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Abstract

This work addresses large dimensional covariance matrix estimation with unknown mean.
The empirical covariance estimator fails when dimension and number of samples are pro-
portional and tend to infinity, settings known as Kolmogorov asymptotics. When the mean
is known, Ledoit and Wolf (2004) proposed a linear shrinkage estimator and proved its con-
vergence under those asymptotics. To the best of our knowledge, no formal proof has been
proposed when the mean is unknown. To address this issue, we propose a new estimator
and prove its quadratic convergence under the Ledoit and Wolf assumptions. Finally, we
show empirically that it outperforms other standard estimators.

Keywords: covariance matrix estimation, linear shrinkage, Ledoit-Wolf estimator, unknown
mean, general asymptotics
Declarations of interest: none

1 Introduction and related work

The covariance matrix plays a major role in numerous machine learning algorithms and statistics.
Just to cite a few, the PCA [I] in machine learning, Markowitz portfolio management [2] in
finance, or generalized method of moments estimators [3] in statistics. However, those algorithms
are designed to use the true covariance matrix, which is often unaccessible. Even if the sample
covariance matrix seems to be a simple and appealing choice, it severely fails in many applications:
for instance, the use of the sample covariance matrix for Markowitz portfolio management does
not beat a naive uniform distribution among the assets [4].

In the context of Kolmogorov asymptotics, where the ratio of the dimension p, and the
number of samples n tends to a finite positive constant 2= — ¢ > 0, this estimator fails to
converge quadratically. Moreover, its eigenvalue spectrum is biased: high eigenvalues tends at
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being too high, and low ones, too low. The behavior of the eigenvalues is studied in random
matrix theory: in the context of the Kolmogorov asymptotics, this topic is widely covered by V.
L. Girko [5L [6] [7].

We focus on the shrinkage-type estimators which have suitable asymptotic properties, influ-
enced by the work of Stein on Gaussian mean estimation in 1956 [§]. Due to their simplicity to
implement and strong theoretical support, linear methods are widely used, and, for some, im-
plemented in ScikitLearn [9]: Ledoit-Wolf linear shrinkage [10], which will be our main focus, its
extension for Gaussian distributions using Rao-Blackwell theorem, named Oracle Approximat-
ing Shrinkage (OAS) estimator [I], linear shrinkage with factor models [12], linear shrinkage for
elliptical distributions with unknown mean and known radius distribution [I3], just to name a
few. Non-linear methods propose shrinkage methods where the factor differs from an eigenvalue
to an other. Among them, Stein’s covariance estimator [14] works for Gaussian distributions,
and several algorithms were developed by Ledoit and Wolf using eigenvalue spectrum analysis
from random matrix theory [I5] 16 [I7]. Further theoretical analysis of those algorithms can be
found in [I8] 19, 20].

Usually, when estimating the covariance matrix, we don’t know the mean of the distribution.
Yet, the extension from known to unknown mean is rarely studied. To extend the empirical
covariance with 7' samples S, one uses the unbiased estimator Sr, after removing the empirical
mean and dividing by T'— 1 instead of T'. If it seems straightforward for St , it can be non trivial
for more complex estimators. Ahurbekova explicitly worked in the case of known then unknown
mean [13], and the resulting estimators of linear shrinkage for elliptical distributions with known
radius distributions are notably different from the ones with a known mean. In the review of their
work in 2020 [21], Ledoit and Wolf worked and proved their results in the case where the mean is
known, and they claim at the end ”One then simply replaces S with S and 7' with 7-1 in all
the previous descriptions and computations in practice” (Section 6: Computational Aspects and
Code). However, to the best of our knowledge, there are no proofs in the literature to extend
the theoretical results, nor show the optimality of this approach. Moreover, focusing on Ledoit-
Wolf linear shrinkage algorithm, one can note that the implementation used in ScikitLearn [9]
doesn’t follow the recommendations of Ledoit and Wolf regarding the case of uncentered data.
They didn’t change T to T'— 1 and used %ST instead of Sy Unexpectedly, experiments show
notably worse results using Ledoit and Wolf recommendations rather than the ScikitLearn im-
plementation. This remark underlines that the problem is more counter-intuitive than expected,
and a closer look at the dependence between the covariance and the mean estimation is required.

We address the lack of theoretical results when the mean is unknown and propose a new
Ledoit-Wolf-like linear shrinkage estimator and its theoretical and empirical analysis.

2 Notations, definitions and hypotheses

Let us introduce the following notations.

Notation 1. In the following we consider a sequence of observation matrices (X, )nen+ with
X, € RPr*™ of n 4id observations on a system of p, dimensions. Decomposing the covariance
matriz, we denote X, = FnAanw where A, is a diagonal matriz and Ty, a rotation matriz.
The diagonal elements of A, are the eigenvalues AV, ..., A} , and the columns of T',, are the
eigenvectors i’y ..., vy, . Yo = I't X,, is a p, X n matriz of n #d observations of p, uncorrelated
random variables (yi, ..., yl).

Notation 2. Let A,, and By, two p, X p, matrices. We consider the Frobenius norm: ||A| =
Vir(A,AL) /pn, and the associated inner product: (A, Bp)n = tr(A,BL)/pn. Dividing by the



dimension is not standard, it is done to fix the norm of the identity as 1 regardless of the
dimension.

Notation 3. Let (E,), a sequence of euclidean spaces with associated norm ||-||,. The quadratic
convergence of a random variable Z,, € E,, i.e. E[|Z,]|2] — 0, is denoted as Z,, — 0.
q.m

We describe now several assumptions, the same used in the linear shrinkage of Ledoit and
Wolf [I0], that will be used in the following.

Assumption 1. There exists a constant Ky independent of n such that p,/n < Kj.

Assumption 2. There ezists a constant Ko independent of n such that i bn E [(gj?l)s] < Ky
where for all i € [1,p.], 9% = y& — ElyH3].

Assumption 3.

f P Zasknea, (ColTa T g )
n—oo 1 |Qn|

where Q,, denotes the set of all the quadruples that are made of four distinct integers between 1

and pn, and for oll i € [1,p,], 5% =y — E[yl].

:0’

We need some definitions to properly define the problem and the asymptotics.

Definition 1 (Empirical covariance). For an observation matriz X,, of size p, X n, we define

the empirical covariance as: o
S, =X, XL/ (n—1),

with (Xn)zk = (Xn)ix — %ZZ/:l(Xn)ik’-
Definition 2 (Scalars (u,, a2, 82,62)). We define four scalars:

no B = Ell1Sn — 2all3), 67 = Ell[Sn — pndy, [17]-

HMn = <Zmlpn>mai = [|Zn = pnlp,
(Lemma 2.1 in (Ledoit and Wolf, 2004) [10]) proves that o + B2 = 62.

The oracle linear shrinkage estimator is given by the following minimization problem. The
following corollary is the central point of the linear shrinkage methods.

Corollary 1 (Corollary of theorem 2.1 from (Ledoit and Wolf, 2004)). Consider the optimization
problem:

migi%ize E[|ZF — 2. 2],
s.t. Br=p1lp, +p2Sn

where the coefficients p1 and py are not random. Its solution X verifies:

By

o

2

2
An

o Pny
op

E[|S5, = Zlla] =

Remark 1. Corollary remains true for any unbiased estimator S, instead of Sp,.

(fn, a2, B2,52) depends on the true covariance %,,, and thus can’t be used directly in the esti-

mation of ¥*. The central issue of this work is to find estimators (m.,, a2, b2, d2) of (jn, a2, 32,62)
in order to compute an estimation S} of ¥*. As the mean is unknown, those estimators differ

from Ledoit and Wolf work [10], particularly when p,, is higher than n.



3 Theoretical results

All the following results extend the work of Ledoit and Wolf [I0] in the case where the empirical
mean is used as estimator of the mean.
All proofs are shown in appendix A.

Remark 2. In the following, as all the estimators are invariant by change of mean, resulting
from the definition of X = X =3, X. 1, we can assume E[X]| = 0 for the simplicity of notations.

We present a sequence of lemmata, that naturally define estimators with suitable asymptotic
properties for the scalars (i, a2, 32 (52)

n»n

252

=0z remain bounded as n — 0.

Lemma 1. Under assumptions 1 and 2, pin, 2,3

Theorem 1. Under assumptions 1 and 2, define 62 =V ;Tln Pr ()2l 02 is bounded as

n — 0o, and we have:
hm E[HS — %2 - n( +62) =

In particular, taking p, = p constant, we see that S, —> .. But, when p,, is of the same

order of magnitude than n, the sample covarlance generally fails to converge as the error is at
least of the same order of magnitude as p2 = (3,1, )2.

Lemma 2 (Estimator of u,). Define m, = (Sp,I,, )n. Then, under assumptions 1 and 2,
E[m,] = pn for all n, and m,, — p,, converges to zero in quartic mean (fourth moment) as n goes
to infinity.

Corollary 2. Under assumptions 1 and 2, m? — E[m2] converges to zero in quadratic mean as

n goes to infinity.

2

Lemma 3 (Estimator of 62). Define d2 = ||S,, — muI,, ||2. Then, under assumptions 1, 2 and

3, d2 — 62 — 0. It follows that d2 — E[d2] — 0.

The following lemmata aim at defining an unbiased estimator of 52 that quadratically con-
verges. We work around b2, inspired from the estimator of (2 in the case where the mean is

n?

known, and write residual terms in the expectation as a combination of m,, and d2.

Lemma 4. Define:
2

— (@) — S

)
n

_ 1 &
bi_ﬁz
k=

where 27}, = a7, — % ZZ,zl %, and (2%, ..., 2%, ...,27,) are the independent samples forming X.
Then, under assumption 1, -
E[b2] = coff? + c10% + cop?,

. _ n(n-1) n?(n—2) 1 1 An _ _An —
with Y = 5rogais: An = Gl —3aTa) 0 = 5, T T mem = g = (Pt Da

Lemma 5. Under assumption 1, we have: E[b2] = co82 + c1E[d2] + c2E[m2] + (c1 — c2)V[my,)].

Lemma 6. Under assumption 1, we have: V[b2] — 0.

n—oo

We need to compute V[m,,] which is unknown in the development of E[b?] in Lemma



Lemma 7. Under assumption 1, we have: V[my,] = qoB82 + q102 — qap2,
. _ _n—2 _ 1 _ p-1
with o = 5= 0 = 12 = plamn)-

Lemma 8. Under assumption 1, we have: V[m,] = 17(]}7(12 (908% + ¢ E[d%] — ¢2E[m2]).

Lemma 9. Define:

1 /-
2 _ 2 _ . f2_ f 2
bn - f (bn - Cldn - Can> ’
€
with ¢l = co+ (1 — c2) —2—. ] =14 (c1 — ) —L—,¢f =y — (¢) — ) —L
0 =¢Co 1= C) 1 =G 1 1= C2) g =0 C2 2 1= C2) 1=y ="
Then, under assumptions 1, 2 and 3, b2 is an unbiased estimator of B2, i.e. E[b2] = 32, and

b2 — 32 — 0.

q.m

For notation consistency with the estimators in Ledoit-Wolf linear shrinkage [10], we keep
the notation b2 even if its value can be negative.

Lemma 10 (Estimator of 32). Define: b7 , = min((b2)4,d2) and a2, = d2 — b2 . Under
assumptions 1, 2 and 3, b2 , — 2 — 0 and a2 , — a2 — 0.
; am .

n qm
We can now define our linear shrinkage estimator S and prove its asymptotic properties.

