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Abstract

This work addresses large dimensional covariance matrix estimation with unknown mean.
The empirical covariance estimator fails when dimension and number of samples are pro-
portional and tend to infinity, settings known as Kolmogorov asymptotics. When the mean
is known, Ledoit and Wolf (2004) proposed a linear shrinkage estimator and proved its con-
vergence under those asymptotics. To the best of our knowledge, no formal proof has been
proposed when the mean is unknown. To address this issue, we propose a new estimator
and prove its quadratic convergence under the Ledoit and Wolf assumptions. Finally, we
show empirically that it outperforms other standard estimators.

Keywords: covariance matrix estimation, linear shrinkage, Ledoit-Wolf estimator, unknown
mean, general asymptotics
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1 Introduction and related work

The covariance matrix plays a major role in numerous machine learning algorithms and statistics.
Just to cite a few, the PCA [1] in machine learning, Markowitz portfolio management [2] in
finance, or generalized method of moments estimators [3] in statistics. However, those algorithms
are designed to use the true covariance matrix, which is often unaccessible. Even if the sample
covariance matrix seems to be a simple and appealing choice, it severely fails in many applications:
for instance, the use of the sample covariance matrix for Markowitz portfolio management does
not beat a naive uniform distribution among the assets [4].

In the context of Kolmogorov asymptotics, where the ratio of the dimension pn and the
number of samples n tends to a finite positive constant pn

n → c > 0, this estimator fails to
converge quadratically. Moreover, its eigenvalue spectrum is biased: high eigenvalues tends at
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being too high, and low ones, too low. The behavior of the eigenvalues is studied in random
matrix theory: in the context of the Kolmogorov asymptotics, this topic is widely covered by V.
L. Girko [5, 6, 7].

We focus on the shrinkage-type estimators which have suitable asymptotic properties, influ-
enced by the work of Stein on Gaussian mean estimation in 1956 [8]. Due to their simplicity to
implement and strong theoretical support, linear methods are widely used, and, for some, im-
plemented in ScikitLearn [9]: Ledoit-Wolf linear shrinkage [10], which will be our main focus, its
extension for Gaussian distributions using Rao-Blackwell theorem, named Oracle Approximat-
ing Shrinkage (OAS) estimator [11], linear shrinkage with factor models [12], linear shrinkage for
elliptical distributions with unknown mean and known radius distribution [13], just to name a
few. Non-linear methods propose shrinkage methods where the factor differs from an eigenvalue
to an other. Among them, Stein’s covariance estimator [14] works for Gaussian distributions,
and several algorithms were developed by Ledoit and Wolf using eigenvalue spectrum analysis
from random matrix theory [15, 16, 17]. Further theoretical analysis of those algorithms can be
found in [18, 19, 20].

Usually, when estimating the covariance matrix, we don’t know the mean of the distribution.
Yet, the extension from known to unknown mean is rarely studied. To extend the empirical
covariance with T samples ST , one uses the unbiased estimator S̃T , after removing the empirical
mean and dividing by T −1 instead of T . If it seems straightforward for ST , it can be non trivial
for more complex estimators. Ahurbekova explicitly worked in the case of known then unknown
mean [13], and the resulting estimators of linear shrinkage for elliptical distributions with known
radius distributions are notably different from the ones with a known mean. In the review of their
work in 2020 [21], Ledoit and Wolf worked and proved their results in the case where the mean is
known, and they claim at the end ”One then simply replaces ST with S̃T and T with T–1 in all
the previous descriptions and computations in practice” (Section 6: Computational Aspects and
Code). However, to the best of our knowledge, there are no proofs in the literature to extend
the theoretical results, nor show the optimality of this approach. Moreover, focusing on Ledoit-
Wolf linear shrinkage algorithm, one can note that the implementation used in ScikitLearn [9]
doesn’t follow the recommendations of Ledoit and Wolf regarding the case of uncentered data.
They didn’t change T to T − 1 and used T−1

T S̃T instead of S̃T . Unexpectedly, experiments show
notably worse results using Ledoit and Wolf recommendations rather than the ScikitLearn im-
plementation. This remark underlines that the problem is more counter-intuitive than expected,
and a closer look at the dependence between the covariance and the mean estimation is required.

We address the lack of theoretical results when the mean is unknown and propose a new
Ledoit-Wolf-like linear shrinkage estimator and its theoretical and empirical analysis.

2 Notations, definitions and hypotheses

Let us introduce the following notations.

Notation 1. In the following we consider a sequence of observation matrices (Xn)n∈N∗ with
Xn ∈ Rpn×n of n iid observations on a system of pn dimensions. Decomposing the covariance
matrix, we denote Σn = ΓnΛnΓtn, where Λn is a diagonal matrix and Γn a rotation matrix.
The diagonal elements of Λn are the eigenvalues λn1 , ..., λ

n
pn , and the columns of Γn are the

eigenvectors γn1 , ..., γ
n
pn . Yn = ΓtnXn is a pn × n matrix of n iid observations of pn uncorrelated

random variables (yn1 , ..., y
n
n).

Notation 2. Let An and Bn two pn × pn matrices. We consider the Frobenius norm: ‖An‖ =√
tr(AnAtn)/pn, and the associated inner product: 〈An, Bn〉n = tr(AnB

t
n)/pn. Dividing by the

2



dimension is not standard, it is done to fix the norm of the identity as 1 regardless of the
dimension.

Notation 3. Let (En)n a sequence of euclidean spaces with associated norm ‖·‖n. The quadratic
convergence of a random variable Zn ∈ En, i.e. E[‖Zn‖2n]→ 0, is denoted as Zn −→

q.m
0.

We describe now several assumptions, the same used in the linear shrinkage of Ledoit and
Wolf [10], that will be used in the following.

Assumption 1. There exists a constant K1 independent of n such that pn/n ≤ K1.

Assumption 2. There exists a constant K2 independent of n such that 1
pn

∑pn
i=1 E

[
(ỹni1)8

]
≤ K2

where for all i ∈ J1, pnK, ỹni1 = yni1 − E[yni1].

Assumption 3.

lim
n→∞

p2
n

n
×
∑

(i,j,k,l)∈Qn(Cov[ỹni1ỹ
n
j1, ỹ

n
k1ỹ

n
l1])2

|Qn|
= 0,

where Qn denotes the set of all the quadruples that are made of four distinct integers between 1
and pn, and for all i ∈ J1, pnK, ỹni1 = yni1 − E[yni1].

We need some definitions to properly define the problem and the asymptotics.

Definition 1 (Empirical covariance). For an observation matrix Xn of size pn × n, we define
the empirical covariance as:

Sn = X̃nX̃
t
n/(n− 1),

with (X̃n)ik = (Xn)ik − 1
n

∑n
k′=1(Xn)ik′ .

Definition 2 (Scalars (µn, α
2
n, β

2
n, δ

2
n)). We define four scalars:

µn = 〈Σn, Ipn〉n, α2
n = ‖Σn − µnIpn‖2n, β2

n = E[‖Sn − Σn‖2n], δ2
n = E[‖Sn − µnIpn‖2n].

(Lemma 2.1 in (Ledoit and Wolf, 2004) [10]) proves that α2
n + β2

n = δ2
n.

The oracle linear shrinkage estimator is given by the following minimization problem. The
following corollary is the central point of the linear shrinkage methods.

Corollary 1 (Corollary of theorem 2.1 from (Ledoit and Wolf, 2004)). Consider the optimization
problem:

minimize
ρ1,ρ2

s.t. Σ∗n=ρ1Ipn+ρ2Sn

E[‖Σ∗n − Σn‖2n],

where the coefficients ρ1 and ρ2 are not random. Its solution Σ∗n verifies:

Σ∗n =
β2
n

δ2
n

µnIpn +
α2
n

δ2
n

Sn, E[‖Σ∗n − Σn‖2n] =
α2
nβ

2
n

δ2
n

.

Remark 1. Corollary 1 remains true for any unbiased estimator Σ̂n instead of Sn.

