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A RANDOMNESS DEVICE TO CREATE THE
CONDITIONS OF UNCERTAINTY

Löıc Berger∗

Abstract

The experimental study of decision-making under uncertainty typically builds
on Ellsberg’s (1961) setting. Yet, as the total number of balls is known in standard
Ellsberg’s urns, an implicit constraint is put on the specification of the probabil-
ity models to consider. In practice, this restricts the ability of Ellsberg’s urns
to characterize situations going beyond those of model ambiguity. In this note, I
present a simple and easy-to-implement device that creates the initial conditions
of uncertainty, which constitute a critical prerequisite for the study of model mis-
specification.
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1 Introduction

According to a well-known distinction attributed to Knight (1921), there ex-

ists a difference between the notions of risk and uncertainty. Specifically, while

the former identifies situations where the uncertainty is “measurable” (i.e., it may

be represented by numerical objective probabilities), the latter refers to situations

where the uncertainty is “unmeasurable” (i.e., numerical objective probabilities are

inapplicable). Following the seminal work of Ellsberg (1961), the term “ambiguity”

has emerged to characterize situations of uncertainty in which the probabilities are

unknown. Nowadays, the terms “ambiguity”, “uncertainty”, and “Knightian un-

certainty” are used interchangeably in opposition to “risk” (Gilboa and Marinacci,

2013).

In his seminal work, Ellsberg (1961) proposed two distinct thought experiments

aiming at challenging the expected utility theory of Savage (1954). These exper-

iments, giving rise to the Ellsberg Paradox, have been the primary motivating in-

gredients of a remarkably rich literature on ambiguity and ambiguity aversion. In

particular, Ellsberg’s examples have been extensively used in (laboratory) experi-

ments, while ambiguity aversion has been one of the most intensively experimen-

tally studied phenomena in decision theory in the last decades (Trautmann and Van

De Kuilen, 2015).

In a nutshell, one of the two examples used by Ellsberg (1961)–and known as the

Two-Color Problem–involves two colors and two urns. The first urn contains exactly

50 black and 50 red balls. The second urn contains 100 red and black balls but in

unknown proportions. There are four bets possible {r1, b1, r2, b2}, where r1, for

example, consists of drawing a red ball from the first urn. A correct bet gives $100,

and nothing happens if the bet is incorrect. The four bets are represented in Table

1. The decision maker (DM) is asked to rank these bets. Typically, individuals are

indifferent between r1 and b1, and between r2 and b2, but prefer r1 over r2, and

b1 over b2. The reason is that the first urn offers known probabilities of winning,

whereas the second urn does not. Yet, such preferences are incompatible with the

existence of subjective probabilities and the subjective expected utility theory of

Savage (1954).1

While the beauty of Ellsberg’s examples lies in their ability to show how am-

biguity may arise naturally even in extremely simplified environments, one has to

1Indeed, the ranking r1 � r2 would imply Prob(red in Urn 2) < 1/2, but the ranking b1 � b2
would imply Prob(black in Urn 2) < 1/2, which is inconsistent.
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Urn 1 Urn 2

Red Black Red Black

r1 $100 $0
b1 $0 $100
r2 $100 $0
b2 $0 $100

Table 1: Ellsberg two-color problem

note that the state of information in Ellsberg’s examples is also highly structured.

Ellsberg (1961, p 657) himself wrote2

“But the state of information in our urn example can be characterized

neither as “ignorance” nor “risk” in these senses. Each subject does

know enough about the problem to rule out a number of possible dis-

tributions”.

In Ellsberg’s setting, indeed, the potential compositions of the unknown urn are

clearly identified: the probability of drawing a red ball necessarily belongs to the

well-specified set
{

0
100

, 1
100

, 2
100

, ..., 100
100

}
. The other potential compositions are ruled

out by construction. In consequence, standard Ellsberg’s urns cannot be used to

study decision-making under uncertainty going beyond model ambiguity.

In this note, I show how a slight modification of the standard Ellsberg’s set-

ting enables to create the initial conditions of uncertainty needed to study model

misspecification. The randomness device that I propose is both simple and easy-to-

implement in laboratory environments.