Definition 3 (Final estimator LW_u). Let’s define our estimator:

2

2
a
* _ O n,u n,u . _ 2 _ 12
S) = p Mo udp, + pE Sny with My = mp,d, , = d;.
n,u n,u

Theorem 2. Under assumptions 1, 2 and 3, E[||S;: — X%||?] — 0. As a consequence, S has the
same asymptotic expected loss as %, i.e. E[||S: — S,112] — E[||IXF — 2,]12] — 0.

n’
The following lemma gives an asymptotic estimation of the optimal error

E[|Sr - S,02] = %
E [ ] — 0.

oz -

The last results easily make possible to extend the Theorems 3.3 and 3.4 of (Ledoit and
Wolf, 2004) [I0] in our situation where the mean is unknown. Previously, we showed that our
estimator’s loss converge to the optimal one in the class of linear combinations of S,, and I,
with non random coefficients, the optimal estimator of this class being ¥ . In the following, we
show that our estimator is still asymptotically optimal with respect to a bigger class, where the
coefficients can be random. Formally, we are looking for the following optimal loss (this time,
there is no expectation in the minimization). Let 3** be the linear combination of S,, and I,
solving:

Lemma 11.
2 32 2 92
amubn,u _ anﬁn

dy i

e 2
minimize DI I
1P || n n”n
s.t. 3 =p11lp, +p2Sn
By construction, ¥** has a lower loss than S}, but we show that the difference converges to 0.
Theorem 3. S converges to 3:* in quadratic mean, i.e. ||S} —X*|| — 0. As a consequence,
q.m

S’ has the same asymptotic expected loss as X7*, more precisely we have:

n ’



Theorem 4. For any sequence of linear combinations S of I, and Sy, the estimator S}, verifies:

lim inf (E [||in - znu;ﬂ ~E[|S: - zn||§]) > 0.

N—ocon>N

In addition, every 3, that performs as well as S is identical to S}, in the limit:

lim (B[S0 = Zal2] —E (IS5 = Sul2]) =0 <= 50 = Sl — 0.
N—o0 q.m

We introduce three other estimators to compare with, which are implemented, recommended,
or natural to define. We prove that their asymptotic behavior is similar, and, through different
experiments, show the differences in performance.

Definition 4 (Ledoit-Wolf recommended estimators). The estimators recommended by Ledoit
and Wolf [21)], indexed by the letter "r”, are:

. 1 T 2
Mp,r = Mn, di,r - di’ b?lﬂ‘ = min <<n_1>2 Z ||‘Twi€(zr;c)t - STIHn) ad%,r aai,r = dfm,ribi,r'
k=1 +

Theorem 5 (Ledoit-Wolf recommended estimators). Under Assumptions 1, 2 and 3, my, » — fin
converges to 0 in quartic mean, and that d%r -2, b%,r — 2% and a%,r — a2 converge in quadratic
mean to 0 as n goes to infinity.

) ) . . . b2
Moreover, the conclusions of Theorem|d remain true with the estimated matriz S}, . = 5= Iy, +

a? . * * * *%
#8, ie B[S, = 557 = 0 and E[[||S; . = Snll7 — 125" = Znll3]] = 0.

From the proof, b2 . = b2 + m |Sn |2, it is then natural to define the following estimator.

Definition 5 (”Natural” estimators). The estimators that naturally emerge, indexed by the letter

m”, are:

— 2 g2 32 s 72 2 2 2 2
My m = Mnp, dmm - dn7 bn7m = min ((bn)+ 7dn,m> 7a'n,m - dn,m - bn,m'

Theorem 6 (”Natural” estimators). Under Assumptions 1, 2 and 8, My, m — fn, converges to 0

in quartic mean, and that d%ym - 62, bfl’m — 32 and a,%_’m — a2 converge in quadratic mean to 0

as n goes to infinity.
2

. . . . . b
Moreover, the conclusions of Theorem@ remain true with the estimated matriz Sy, ,, = =" Mp mIp, +

n,m

2
#=S, ie. B[S o = ShllP) = 0 and E[[[IS) 1 — Sallz — 557 = Sall2[] — 0.

Definition 6 (ScikitLearn 1.2.2 estimators). The estimators implemented in ScikitLearn 1.2.2,
indexed by the letter ”s”, are:

n—1 - n—1
— 2 g2 2 2 2 2 2 2
m”ys - M, dn,s - dn’ bn,s = min ((bn)+ 7dn,s> 7a’n,s - n (dn,s - bn,s) ’
n—1
* . *
Sn,s - n Sn,m'



Theorem 7 (Scikit-Learn 1.2.2 estimators). Under Assumptions 1, 2 and 3, My, s — i, converges
to 0 in quartic mean, and that di, , — 67, b3 . — B2 and a2, , — o converge in quadratic mean to

0 as n goes to infinity.
b2

Moreover, the conclusions of Theorem@ remain true with the estimated matriz Sy, o = z=my sy, +
s

2

&8, de. B[Sy o = 5P = 0 and E[|[S, 5 = Sall — 1257 = Sall2]] — 0.

4  Experimental results

The experimental estimations are compared to the theoretical value of ¥* in the Ledoit-Wolf
setting, the implementation in ScikitLearn 1.2.2, the implementation recommended by Ledoit
and Wolf [21], and to the other algorithms implemented in ScikitLearn 1.2.2, for multivariate
Gaussian and Student-t distributions.

We first derive the exact values of ¥* for those two distributions.

4.1 Oracle estimators
4.1.1 Gaussian distribution
Lemma 12. Let (X,).r ~ N(0,%,), k € [1,n], n iid samples. Then, the analytical oracle

. 1
estimators are: jin = (Sn, Dn, o, = |Sal} — 3, B7 = E5 400 + 7700, 0% = of, + 5.

4.1.2 t-distribution oracle estimator

Lemma 13. Let (X,,)., ~ t,(0,%,), k € [1,n], n iid samples with scale matriz %, = =2y,
and covariance V[X,| = X,,. The density of the multivariate t-distribution is:
r 2 1 B —(v+p)/2
F<y+p)yp/27rp/2|zn|1/2 14

Then, the analytical oracle estimators are:
2
i = (S 10,02 = [S[2—p2 82 = 1 (225 + 717) (02 + (p+ Diid) — g, 62 = o2+ B2,

4.2 Experimental setup

We considered 2 settings:

e a Monte-Carlo computation of the loss on a 2d-grid of the parameters (p,,n) € [5,100]?,
with a step size of 2, to visualize the effect of changing the ratio p,/n, and see the domains
where our algorithm is most suited;

e a Monte-Carlo computation of the loss with a fixed ratio p,/n = ¢ € {1,2,4}, to compare
the rate of convergence of each algorithm.

In both cases, the Monte-Carlo is computed with nj;c = 10000 iterations.

Three different distributions are explored: the multivariate Gaussian, and the t-distribution with
v =10 and v = 8.5. Note that we have to ensure v > 8 to respect Assumption 2.

Two different way of choosing X,, are explored: fixing ¥, = I, - particular case where the
oracle Ledoit-Wolf loss is null -, and drawing at each iteration a covariance matrix ¥, from a
Wishart distribution with p,, degrees of freedom, and normalizing it by /|| X, XL, - to respect

the assumption 2. Note that when drawn from a Wishart, /|| Z,X7|,, > 0 almost surely.



4.2.1 Assumptions check

For the second study at fixed p,/n in order to compare the rate of convergence, we check that
we are under the three assumptions that guarantee the theoretical results on convergence proved
in section 3.

Assumption 1 As we fixed the ratio ¢ = p, /n, Assumption 1 is trivially respected.

Assumption 2 - Gaussian distribution Let (X,).x ~ N(0,%,), k € [1,n], n iid samples. As
previously, we denote ¥, = I',A,,T'L, where A,, is a diagonal matrix and T',, a rotation matrix,

and Y,, =I'! X,, is a p,, x n matrix of n iid observations of p,, uncorrelated random variables.
Using the fact that for 2 ~ N(0, \), we have E[28] = 105\*, we deduce:

Pn Pn

1 1
— Y Efy] = — > 105} = 105]|A,A7 [ = 105]|Z, 717 (1)
P Pn i
In the case where we fix ¥, = I, , we obviously have ||£,XT]|2 = 1, so Assumption 2 is
respected.

In the case where we draw ¥, from a Wishart distribution with p, degrees of freedom, and
normalize it by /|2, 2Z|,,, we have by construction ||X,X1|2 = 1, so Assumption 2 is respected
here too.

Assumption 2 - t-distribution Let (X,,). x ~ (0, f]n), k € [1,n], n iid samples with v > 8, scale
matrix in = ”—;2271 and covariance V[X,,] = X,,. As previously, we denote 2, = FnAanl, where
A, is a diagonal matrix and I';,, a rotation matrix, and Y,, = F;Xn is a p, X n matrix of n iid
observations of p,, uncorrelated random variables.
From a characterization of multivariate t-distributions, for each k € [1,n], there exist 2 inde-
pendent random variables Uy and Z.  such that:

-2
U Z e N (02220, ) )k = 57K =\ [ 2
14 Uk
Moreover, we notice that:
v/2—1
Bl L :/ (1/2)*/ =821 /2
Ut r T(v/2)

(1/2)> T((v=8)/2) / WD (et ae g,
292 Tw2)  Je T(=8)/2) @)

pdf of Xifs




This 2 previous points lead to:
1 Pn 1 Pn V4
— > E}] =— Esz[]
YR - 5 SRR 7
4

1 & v—2 4 v
pn;l‘“( %) oI
(v—8)(v—6)(v—4)

— T2
=105 R [AAT]
1 (v—8)(v—6)(v—4)
— Y E}§] =105 T2,
. ;:1 [y w—2) (P2

Similarly as the Gaussian case, when we fix ¥, = I, , we obviously have ||£,X1]|2 = 1, so
Assumption 2 is respected, and when we draw 3,, from a Wishart distribution with p,, degrees of
freedom, and normalize it by \/||2, X7 ||,,, we have by construction ||%,XT|2 = 1, so Assumption
2 is respected here too.

Assumption 3 Let Y a p,-dimensional random variables drawn from a centered multivariate
Gaussian distribution, then for all (4,5) € [1, p,]?, we have the following property:

Cov(Y;,Y;) =0 = Y,,Y; independent.

Moreover, when drawing X, from n iid multivariate Gaussian, we have that Y,,, using the previous
notations, is made of n iid samples of an uncorrelated p,-dimensional centered multivariate
Gaussian distribution.

So, for all (i,7) € [1,pn]?, i # j, we have that y;1,y;1 independent.

Finally, for all (i, 4, k,1) € [1,p,]* where 4, j, k, [ are all different, we have:

Covlyf1yi1, yrvii] = 0.

In the case where X,, are n p,-dimensional iid samples drawn from a centered multivariate
t-distribution, we have that Y,,, using the previous notations, is made of n iid samples of an
uncorrelated p,-dimensional centered multivariate t-distribution. Then we use the decomposi-
tion Y = \/%Z where Z is drawn from a multivariate Gaussian distribution independent from
U, drawn from a x?2 distribution. As for all i # j, Cov(yinl,y;bl) = 0, then we trivially have
Cov(zl, Z;Ll) = 0. So z;; and z;; are independent, which immediately leads to the fact that for
all (i,7,k,1) € [1,p,]* where i, 7, k,[ are all different, we have:

Covlyfiyi1, yrvii) = 0.

This proves that Assumption 3 is respected in all the experimental cases we studied.