(µn, α
2
n, β

2
n, δ

2
n) depends on the true covariance Σn, and thus can’t be used directly in the esti-

mation of Σ∗n. The central issue of this work is to find estimators (mn, a
2
n, b

2
n, d

2
n) of (µn, α

2
n, β

2
n, δ

2
n)

in order to compute an estimation S∗n of Σ∗n. As the mean is unknown, those estimators differ
from Ledoit and Wolf work [10], particularly when pn is higher than n.
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3 Theoretical results

All the following results extend the work of Ledoit and Wolf [10] in the case where the empirical
mean is used as estimator of the mean.
All proofs are shown in appendix A.

Remark 2. In the following, as all the estimators are invariant by change of mean, resulting
from the definition of X̃ = X−

∑
kX·,k, we can assume E[X] = 0 for the simplicity of notations.

We present a sequence of lemmata, that naturally define estimators with suitable asymptotic
properties for the scalars (µn, α

2
n, β

2
n, δ

2
n).

Lemma 1. Under assumptions 1 and 2, µn, α
2
n, β

2
n, δ

2
n remain bounded as n→∞.

Theorem 1. Under assumptions 1 and 2, define θ2
n = V

[
1
pn

∑pn
i=1(yni1)2]

]
. θ2

n is bounded as

n→∞, and we have:

lim
n→∞

E[‖Sn − Σn‖2n]− pn
n

(µ2
n + θ2

n) = 0.

In particular, taking pn = p constant, we see that Sn −→
q.m

Σn. But, when pn is of the same

order of magnitude than n, the sample covariance generally fails to converge as the error is at
least of the same order of magnitude as µ2

n = 〈Σn, Ipn〉2n.

Lemma 2 (Estimator of µn). Define mn = 〈Sn, Ipn〉n. Then, under assumptions 1 and 2,
E[mn] = µn for all n, and mn−µn converges to zero in quartic mean (fourth moment) as n goes
to infinity.

Corollary 2. Under assumptions 1 and 2, m2
n − E[m2

n] converges to zero in quadratic mean as
n goes to infinity.

Lemma 3 (Estimator of δ2
n). Define d2

n = ‖Sn −mnIpn‖2n. Then, under assumptions 1, 2 and
3, d2

n − δ2
n −→
q.m

0. It follows that d2
n − E[d2

n] −→
q.m

0.

The following lemmata aim at defining an unbiased estimator of β2
n that quadratically con-

verges. We work around b̄2n, inspired from the estimator of β2
n in the case where the mean is

known, and write residual terms in the expectation as a combination of mn and d2
n.

Lemma 4. Define:

b̄2n =
1

n2

n∑
k=1

∥∥∥∥ n

n− 1
x̃n·k(x̃n·k)t − Sn

∥∥∥∥2

n

,

where x̃n·k = xn·k − 1
n

∑n
k′=1 x

n
·k′ and (xn·1, ..., x

n
·k, ..., x

n
·n) are the independent samples forming X.

Then, under assumption 1,
E[b̄2n] = c0β

2
n + c1δ

2
n + c2µ

2
n,

with γn = n(n−1)
n2−3n+3 , λn = n2(n−2)

(n−1)(n2−3n+3) , c0 = 1
γn
− 1

n −
λn
γnn2 , c1 = λn

γnn2 , c2 = (p+ 1)c1.

Lemma 5. Under assumption 1, we have: E[b̄2n] = c0β
2
n + c1E[d2

n] + c2E[m2
n] + (c1 − c2)V[mn].

Lemma 6. Under assumption 1, we have: V[b̄2n] −→
n→∞

0.

We need to compute V[mn] which is unknown in the development of E[b̄2n] in Lemma 5.
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Lemma 7. Under assumption 1, we have: V[mn] = q0β
2
n + q1δ

2
n − q2µ

2
n,

with q0 = n−2
p(n−1) , q1 = 1

p(n−1) , q2 = p−1
p(n−1) .

Lemma 8. Under assumption 1, we have: V[mn] = 1
1−q1−q2

(
q0β

2
n + q1E[d2

n]− q2E[m2
n]
)
.

Lemma 9. Define:

b2n =
1

cf0

(
b̄2n − c

f
1d

2
n − c

f
2m

2
n

)
,

with cf0 = c0 + (c1 − c2) q0
1−q1−q2 , c

f
1 = c1 + (c1 − c2) q1

1−q1−q2 , c
f
2 = c2 − (c1 − c2) q2

1−q1−q2 .

Then, under assumptions 1, 2 and 3, b2n is an unbiased estimator of β2
n, i.e. E[b2n] = β2

n, and
b2n − β2

n −→
q.m

0.

For notation consistency with the estimators in Ledoit-Wolf linear shrinkage [10], we keep
the notation b2n even if its value can be negative.

Lemma 10 (Estimator of β2
n). Define: b2n,u = min((b2n)+, d

2
n) and a2

n,u = d2
n − b2n,u. Under

assumptions 1, 2 and 3, b2n,u − β2
n −→
q.m

0 and a2
n,u − α2

n −→
q.m

0.

We can now define our linear shrinkage estimator S∗n and prove its asymptotic properties.

Definition 3 (Final estimator LW u). Let’s define our estimator:

S∗n =
b2n,u
d2
n,u

mn,uIpn +
a2
n,u

d2
n,u

Sn, with mn,u = mn, d
2
n,u = d2

n.

Theorem 2. Under assumptions 1, 2 and 3, E[‖S∗n−Σ∗n‖2]→ 0. As a consequence, S∗n has the
same asymptotic expected loss as Σ∗n, i.e. E[‖S∗n − Σn‖2n]− E[‖Σ∗n − Σn‖2n]→ 0.

The following lemma gives an asymptotic estimation of the optimal error

E
[
‖Σ∗n − Σn‖2n

]
=

α2
nβ

2
n

δ2n
.

Lemma 11.

E

[∣∣∣∣∣a2
n,ub

2
n,u

d2
n

− α2
nβ

2
n

δ2
n

∣∣∣∣∣
]
→ 0.

The last results easily make possible to extend the Theorems 3.3 and 3.4 of (Ledoit and
Wolf, 2004) [10] in our situation where the mean is unknown. Previously, we showed that our
estimator’s loss converge to the optimal one in the class of linear combinations of Sn and Ipn
with non random coefficients, the optimal estimator of this class being Σ∗n. In the following, we
show that our estimator is still asymptotically optimal with respect to a bigger class, where the
coefficients can be random. Formally, we are looking for the following optimal loss (this time,
there is no expectation in the minimization). Let Σ∗∗n be the linear combination of Sn and Ipn
solving:

minimize
ρ1,ρ2

s.t. Σ∗∗n =ρ1Ipn+ρ2Sn

‖Σ∗∗n − Σn‖2n.

By construction, Σ∗∗n has a lower loss than S∗n, but we show that the difference converges to 0.

Theorem 3. S∗n converges to Σ∗∗n in quadratic mean, i.e. ‖S∗n −Σ∗∗n ‖ −→
q.m

0. As a consequence,

S∗n has the same asymptotic expected loss as Σ∗∗n , more precisely we have:

E
[∣∣‖S∗n − Σn‖2n − ‖Σ∗∗n − Σn‖2n

∣∣]→ 0.
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Theorem 4. For any sequence of linear combinations Σ̂n of In and Sn, the estimator S∗n verifies:

lim
N→∞

inf
n≥N

(
E
[
‖Σ̂n − Σn‖2n

]
− E

[
‖S∗n − Σn‖2n

])
≥ 0.

In addition, every Σ̂n that performs as well as S∗n is identical to S∗n in the limit:

lim
N→∞

(
E
[
‖Σ̂n − Σn‖2n

]
− E

[
‖S∗n − Σn‖2n

])
= 0 ⇐⇒ ‖Σ̂n − S∗n‖n −→

q.m
0.

We introduce three other estimators to compare with, which are implemented, recommended,
or natural to define. We prove that their asymptotic behavior is similar, and, through different
experiments, show the differences in performance.

Definition 4 (Ledoit-Wolf recommended estimators). The estimators recommended by Ledoit
and Wolf [21], indexed by the letter ”r”, are:

mn,r = mn, d
2
n,r = d2

n, b
2
n,r = min

( 1

(n− 1)2

n∑
k=1

∥∥x̃n·k(x̃n·k)t − Sn
∥∥2

n

)
+

, d2
n,r

 , a2
n,r = d2

n,r−b2n,r.

