to this problem: AD, CD, D. Fig. 2 also demon-

strates the search process. Branching of the search tree usually stops when a
solution is found, then the search backtracks to another branch until all the
solutions are retrieved. In our setting, however, we continue the search until all
the failures are found (Failure 1-7 in Fig. 2). We use them later to explain a
pattern failure which we define as follows. A pattern failure is a state of the CSP
in which one of the itemset domains is empty:

I1 = [ ] ∨ I2 = [ ] ∨ ... ∨ Im = [ ] =⇒ CSP → Fail.

3.3 Explanations for Itemset Mining

As explained above, CSPs allow to derive explanations. The default approach
does not allow to explain a success (a solution, specific pattern or presence of an
item in the solution) in an effective way: it can only say that we have this as a
solution because it satisfied all the constraints. However, it is possible to explain
a failure (no solution at all, a particular pattern does not belong to the solution
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Fig. 2. Constraints and search tree for a toy example of itemset mining by CSP

etc.) more effectively by interpreting constraints which led to that failure. In
addition, there could be an exponential number of explanations. We therefore
choose to keep only one: the shortest one. Here, we present an approach for that.

Our approach for finding explanations for pattern failure is a 4-step process:

S1 Initialize domains with the elements of a pattern whose failure (i.e. absence
from the solution) needs to be explained. The pattern needs to be precisely
specified by the user/chemical expert

S2 Obtain different explanations for pattern failure in the form of conjunctions
and/or disjunctions of constraints which led to emptying one of the itemset
domains

S3 Select the shortest explanation w.r.t. the number of constraints
S4 Interpret the constraints in that explanation using logical inference and/or

analysing them manually

Following our example in Figure 2, we can explain, for instance, why pattern
AB is not in the solution. The shortest explanation will be:

Expl(AB → Fail) = c5 ∧ c11.

We can interpret c5 (the frequency constraint) as “if B is in the itemset
(I2 = 1), the itemset must be frequent (T ≥ 2)”. Since T ≥ 2 is False, B must
be removed from the pattern, which can be rephrased as ”the pattern cannot
be frequent if B is present”. Closed itemset mining aims at avoiding redundant
itemsets and the closure constraint checks if all transactions contain the same
element as without it the itemset cannot be closed. We can thus interpret c11
(the closure constraint) as "there must be D in the itemset (I4 = 1), otherwise it
cannot be a closed pattern" (I4 = 1 if and only if True, where True corresponds
to 0 = 0).
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Fig. 3. An example of a molecule (left) and its pharmacophoric features (right):
hydrogen-bond acceptors (A) and donors (D), negatively (N) and positively (P),
charged ionizable groups, hydrophobic regions (H) and aromatic rings (R)

4 Case study

We illustrate our approach on a set of molecular data, from which we aim to
mine combinations of chemically meaningful subgraph patterns.

4.1 Data and representation

Our data originally is a set of BCR-ABL inhibitors (target ID 1862) that have
been extracted from the ChEMBL4 database, a widely used database in com-
putational drug discovery [14]. In this study, we would like to understand the
mechanism of action on the BCR-ABL target.

After several steps of preprocessing, our set is composed of 739 molecules, 387
of which are labeled as active and 352 as inactive. A molecule is called active if
it causes the target to react. If a molecule does not generate a sufficient reaction
at the level of the target, it is considered to be inactive. Each molecule is repre-
sented as the 2D/3D arrangement of molecular features that are necessary for a
drug candidate to interact with a biological target in a specific binding site [8].
In total there are 6 features in our data (Figure 3). Graphs in this representation
are also referred to as pharmacophores, with its order On equal to its number
of vertices (Figure 4). For example, the molecule in Figure 3 includes the fol-
lowing pharmacophores: |P|D||5|, |P|A||5|, |P|A||7|, |P|R||6|, |P|A||12|, |R|R||3|,
|R|A||0|, |R|H||1|, |R|H||6|, |A|A||6| etc. (28 in total).

From our data, we mined 258 distinct 2D pharmacophores of O2 having
minimum support 10, using Norns [24]. The objective of the study is to explain
why a molecule is active by identifying the pharmacophores which cause activity.

4.2 Mining task

We want to identify combinations of at most 8 such pharmacophores that are
shared by a significant number of molecules (at least 12%-15% of the data) and
4 A manually curated database of bioactive molecules with drug-like properties
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Fig. 4. Example of an O2 pharmacophore |P|D||5| with a positively charged ionizable
group (P) and a hydrogen-bond donor features (D) with the distance 5 between them

appears more often in one of the two classes than in the other, and that are not
subsets of each other.