4.3 Results

In the following, we will use abbreviations to refer the different expected losses of each algorithms.
Concerning the variants of Ledoit-Wolf shrinkage estimators with unknown mean, we denote:

e LW_u for the estimator we propose in this paper,



LW_r for the implementation recommended by Ledoit and Wolf in 2020 [21],
e LW_s for the implementation of ScikitLearn 1.2.2,
e LW_m for the natural estimator,
o LW_ex for the oracle estimator 3%,
e LW_op for the optimal estimator ¥**,
Concerning the other baseline algorithms implemented in ScikitLearn, we have:
e EC for the Empirical Covariance estimator,
e SC for the Shrunk Covariance estimator,
e OAS for the Oracle Approximated Shrinkage estimator,

We didn’t run the Elliptic Envelope, GLasso and MinCovDet estimators present in ScikitLearn,
due to time complexity: in our setup, the computing time of those ones exceeds by a factor at
least 10 the computing time of the shrinkage estimators listed before. Consequently, for reason
of feasibility, we chose not to compare to them, considering that the latter algorithms are part
of a different class of estimators.

4.3.1 Constant covariance X,, = I,

Study on a grid over (p,n)

As they often show similar behaviors, we only show a subset of the experimental results for
brevity. The three estimators LW_s, LW _r and LW_m have a very similar behavior compared
to LW _u in this scenario, that’s why we will only show the comparison with LW _m, having the
best performance among the three. The results are shown in figure [I] The black contour on the
surface plots is the iso-line at level 0, where the expected losses are equal. In this scenario, LW_u
is constantly better than the other estimators, and the important difference is in the part p > n,
where the mean estimation affects a lot the overall covariance estimation.

Convergence study

We now fix ¢ = p,/n and study the convergence of the different algorithms we cited in the
experimental setup. We only show the results with ¢ = 1 as the other cases only widen the
differences but do not change the order. The cases t1y and tg s-distributions are very similar,
that’s why we show only the tg5 one. The key difference between the Gaussian case and the
t-distribution, is that the OAS doesn’t converge in the latter, while not being so efficient in the
Gaussian case which is tailored for it. The results are shown in figure

4.3.2 Covariance drawn from normalized Wishart

Study on a grid over (p,n)

The three estimators LW_r and LW_m have a very similar behavior compared to LW_u in this
scenario, that’s why we will only show the comparison with LW_m, having the best performance
among the two. Moreover, the results between the t1¢ and tg 5-distributions are very similar, so
we will only show the ts5 case. The results are shown in figures [3] and [d] The black contour
on the surface plots is the iso-line at level 0, here it is where the losses are equal. In the case
p > n, LW_u is far better than the other estimators, where the mean estimation affects a lot the
overall covariance estimation. In a finite subset of the part n > p, LW _s is slightly better. LW_m
presents no significant advantage compared to the two others.

10



mm Jogio{LW_m-LW_op) - logio{LW_u-LW_op) = fog1o(LW_m-LW_op) - log1o(LW_u-LW_op)
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Figure 1: With p the dimension, n the number of samples, the axis z shows the difference of the
log1o of the expected losses between LW_m and LW _u. The losses are relative to the theoretical

bound LW _op. The samples are drawn with a Gaussian (left)/ts 5 (right) distribution, ¥ = I,,.
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//”_//// o ///
10° 4 — W_u-Lw_op — IW_u-LW_op
— LW_s-lW_op — LW_s-lW_op
w — W_m-LW _op 7l — W_m-LW_op
b ? 100 4
] — W_r-LW_op a — W_r-lW_op
3 1014 —— ECLW_op 3 —— EC-LW_op
—— SC-LW_op —— SC-LW_op
—— OAS-LW_op —— DAS-LW_op
10724 1074
T T T T T T T T T T
20 40 60 80 100 20 40 60 80 100
Number of samples Number of samples

Figure 2: oss comparison to LW_op, Gaussian (left)/ts s (right) distribution, ¥ = I,, ¢ = 1.
Here, note that LW _ex and LW _op have both null loss, we didn’t plot them.
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. jog10(LW_m-LW_op) - log1o(LW_u-LW_op) mmm /og10(LW_s-LW_op) - log1o(LW_u-LW_op)

10°
0.50 10-!
0.50 10-1 0.25 10-2
0.25 0.00 /0
0.00 No-2
_10—1

100

Figure 3: With p the dimension, n the number of samples, the axis z shows the difference of the
logio of the expected losses between LW_m (left) /LW _s (right) and LW_u. The losses are relative
to the theoretical bound LW _op. Samples are drawn from a Gaussian distribution, random X.
The black contour is the iso-line at level 0, where the expected losses are equal.

mmm /og10(LW_m-LW_op) - log1o(LW_u-LW_op) mmm og1o(LW_s-LW_op) - log1o(LW_u-LW_op)

10°

10°1
-2

/o

>10—2

—-10-1

20 0 p

40
60
n 80

20

100

Figure 4: With p the dimension, n the number of samples, the axis z shows the difference of the
logip of the expected losses between LW_m (left) /LW s (right) and LW_u. The losses are relative
to the theoretical bound LW _op. Samples are drawn from a tgs-distribution, random . The
black contour is the iso-line at level 0, where the expected losses are equal.

12



10-1 4

10-2 4

N

— LW ex-LW op LW _r-LwW_op

EC-LW_op
SC-LW_op

Losses
Losses

— LW_ex-lW_op
— W _u-lW op
— W_s-LW_op
N — W_m-LW_op

107 4 LW_m-LW_op

—— OAS-LW_op
1074

T T T T T T T T T T
20 40 60 80 100 20 40 60 80 100
Number of samples Number of samples

Figure 5: Loss comparison to LW_op, Gaussian (left)/ts 5 (right) distribution, random X, ¢ = 1

10° 4
1004 TN
10-1 4
— LW_ex-LW_op
—— LW _u-LW op
. 1071 5 — LW _s-LW op
§ 10 § — W_m-LW_op
g — LW_ex-LW_op g — W_rlw_op
—— LW_u-LW_op — ECLw_op
1073 — W_sLwW_op SC-LW_op
— W_m-LW_op 10-2 4 —— OAS-LW_op
— IW_rlW_op %
1g-¢ | — EC-LWoop \
SC-LW_op
—— OAS-LW_op
: . T T T T T T . T T - - T T T
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200

Number of dimensions Number of dimensions

Figure 6: Loss comparison to LW_op, Gaussian (left)/tg 5 (right) distribution, random ¥, ¢ = 4.
Note that LW_r and LW_m are not discernable.

Convergence study

We fix ¢ = p,/n and study the convergence of the different algorithms we cited in the experi-
mental setup. The cases t1¢ and tg 5-distributions being very similar, we only show tg 5. The key
difference between the Gaussian case and the t-distribution, is that the OAS doesn’t converge in
the latter, while not being so efficient in the Gaussian case which is tailored for it. The results
are shown in figures [5] and [6]

5 Conclusion

In this work, we extended the linear shrinkage approach of Ledoit and Wolf [10] for covariance
matrix estimation to the case where the mean of the distribution is unknown. Theoretically,
we showed that in this case we have similar asymptotic properties as in the situation when the
mean is known. Four different estimators emerged, three around those implemented in Scik-
itLearn or recommended by Ledoit and Wolf, and one naturally emerging from the theoretical
proofs. Experimentally, the latter showed improved performances in a large spectrum of situa-
tions compared to ScikitLearn 1.2.2 baselines and to the three other estimators presented in the
theoretical part. The gain in performance is particularly high when the dimension is bigger than
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the number of samples, while the differences are comparably low when dimension is smaller than
the number of samples.

Ledoit and Wolf developed several non-linear shrinkage estimators where the mean is known
[15] 16, T7]. Work needs to be conducted to investigate if similar approach can be used to extend
their non-linear frameworks.
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6 Appendix A: Proofs of the technical results

For brevity, we omit the subscript n; but it is understood that everything depends on n. Coef-
ficients of A are denoted \;;, and if not stated otherwise, sum indices i, j,1,m are in [1,p] and
k1, Ky, ka, kb, ... are in [1,n]. Moreover, we denote § = %Ek y. k- We recall that, from Remark

as all the estimators are invariant by change of mean from the definition of X = X — Dok Xk
we assume E[X] = 0 for the simplicity of notations.

6.1 Technical lemma

Frequently used identities are proven in preamble of the other proofs here.

6.1.1 Identity 1
Let (i, ) € [1,p]?, then:

D Wik — 0k —95) =

k :

(yik - i;ym> <yjk - :Lzyjk”>

k!

(yik - yik’)(yjk - yjk”)
k., k' k"

(]

(YikYjk — Yik' Yik — YikYikr + Yik' Yjkr)
k.k' k"

(YikYjk — YikVik' — YikYjk' + YieYjer)  (re-indexing)

(]

kK k"

Yir(Yjk — Yinr)

Z(yik — U)Wk —Yj) =

k k.k'#k

Yik (Yik — Yjir')-

I
U e i I v
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6.1.2 Identity 2

*ZA = Al = IZ15 = 12 = Il + |l = o® + 4. (5)

6.1.3 Identity 3

1 1
EZM-M == <Z AM) = ftr ()" = gtr(E)2 =p(E,1); = pu®. (6)
i
6.2 Proof of Lemmal(l
We have:
1 p
IZ1? = [|AI* = ZE yhl? < ];ZE[yfl] < (7)
=1

As p=(X,I) <||Z||, 4 remains bounded as n goes to infinity.

Also, ? = ||X — ul||? = ||Z]|?> — 12, so remains bounded as n goes to infinity too.

For 32, we will deeply decompose the expectation. This is not absolutely necessary to prove the
boundedness, but the decomposition will be of utter importance in the following proofs. So, we
have:

= E[IS - 2|
[ 2
S R A Y
_p - n—1 _ Yik Yi )\Yjk Y; ij
i 2
1 1 .
:];ZE n(n— 1) Z Yir (Yik — Yikr) = Aij (Identity 1)
k,k'#k

g == Z W2(n— 1) Do > D E ik im — winy) = Aig) (Wika Wie — wmy) — Aig)] -

k1 K\ #k1 ko kh#ks

We denote, for ki, k] # ki, ko, K # ko:
Eij(k1, ki, ko, k) = E [ (yir, ik, — Yjrg) — Aij) (yzkg (ks — Yiks) — Nij) ] - (9)
o If |{k1, k/l} n {k27 ké}| =0: Eij(k'l, k/17 ko, k‘2) =
o If |[{ki, K1} N {ko, K5} = 1:
~If ky = ko: then K, # k), and k1 # K. So,
Eij(ky, Ky b, k) =B [(Yiky Wik, — Ying) — Xig) Wik Wik — Wing) — Aij) |
— . . J— .. 2
=E |:(ylk?1yjk1 /\zj) :| (10)
= V¥ir, Yjk,)
Eij(k1, k1, k1, k) = Viyiy).
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Moreover, the number of terms in the initial sum on k1, k] # k1, ko, kb # ko satisfying
the conditions of this case on the indices is:

’{(klvkllvk%k;) € [[17”]]4|k/1 7é klvké 7& ko, |{k1,k/1} N {k27k/2}‘ =1Lk = k2}|

=n(n—1)(n—2). (1)

— Ifky = Ky (or similarly ky = k2): then k] # ky and k1 # k2. So, Eij(k1, kq, k2, k1) = 0.
— If & = kb Eij(ka, ki, ko, k}) = 0.

o If |[{k1, K1} N {ko, KL} = 2:
— If ky = ko and k] = kb: then k; # k. So,
2
Eij(k1, ki, ki, k) =E [(yikl Yk — Yjkr) — Nij) }

= VYir, Yjk] + Nii A5
Eij(k1, Ky ki k) = Viyiyjn] + AiiAjj.