Theorem 5 (Ledoit-Wolf recommended estimators). Under Assumptions 1, 2 and 3, mn,r−µn
converges to 0 in quartic mean, and that d2

n,r− δ2
n, b2n,r−β2

n and a2
n,r−α2

n converge in quadratic
mean to 0 as n goes to infinity.

Moreover, the conclusions of Theorem 2 remain true with the estimated matrix S∗n,r =
b2n,r
d2n,r

mn,rIpn+

a2n,r
d2n,r

S, i.e. E[‖S∗n,r − Σ∗n‖2]→ 0 and E
[∣∣‖S∗n,r − Σn‖2n − ‖Σ∗∗n − Σn‖2n

∣∣]→ 0.

From the proof, b̄2n,r = b̄2n+ 1
n(n−1)2 ‖Sn‖

2
n, it is then natural to define the following estimator.

Definition 5 (”Natural” estimators). The estimators that naturally emerge, indexed by the letter
”m”, are:

mn,m = mn, d
2
n,m = d2

n, b
2
n,m = min

((
b̄2n
)

+
, d2
n,m

)
, a2
n,m = d2

n,m − b2n,m.

Theorem 6 (”Natural” estimators). Under Assumptions 1, 2 and 3, mn,m − µn converges to 0
in quartic mean, and that d2

n,m − δ2
n, b2n,m − β2

n and a2
n,m − α2

n converge in quadratic mean to 0
as n goes to infinity.

Moreover, the conclusions of Theorem 2 remain true with the estimated matrix S∗n,m =
b2n,m
d2n,m

mn,mIpn+

a2n,m
d2n,m

S, i.e. E[‖S∗n,m − Σ∗n‖2]→ 0 and E
[∣∣‖S∗n,m − Σn‖2n − ‖Σ∗∗n − Σn‖2n

∣∣]→ 0.

Definition 6 (ScikitLearn 1.2.2 estimators). The estimators implemented in ScikitLearn 1.2.2,
indexed by the letter ”s”, are:

mn,s =
n− 1

n
mn, d

2
n,s = d2

n, b
2
n,s = min

((
b̄2n
)

+
, d2
n,s

)
, a2
n,s =

n− 1

n

(
d2
n,s − b2n,s

)
,

S∗n,s =
n− 1

n
S∗n,m.

6



Theorem 7 (Scikit-Learn 1.2.2 estimators). Under Assumptions 1, 2 and 3, mn,s−µn converges
to 0 in quartic mean, and that d2

n,s − δ2
n, b2n,s − β2

n and a2
n,s − α2

n converge in quadratic mean to
0 as n goes to infinity.

Moreover, the conclusions of Theorem 2 remain true with the estimated matrix S∗n,s =
b2n,s
d2n,s

mn,sIpn+

a2n,s
d2n,s

S, i.e. E[‖S∗n,s − Σ∗n‖2]→ 0 and E
[∣∣‖S∗n,s − Σn‖2n − ‖Σ∗∗n − Σn‖2n

∣∣]→ 0.

4 Experimental results

The experimental estimations are compared to the theoretical value of Σ∗ in the Ledoit-Wolf
setting, the implementation in ScikitLearn 1.2.2, the implementation recommended by Ledoit
and Wolf [21], and to the other algorithms implemented in ScikitLearn 1.2.2, for multivariate
Gaussian and Student-t distributions.
We first derive the exact values of Σ∗ for those two distributions.

4.1 Oracle estimators

4.1.1 Gaussian distribution

Lemma 12. Let (Xn)·,k ∼ N (0,Σn), k ∈ J1, nK, n iid samples. Then, the analytical oracle
estimators are: µn = 〈Σn, I〉n, α2

n = ‖Σn‖2n − µ2
n, β

2
n = p+1

n−1µ
2
n + 1

n−1α
2
n, δ

2
n = α2

n + β2
n.

4.1.2 t-distribution oracle estimator

Lemma 13. Let (Xn)·,k ∼ tν(0, Σ̃n), k ∈ J1, nK, n iid samples with scale matrix Σ̃n = ν−2
ν Σn

and covariance V[Xn] = Σn. The density of the multivariate t-distribution is:

fn(x) =
Γ[(ν + p)/2]

Γ(ν + p)νp/2πp/2|Σ̃n|1/2

[
1 +

1

ν
xT Σ̃−1

n x

]−(ν+p)/2

.

Then, the analytical oracle estimators are:

µn = 〈Σn, I〉, α2
n = ‖Σn‖2n−µ2

n, β
2
n = 1

n

(
ν
ν−4 + 1

n−1

) (
α2
n + (p+ 1)µ2

n

)
− 2p
n(ν−4)µ

2
n, δ

2
n = α2

n+β2
n.

4.2 Experimental setup

We considered 2 settings:

• a Monte-Carlo computation of the loss on a 2d-grid of the parameters (pn, n) ∈ J5, 100K2,
with a step size of 2, to visualize the effect of changing the ratio pn/n, and see the domains
where our algorithm is most suited;

• a Monte-Carlo computation of the loss with a fixed ratio pn/n = c ∈ {1, 2, 4}, to compare
the rate of convergence of each algorithm.

In both cases, the Monte-Carlo is computed with nMC = 10000 iterations.
Three different distributions are explored: the multivariate Gaussian, and the t-distribution with
ν = 10 and ν = 8.5. Note that we have to ensure ν > 8 to respect Assumption 2.
Two different way of choosing Σn are explored: fixing Σn = Ipn - particular case where the
oracle Ledoit-Wolf loss is null -, and drawing at each iteration a covariance matrix Σn from a
Wishart distribution with pn degrees of freedom, and normalizing it by

√
‖ΣnΣTn‖n - to respect

the assumption 2. Note that when drawn from a Wishart,
√
‖ΣnΣTn‖n > 0 almost surely.
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4.2.1 Assumptions check

For the second study at fixed pn/n in order to compare the rate of convergence, we check that
we are under the three assumptions that guarantee the theoretical results on convergence proved
in section 3.

Assumption 1 As we fixed the ratio c = pn/n, Assumption 1 is trivially respected.

Assumption 2 - Gaussian distribution Let (Xn)·,k ∼ N (0,Σn), k ∈ J1, nK, n iid samples. As
previously, we denote Σn = ΓnΛnΓtn, where Λn is a diagonal matrix and Γn a rotation matrix,
and Yn = ΓtnXn is a pn × n matrix of n iid observations of pn uncorrelated random variables.
Using the fact that for z ∼ N (0, λ), we have E[z8] = 105λ4, we deduce:

1

pn

pn∑
i=1

E[y8
i1] =

1

pn

pn∑
i=1

105λ4
ii = 105‖ΛnΛTn‖2n = 105‖ΣnΣTn‖2n. (1)

In the case where we fix Σn = Ipn , we obviously have ‖ΣnΣTn‖2n = 1, so Assumption 2 is
respected.
In the case where we draw Σn from a Wishart distribution with pn degrees of freedom, and
normalize it by

√
‖ΣnΣTn‖n, we have by construction ‖ΣnΣTn‖2n = 1, so Assumption 2 is respected

here too.

Assumption 2 - t-distribution Let (Xn)·,k ∼ tν(0, Σ̃n), k ∈ J1, nK, n iid samples with ν > 8, scale

matrix Σ̃n = ν−2
ν Σn and covariance V[Xn] = Σn. As previously, we denote Σn = ΓnΛnΓtn, where

Λn is a diagonal matrix and Γn a rotation matrix, and Yn = ΓtnXn is a pn × n matrix of n iid
observations of pn uncorrelated random variables.
From a characterization of multivariate t-distributions, for each k ∈ J1, nK, there exist 2 inde-
pendent random variables Uk and Z·,k such that:

Uk ∼ χ2
ν , Z·,k ∼ N

(
0,
ν − 2

ν
Λn

)
, (Yn)·,k = Σ−1/2(Xn)·,k =

√
ν

Uk
Z·,k.