4.3 Experimental setting

Using mined pharmacophores, we can represent each molecule as a transaction
encoding whether pharmacophores are present or not, giving us the classical
itemset mining setting. We implemented refined constraints from [15] and a
CSP solver in Python5. We adopted the AC3 algorithm [23] for the latter and
implemented the MAC algorithm [28] for backtracking the search.

Following preliminary experiments, we use χ2 as the discriminatory measure.
We implemented χ2 as in [15]. Constraint thresholds were set to θsize = 8 for
size, θsupp = 100 for minimum support, and minimum thresholds for χ2 (θχ2 ∈
{48, 64, 96, 128}). In addition, we experimented with adding a purity constraint,
i.e. patterns present in one class only, which we defined as follows:

Ii = 1→ min
(∑
t+

DBti · Tt,
∑
t−

DBti · Tt
)
= 0 (1)

Finally, we try to answer why changing one item in a pattern and adding
another one changes the class of solution from pure (i.e. covering only active or
inactive molecules) to not pure (covering both active and inactive molecules).

4.4 Experimental results

As can be seen from Table 1, the pure solution constraint reduces the number
of results dramatically – on average by three order of magnitude. Moreover, the
results corresponding to the pure solution and θ at 48, 64 and 96 remain the
same. In addition, there are no inactive solutions in case of pure patterns or
with θ at 96 and 128, which is not a problem per se since our aim is to explain
active solutions. On one hand, a smaller number of patterns is easier to evaluate
manually. The main drawback of this modeling that the pure solutions found
cover only 30% of molecules. This is not really desirable for a chemical expert,
5 https://github.com/koptelovmax/dmbycsp
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Table 1. Emerging pattern mining with χ2 as a discriminative measure, pattern size
not exceeding 8 and minimum frequency limited to 100

θχ2 Pure Found solutions Pattern size Coverage Frequency
Total Active Inactive min max median min max mean

48 5 85037 84530 507 1 8 7 100,00 % 100 682 157,7
3 47 47 0 6 8 8 30,85 % 101 175 126,7

64 5 69060 68995 65 1 8 7 100,00 % 100 656 164,6
3 47 47 0 6 8 8 30,85 % 101 175 126,7

96 5 44013 44013 0 1 8 7 99,32 % 100 624 179,5
3 47 47 0 6 8 8 30,85 % 101 175 126,7

128 5 24645 24645 0 1 8 7 97,56 % 119 547 198,3
3 27 27 0 6 8 8 30,04 % 119 175 136,9

and solutions combining to cover most of the molecules are required. We thus
go to the next step of our study where we will try to understand the interior
mechanics behind our mining process.

Towards explaining pattern failure After discussing with the chemical ex-
perts we collaborate with, they asked for an explanations for why changing one
item (pharmacophore in our case) leads to changing the class of solution from
pure to not pure:

ABC (pure) ↔ AEC (not pure).

While studying this phenomena in more detail, we realised that the actual change
of the class happens when one element is removed from the pattern (Fig. 5). In
other words:

ABC (pure) → AC (not pure)→ AEC (not pure).

We would like to explain the first part: why removing an item makes the pattern
not pure. Consider, for instance, the first two lines in the example in Fig. 5,
where solution 17863 is pure, and 17902 is not. Our methodology for answering
that is the following:

1. Model the problem using the purity constraint (Eq. 1)
2. Explain using our method from Section 3.3 why the combination of molecule

features |D|R||1| |D|R||3| |A|H||11| |R|R||1| |R|H||5| is a failure
3. Verify why adding |A|R||0| to the pattern gives a solution. For that:

(a) Find its purity constraint
(b) Explain why it became true

After an initialization step we move directly to S2 of our approach from
Section 3.3, which will generate the following explanations:

Expl(|D|R||1| |D|R||3| |A|H||11| |R|R||1| |R|H||5|→ Fail) =

= Expl(|D|R||1| 6= 1) ∨ Expl(|D|R||3| 6= 1) ∨ Expl(|A|H||11| 6= 1) ∨
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Fig. 5. Pattern failure example. Columns are: id of solution, pattern, frequency and
χ2 value. Red colour represents removal of an item and blue is adding an item

∨ Expl(|R|R||1| 6= 1) ∨ Expl(|R|H||5| 6= 1) = c2361∨c2372∨c2440∨c2461∨c2488.

According to S3, the shortest explanation is one of those constraints, for instance:

c2361 – purity constraint:
before filtering: |D|R||1| = 1→ min(384, 298) = 0 False
after filtering: |D|R||1| = 1→ min(171, 1) = 0 False

Finally, we try to interpret this following S4. After filtering, the CSP this con-
straint remains false, but its coverage changes – each of the items in the pattern
covers 171 active molecules and 1 inactive one:

c2361: |D|R||1| = 1→ min(T1 + T2 + ...+ T356 + T379, T429) = 0 False

We also know that the inactive molecule is represented by the variable T429 (or
by ChEMBL ID 1984038).