(12)

Moreover, the number of terms in the initial sum on k1, k] # k1, ko, kb # ko satisfying
the conditions of this case on the indices is:

H(kjlv l17k2’ké) € [[1,7’1]]4“(3/1 7& klak/Q 7é k2> |{k17k/1} N {k%ké}l = 2,kj1 = kl?aki = ké}‘

=n(n—1).
(13)
— If ky = k% and K} = ko: then ky # k. So,
Eij(ky, Ky, Ky k) = E [ (Wiks Wik — Ying) — Xig) Wing Wing — vska) — Aij) | (14

Eij(ky, Ky Ky k) = AZ

Moreover, the number of terms in the initial sum on k1, k] # k1, k2, kb # ko satisfying
the conditions of this case on the indices is:

|{(k17 llakQak/Q) € [[1,7’1]]4|l€/1 7é klaké 7& k27 |{k17k/1} N {kQ’kéH = Zakl = ké’kll = k2}|
=n(n—1).
(15)

Using the latter decomposition on (ki, ki, k2, k%), we deduce:

1 1
=03 =y [P0 D= 2Vl e = DV lyiaga] + Aidgs) + 0 = DA]
,J
1 +1 1 ..
g2 = o ZV[yﬂyﬂ] + nEDn — 1),u2 + o 1)a2 (Identities 2 & 3).
4,3

(16)

e 12 is bounded when n goes to infinity, so n(”:_ll) u? < Ile_Jrll 1? remains bounded too.

e o2 is bounded when n goes to infinity, so ﬁoﬂ remains bounded too.
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e Finally, following (Ledoit and Wolf, 2004) [10] proof of Lemma 3.1,
> V] < o Y B
P ! Jl_Pn,, 751
< — Z \/yﬂTyﬂ (Cauchy-Schwarz)

< p—n Z V/E[y8]E[y5,]  (Cauchy-Schwarz)

(17)

So, 82 remains bounded as n goes to infinity. Finally, 62 = o2 + 82 is also bounded as n goes to
infinity, which conclude the proof of the lemma.

6.3 Proof of Theorem 1]

We have:
) 2
p2+ 6% = <E ];nyl )
) 2
(p Z:y31>

= - ZE [yilyjl] (18)

v ;;%21]

1
=2 ZV [yiryi] + A

ij

1 1 )
==(®+p?) + 7 ZV iy (Identity 2)

-3

p? 4+ 0% < —(a® + ) + VK, (Proof of Lemma 1).

iS]

As o? and p? remains bounded as n goes to infinity, so is #2. And, from the proof of Lemma, 1:

1 p+1 1
= Zv[yilyjﬂ + p? + o?. (19)
n 4

n(n —1) n(n —1)
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So,

1 1 1

5222 W24 62— —(a? 4 ) + P+ W2 o
n D n(n —1) n(n—1) (20)
P2 2 1 2 P—n+2

= — 9 _—_— _—
n(u+ ) n(n—l)a_i_n(n—l)'u
As o2, p? and 2 remains bounded as n goes to infinity, immediately we have:

g-Lur+e) — o0 (21)

n n—oo

6.4 Proof of Lemma 2

By linearity of the inner product, we trivially have: E[m] = u. For the quartic mean convergence,

we write:
Bllm — ) — B ( S (i ”-un)f

I 1 (22)
) 4
n-—
=K (n—lz Z(yzk yl An))
Using Identity 1, we obtain:
(=17 p 2 Wit = X) = 5 (vatiag = O )
k1,k2,k3,kq 4
k1, ka, kg kg
1 1,5 1
x lp ; o (Vi — Nid) — -~ (YikaYiky, — Oy, A

Zl ]
- (ylksyzk/ Okg=ky, Nii) 1

— = (Yika Wi, — Okymi, Nid) H
n
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ERY!
(n ) ki1,k2,ks,ka
k1,kb k5 kY
_ . .
—4E H o Z(ymymg — Opy=k Nid)
4

+ 6K H (1 Z(yfk — i) H (1 Z(yik,yik; - 5kt=k;>\ii)>‘| (24)

Ls=1 pn i t=3 pn 3
—4E = Z(yzzk — Aii) H L Z(yiktyik’ — Oky=k; Nid)
L\P ' =2 \P"" ' o

K2

1
( > Wik, viny — 5kt=k;Aii)>] :
pn

If kv, kY, ko, kb, ks, k5, ka, Ky are all different, then the expectation in the sum equals 0. So there
are at most 28n” + O(n®) non-zero terms in the sum.
Now, let’s find a bound of those expectations. Let’s first note that, for all (k, k") € [1,n]? and

i€ [1,p]:

4
E [(yikyik/ - 5,%:;,3;)\1»1-) ] =E [(yikyilc’ - E[yikyik'])ﬂ = (25)
E[(%k%k/)ﬂ - 4E[(yikyik’)3]E[yikyik’] + GE[(yikyz‘k’)Z]E[yikyik’F - SE[yikyik’]4-

If k = k' then E[(yixyir )| Elyicyirn] > 0 and if k # K, E[(yixyir )*|E[yinyir] = 0 > 0, so:

4
E [(yikyik’ — Oy =kt Nid) } < E[(yiryir')*] + 6E[(yiryin )| Eyinyir )
< E[(yinyir )] + 6E[(yiryir )] (Cauchy-Schwarz)  (26)
E [(yikyik’ - 5kt:k;/\ii)4} < TE[(yiryin' )"

19



Back to the bound of our expectation, let N € [1,4], and we have:

&=

=g

IN
3%‘,_.
& _ g‘»—l

pn =

s -a0) 11 (

% t=N+1

1
—> ik, Yir, — 51%—1@;&1'))] ‘

4 4 4
1 1
E <p Z(y?ks - /\ii)> H Y E <p Z(yiktyik{ - 51%—;@;&1')) (2 Cauchy-Schwarz)

t=N+1 %

IN
3‘,_.

ZE (Y, — Nid) H ¢ *Z]E (Yik Yik, — Oky=k1)?] (Jensen)

t=N+1

m (Previous remark)
t=N+1

1

= ZE Y. H . ];Z]E[yf;k,] (Jensen if k; # k})

t=N+1 i

IA
3|~

IA IA
e <)
- iJ= = ==
W W
< =
%ZE

71 s
< F]; ;E[yzkl]
7K,
< Y
(27)
So, in conclusion of this proof,
28n" + O(n%)
4
— <
E[(m—p)*]<7(1+4+6+4+1) YT Kgn:;(). (28)

6.5 Proof of Corollary
We have:
Vim?] = E[m*] — E[m?)?
(m — p+ )] = E[(m — pp + p)*)?
(m — p)*] + 4E[(m — p)*|u + 6E[(m — p)*|u® + p* = E[(m — p)?]* = 2E[(m — p)?|p® — p*
(m — p)*] +4E[(m — p)*|u + 4E[(m — p)*]u® — E[(m — p)*]2.
(29)

And, from Lemma [2| E[(m — u)4]—0, and so goes for the smaller moments by Jensen inequality,
and g is bounded from Lemma [l} So, V[m?]—0.

20



6.6 Proof of Lemma[3

6.6.1 Preliminary combinatorial result

Let K € N*, and K indices (ki,..., ki) € [1,n]¥.

Let’s associate a graph with K vertices ¥V = {1, ..., K} to this set of indices. The set of edges £
is built as following: there is an edge between the node a € V and b € V, a # b (we don’t allow
self-loops), if the corresponding indices are equal, i.e if k, = k;. We finally define our graph
G=MWE).

Proposition 1. Let G = (V, ) a graph with K vertices generated from some indices (kgo)7 e kg?)) €
[1,n] ¥ with the procedure described previously. Suppose G has C € [1, K] connected components.
Then, there are ch:ol(n —1i) set of indices (ki,...,kx) € [1,n]% which have the associated graph
g.

For each node v € V, v belongs to a unique connected component that we denote c(v) € [1, C].
Then, the function:

T € {x € [[l,n]]c,ml, o xo all diﬁ'erent} = (T(1)s oo Te(K))

is a bijection between {x € [1,n], x1,...,zc all different} and
{(kl, ., kx) € [1,n]¥ which have the associated graph Q}. Immediately, we deduce that its

cardinal is equal to Hf:_ol (n —1).

6.6.2 Proof of Lemma[3
From the proof of Lemma 3.3 in (Ledoit and Wolf, 2004) [10], we have:

d* — 8% = —(m — p)* + 2u(p —m) + (ISI* — E[IS]*) - (30)

The first two terms converge to 0 in quadratic mean thanks to Lemma [2] Let’s show that the
last term converges to 0 in quadratic mean too, i.e V[||S]|?] — 0.
n— oo
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Decomposing [|S]|?, we have:

IS]1* =

2
1 1 - o T
Sl 20 (X = X) (X = X))
p k
2
1 1 - AT
. n_lzmw) (V=)
k
2
e 2 (S w00
2
T )| (dentity 1)
— 5 - Yik\Yjik — Yjks entivy
_ 2
p(n—1)2 4=\ n &
an =17 Z Z Yik,y (yjk1 - yjk;) Z Yiko (yjk2 - yjk’z)
%, ky1,k} #k1 ko, kb #ko
1
(n— 1 Z Z - Z Yiky Yiko (yjklyjkz — Yik1Yjky — Yjkt Yjka T yjkiyjkg)
ki, ki #ky ko=k) kh#ks i
1
+ Z Z = Zyiklyikg (R YjkiYjky — Yjk; Yjks + Z/jk’lyjkg)
kl,k £k ko#k, K, ;Akz i,j
Z Z ) Z Yik1 Yik! (yjklyjk; = Yk Ykt — yf-kfl + yjk;yjkg)
khk Lk ko= Ryks D 0
1
e > D D Yk Yike (UikaUiks — YikiYiks — Uik, Yiks + Uik, Yjky)

ki,k| #k1 ko#ky ko #k2 4,3

2
p 1 1 2
n2(n—1)2 Z (p XL: yih?hk;) - 2? Z Yik1Yik, (yjklyjk; + Yk, — yjk;yjkg)

koy K £k b £k ij
2
P 1 1
T Em o & 5D ik Yk | = 5 D Wbk (Ui + Ui Uike — Ui Uiy
ko kL ko i i

koK, kb #ks
(31)
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2
P 1
||S||2 = m Z (p Z%kﬂik;)
k1, k) #ky i

p 1
— 7712(71 —1)e E ? E Yik: Yik) Yjk1Yjks,
kl,k’#l,k’#k’ 2]
1

- m Z Z Yiky yzk' y]k’

k1;7‘~"175k1 i,
p 1
TR IR 2 pE Dk Yk Yk Yk

ky1,kyF#k kg #k] i3

2
p 1
+ n2(n _ 1)2 Z <p ZZ: yzk:1yzk2>

1,k #k1
ka#k' kb 7#ko

1

- E Yik1Yiko Yjk1 Yjkl,
k1, ki #ks i,J

b
n?(n —1)2 Z
ok kb Ekn

P 1
_ m E I? E Yiky Yiko Yjk! Yiko
ki,ki#k1,ka#k) ]
1 1

p 1
+ m Z - Zyiklyilmyjkiyjk’z
K1,k #k1 i,j
koK, ko #ks

We notice that, re-injecting the missing terms into the sum:

p 1
K1,k ;ék:l,k’ £k ij
1
(t2) = - "2n 12 > Z (yzklyzk/ Yiky (yjk/ — Yk

k1 k’k/ ,]

Similarly, we have:

D 1
(t4) = P12 Z 2 Zyiklyik’lyjkgyjk;
ke K ke k) ;ﬁk’ i
1 1
(t4) = Vi Uit Yk Uiy — ~Yiks | = Uik Ui | Yk —
(n— 1 n
ki1,k7, k’ ,J
So,
(t2) + (t4) = "Zn =12 > Z Yik: Vi, Yik: (Yjks
k1,k} 75k1 %,
1
(12) + (1) = = (1) + 3)).
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(32)

1,
- Eyiklyjlﬂ Yiky, —

)
(35)



And,

2
p 1
(t5) = 5———3 D = ik ik
n?(n —1) - p &
oy K ke i

ko K, K £k

2
52(&_21) Z ( Zym yu@) +n22<;zyfkl>

k1 koky
(t5) = (n— 2) x (t1) + —QZ (;Zy§k1>
[
Moreover,
(t6) = —ﬁ > ]% > Yirs Yiks Viks Uik

k1,k] #k1 ,J
e 7£k2

2 37
= - E E Yik, y’LkaJklyjk E § ylkly]klyjk/ (
k11k27ék31 ()
Ky £k K, ;ﬁkl

(t6) = (n — 2) x (£2) + (£3).