Moreover, we notice that:

E
[

1

U4
1

]
=

∫
R

(1/2)ν/2−1

Γ(ν/2)
x(ν−8)/2−1e−x/2dx

=
(1/2)ν/2

(1/2)(ν−8)/2

Γ((ν − 8)/2)

Γ(ν/2)

∫
R

(1/2)(ν−8)/2−1

Γ((ν − 8)/2)
x(ν−8)/2−1e−x/2︸ ︷︷ ︸

pdf of χ2
ν−8

dx

E
[

1

U4
1

]
=

1

(ν − 8)(ν − 6)(ν − 4)(ν − 2)
.

(2)
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This 2 previous points lead to:

1

pn

pn∑
i=1

E[y8
i1] =

1

pn

pn∑
i=1

E[z8
i1]E

[
ν4

U4
1

]

=
1

pn

pn∑
i=1

105

(
ν − 2

ν
λii

)4
ν4

(ν − 8)(ν − 6)(ν − 4)(ν − 2)

= 105
(ν − 8)(ν − 6)(ν − 4)

(ν − 2)3
‖ΛΛT ‖2n

1

pn

pn∑
i=1

E[y8
i1] = 105

(ν − 8)(ν − 6)(ν − 4)

(ν − 2)3
‖ΣΣT ‖2n.

(3)

Similarly as the Gaussian case, when we fix Σn = Ipn , we obviously have ‖ΣnΣTn‖2n = 1, so
Assumption 2 is respected, and when we draw Σn from a Wishart distribution with pn degrees of
freedom, and normalize it by

√
‖ΣnΣTn‖n, we have by construction ‖ΣnΣTn‖2n = 1, so Assumption

2 is respected here too.

Assumption 3 Let Y a pn-dimensional random variables drawn from a centered multivariate
Gaussian distribution, then for all (i, j) ∈ J1, pnK2, we have the following property:

Cov(Yi, Yj) = 0 =⇒ Yi, Yj independent.

Moreover, when drawingXn from n iid multivariate Gaussian, we have that Yn, using the previous
notations, is made of n iid samples of an uncorrelated pn-dimensional centered multivariate
Gaussian distribution.
So, for all (i, j) ∈ J1, pnK2, i 6= j, we have that yi1, yj1 independent.
Finally, for all (i, j, k, l) ∈ J1, pnK4 where i, j, k, l are all different, we have:

Cov[yni1y
n
j1, y

n
k1y

n
l1] = 0.

In the case where Xn are n pn-dimensional iid samples drawn from a centered multivariate
t-distribution, we have that Yn, using the previous notations, is made of n iid samples of an
uncorrelated pn-dimensional centered multivariate t-distribution. Then we use the decomposi-
tion Y =

√
ν
UZ where Z is drawn from a multivariate Gaussian distribution independent from

U , drawn from a χ2
ν distribution. As for all i 6= j, Cov(yni1, y

n
j1) = 0, then we trivially have

Cov(zni1, z
n
j1) = 0. So zi1 and zj1 are independent, which immediately leads to the fact that for

all (i, j, k, l) ∈ J1, pnK4 where i, j, k, l are all different, we have:

Cov[yni1y
n
j1, y

n
k1y

n
l1] = 0.

This proves that Assumption 3 is respected in all the experimental cases we studied.

4.3 Results

In the following, we will use abbreviations to refer the different expected losses of each algorithms.
Concerning the variants of Ledoit-Wolf shrinkage estimators with unknown mean, we denote:

• LW u for the estimator we propose in this paper,
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• LW r for the implementation recommended by Ledoit and Wolf in 2020 [21],

• LW s for the implementation of ScikitLearn 1.2.2,

• LW m for the natural estimator,

• LW ex for the oracle estimator Σ∗,

• LW op for the optimal estimator Σ∗∗,

Concerning the other baseline algorithms implemented in ScikitLearn, we have:

• EC for the Empirical Covariance estimator,

• SC for the Shrunk Covariance estimator,

• OAS for the Oracle Approximated Shrinkage estimator,

We didn’t run the Elliptic Envelope, GLasso and MinCovDet estimators present in ScikitLearn,
due to time complexity: in our setup, the computing time of those ones exceeds by a factor at
least 10 the computing time of the shrinkage estimators listed before. Consequently, for reason
of feasibility, we chose not to compare to them, considering that the latter algorithms are part
of a different class of estimators.

4.3.1 Constant covariance Σn = Ipn

Study on a grid over (p,n)
As they often show similar behaviors, we only show a subset of the experimental results for
brevity. The three estimators LW s, LW r and LW m have a very similar behavior compared
to LW u in this scenario, that’s why we will only show the comparison with LW m, having the
best performance among the three. The results are shown in figure 1. The black contour on the
surface plots is the iso-line at level 0, where the expected losses are equal. In this scenario, LW u
is constantly better than the other estimators, and the important difference is in the part p > n,
where the mean estimation affects a lot the overall covariance estimation.

Convergence study
We now fix c = pn/n and study the convergence of the different algorithms we cited in the
experimental setup. We only show the results with c = 1 as the other cases only widen the
differences but do not change the order. The cases t10 and t8.5-distributions are very similar,
that’s why we show only the t8.5 one. The key difference between the Gaussian case and the
t-distribution, is that the OAS doesn’t converge in the latter, while not being so efficient in the
Gaussian case which is tailored for it. The results are shown in figure 2.

4.3.2 Covariance drawn from normalized Wishart

Study on a grid over (p,n)
The three estimators LW r and LW m have a very similar behavior compared to LW u in this
scenario, that’s why we will only show the comparison with LW m, having the best performance
among the two. Moreover, the results between the t10 and t8.5-distributions are very similar, so
we will only show the t8.5 case. The results are shown in figures 3 and 4. The black contour
on the surface plots is the iso-line at level 0, here it is where the losses are equal. In the case
p > n, LW u is far better than the other estimators, where the mean estimation affects a lot the
overall covariance estimation. In a finite subset of the part n > p, LW s is slightly better. LW m
presents no significant advantage compared to the two others.

10



Figure 1: With p the dimension, n the number of samples, the axis z shows the difference of the
log10 of the expected losses between LW m and LW u. The losses are relative to the theoretical
bound LW op. The samples are drawn with a Gaussian (left)/t8.5 (right) distribution, Σ = Ip.

Figure 2: oss comparison to LW op, Gaussian (left)/t8.5 (right) distribution, Σ = Ip, c = 1.
Here, note that LW ex and LW op have both null loss, we didn’t plot them.
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Figure 3: With p the dimension, n the number of samples, the axis z shows the difference of the
log10 of the expected losses between LW m (left)/LW s (right) and LW u. The losses are relative
to the theoretical bound LW op. Samples are drawn from a Gaussian distribution, random Σ.
The black contour is the iso-line at level 0, where the expected losses are equal.

Figure 4: With p the dimension, n the number of samples, the axis z shows the difference of the
log10 of the expected losses between LW m (left)/LW s (right) and LW u. The losses are relative
to the theoretical bound LW op. Samples are drawn from a t8.5-distribution, random Σ. The
black contour is the iso-line at level 0, where the expected losses are equal.
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Figure 5: Loss comparison to LW op, Gaussian (left)/t8.5 (right) distribution, random Σ, c = 1

Figure 6: Loss comparison to LW op, Gaussian (left)/t8.5 (right) distribution, random Σ, c = 4.
Note that LW r and LW m are not discernable.

Convergence study
We fix c = pn/n and study the convergence of the different algorithms we cited in the experi-
mental setup. The cases t10 and t8.5-distributions being very similar, we only show t8.5. The key
difference between the Gaussian case and the t-distribution, is that the OAS doesn’t converge in
the latter, while not being so efficient in the Gaussian case which is tailored for it. The results
are shown in figures 5 and 6.

5 Conclusion

In this work, we extended the linear shrinkage approach of Ledoit and Wolf [10] for covariance
matrix estimation to the case where the mean of the distribution is unknown. Theoretically,
we showed that in this case we have similar asymptotic properties as in the situation when the
mean is known. Four different estimators emerged, three around those implemented in Scik-
itLearn or recommended by Ledoit and Wolf, and one naturally emerging from the theoretical
proofs. Experimentally, the latter showed improved performances in a large spectrum of situa-
tions compared to ScikitLearn 1.2.2 baselines and to the three other estimators presented in the
theoretical part. The gain in performance is particularly high when the dimension is bigger than
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the number of samples, while the differences are comparably low when dimension is smaller than
the number of samples.