2 Uncertainty decomposed into layers

Uncertainty may be decomposed into different layers of analysis. Following

Hansen (2014); Marinacci (2015); Hansen and Marinacci (2016); Aydogan et al.

(2022), a distinction can be made between the layers of (i) risk, (ii) model uncer-

tainty, and (iii) model misspecification. Risk refers to the uncertainty regarding

the outcomes within a particular probability model; model ambiguity refers to the

2Note that if this sentence initially concerned Ellsberg’s second thought experiment (which
features a single urn with 30 yellow balls and 60 green and blue balls but in unknown proportion),
it equally applies to Urn 2 in the Two-Color Problem.
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uncertainty across probability models (among a set of possible models) to be used

to assign these probabilities; and model misspecification refers to the uncertainty

about models and the fact that the set of models under consideration might not

include the correct model. These layers of uncertainty are inherent to any decision

problem under uncertainty.

An important distinction between the layers of uncertainty is the nature of

the uncertainty they feature. A risk is characterized by an objective probability

measure, representing the randomness of a phenomenon. It refers to the physical

quantification of uncertainty by means of a probability model. For example, a risk

may be characterized by a specific composition of an urn containing balls of different

colors (e.g., Urn 1). Alternatively, under ambiguity (e.g., in Ellsberg’s Urn 2), the

uncertainty about the correct probability model to consider has an epistemic nature:

no objective probability measure may be associated with the potential compositions

of the urn. So, if the DM assigns probabilities to the possible compositions, they

are necessarily subjectively determined, reflecting thereof the DM’s degree of belief.

In Ellsberg’s standard setup, the DM knows that the “correct” probability model

belongs to a well-specified collection M .3 For example, when there are 100 balls in

the urn, the correct urn composition necessarily belongs to one of the 101 composi-

tions physically possible. In other words, the (objective) information concerning the

total number of balls in standard Ellsberg urns enables the DM to posit a restricted

set M of potential models, thus making it impossible to study concerns for model

misspecification.

3 A randomness device to create uncertainty

Studying model misspecification requires to be able to consider, à priori, any

probability distribution. A natural starting point should therefore be a situation

of uncertainty distinct from model ambiguity. Such a situation would, in principle,

correspond to the case where the urn contains an infinite number of balls, so that

any probability between 0 and 1 would be à priori possible.

Using a slight modification of Ellsberg’s canonical example, I propose a random-

ness device that mimics the situation of uncertainty by compelling DM to consider

all the possible probabilities in [0, 1]. It consists in using an urn where the total

3Formally, by letting (S,Σ) be a measurable space, where Σ is an algebra of events of the state
space S, and let ∆(S) be the collection of all probability measures m : Σ → [0, 1], we say that
states are generated by a probability model m ∈ ∆(S) belonging to a finite subset M of ∆(S).
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number of balls is itself unknown.

To illustrate, consider the case in which the number of balls is told to be com-

prised between 1 and N . In such a situation, the total number of potential objective

probability models to consider corresponds to the cardinality of the Farey sequence

of order N .4 Table 2 presents the sets of potential models when the maximum num-

ber of balls N varies between 1 and 8. As can be observed, when N = 1, the set of

Table 2: Sets of models and their corresponding cardinality when the
maximum number of balls in the urn is N

N Set of possible models: MN = {P (r)} |MN |
1 0

1
1
1

2

2 0
1

1
2

1
1

3

3 0
1

1
3

1
2

2
3

1
1

5

4 0
1

1
4

1
3

1
2

2
3

3
4

1
1

7

5 0
1

1
5

1
4

1
3

2
5

1
2

3
5

2
3

3
4

4
5

1
1

11

6 0
1

1
6

1
5

1
4

1
3

2
5

1
2

3
5

2
3

3
4

4
5

5
6

1
1

13

7 0
1

1
7

1
6

1
5

1
4

2
7

1
3

2
5

3
7

1
2

4
7

3
5

2
3

5
7

3
4

4
5

5
6

6
7

1
1

19

8 0
1

1
8

1
7

1
6

1
5

1
4

2
7

1
3

3
8

2
5

3
7

1
2

4
7

3
5

5
8

2
3

5
7

3
4

4
5

5
6

6
7

7
8

1
1

23

probability models M consists of two elements: M1 = {m ∈ ∆(S) : P (r) ∈ {0, 1}},
where P (R) denotes the probability of drawing a red ball. When N = 2, the

cardinality of M increases to |M | = 3, and M2 = {m ∈ ∆(S) : P (r) ∈ {0, 1
2
, 1}}.