And,
D 1
(t7) = BT E ) E Yik1Yiko Yjk!, Yjko
n*(n — )k VRTINS
1,k 7#k1,k2Fk] »J
D 1 . .
=@ D 2 3 D VikaUkask Uk (re-indexing)

ko, ki #ka,k1#k] i,
(t7) = (n — 1) x (£2).

Finally, we obtain,

IsP= 23 (1 Zyg]ﬂ) -
" k1 p 7
n2 —Mm 2
+ W Z ( Zyﬁﬁyzk’) (t?l)

k1 k] Ak

p(2n — 3)
a m Z ﬁ z Yik1Yik) Yik1 Ykl (t3')

K, k! £k k) #k, i

p(2n —1) 1 ) )
T n2(n—1)2 Z ' Zyiklyik;yjk; (t4)

k1,k} #k1 i,J
n2(n _ 1)2 p2 ylk1ytk2y]k1y]k2 .

ky,k) #k1 ,J
koK) k! ks
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It is sufficient to show that the variance of each of the 5 term converges to 0 as n goes to
infinity in order to prove that V[||S||?] converges to 0 as n goes to infinity.

e V[(t1")] — 0 immediately from the proof of Lemma 3.3 in (Ledoit and Wolf, 2004) [10].
e V[(t2")] — 0 immediately from the proof of Lemma 3.3 in (Ledoit and Wolf, 2004) [10].

e Let’s prove that V[(t3")] — 0.

p?(2n —

V([(#3")] = m

Z Z Z *COV(yzklyzk' Yjik1Yjkl s YiksYiky ymkgymk:’)'
K1,k #k1 ks, ki #ks 1,70, mp
T )
(40)

Let (k1, k7, kb, k3, kb, k}) € [1,n]° respecting the conditions given in the sums. Suppose
there exists (i, 7,1, m) € [1,p]* such that Cov(yi, Yk, Yjk, Yiky > Yiks Yik,YmksYmiy,) 7 0. Let
consider the graph G = (V, &) built from (kq, k7, kb, ks, k5, k) following the procedure de-
scribed in the preliminary combinatorial result.

As for some (i,4,1,m) € [1,p]* we have Cov(Yik, Yk, Yiks Yjky » Yiks Yik, Ymks Ymi,) 7 0, by
independence, the nodes 1°, 2°, 3’, and 4’ can’t be isolated. As a consequence, G has at
least 2 edges.

— When the graph G has only 2 edges, we have either of the following conditions, that
we denote the (*) conditions:

(k= k5) A (ky = ky) A (k1 # ks) A (k1 # k) A (ks # KY),

x (ky=kj) A (ks = ky) A (ky # k3) A (k1 # k) A (ks # KY).
Note that the case where (k] = k}) A (k} = k}) is impossible due to the constraints
on the indices in the sum. In the first case, we have:

COV(Yik Yik! Yskr Uikt » Yiks Yiks, Ymbs Ykt ) = B (Ui Ykt Y Uikt Yiks Yok, Ymks Y,
= I [Yik, Yjka Yiks Yms Vi, Yiks Ykt Yk, |
= I [Yik, Yjiks Yiks Yms Vi, Yik Yk, Yo |
= E [Yik, ks JE[Yiks Yms 1B Yir, vorr JE[Yjks Y, ]
Cov(Yiky Yik, Yiki Yiky » Yiks Yk Ymbks Ymrs) = NigAtm it Ajm.-
(41)

And in the second case, we have:

COV(yik1 Yiky Yk Yjkt » Ylks Yiky Ymks ymk’ Yiks Yikt Yjks Y5kt Ylks Ykt Ymks Ymik)

=E| ]

B (Uit Uik Yths Yrmks Yik! Yok, Y, Yiks, |

E [Yik Uik Yths Yrmks Yik! Yok, Y, Yiks, |

E [Yik, Uik JELYiks Yk 1B Yirs Yme: TEL Yk Yis |
Aij Am AimAji-

Cov(Yiky Yik! Yik1 Yiky s Yiks Y1kt Ymks Ymk,) =
(42)



Using the fact that i #j = \;; = 0, in both cases we have:

> COV (i, Yit, Yika Vit Yihs Vit Y Ymiy) = D Ny
,,L,m i
1
= pz *]E[y?ﬂ‘*
P
1
<p>, ];E[y?ﬂ (43)
7

1
< PZ 5]E[y§1}

Z Cov(Yiky Yir, Yik Yiky » Yiks Yik), Ymks Ymk;,) < DK

,4,L,m

Under the conditions (*), G has exactly 4 connected components. So, from the pre-
liminary combinatorial result, there are 2n(n — 1)(n — 2)(n — 3) different 6-uples of
indices k respecting the (*) conditions. We finally have:

p*(2n —3)* Z

1
> 2 COV(Yin, Yik, Yiks Yy Yis Y1kt Ymbs Ym, )

n*(n —1)* <
(k1.kY,kb k3 ky,kYy) 6.0,0m
under (*) conditions
p?(2n — 3)? 1
nt(n—1) P
(2n — 3)2 (44)
22— K>
pn3(n —1)
8
< —F=K
n(n —1)
— 0.
n—oo

— Otherwise, G has 3 edges or more: we denote it as the (**) condition. As it has
only 6 vertices, there are at most 3 connected component. So, from the preliminary
combinatorial result, there are n(n — 1)(n —2) + n(n — 1) + n = n((n — 1)? + n)
different 6-uples of indices k that have G as associated graph. Moreover, there are a
finite number N € N (independent of n) of graphs with 6 vertices that have at most
3 connected components.

So, there are at most Nn((n — 1)? + n) different 6-uples of indices k such that the
associated graph G has 3 edges or more.
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And we have:

1
> (COV(Yiry Vi, Yiks Yy Yis Vit Ymbs Ymis, )|

i,5,l,m

1
Z Z? \/V[yikl Yikt Yjky yjk’z]V[ylkg Yk, Ymks ymkfl]

,5,l,m

Z \/E yzkl zk’ yjklygk/ ]E[ylkdylk’ ymksymk’]

5,1, m P

<> \/ Yo, [E [y B[S, JE [y, [EWS JE IS, [E[S, 0, JE Y5,
%,7,0 m (45)
Z \/ yn Z/ﬂ yll]]E[yml]
47,0 m

< KQ.

So, using both of the previous inequalities,

(2n — 3)2 1
m Z Z 7COV(yik1yik;yjk1 Yjkl» ylkgylkgymkgymk;)
(k1,ky,kb ks k5, kL) @d,0m
under (**) condition
2 2
p*(2n — 3)
< m x Nn((n—1)* +n)Ks (46)
2n — 3)?2
— 0.
n—00

So, from both previous cases, we immediately have:

V[(t3")] — 0. (47)

n—oo

Let’s prove that V[(t4")] — 0.

_1\2
V[(t4)) = nf" 11>)4 ST Y S Covlumn v s i) (18)

k1 K\#k1 ks ki#ks 5,1, m

Similarly as the previous case, let (ki, k}, k3, k3) € [1,n]* respecting the conditions given in
the sums. Suppose there exists (i, 7,1,m) € [1, p]* such that Cov(yiklyikiy?k,l , ylksylkéyznké) #*
0. Let consider the associated graph G = (V, €).

By independence, the nodes 1 and 3 can’t be isolated. As a consequence, G has at most 3
connected components.

Denoting N the number of graphs with at most 3 connected components and 4 vertices,
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from the preliminary combinatorial result, there are at most Nn((n — 1)? 4 1) different
indices (k1, k1, k3, k3) € [1,n]* such that 35, ., COV(yiklyikgyJQ»kzl,ylkgylkéyfmé) # 0.
Moreover,

1 1
Z —4|Cov(yik1yik;yfk;7yzkgyzkgyfnkéﬂ < Z F\/V[y?kflyik1yide[y3nkéylk3ylk’3]

i,9,l,m 1,5,L,m
1
< Z F\/E[y;‘lk{y?klyfk;]E[yﬁnkgy?my?kg]
i,5,L,m
1
< 3 Bl Bl B Bl Bl T
i,5,l,m
1
<) p4f/E[y?ﬂ\/E[yfl]E[yﬁ]E[yﬁﬂ] E[y} JE[y}]
i,5,l,m
1
< Y r /BB E S
i,5,l,m
1 4
S )
P
Lo s
< Z —E[y;]
~p
p— OV (Yiker Yik, Yt » Yies Ykt Yomi, )| < K2
i,5,l,m
(49)
So,
2 2
p*(2n—1) 2
V[td)] < ¥——— N —1 1)K
[( )}— n4(n_1)4 n((n ) + ) 2
(2n —1)? 2 2 (50)
———N((n—-1 VKK
’I’L(?’L— 1)4 ((n ) + ) 1432
I
VI(4)] — 0.
e Let’s prove that V[(t5")] — 0.
/ p2 1
V[(t5)] = T > > > 2 CoV (i, Uik, Yiks Ykt Yty Yrmi, Ytk Ymks, )-
k1,k]#£k1 ks, kb #ks z‘,j,l,mp
ko ke, Ky kastkl k) ki
(51)

Let (kq, kY, ko, kb, ks, K, ka, k) € [1,n]® and (i, j,1,m) € [1,p]* such that
Cov(Yik, Yjk) Yiks Ykl » Yiks Ymbs Yiks Ymis,) 7 0.

Let’s consider the associated graph G, built following the procedure described in the pre-
liminary combinatorial result.

For each node a € V, the connected component of G containing a contains at least 2 nodes
(a and at least an other one). Otherwise, a is isolated, which means that k, is different from
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all the other indices, and so by independence, COV(yik;lyjk’I Yiko Yjks s ylkgymkgylkélymk;k) =0,
which is in contradiction which our hypothesis.

As each connected component contains at least 2 nodes, there are at most 4 connected
components in G.

So, from the preliminary combinatorial result, there are at most n(n—1)(n—2)(n—3)+n(n—
D(n=2)+nn—1)+n=n((n—1)(n—2)?+n) different (ky, k}, k2, k3, ks, k%, k4, k}) €
[1,7]® which have the same associated graph G.

Moreover, there is a finite number N € N (independent of n) of graphs with 8 nodes and
at least 4 connected components.

Finally, combining the previous 2 counting, we deduce that there are at most Nn ((n —1)(n—

terms such that >, ., p%Cov(yiklyjkimeyjk;,yzkgymkgylmymkg) # 0.
As previously, we have also,

Xl: I%|Cov(yik1yjk;yikayjk;,ylkgymkgyzmymkg)l < K. (52)
2,7,L,m
Finally,
nt(n —1)%
N =D =24 ) g (53)
- n(n —1)3 1442
VI(t5)] =2 0.