Ledoit and Wolf developed several non-linear shrinkage estimators where the mean is known
[15, 16, 17]. Work needs to be conducted to investigate if similar approach can be used to extend
their non-linear frameworks.
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6 Appendix A: Proofs of the technical results

For brevity, we omit the subscript n; but it is understood that everything depends on n. Coef-
ficients of Λ are denoted λij , and if not stated otherwise, sum indices i, j, l,m are in J1, pK and
k1, k

′
1, k2, k

′
2, ... are in J1, nK. Moreover, we denote ȳ = 1

n

∑
k y·,k. We recall that, from Remark

2, as all the estimators are invariant by change of mean from the definition of X̃ = X−
∑
kX·,k,

we assume E[X] = 0 for the simplicity of notations.

6.1 Technical lemma

Frequently used identities are proven in preamble of the other proofs here.

6.1.1 Identity 1

Let (i, j) ∈ J1, pK2, then:

∑
k

(yik − ȳi)(yjk − ȳj) =
∑
k

(
yik −

1

n

∑
k′

yik′

)(
yjk −

1

n

∑
k′′

yjk′′

)

=
1

n2

∑
k,k′,k′′

(yik − yik′)(yjk − yjk′′)

=
1

n2

∑
k,k′,k′′

(yikyjk − yik′yjk − yikyjk′′ + yik′yjk′′)

=
1

n2

∑
k,k′,k′′

(yikyjk − yikyjk′ − yikyjk′ + yikyjk′) (re-indexing)

=
1

n2

∑
k,k′,k′′

yik(yjk − yjk′)

∑
k

(yik − ȳi)(yjk − ȳj) =
1

n

∑
k,k′ 6=k

yik(yjk − yjk′).
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(4)

6.1.2 Identity 2

1

p

∑
i,j

λ2
ij = ‖Λ‖2p = ‖Σ‖2p = ‖Σ− µI‖2p + ‖µI‖2p = α2 + µ2. (5)

6.1.3 Identity 3

1

p

∑
i,j

λiiλjj =
1

p

(∑
i

λii

)2

=
1

p
tr(Λ)

2
=

1

p
tr(Σ)

2
= p〈Σ, I〉2p = pµ2. (6)

6.2 Proof of Lemma 1

We have:

‖Σ‖2 = ‖Λ‖2 =
1

p

p∑
i=1

E[y2
i1]2 ≤ 1

p

p∑
i=1

E[y4
i1] ≤

√√√√1

p

p∑
i=1

E[y8
i1] ≤

√
K2. (7)

As µ = 〈Σ, I〉 ≤ ‖Σ‖, µ remains bounded as n goes to infinity.
Also, α2 = ‖Σ− µI‖2 = ‖Σ‖2 − µ2, so remains bounded as n goes to infinity too.
For β2, we will deeply decompose the expectation. This is not absolutely necessary to prove the
boundedness, but the decomposition will be of utter importance in the following proofs. So, we
have:

β2 = E[‖S − Σ‖2]

=
1

p

∑
i,j

E

( 1

n− 1

∑
k

(yik − ȳi)(yjk − ȳj)− λij

)2


=
1

p

∑
i,j

E


 1

n(n− 1)

∑
k,k′ 6=k

yik(yjk − yjk′)− λij

2
 (Identity 1)

β2 =
1

p

∑
i,j

1

n2(n− 1)2

∑
k1

∑
k′1 6=k1

∑
k2

∑
k′2 6=k2

E
[(
yik1(yjk1 − yjk′1)− λij

) (
yik2(yjk2 − yjk′2)− λij

)]
.

(8)

We denote, for k1, k
′
1 6= k1, k2, k

′
2 6= k2:

Eij(k1, k
′
1, k2, k

′
2) = E

[(
yik1(yjk1 − yjk′1)− λij

) (
yik2(yjk2 − yjk′2)− λij

)]
. (9)

• If |{k1, k
′
1} ∩ {k2, k

′
2}| = 0: Eij(k1, k

′
1, k2, k

′
2) = 0.

• If |{k1, k
′
1} ∩ {k2, k

′
2}| = 1:

– If k1 = k2: then k′1 6= k′2, and k1 6= k′2. So,

Eij(k1, k
′
1, k1, k

′
2) = E

[(
yik1(yjk1 − yjk′1)− λij

) (
yik1(yjk1 − yjk′2)− λij

)]
= E

[
(yik1yjk1 − λij)

2
]

= V[yik1yjk1 ]

Eij(k1, k
′
1, k1, k

′
2) = V[yi1yj1].

(10)
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Moreover, the number of terms in the initial sum on k1, k
′
1 6= k1, k2, k

′
2 6= k2 satisfying

the conditions of this case on the indices is:∣∣{(k1, k
′
1, k2, k

′
2) ∈ J1, nK4|k′1 6= k1, k

′
2 6= k2, |{k1, k

′
1} ∩ {k2, k

′
2}| = 1, k1 = k2

}∣∣
= n(n− 1)(n− 2).

(11)

– If k1 = k′2 (or similarly k′1 = k2): then k′1 6= k2 and k1 6= k2. So, Eij(k1, k
′
1, k2, k1) = 0.

– If k′1 = k′2: Eij(k1, k
′
1, k2, k

′
1) = 0.

• If |{k1, k
′
1} ∩ {k2, k

′
2}| = 2:

– If k1 = k2 and k′1 = k′2: then k1 6= k′1. So,

Eij(k1, k
′
1, k1, k

′
1) = E

[(
yik1(yjk1 − yjk′1)− λij

)2]
= V[yik1yjk1 ] + λiiλjj

Eij(k1, k
′
1, k1, k

′
1) = V[yi1yj1] + λiiλjj .

(12)

Moreover, the number of terms in the initial sum on k1, k
′
1 6= k1, k2, k

′
2 6= k2 satisfying

the conditions of this case on the indices is:∣∣{(k1, k
′
1, k2, k

′
2) ∈ J1, nK4|k′1 6= k1, k

′
2 6= k2, |{k1, k

′
1} ∩ {k2, k

′
2}| = 2, k1 = k2, k

′
1 = k′2

}∣∣
= n(n− 1).

(13)

– If k1 = k′2 and k′1 = k2: then k1 6= k′1. So,

Eij(k1, k
′
1, k
′
1, k1) = E

[(
yik1(yjk1 − yjk′1)− λij

) (
yik′1(yjk′1 − yjk1)− λij

)]
Eij(k1, k

′
1, k
′
1, k1) = λ2

ij .
(14)

Moreover, the number of terms in the initial sum on k1, k
′
1 6= k1, k2, k

′
2 6= k2 satisfying

the conditions of this case on the indices is:∣∣{(k1, k
′
1, k2, k

′
2) ∈ J1, nK4|k′1 6= k1, k

′
2 6= k2, |{k1, k

′
1} ∩ {k2, k

′
2}| = 2, k1 = k′2, k

′
1 = k2

}∣∣
= n(n− 1).

(15)

Using the latter decomposition on (k1, k
′
1, k2, k

′
2), we deduce:

β2 =
1

p

∑
i,j

1

n2(n− 1)2

[
n(n− 1)(n− 2)V[yi1yj1] + n(n− 1)(V[yi1yj1] + λiiλjj) + n(n− 1)λ2

ij

]
β2 =

1

pn

∑
i,j

V[yi1yj1] +
p+ 1

n(n− 1)
µ2 +

1

n(n− 1)
α2 (Identities 2 & 3).

(16)

• µ2 is bounded when n goes to infinity, so p+1
n(n−1)µ

2 ≤ K1+1
n−1 µ

2 remains bounded too.