By choosing a N that is large enough, this device may be viewed as suffi-

ciently complicated to prevent subjects from doing any calculation of probabil-

ity distribution over the possible compositions of the urn and their corresponding

weights. Indeed, note that, even in the case in which all the possible total num-

bers of balls and all their possible compositions are assumed to be equally proba-

ble, the models are not weighted uniformly. To illustrate this point, consider the

case where the maximum number of balls is 3, so that five different models exist:

M3 = {m ∈ ∆(S) : P (r) ∈ {0, 1
3
, 1
2
, 2
3
, 1}}. Assuming that the total number of balls

in the urn is uniformly distributed between 1 and 3, and that for each case the

different potential models are weighted equally, one ends up with weights attached

to the possible probability models that are q = {13
36
, 1
12
, 1
9
, 1
12
, 13
36
}.5

4A Farey sequence of order N , denoted FN , is the ascending series of irreducible fractions
between 0 and 1 whose denominators do not exceed N (Hardy et al., 1979).

5To see where these numbers come from, consider for example the case of the probability
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When the maximum number of balls in the urn N is large enough, and absent

of any additional information, a DM confronted with this randomness device will

most likely be unable to compute the set of possible objective probability models,

and will thus be induced to consider all the possible probability models, making the

situation virtually identical to one of complete uncertainty :

MN = {m ∈ ∆(S) : P (r) ∈ {FN}} ∼ {m ∈ ∆(S) : P (r) ∈ [0, 1]}. (1)

Of course, what “large enough” refers to may be debated. In order to get a sense

of what could be this N , Table 3 provides the number of possible compositions of

the ambiguous urn for different values of N . As can be observed, the number of

Table 3: Number of models for different values of N

Maximum number of
balls in the urn (N)

Number of possible
compositions (|MN |)

1 2
5 11
10 33
20 129
30 279
40 491
50 775
100 3045
1000 304 193

probability models quickly explodes as the maximum total number of balls increases.

In particular, 3045 different probability models need, in principle, to be considered

when the maximum number of balls in the urn is N = 100.

One can therefore reasonably assume that subjects would be unable (or unwill-

ing) to consider all the particular possible compositions in such a situation, and

would rather view the situation close to one of uncertainty.

model m ∈ ∆(S) : P (r) = 1. If there is only one ball in the urn, the symmetry condition
implies that this model arises with probability 1/2, if there are two balls in the urn, it arises with
probability 1/3, and if there are three balls in the urn, it arises with probability 1/4. Now, each
of these three possibilities also arises with probability 1/3 (assuming once again the distribution
is uniform). This means that altogether, this probability model is associated with a probability
13
36 (= 1

3 ×
1
2 + 1

3 ×
1
3 + 1

3 ×
1
4 ).
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4 Discussion

Standard Ellsberg’s urns are simple and elegant devices able to generate uncer-

tainty using the layers of risk and model ambiguity only. They are particularly useful

for their ability to make clear in what precise way ambiguity-sensitive preferences

violate key axioms of expected utility theory. However, standard Ellsberg’s urns

are, by construction, unable to create the initial conditions of complete uncertainty,

which constitute a critical prerequisite for the study of model misspecification.

In this note, I propose a slight modification of Ellsberg’s example that allows for

mimicking an unconstrained set of potential probability models. This device has

the advantage of being extremely easy to implement. It permits to replicate the

ex-ante conditions of uncertainty that would otherwise be difficult–or impossible–to

implement in practice in a laboratory. Starting from such a situation of uncertainty,

it is then possible to provide information about the set of models to be considered for

the purpose of a particular study (e.g., endowing subject participants with potential

distributions, such as expert’s opinions, model output results, etc.) and to allow

for this set to be misspecified.
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