We showed that each of the 5 terms of ||S||* have a variance that converges to 0 as n goes to
infinity.
So,

2
VIIsI?) — o. (54)
Which concludes the proof of the first part of the lemma:

42— 2 T, (55)

n—oo
Finally, by property of the expectation, we have that E[(d? —E[d?])?] < E[(d? —§2)?], so it follows
that:

d? —E[d?] 8 0. (56)

n— oo
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6.7 Proof of Lemma [4]

- [ 1 noo_ .
E[bQ} =E ﬁ zk: .rk(l‘k)t -5

1 noo_ .
=K EZ l’.k(l'.k)t—Z-FE—S

n—1
1 no_ o, 11 )
=E ?g ——Tk(E) = ~E [||IS — =|?]
1 no_ o P 1,
=E ﬁzk: o Uk(GR) A | =B

e TTE
" p(n—1)2 EJ:E
" p(n—1)2 EJ:E

2l 1
( (Yir — i) (Yj — Tj) —/\z‘a) ] - gﬁQ

n—1_\| 1,
yzl_yz yjl_yj) n )‘ij _*ﬁ

n

1 . 1 1 S
( (yiryj1 — (yzyjl n>\ ) - (yjyil - n)\ij) + (yiyj - n)\ij>> 1 - 5/32

E[b2 n — 1 p(n —1)2 Z ( yzlyjl +V [yzygl] +V [yjyzl] +V [yzyj]

1
—2E (yilyjl —Xij) (yiyjl - n/\ij>:| —2E { Yi1Yj1 —

( jyzl >:|
+2E | (yiny1 — Nij) (yiyj — i&j)} +2E [(yzyjl )\zg) ( iYil — )]
[ 1 1
—2E (yiyjl - n)\ij) (yiyj - n)\ij)] —2E [(yﬂ/zl /\u> <yzyj Aij )} ) - %62-

(57)

We simplify each of the terms into manageable quantities:
o Vgiyji] = 2= Vyiynl + Z XAy,
o V[gyi] = 2= Vvl + Z XAy,
o V(giy;]l = 7713 (Viyinyja] + (n = D)(Niadjj + A3)),

o E[(yayn — Nij) (Uayin — £Xij)] = 2V[yayal,

o E [(yiryjn — Nij) (Tvin — £ Xij) | = = VIyaynl,

o E [(yiryjr — Nij) (575 — £ 2ij)| = 7= Vivaynl,

o E[(7:iyjn 1&3) Gy — 3 ij)] = 7= Viyanyn] + %2003,

o B [(giyin = 3) (0695 — 325)] = 75 (Vivagn] + (0 = Dk +23)),
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o E[(myn — 32g) (0635 = 52is)] = 55 (Vvayn] + (n = Das; +A5))-

Adding up all the terms, we obtain:

- 1 n®>—3n+3 2n —3 2n — 3 1
2] = 2 2
E [b } - ]m ; (TLQV[yilyjl] + 7/\%}\]‘]’ + n2)\U) — Eﬁ
1 n?—3n+3 22n—3 9 2N =3, o2 1 5
POl Z yayp] +0° == (S 12 +p=—II2|? | - ~B (58)

- 1 n?—3n+3 2n—3 2n —3 1
E b2 _ v 1Y 2 2 2 2 - 2.

[ } pin—1) N2 ; ly 1yg1]+p 2 no+p 2 (a* + p*) nﬁ

From the proof of Lemma [l} we have:

i o _ a2 p+1 5 1 2
pn ;V[yﬂyﬂ] =p n(n — 1)'u n(n — 1)oz ' (59)

s _ n(n-1) _ n?(n—2) _ 1 1 A _ A _
Denoting: v = 755773, A = ey —ang3) €0 = 5, ~ w ~ 3,701 = 5,07 c2 = (P ey,

we notice that:

n?2—3n+3 1

o+ = n(n —1) n’
n? —3n+3 2n—3
_ 60
“ n?(n—1)2  n2(n—1)’ (60)
o (P =3n+3)(p+1)  (2n=3)(p+1)
: n2(n —1)2 n2(n—1)
We obtain from the previous lines: E[b?] = (co + c1)B? + cr1a? + cop?.
So, we can conclude using §2 = a? + 8%: E[b?] = co3? + 102 + cop?.
6.8 Proof of Lemma [l
We compute the expectations of m? and d?.
E[m?] = pu? + V[m]. (61)
And,
E[d*] = E[||S — mI|*]
= E[[|S — pI|* + |u] = mI|* +2(S — pl, uI —mlI)] (62)

= 62 + V[m] — 2V[m)]
E[d?] = 6% — V[m].

Moreover, from Lemma [4] we have: E[b?] = cof32 + 102 + capu2.
So, combining the last 3 equations, we obtain: E[b?] = co3? + c1E[d?] + coE[m?] + (¢1 — c2)V[m].
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6.9 Proof of Lemma
1 2 -
(lev-o)
f ) 1 , (63
[ )~ (3 )]
k k

Firstly, we want to show that the variance of the first term converges to 0 a n goes to infinity.
Following the decomposition developed in Lemma [ we have:

b2 —E[b?] =

n~~TE

+ TpT —
n—1 -k

2

V| Fpil - %

n—1_|?

A

: 1
- Ve

1 2
=V leZZ(yzk yz gk_yj) n)\lj)

’ﬂ.kzﬁ; -

2
1 _ 1 _ 1 __ 1
=V W Ek E ‘ ((yikyjk = Xij) = (Wayse — —Aij) — Wikll; — —Aig) + (505 — )\ij))

_
(V]
+
| — |
|
=
&
| —
>
<
_ 1
(V]

1. 7? 1
pn—12 ZZ ( YikYik — Nij]” + {%yﬂc A]:| + [yjyz’k' - ﬁ)\z’j

[ _ 1 1
=2 | (WirYjk — Nij) (yiyjk - n>\ij>] -2 |:(yikyjk — Xij) (yjyzk )\”>

[ 1
+ 2 [ (YirYjk — Nij) (ﬂiﬂj - n)\ij)] +2 |:<yzy]k )‘m (yjyzk /\zj)]
[/ 1 I |
-2 YilYjik — E)\’LJ Yiy; — E)\’Lj y]yzk )\2] yzyj *)\ij .

We then prove that the variance of each of the 10 separated sums converges to 0. For that, let’s
show a useful inequality.

(64)
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6.9.1 Preliminary inequality

Let (ky, ki, ko, kb, k3, kb, ks, k) € [1,n]®. Then, using multiple Cauchy-Schwarz and Jensen
inequalities, we have:

Cov ((YikrYjin; = NigLia=r;) YikaWsing = Niglia=ry) » (Yiks Yy, — M Lkg=ky ) (YikaUm, — NimLig=r7))
= CoV (Yik, Yj, Yika Ujkt» Yiks Yk, Yiks Ymk, )
— Xij Loy =k COV (Yio Wt » Yiks Y, Yiks Y, )
— Nij L=k, COV (Yitr Y » Yikes Y, Yiks Ymie, )
= Aim Lgg=g, Cov (Yikr Wt Yika Uikt Yika Ymis,)
— N Ly =k, COV (Yik, Uji!, Yika Uskty» Ythes Yk,
+ i At Ly =kt Loy =k, COV (Yika Ujks» Yiks Y, )
+ Nig A Ly =t Loy =k, COV (Yika Ukt Yis Y, )
+ Nig At Ly =g Leg =k, COV (Yiky Yjk! » Yia Y, )
+ Nig At Ly =g Loy =k, COV (Yikr Yjnt » Yty Ymis,)
= CoV (Yik, Yjk, Yik Uskly» Yiks Ymiks, Yiks Yk, )
— Elyir, Yk, 1COV (Yika Yiky > Yiks Yy Yiks Y, )
Yika Uiy )COV (Yiks Uikt » Yihs Ykt Yika Yk, )
CoV (Yika Yjk, YikaYjky» Yika Yk, )
COV (Yika Yjk, YikaYjky» Yiks Ymis,)

- E|

— E[YiksYmu,

— ElYik, Ymi

E[
E[
E[
E[

4
Yiks Yk, JE[Yiks Ymiy | Cov (yzkzygk: s YkaYmk, /)
Yiter Uit JE Y1k Yk, ]COV (Yiko YU > Yiks Y, )
Yiksy yjk’z]E[ylkg. ymkg]COV (Z/ikl Yik!, YikaYmk, )
JE[ JCov ( )

Yiks Ykt JE[Yiky Ymry |COV (Yiky Yk s Yiks Yk,

< 9\/Ey11 yl ylﬂE[ySu}
(65)

So, for all (kq, k], ko, kb, ks, ki, ks, k}) € [1,n]8, we have,
1
Z —Cov ( (Yir, Vs, — Nijlii=r;) (Yika¥iky — NigLro=y)
i,9,l,m p (66)
(Yiks Ymiy, — M Lig=ry) (YikaYmr, — Nimlka=r;) ) < 9Ka.

6.9.2 Variance of the first term

Now, we can prove that the variance of each of the 10 separated sums converges to 0.
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e We have:
1
m Z Z (Yiryje — A

= n — 1 (o _ 1\4 Z Z *COV( Yik1Yjk, — Aij)Q ) (ylkzymkg - )\lm)2> .

k1k21jlm

(67)

If k1 # ko, the covariance is trivially null. So,

1
m Z Z (Yiryje — A

e 1 i Z Z COV ( YikaUjky — Nig)” s Wik Yk, — /\lm)2> (68)

k1 4,7,0, m
n _ ]_ (o _ 1)4 Z COV ( Yi1Yj1 — Ai_’}')z ) (yllyml - Al7n)2) .
4,7,l m

And we have from the preliminary inequality,
Zico (i1 — Mij)° ( — Am)?) < 9K
I Vv { WitYs1 ij) » \Hi1Ymi Im = 2- (69)
i,7,l,m

Finally, we can conclude,

1 2 n 2
V|— E E kUil — i < - K2K.
(n 1)2 e (y,ky_]k A j) (n 1)4 x 9 14\ 2

1 2
Vv pn— 172 zk: 122 (YikYjk — Nij) e 0.

e We have:
1 ) ) )
m Z Z (yiyjk — n)\ij>
(n — 1 (n—1)*n* >y

ky,ky kY 4.4.0m
ko, kb, k;’

1
ECOV ((Wirg Yir = Nig Ly =k ) Winr Uiy — NijLeyr—=k) » (Vi Ymis = N Lk —ks) (Yiky Yk — Mim Ly =, ) ) -
(71)

If Ky, Ky, kY, ko, kb, kY are all different, then, the covariance is null. So there are at most
n% —n(n —1)(n — 2)(n — 3)(n — 4)(n — 5) non-zero terms in the sum over k-indices.
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And we have from the preliminary inequality,

1
Z jCOV< (yirr Wik — XijLig=ny ) (Yiny Uik, — NigLir=r, )
i,5,l,m p (72)

(kg Ymks — MimLkg=ky) (Yiky Ymks — NimLry=k, ) > < 9Ks.

So,

1 - 1 2 2 —nn—-—1Dn-2)(n—-3)(n—4)(n -5
v M;%(Qi%k_n)\ij> Sp( ( i i(4n4 i I ) x 9K,

(n—1)
n?(n® —n(n —1)(n —2)(n — 3)(n — 4)(n — 5))
1)

< (n1)int x 9K K,
o 1\
V| |— Jilik — —Aij .
o S5 (1) |
(73)
e Immediately from the previous point,
1 . 1.\’
S o (e =2 ) | 0 (74)
ki

e We have:

i S (- )
:<—pl> 2 2

R AR AR
ks kb ka k)

1
ECOV ((Wirs vs; = Nijliy=kt ) (Wiko Uik, — Nij L=kt ) » (YikaYmoky = N Lig=ks) (YikaYmiy, — N Lii=k1)) -
(75)

If Ky, Ky, ko, kS, ks, kS, ka, k) are all different, then, the covariance is null. So there are at
most n® —n(n — 1)(n — 2)(n — 3)(n — 4)(n — 5)(n — 6)(n — 7) non-zero terms in the sum
over k-indices.