• α2 is bounded when n goes to infinity, so 1
n(n−1)α

2 remains bounded too.
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• Finally, following (Ledoit and Wolf, 2004) [10] proof of Lemma 3.1,

1

pn

∑
i,j

V[yi1yj1] ≤ 1

pn

∑
i,j

E[y2
i1y

2
j1]

≤ 1

pn

∑
i,j

√
E[y4

i1]E[y4
j1] (Cauchy-Schwarz)

≤ 1

pn

∑
i,j

4

√
E[y8

i1]E[y8
j1] (Cauchy-Schwarz)

=
p

n

(∑
i

1

p
4

√
E[y8

i1]

)2

≤ p

n

√√√√(∑
i

1

p
E[y8

i1]

)
(Jensen for 4

√
· concave)

1

pn

∑
i,j

V[yi1yj1] ≤ K1

√
K2.

(17)

So, β2 remains bounded as n goes to infinity. Finally, δ2 = α2 + β2 is also bounded as n goes to
infinity, which conclude the proof of the lemma.

6.3 Proof of Theorem 1

We have:

µ2 + θ2 =

(
E

[
1

p

∑
i

y2
i1

])2

+ V

[
1

p

∑
i

y2
i1

]

= E

(1

p

∑
i

y2
i1

)2


=
1

p2

∑
ij

E
[
y2
i1y

2
j1

]
=

1

p2

∑
ij

V [yi1yj1] + λ2
ij

=
1

p
(α2 + µ2) +

1

p2

∑
ij

V [yi1yj1] (Identity 2)

µ2 + θ2 ≤ 1

p
(α2 + µ2) +

√
K2 (Proof of Lemma 1).

(18)

As α2 and µ2 remains bounded as n goes to infinity, so is θ2. And, from the proof of Lemma 1:

β2 =
1

pn

∑
i,j

V[yi1yj1] +
p+ 1

n(n− 1)
µ2 +

1

n(n− 1)
α2. (19)

17



So,

β2 =
p

n

(
µ2 + θ2 − 1

p
(α2 + µ2)

)
+

p+ 1

n(n− 1)
µ2 +

1

n(n− 1)
α2

=
p

n

(
µ2 + θ2

)
− 1

n(n− 1)
α2 +

p− n+ 2

n(n− 1)
µ2.

(20)

As α2, µ2 and p
n remains bounded as n goes to infinity, immediately we have:

β2 − p

n

(
µ2 + θ2

)
−→
n→∞

0. (21)

6.4 Proof of Lemma 2

By linearity of the inner product, we trivially have: E[m] = µ. For the quartic mean convergence,
we write:

E[(m− µ)4] = E

(1

p

∑
i

1

n− 1

∑
k

(
(yik − ȳi)2 − n− 1

n
λii

))4


= E

( 1

n− 1

∑
k

1

p

∑
i

(
(yik − ȳi)2 − n− 1

n
λii

))4
 .

(22)

Using Identity 1, we obtain:

E[(m− µ)4] =
1

(n− 1)4

∑
k1,k2,k3,k4
k′1,k

′
2,k
′
3,k
′
4

E

[[
1

p

∑
i

1

n

(
y2
ik1 − λii

)
− 1

n

(
yik1yik′1 − δk1=k′1

λii
)]

×

[
1

p

∑
i

1

n

(
y2
ik2 − λii

)
− 1

n

(
yik2yik′2 − δk2=k′2

λii
)]

×

[
1

p

∑
i

1

n

(
y2
ik3 − λii

)
− 1

n

(
yik3yik′3 − δk3=k′3

λii
)]

×

[
1

p

∑
i

1

n

(
y2
ik4 − λii

)
− 1

n

(
yik4yik′4 − δk4=k′4

λii
)]]

.

(23)
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E[(m− µ)4] =
1

(n− 1)4

∑
k1,k2,k3,k4
k′1,k

′
2,k
′
3,k
′
4

E

[
4∏
s=1

(
1

pn

∑
i

(y2
iks − λii)

)]

− 4E

[
3∏
s=1

(
1

pn

∑
i

(y2
iks − λii)

)(
1

pn

∑
i

(yik4yik′4 − δk4=k′4
λii)

)]

+ 6E

[
2∏
s=1

(
1

pn

∑
i

(y2
iks − λii)

)
4∏
t=3

(
1

pn

∑
i

(yiktyik′t − δkt=k′tλii)

)]

− 4E

[(
1

pn

∑
i

(y2
ik1 − λii)

)
4∏
t=2

(
1

pn

∑
i

(yiktyik′t − δkt=k′tλii)

)]

+ E

[
4∏
t=1

(
1

pn

∑
i

(yiktyik′t − δkt=k′tλii)

)]
.

(24)

If k1, k
′
1, k2, k

′
2, k3, k

′
3, k4, k

′
4 are all different, then the expectation in the sum equals 0. So there

are at most 28n7 +O(n6) non-zero terms in the sum.
Now, let’s find a bound of those expectations. Let’s first note that, for all (k, k′) ∈ J1, nK2 and
i ∈ J1, pK:

E
[(
yikyik′ − δkt=k′tλii

)4]
= E

[
(yikyik′ − E[yikyik′ ])

4
]

=

E[(yikyik′)
4]− 4E[(yikyik′)

3]E[yikyik′ ] + 6E[(yikyik′)
2]E[yikyik′ ]

2 − 3E[yikyik′ ]
4.

(25)

If k = k′ then E[(yikyik′)
3]E[yikyik′ ] ≥ 0 and if k 6= k′, E[(yikyik′)

3]E[yikyik′ ] = 0 ≥ 0, so:

E
[(
yikyik′ − δkt=k′tλii

)4] ≤ E[(yikyik′)
4] + 6E[(yikyik′)

2]E[yikyik′ ]
2

≤ E[(yikyik′)
4] + 6E[(yikyik′)

4] (Cauchy-Schwarz)

E
[(
yikyik′ − δkt=k′tλii

)4] ≤ 7E[(yikyik′)
4].

(26)
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Back to the bound of our expectation, let N ∈ J1, 4K, and we have:

∣∣∣∣∣E
[
N∏
s=1

(
1

pn

∑
i

(y2
iks − λii)

)
4∏

t=N+1

(
1

pn

∑
i

(yiktyik′t − δkt=k′tλii)

)]∣∣∣∣∣
≤ 1

n4

N∏
s=1

4

√√√√√E

(1

p

∑
i

(y2
iks
− λii)

)4
 4∏
t=N+1

4

√√√√√E

(1

p

∑
i

(yiktyik′t − δkt=k′tλii)

)4
 (2 Cauchy-Schwarz)

≤ 1

n4

N∏
s=1

4

√
1

p

∑
i

E[(y2
iks
− λii)4]

4∏
t=N+1

4

√
1

p

∑
i

E[(yiktyik′t − δkt=k′t)4] (Jensen)

≤ 7

n4

N∏
s=1

4

√
1

p

∑
i

E[y8
iks

]

4∏
t=N+1

4

√
1

p

∑
i

E[y4
ikt
y4
ik′t

] (Previous remark)

≤ 7

n4

N∏
s=1

4

√
1

p

∑
i

E[y8
iks

]

4∏
t=N+1

4

√
1

p

∑
i

E[y8
ikt

] (Jensen if kt 6= k′t)

≤ 7

n4

4∏
s=1

4

√
1

p

∑
i

E[y8
iks

]

≤ 7

n4

1

p

∑
i

E[y8
ik1 ]

≤ 7K2

n4
.

(27)

So, in conclusion of this proof,

E[(m− µ)4] ≤ 7(1 + 4 + 6 + 4 + 1)
28n7 +O(n6)

n4(n− 1)4
K2 −→

n→∞
0. (28)

6.5 Proof of Corollary 2

We have:

V[m2] = E[m4]− E[m2]2

= E[(m− µ+ µ)4]− E[(m− µ+ µ)2]2

= E[(m− µ)4] + 4E[(m− µ)3]µ+ 6E[(m− µ)2]µ2 + µ4 − E[(m− µ)2]2 − 2E[(m− µ)2]µ2 − µ4

V[m2] = E[(m− µ)4] + 4E[(m− µ)3]µ+ 4E[(m− µ)2]µ2 − E[(m− µ)2]2.