Next, we would like to explain why adding |A|R||0| to the solution makes
the pattern pure. For that, one needs to instantiate the CSP with a new pattern
including |A|R||0| and check its purity constraint after filtering:

c2417 : |A|R||0| = 1→ min(171, 0) = 0 True

As can be seen from c2417, our pattern is included only in active molecules.
To explain for a user who is not a data mining expert why removing |A|R||0|
from the pattern affects its purity, one can draw the Euler diagram (Fig. 6).
In that diagram, the pattern containing all pharmacophores including |A|R||0|
will be present only in active molecules. This is the type of information which is
laborious to observe manually, but can be easily derived using a CSP.

Finally, we would like to explain why the purity constraint associated with
|A|R||0| becomes true, especially given that before filtering it was false:

c2417 : |A|R||0| = 1→ min(T1+T2+...+T787, T388+T389+...+T739) = 0 False

To do that we need to explain why T388 6= 1, ..., T739 6= 1:

Expl(T388 6= 1) = c388, where c388 – coverage constraint:
T388 = 1↔ |D|R||3|+ |A|H||11|+ |R|R||1| = 0 False

...
Expl(T739 6= 1) = c739, where c739 – coverage constraint:

T739 = 1↔ |D|R||1|+ |A|H||11|+ |R|H||5| = 0 False
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Fig. 6. Active, inactive molecules and their intersection

These constraints can be interpreted as follows: the combination of molecu-
lar features |D|R||3| |A|H||11| |R|R||1| must cover molecule T388 (ChEMBL ID
1836675), ..., and |D|R||1| |A|H||11| |R|H||5| must cover T739 (ChEMBL ID
281470), otherwise the coverage condition fails.

This is the type of information which can be easily retrieved with our method,
and which can be useful for chemical experts.

Towards explaining constant constraints outcomes We noticed that cer-
tain constraints are always true or false. For instance, in our example in Figure
2, there are two constraints which always remain constant: c5 (always false) and
c11 (always true). In that toy example they can be interpreted as follows: if there
is B in the pattern it is always not frequent (c5); there must be D in the solution
to be closed (c11). Both of these conditions hold for our simple CSP since each
solution contains item D and non of them has B.

Now if we verify which constraints remain constant for our ChEMBL set
with the constraint thresholds θχ2 = 128, θsize = 8, θsupp = 100, allowing pure
solutions only, we find that 363 constraints (out of 2510 used to model the CSP)
remain constant:

– 159 frequency constraints – always false
– 194 discriminative constraints – always false
– 2 size constraints – always true
– 9 purity constraints – always true

If we interpret them, we get the following information:

– frequency constraints – if there is |P|P||3|, |P|D||10|, |P|D||11|, ..., |H|H||9|
(159 in total) in the pattern, it is always not frequent

– discriminative constraints – if there is |P|P||3|, |P|D||10|, |P|D||11|, ..., |H|H||9|
(194 in total) in the pattern, it is always not discriminating
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– size constraints – if the pattern is included in molecule T671 (ChEMBL ID
1241863) or T696 (ChEMBL ID 1241772) its size is always less than 8

– purity constraints – |P|D||17|, |N|D||8|, |N|D||9|, ..., |R|H||19| (9 in total) are
covered only by pure molecules:
- |P|D||17|, ..., |R|H||19| (7 in total) are included in active molecules only
- |N|D||8|, |N|D||9| – in inactive molecules only

This information can be read off without rerunning the mining operation.
This can be useful for chemical experts to get quick-shot statistics on the data,
explain why particular patterns in the solution do not include particular ele-
ments, modify the data set, or adjust constraint settings before repeating min-
ing.

5 Conclusion

In this paper, we have explained how one can use constraint failure explanations
in CSPs to explain why certain patterns do not appear in a solution set. These
explanations can then be used to identify problematic data instances, or to
modify constraint parameters. In a chemoinformatics use case, we have shown
how such explanations and the identification of particular phenomena can look
in practice.

A drawback of our method is that patterns to be explained need to be spe-
ficied manually, and explanations need to be interpreted to arrive at statements
about the data. In future work, we will therefore look at how generate patterns
automatically, e.g. by looking at syntactically similar patterns, and how to post-
process explanations to highlight interesting data. We would also think about
how we could improve the explanations which we already generated. For the last
we first need to get a detailed feedback from the experts.
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