And we have from the preliminary inequality,

1
> ECOV< (vik Uiy — NijLia=kt) (Yika¥iny — Nijlra=ry) -
i,5,0,m (76)

(ylksymké - >\lm1k-3=ké) (yl/my'mk{l - /\lm1k4=kg)) < 9Ks.
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So,

k 1,3
2mE —nn—1Dn-2)(n-3)(n—Dn-5n-6)(n—7
Sp( ( )( )((n—i)‘ln‘s )( )( )( ))><9K2 o
n?2n® —nn—Dn-2)(n-3)(n—4)(n—-5n—-6)(n—7 9
< ( ( )( )((n—i§4n6 )( )( )( ))><9K1K2
njgo().
e We have:

1 1
Vi i——3 YikYjk — Aij (yiy'k - )\i)
p(n_l)zzk:lzj:( J J) J n J
2
- p
- (n —1)4n2 Z Z
ky,k ko, kb i,5,L,m
1
ECOV ((Wikrvsiky = Nig) Wik, Wik — NigLis=r? ) > WikaYmbs — Nim) Wiy Yk — MimLiy=k1) ) -
(78)

If k) ¢ {ki,ka,kb} , then, the covariance is null. So there are at most n* — n(n — 1)3
non-zero terms in the sum over k-indices.
And we have from the preliminary inequality,

1
Z ECOV ((Yikr Yjka — Nij) (yik’lyjkl — Nijliy =kt ) s (Yika Ymks — Nim) (Vi Yk — >\lm1k2:ké)> < 9K,.

(79)
So,
V] ST e — ) (B — Sy
p(n —1)2 o YikYjk ij) \ YiYjk Vi
20,4 3
p*(n* —n(n—1)°)
(n—1)*n? x 9Kz (80)
n?(n* —n(n —1)3)
KiK.
(n— 1)in2 X KT Ky
— 0.
n—oo
e Immediately from the previous point,
A\ #ZZ( ). ,)\,,) TR ,l)\.. — 0 (81)
p(n_ 1)2 ki Yibik i) | Jivi n " n—oo
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e We have:
AV #ZZ( ) —_—._l)\..
p(n—1)2 - yzkyjk 17 yzyj n iJ

il Y Y

e Kk gl
kQ,k;,kQ

1

ECOV (Wika Uik, — Nig) Wint Uiy — Nijlir=xr) » WikaYmks — Mim) (Vi Yk — Nem gk )) -
(82)

If k) & {k1, kY, ko, kb, kY } , then, the covariance is null. So there are at most n% —n(n—1)°

non-zero terms in the sum over k-indices.
And we have from the preliminary inequality,

1
Z —Cov( (WYir Yk — Nig) (Winy Yiny — NigLug=xrr)
igtm P (83)

(Yths Ymbs — Nim) (YikyYmiky — NimLrg=ry) ) < 9Ka.

So,
AV #ZZ( wYie — M) | 750 l)\,.
p(n — 1)2 4 YikYik 1] YilY; n 1]
2,6 5
p*(n® —n(n —1)
(n—1)*n?* x 9Kz (84)
n?(n —n(n —1)%) 5
IKT K
(n—1)*n* X ORI
— 0.
n— o0
e We have:

1 1 1
P TF 2 2 (yy " > (” n )

p2

1
= )it Z Z PCOV( (Yirg Yk — Nij Ly =k, ) (Yira Yy — Nijliy=x) »

YRR
ko kD KL
(ks Ymks = M Lio=rs) (YikaYmry — NimLiy=ry) )
(85)

If k) ¢ {ki, kY, ko, kb, kY } , then, the covariance is null. So there are at most n% —n(n—1)°
non-zero terms in the sum over k-indices.
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And we have from the preliminary inequality,

1
Z ECOV( (Yirg Yskr — Nij Ly =k, ) Wik Uiy — Nijley—krr)
i,7,l,m (86)

(kg Ymke — M Lka=ky) (Yiko Yz — Mim Lig=ry) ) < 9Ko.

So,

1 1
V]|— Yilik — Aij ikl — —Aij
p(n—1)2 Zk:;(y Yik = Aij) (y - J)

p*(n® —n(n —1)°)

- (n—1)*n* x 9Kz (87)
n2(nb —n(n —1)°
( (n— 1()4n4 = X OK{ K
— 0.

n— oo

e Immediately from the fourth point,
VI SO (i — o) (51— 2 )| — 0 (88
pln— 17 2 2\t = )\ =20 ) S )

e Immediately from the previous point,

1 _ 1 e 1
\% m zk:lzj: (yjyik - n/\ij) <yiyj - n/\w‘) n:; 0. (89)
So, the first term has its variance converging to 0:
1 n 2
~ =T
A\ ?ﬂ;‘n_lx.kx_k—z 1n:>>00 (90)

6.9.3 Variance of the second term

The variance of the second term converges to 0 as n goes to infinity. Indeed, from the proof of
Lemma 3.4 in (Ledoit and Wolf, 2004) [10]:

1 no_ 2 1 no_ . 2\ 1
(7122 n_117<k17?1;*5 )(nQZ L ) > :E||SfZ||2. (91)
k k
And we have:
E[IS - I <E[(1S - ulll + lul - 2] (92)

E[||S—uI]|*] and ||I —3|| are bounded, from Lemmaand Lemmall|respectively, so E [[|S — Z||*]
is bounded. Consequently, V [1]lS — 3||?] — 0. To conclude, V [b?] — 0.

n—oo
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6.10 Proof of Lemma [7]

i 1 1 o 1 ’
V[m] =E (pzn_lz(yik_yi) —pz)\n)]

:E<z

ki1 ko

Z(ym—yz

[zz( (e o

)]

)

9 _ 5 n—1
s Y>3 E Kyml 2yik, Ui + Ui — /\n) <yjk2 — 2y, Y~ n/\jjﬂ :

ki,k2 4,5

Fully developing the terms, we obtain,

Vim] = e Y

k1 ko i,

yzkl

Ai)

(ks — Nij)]

1
—2E {(yfkl — i) (yjkzﬂj - n/\jjﬂ
1
+E [(yfkl — i) (yf - n/\jjﬂ

—2E

+4E

(yzkl Yi — ) i
_ 1
- ;)‘n YjkaYs — HAJJ
— 1 ) ].
=) (8- 0w
1
+E [(gf - =
n

+E[(y3
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) (= )|

1 B 1

- n)\n) <yjk2yj - n)\jjﬂ
1 L1

S ()|

(93)

(94)



We compute the expectations separately for simplicity.

(t1) :E [(yin, — Xii) Uik, — Nij)] = Vlyayn] + Af; — Xiajs if k1 = ko,
= ( otherwise.
I 1 1 .
(t2) E | (v, — Mit) (yjkzyj - n/M’j)] == (Vigiyin] + A3 — AiaAjj) if ky = ko,

= 0 otherwise.

o1 1 :
(t?)) SIE (yzzkl — )\”) (yJQ — n)\jj):| = ? (V[yzlyﬂ] + AZQJ — )\’Ll)\jj) lf ]{31 = kg,

= 0 otherwise.

[ _ 1 1 .
(lf4) ZE (yilclyi — TL>\“) (yjsz — )\jj):| g (V[yilyjl} + )‘12] — )\”‘)\jj) lf ]{:1 = kg,

= 0 otherwise.

_ ) . 1 (95)
(t5) :E (yiklyi - n/\n‘) (yjkzl/j - n/\jj>} =3 (Vlyayji] + n/\fj — XiXjj) if ky = ko,
) 1
= EA% otherwise.
[ _ 1 o5 1 1 2
(t6) B | { yona i = — X | (77 = Xy = — (Vlgayj] + 2n = DA = Xady;) -
i N 1 1
(t7) :E (y? - n)\n‘) (Y, — /\jj)} = — (Vlynyn] + 25 = Aidyj) -
(/5 1 i 1 1 9
(t8) B | (55 — ~ i ) | Wika¥i = A =3 (Viyays] + (2n — 1A — Xis)j;) -
(/5 1 5 1 1 9
(tg) E Yy — ﬁ)\“ Y — E)\jj = ﬁ (V[yﬂyﬂ] + (Zn — 1))‘z’j — )\ii)\jj) .
Injecting those expectations in the main equation, we obtain:
1 n?—2n+1 n?—1, n?-2n+1
1 2
— m sz: [(n — 1)V[yi1yj1] + (TL + 1))‘ij — (n — 1))\“}\”‘]
1 n+1 5 1 9
= — Vlyay, —||2* - = (5,1
o 2 Vi) + e I = S (96)
- IR TP L O ST AN
= iijyﬂyﬂ] o T
1 n+1 9 9 9 1,
Vim| = —=— > V]y;1y; — (6% — — —u”.
From the proof Lemma [I| we have:
1 p+1 1
2 NV 2 52 — B2).
P pnizj: iyl + n(n—l)'u + n(n—l)( 5 (97)
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So, combining those two equations, we obtain:

R e e L) R R R R T
_n=2 Lo p=1 5 (98)
“oo-0” Tpn-1° " pn-Dn"

VIm] = qoB* + 16 — q2p*.

which concludes the proof.

6.11 Proof of Lemma
From the proof of Lemma [5| we have:

E[m? = p? + V[m], E[d?] =6 —V[m]. (99)
And from Lemma [7] we have:

V[m] = qoB* + ¢16% — qopt”. (100)
Which immediately finishes the proof:

1

Vim] = ———
] l—q—q

(905 + @E[d®] — ¢2E[m?]). (101)

6.12 Proof of Lemma

From Lemma [B

E[b?] = co? + c1E[d?] + c2E[m?] + (c1 — c2)V[m]. (102)
And from Lemma
V[m] = %(%62 + ¢ E[d°] — 2E[m?)). (103)
—q1— Q2
So,
E[0°] = coB® + c1E[d?] + c2E[m?] + %(%52 + qiE[d?] — g2E[m?)) (104)

= ] 8% + c[E[d?] + JE[m?).

Then, we deduce:

B[] = ((c} 8 + c[Eld®) + cfE[m?]) — [ E[d?] ~ clE[m?))
=

E[p?] = 52

So, b? is an unbiased estimator of 32.

(105)

~ Concerning the quadratic mean convergence, we use the fact that the variances of m?2, d? and
b? converge to 0 as n goes to infinity, from Corollary 2, and Lemma |3| and |§| respectively. So,

v’ — B2 =b? —Ep?*] — 0. (106)

q.m
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6.13  Proof of Lemma 10
For the upper bound:
by — % = min(b? , d*) — B
<02 -2 < - @ (107)
< max(|p? — 82, |d® — 57)).

For the lower bound:

b — B = min(b} — §%,d* — 37
> min(b2 — B2, d2 — &2
Emijwﬂﬁu|f)#> Hes)
> —max(|b? — 57|, [d* - 6%]).
So,
E[(b7, — 8%)°] < E[max([p* — 57|, d* — 6°|)?]
< B[P — 82+ BI(d? — )2, o)
So, from Lemma 3] and [9]
E[(b — 8%)*] — 0. (110)
Which leads trivially to:
E[(a? — a?)?] — 0. (111)

6.14 Proof of Theorem

We will use the proof of Theorem 3.2 in (Ledoit and Wolf, 2004) [10] to prove ours. We check
that we have the set of hypotheses required by the proof to work:

o o2, 32,62 are non-negative, bounded, and o? + 82 = §2,
e m — p converges to 0 in quartic mean,

e d? is nonnegative, and d2 — 6% — 0,
q.m

e 0<a?<d?anda—a?—0,
q.m

o a2 + b2 = d2, with b2 > 0.

Then, we can apply the result of the theorem 3.2 from (Ledoit and Wolf, 2004) [10], so E[||S} —
¥*||?] — 0 and S} has the same asymptotic expected loss as X7, i.e. E[||S} — £,]12] — E[||ZF —
Sal2] = 0.