(29)

And, from Lemma 2, E[(m−µ)4]→0, and so goes for the smaller moments by Jensen inequality,
and µ is bounded from Lemma 1. So, V[m2]→0.
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6.6 Proof of Lemma 3

6.6.1 Preliminary combinatorial result

Let K ∈ N∗, and K indices (k1, ..., kK) ∈ J1, nKK .
Let’s associate a graph with K vertices V = {1, ...,K} to this set of indices. The set of edges E
is built as following: there is an edge between the node a ∈ V and b ∈ V, a 6= b (we don’t allow
self-loops), if the corresponding indices are equal, i.e if ka = kb. We finally define our graph
G = (V, E).

Proposition 1. Let G = (V, E) a graph with K vertices generated from some indices (k
(0)
1 , ..., k

(0)
K ) ∈

J1, nKK with the procedure described previously. Suppose G has C ∈ J1,KK connected components.

Then, there are
∏C−1
i=0 (n− i) set of indices (k1, ..., kK) ∈ J1, nKK which have the associated graph

G.

For each node v ∈ V, v belongs to a unique connected component that we denote c(v) ∈ J1, CK.
Then, the function:

x ∈
{
x ∈ J1, nKC , x1, ..., xC all different

}
7→ (xc(1), ...., xc(K))

is a bijection between
{
x ∈ J1, nKC , x1, ..., xC all different

}
and{

(k1, ..., kK) ∈ J1, nKK which have the associated graph G
}

. Immediately, we deduce that its

cardinal is equal to
∏C−1
i=0 (n− i).

6.6.2 Proof of Lemma 3

From the proof of Lemma 3.3 in (Ledoit and Wolf, 2004) [10], we have:

d2 − δ2 = −(m− µ)2 + 2µ(µ−m) +
(
‖S‖2 − E[‖S‖2]

)
. (30)

The first two terms converge to 0 in quadratic mean thanks to Lemma 2. Let’s show that the
last term converges to 0 in quadratic mean too, i.e V[‖S‖2] −→

n→∞
0 .
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Decomposing ‖S‖2, we have:

‖S‖2 =
1

p

∥∥∥∥∥ 1

n− 1

∑
k

(
X·k − X̄

) (
X·k − X̄

)T∥∥∥∥∥
2

=
1

p

∥∥∥∥∥ 1

n− 1

∑
k

(
Y·k − Ȳ

) (
Y·k − Ȳ

)T∥∥∥∥∥
2

=
1

p(n− 1)2

∑
i,j

(∑
k

(yik − ȳi)(yjk − ȳj)

)2

=
1

p(n− 1)2

∑
i,j

 1

n

∑
k,k′

yik(yjk − yjk′)

2

(Identity 1)

=
1

pn2(n− 1)2

∑
i,j

 ∑
k1,k′1 6=k1

yik1(yjk1 − yjk′1)

 ∑
k2,k′2 6=k2

yik2(yjk2 − yjk′2)


=

p

n2(n− 1)2

∑
k1,k′1 6=k1

∑
k2=k′1,k

′
2 6=k2

1

p2

∑
i,j

yik1yik2
(
yjk1yjk2 − yjk1yjk′2 − yjk′1yjk2 + yjk′1yjk′2

)
+

p

n2(n− 1)2

∑
k1,k′1 6=k1

∑
k2 6=k′1,k′2 6=k2

1

p2

∑
i,j

yik1yik2
(
yjk1yjk2 − yjk1yjk′2 − yjk′1yjk2 + yjk′1yjk′2

)
=

p

n2(n− 1)2

∑
k1,k′1 6=k1

∑
k2=k′1,k

′
2 6=k2

1

p2

∑
i,j

yik1yik′1

(
yjk1yjk′1 − yjk1yjk′2 − y

2
jk′1

+ yjk′1yjk′2

)
+

p

n2(n− 1)2

∑
k1,k′1 6=k1

∑
k2 6=k′1,k′2 6=k2

1

p2

∑
i,j

yik1yik2
(
yjk1yjk2 − yjk1yjk′2 − yjk′1yjk2 + yjk′1yjk′2

)

=
p

n2(n− 1)2

∑
k1,k′1 6=k1,k′2 6=k′1

(1

p

∑
i

yik1yik′1

)2

− 1

p2

∑
i,j

yik1yik′1

(
yjk1yjk′2 + y2

jk′1
− yjk′1yjk′2

)
+

p

n2(n− 1)2

∑
k1,k

′
1 6=k1

k2 6=k′1,k
′
2 6=k2

(1

p

∑
i

yik1yik2

)2

− 1

p2

∑
i,j

yik1yik2
(
yjk1yjk′2 + yjk′1yjk2 − yjk′1yjk′2

) .

(31)
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‖S‖2 =
p

n2(n− 1)

∑
k1,k′1 6=k1

(
1

p

∑
i

yik1yik′1

)2

(t1)

− p

n2(n− 1)2

∑
k1,k′1 6=k1,k′2 6=k′1

1

p2

∑
i,j

yik1yik′1yjk1yjk′2 (t2)

− p

n2(n− 1)

∑
k1,k′1 6=k1

1

p2

∑
i,j

yik1yik′1y
2
jk′1

(t3)

+
p

n2(n− 1)2

∑
k1,k′1 6=k1,k′2 6=k′1

1

p2

∑
i,j

yik1yik′1yjk′1yjk′2 (t4)

+
p

n2(n− 1)2

∑
k1,k

′
1 6=k1

k2 6=k′1,k
′
2 6=k2

(
1

p

∑
i

yik1yik2

)2

(t5)

− p

n2(n− 1)2

∑
k1,k

′
1 6=k1

k2 6=k′1,k
′
2 6=k2

1

p2

∑
i,j

yik1yik2yjk1yjk′2 (t6)

− p

n2(n− 1)

∑
k1,k′1 6=k1,k2 6=k′1

1

p2

∑
i,j

yik1yik2yjk′1yjk2 (t7)

+
p

n2(n− 1)2

∑
k1,k

′
1 6=k1

k2 6=k′1,k
′
2 6=k2

1

p2

∑
i,j

yik1yik2yjk′1yjk′2 (t8).

(32)

We notice that, re-injecting the missing terms into the sum:

(t2) = − p

n2(n− 1)2

∑
k1,k′1 6=k1,k′2 6=k′1

1

p2

∑
i,j

yik1yik′1yjk1yjk′2

(t2) = − p

n2(n− 1)2

∑
k1,k′1,k

′
2

1

p2

∑
i,j

(
yik1yik′1yjk1

(
yjk′2 −

1

n
yjk′1

)
− 1

n
y2
ik1yjk1

(
yjk′2 −

1

n
yjk1

))
.

(33)

Similarly, we have:

(t4) =
p

n2(n− 1)2

∑
k1,k′1 6=k1,k′2 6=k′1

1

p2

∑
i,j

yik1yik′1yjk′1yjk′2

(t4) =
p

n2(n− 1)2

∑
k1,k′1,k

′
2

1

p2

∑
i,j

(
yik1yik′1yjk1

(
yjk′2 −

1

n
yjk1

)
− 1

n
y2
ik1yjk1

(
yjk′2 −

1

n
yjk1

))
.

(34)

So,

(t2) + (t4) =
p

n2(n− 1)2

∑
k1,k′1 6=k1

1

p2

∑
i,j

yik1yik′1yjk1(yjk′1 − yjk1)

(t2) + (t4) =
1

n− 1
((1) + (3)) .

(35)
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And,

(t5) =
p

n2(n− 1)2

∑
k1,k

′
1 6=k1

k2 6=k′1,k
′
2 6=k2

(
1

p

∑
i

yik1yik2

)2

=
p(n− 2)

n2(n− 1)

∑
k1,k2 6=k1

(
1

p

∑
i

yik1yik2

)2

+
p

n2

∑
k1

(
1

p

∑
i

y2
ik1

)2

(t5) = (n− 2)× (t1) +
p

n2

∑
k1

(
1

p

∑
i

y2
ik1

)2

.

(36)

Moreover,

(t6) = − p

n2(n− 1)2

∑
k1,k

′
1 6=k1

k2 6=k′1,k
′
2 6=k2

1

p2

∑
i,j

yik1yik2yjk1yjk′2

= − p(n− 2)

n2(n− 1)2

∑
k1,k2 6=k1
k′2 6=k2

1

p2

∑
i,j

yik1yik2yjk1yjk′2 −
p

n2(n− 1)

∑
k1

k′2 6=k1

1

p2

∑
i,j

y2
ik1yjk1yjk′2

(t6) = (n− 2)× (t2) + (t3).