6.15 Proof of Lemma [11]

The proof from (Ledoit and Wolf, 2004) [I0] can be applied here, as the hypotheses of their
Lemma A.1 [I0] are verified for u? = |a2b26% — a?B%d?|, 1 = 2 and 7o = 2, from the same
arguments they used.
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6.16  Proof of Theorem 3]
Solving the convex minimization problem, we obtain easily that ¥** = pul + 93 (S — mlI), with
ag = (S,X) —myp, is a minimizer. We have then:

a% — (9 2
42
(a7 — ag)?

d? '

(S —mlI)

5% — )2 = H<m T
(112)

IS* == = (m — p)* +

(m — p)? converges to 0 in quadratic mean by Lemma [2| For the second term, we will use the

Lemma A.1 from Ledoit and Wolf [I0] with u? = (a2 — a2)?, 71 = 2 and 72 = 0. In the following,
2 2

we check the assumptions of the Lemma A.1, i.e. % < 2d* + 262 and E[(a2 — a2)?] — 0.

We notice:

jz| = (X = pl, S = mI)| <[5 = pI|[[|S — ml]| = bd. (113)

It comes that:

(a2 —a2)?  al + o3 —2aian
d? N d?
- 2a} + 203 (114)
S— 3
< 2d? + 262

In order to prove E[(a2 — az2)?] — 0, let’s show that E[(as — a?)?] = V]ag] — 0.
V]ae] = V[(S,X) — mu]

= V[(S, )] + V[mu] — 2Cov({S, ), mu) (115)
< 2V[(8, )] + 24*V[m].
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w is bounded by Lemma [If and V[m] — 0 by Lemma [2| so y?V[m] — 0. Considering the other
term, we have:

V[(S,%)] = V_<n_ yy? Aﬂ

=V n—l Z)\nzyzk )‘|

=V Tl _ 1 Z)‘“ Z ylk Yik — yik’) (Identity 1)
i kK £k

= n — 1 Z Cov (p Z szyzkl Yik, — yzk’ Z szyzkz Yiks — Yik! ))

k1 K, ko
ko, ky#ko

1 1
_ 5 cor (It L )
(n— 1 P = p =
Ky ,k)#ky g v
ko kb #kso

1 1
t o 1 =1 > Cov < > Niitim Yings — )\iiyikzyik’2>
K1,k #k1 P L

iz kh ks

1 1 1
= = Z Cov | - Z Niili, > — Z Nii ¥,
ne < P = p=
o1 i i
1 1
+ = CEE S Cov | = vk ik = Y Nk, Vi
k1,k|#k1 P i P @
1 1
t e Z Cov | — Z AiiYiks Yikl > — Z Aiilik} Yiky
khk/ Fk1 p i p i
1
\% ’ > Niiyiryi
[

1 '1
= =V =) Nyp
n p . yzl

r 2 2
11/t ,
- (p Zl: >\11iy1',1> +—— n(n y ( Z /\zzyzlyzz>

IN
[
=

<o) () e ) ()
- ;(;;E[yaf) (;;E[yz])%(,fl)(;;myﬁ)2
_ nn+_11 ( ZE yﬂ>2
< %;;EW
VI(S,5)] < %KQ.
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(116)

So, V[(S,%)] — 0, and so E[(ag — a?)?] — 0. As E[(a? — a?)?] — 0 by Lemma@, it comes that
E[(a? — a2)?] — 0. Therefore, the assumptions of Lemma A.1 of (Ledoit and Wolf, 2004) [10]
are verified by u? = (a2 — az)?, 71 = 2 and 75 = 0. It proves that:

2 _ o \2
042)} 0. (117)
Backing up, we have shown that E[||S* — ¥**||?] — 0. We complete the proof of the theorem
with the following inequality:

E[[|S* =2 - |2 - S| = E[|(S* — &, 5" + % - 2%)]]

118
< VE[IS* — 2= P]VE[[IS* + = — 25|2]. )

The first term converges to 0 as we showed above, and the second term is bounded because
E[||S* — X||?] is bounded. So, the product converges to 0, which completes the proof.

6.17 Proof of Theorem [4

The proof from (Ledoit and Wolf, 2004) [I0] can be applied as it is, because it uses only the
results of Theorem [3| which are the same as Theorem 3.3 in [I0].

6.18 Proof of Theorem [{

Respectively from Lemma and [3] m, — u converges to 0 in quartic mean and d? — 6% converges
to 0 in quadratic mean.
Let’s define:

o 1 S ¢ 2
br—m;||x.k(ac.k) - S|I°. (119)

Let’s show that b2 — 32 converges to 0 in quadratic mean. We use the following decomposition:

2

- 1 . n—1 1
k
_ 2 n—1_1 1
=0 - —= 7ot — = - 2 120
b CENE §k <xkxk - S’n5>+n(n—1)25” (120)
- - 1
2 2 2
R EELCL

b% — 32 converges to 0 in quadratic mean by Lemma @ Moreover, ||S||2 — E[||S]|?] converges to 0
in quadratic mean by Lemma and E[||S]?] = 8% 4+ o + 2, so E[||S]]?] is bounded by Lemma
So, ﬁ |S||? converges to 0 in quadratic mean, which finally proves that b? — 3% converges

to 0 in quadratic mean.
Following the idea of proof of Lemma [10] we have:

— max(|b; — 3%, |d} — 6%|) < b7 — B < max(|p} — 8%, |d} — 7). (121)
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So,

E[(b7 — 8°)°] < Elmax(|b} — 8%, |d} — 6%|)?]

72 232 2 £232 (122)
< E[(b; — 8°)°] + E[(d; — 67)7].

Which, as previously, leads to the 2 following results: E[(b2 — 82)?] — 0, E[(a? — a?)?] — 0.

T

Finally, we check that we have the set of hypotheses required by the proof of Theorem [2| to work:
e o2, 32,62 are non-negative, bounded, and o? + 82 = §2,
e m, — i converges to 0 in quartic mean,

e d? is nonnegative, and d? — §% — 0,
q.m

e 0<a?2<d?anda?—-a?>—0,

q.m
e a? + b2 =d?, with b2 > 0.

Then, we can apply the result of the theorem 3.2 from (Ledoit and Wolf, 2004) [I0], so iden-
tically we have that E[||S? — £*||?] — 0 and S} has the same asymptotic expected loss as
E[|lIsy = ZI7 - = = Z[P[] —o.

6.19 Proof of Theorem

Respectively from Lemma [2|and 3| m,,, — p converges to 0 in quartic mean and d?, — 62 converges
to 0 in quadratic mean.

b? — B2 converges to 0 in quadratic mean by Lemma@ and following the idea of proof of Lemma
we have:

—max(|b* — 82|, |d7, = 0%|) < b7, — 8% < max(|p* — 8|, |d7, — 7)) (123)
So,

[max(|b* — 52, |dy, — 6|)?]

E[(b7, — 8%)*] <
< E[(* - 82)?] + E[(d?, - §2)?). (124)

E
E

Which, as previously, leads to the 2 following results: E[(b2, — 3%)?] — 0, E[(a2, — a?)?] — 0.

m

Finally, we check that we have the set of hypotheses required by the proof of Theorem [2] to work:
e o2 2,62 are non-negative, bounded, and o? + 82 = §2,
e m,, — p converges to 0 in quartic mean,

e d? is nonnegative, and d?, — 6% — 0,
q.m

e 0<a? <d?’anda? —a? —0
qg.m

)

e a2 + b2 =d?, with b2, > 0.

Then, we can apply the result of the theorem 3.2 from (Ledoit and Wolf, 2004) [10], so identically
we have that E[||S:, — X*||?] — 0 and S}, has the same asymptotic expected loss as X%, i.e.
E[|1S5 = ZII* = = = Z*|] - 0.
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6.20 Proof of Theorem [7]

As d? = d? and b? = b?,, we trivially have the quadratic convergence to §2 and 32 respectively
with Lemma [3| and Theorem @ ms = %m, and m — p converges in quartic mean to 0 with
p bounded, so ms — p converges in quartic mean to 0. Similarly, > = %142 and a2, — o?

n m

converges in quadratic mean with o bounded, so a? — a? converges in quadratic mean. Finally,
* _ n—1 Qx .

as S; = *—=S5,,, we have:

—12 [ 1 2
Es: —x+3) = =g |||lgx —xr - o
;- s = O g gy, me - L
_ (’I’L- 1)2 [ * * (|2 2 * * * 1 (12
* * (|2 (n_1)2 [ * *12 1 *(12 2(7’1—1)\/ * *1|12 s
ElSs = ZI7] < =B | 155 = 27" + S IZ7I7| + —=—5—VE[llS5, — ZPE[I=*[").

(125)

Using Theorem@ and that E[||X*?] bounded, we have that E[||S? — X*[|?] — 0 and S} has the
same asymptotic expected loss as ¥*, i.e. E [||| S — X||2 — [|£* = $||2|] — 0.

6.21 Proof of Lemma 12
Let X, ~ N(0,%), k € [1,7], n iid samples. Trivially, u = J tr(3),0* = |2 — pI|]>.
For 32, we will use the equation from the proof of Lemma

1 p+1 1
2 2 2
3 _72 :V Y / "2
m iyl n(n —1) n(n —1) (126)

As X is Gaussian, we have for all (4,5) € [1,p]%,V]yayj] = NiXj; + /\%‘- So,
1 1 5 1 2\ 1, ., )
o ;V[yilyjl] = (|E|| + ];tr(E) > = H(a + (p+ 1)p?). (127)

Which finally leads to,

+1 1 1
B2 = Py o? + =(a® + (p+ 1)p?)
n(n —1) n(n —1) n (128)
1 1
82 = P+ R o,
n—1 n—1

And, of course, §2 = a? + 2.

6.22 Proof of Lemma [13

Let v > 8, ¥ a covariance matrix, X. , ~ t,,(O,i), k € [1,n], n iid samples, with scale matrix
3= ”—;22.

With this setup, we have as expected: V[X] = 3. Obviously, p =  tr(),a” = [|X — pI|*.

For 32, we will use the equation from the proof of Lemma as in the Gaussian case.

1 p+1 1
2 - V . ) 2 2.
5 pn ; iy + n(n — 1)'u + n(n — 1)a (129)
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To easily compute the variance term, we will use a characterization of multivariate ¢-distributions.
In fact, as for all k € [1,n], X. ; ~ t,(0,%), there exists two independant random variables Uy,

and Z. j such that:

—2
Up ~ X2 Zogo ~ N (0, ”A) Yo =N2X = |27
v Uk

We deduce then,

77
Viyiry;i] = Y [UJ}
1
=v’E[Z} Z}]E [UFJ - E[V;Y;)?
1
Viyiyi] = (v = 2)? (Misj; +275) E {UQ} - A%
We have:
1 (1/2)v/2~1 vod_y _
El—| = (X~ 2 z/2
{UJ I(v/2) /“” ¢

L (2PT(r—4)/2) [
T T(/2) (1/2)@02 / NP R

pdf of x2_,

(/22 T((v — 4)/2)
T(v/2) (1/2)7072
1

1
T Aw/2—D)(v/2-2)

So,

v—2
V[yilyjl] = 71/ 1 ()\“)\” + 2)\%) — )‘123

And,

1 1 v—2 v—2 2
— iYil] = — 2 1) 1P+ —1tr(Z
o 2= o (=21 e+ ueey)

v 9 9 v—2 4
(V_4(a +u )+V_4pu)-

3=

We can conclude,

8= ((Vy_f)n * n(nl— 1)>p'u2+111 (1/1/4 + n11> (o +47).

And, of course, 62 = a? + (2.
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