(37)

And,

(t7) = − p

n2(n− 1)

∑
k1,k′1 6=k1,k2 6=k′1

1

p2

∑
i,j

yik1yik2yjk′1yjk2

= − p

n2(n− 1)

∑
k2,k′1 6=k2,k1 6=k′1

1

p2

∑
i,j

yik1yik2yjk′1yjk2 (re-indexing)

(t7) = (n− 1)× (t2).

(38)

Finally, we obtain,

‖S‖2 =
p

n2

∑
k1

(
1

p

∑
i

y2
ik1

)2

(t1′)

+
p(n2 − 2n+ 2)

n2(n− 1)2

∑
k1,k′1 6=k1

(
1

p

∑
i

yik1yik′1

)2

(t2′)

− p(2n− 3)

n2(n− 1)2

∑
k1,k′1 6=k1,k′2 6=k′1

1

p2

∑
i,j

yik1yik′1yjk1yjk′2 (t3′)

− p(2n− 1)

n2(n− 1)2

∑
k1,k′1 6=k1

1

p2

∑
i,j

yik1yik′1y
2
jk′1

(t4′)

+
p

n2(n− 1)2

∑
k1,k

′
1 6=k1

k2 6=k′1,k
′
2 6=k2

1

p2

∑
i,j

yik1yik2yjk′1yjk′2 (t5′).

(39)
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It is sufficient to show that the variance of each of the 5 term converges to 0 as n goes to
infinity in order to prove that V[‖S‖2] converges to 0 as n goes to infinity.

• V[(t1′)]→ 0 immediately from the proof of Lemma 3.3 in (Ledoit and Wolf, 2004) [10].

• V[(t2′)]→ 0 immediately from the proof of Lemma 3.3 in (Ledoit and Wolf, 2004) [10].

• Let’s prove that V[(t3′)]→ 0.

V[(t3′)] =
p2(2n− 3)2

n4(n− 1)4

∑
k1,k

′
1 6=k1

k′2 6=k
′
1

∑
k3,k

′
3 6=k3

k′4 6=k
′
3

∑
i,j,l,m

1

p4
Cov(yik1yik′1yjk1yjk′2 , ylk3ylk′3ymk3ymk′4).

(40)

Let (k1, k
′
1, k
′
2, k3, k

′
3, k
′
4) ∈ J1, nK6 respecting the conditions given in the sums. Suppose

there exists (i, j, l,m) ∈ J1, pK4 such that Cov(yik1yik′1yjk1yjk′2 , ylk3ylk′3ymk3ymk′4) 6= 0. Let
consider the graph G = (V, E) built from (k1, k

′
1, k
′
2, k3, k

′
3, k
′
4) following the procedure de-

scribed in the preliminary combinatorial result.
As for some (i, j, l,m) ∈ J1, pK4 we have Cov(yik1yik′1yjk1yjk′2 , ylk3ylk′3ymk3ymk′4) 6= 0, by
independence, the nodes 1’, 2’, 3’, and 4’ can’t be isolated. As a consequence, G has at
least 2 edges.

– When the graph G has only 2 edges, we have either of the following conditions, that
we denote the (*) conditions:

∗ (k′1 = k′3) ∧ (k′2 = k′4) ∧ (k1 6= k3) ∧ (k1 6= k′2) ∧ (k3 6= k′4),

∗ (k′1 = k′4) ∧ (k′3 = k′2) ∧ (k1 6= k3) ∧ (k1 6= k′2) ∧ (k3 6= k′4).

Note that the case where (k′1 = k′2) ∧ (k′3 = k′4) is impossible due to the constraints
on the indices in the sum. In the first case, we have:

Cov(yik1yik′1yjk1yjk′2 , ylk3ylk′3ymk3ymk′4) = E
[
yik1yik′1yjk1yjk′2ylk3ylk′3ymk3ymk′4

]
= E

[
yik1yjk1ylk3ymk3yik′1ylk′3yjk′2ymk′4

]
= E

[
yik1yjk1ylk3ymk3yik′1ylk′1yjk′2ymk′2

]
= E

[
yik1yjk1 ]E[ ylk3ymk3 ]E[ yik′1ylk′1 ]E[ yjk′2ymk′2

]
Cov(yik1yik′1yjk1yjk′2 , ylk3ylk′3ymk3ymk′4) = λijλlmλilλjm.

(41)

And in the second case, we have:

Cov(yik1yik′1yjk1yjk′2 , ylk3ylk′3ymk3ymk′4) = E
[
yik1yik′1yjk1yjk′2ylk3ylk′3ymk3ymk′4

]
= E

[
yik1yjk1ylk3ymk3yik′1ymk′4yjk′2ylk′3

]
= E

[
yik1yjk1ylk3ymk3yik′1ymk′1yjk′2ylk′2

]
= E

[
yik1yjk1 ]E[ ylk3ymk3 ]E[ yik′1ymk′1 ]E[ yjk′2ylk′2

]
Cov(yik1yik′1yjk1yjk′2 , ylk3ylk′3ymk3ymk′4) = λijλlmλimλjl.

(42)
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Using the fact that i 6= j =⇒ λij = 0, in both cases we have:∑
i,j,l,m

Cov(yik1yik′1yjk1yjk′2 , ylk3ylk′3ymk3ymk′4) =
∑
i

λ4
ii

= p
∑
i

1

p
E[y2

i1]4

≤ p
∑
i

1

p
E[y8

i1]

≤ p
∑
i

1

p
E[y8

i1]∑
i,j,l,m

Cov(yik1yik′1yjk1yjk′2 , ylk3ylk′3ymk3ymk′4) ≤ pK2.

(43)

Under the conditions (*), G has exactly 4 connected components. So, from the pre-
liminary combinatorial result, there are 2n(n − 1)(n − 2)(n − 3) different 6-uples of
indices k respecting the (*) conditions. We finally have:

p2(2n− 3)2

n4(n− 1)4

∑
(k1,k

′
1,k
′
2,k3,k

′
3,k
′
4)

under (*) conditions

∑
i,j,l,m

1

p4
Cov(yik1yik′1yjk1yjk′2 , ylk3ylk′3ymk3ymk′4)

≤ p2(2n− 3)2

n4(n− 1)4
× 2n(n− 1)(n− 2)(n− 3)

1

p4
pK2

≤ 2
(2n− 3)2

pn3(n− 1)
K2

≤ 8

n(n− 1)
K2

−→
n→∞

0.

(44)

– Otherwise, G has 3 edges or more: we denote it as the (**) condition. As it has
only 6 vertices, there are at most 3 connected component. So, from the preliminary
combinatorial result, there are n(n − 1)(n − 2) + n(n − 1) + n = n((n − 1)2 + n)
different 6-uples of indices k that have G as associated graph. Moreover, there are a
finite number N ∈ N (independent of n) of graphs with 6 vertices that have at most
3 connected components.
So, there are at most Nn((n − 1)2 + n) different 6-uples of indices k such that the
associated graph G has 3 edges or more.
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And we have:∑
i,j,l,m

1

p4
|Cov(yik1yik′1yjk1yjk′2 , ylk3ylk′3ymk3ymk′4)|

≤
∑
i,j,l,m

1

p4

√
V[yik1yik′1yjk1yjk′2 ]V[ylk3ylk′3ymk3ymk′4 ]

≤
∑
i,j,l,m

1

p4

√
E[y2

ik1
y2
ik′1
y2
jk1
y2
jk′2

]E[y2
lk3
y2
lk′3
y2
mk3

y2
mk′4

]

≤
∑
i,j,l,m

1

p4
8

√
E[y8

ik1
]E[y8

ik′1
]E[y8

jk1
]E[y8

jk′2
]E[y8

lk3
]E[y8

lk′3
]E[y8

mk3
]E[y8

mk′4
]

≤
∑
i,j,l,m

1

p4
4

√
E[y8

i1]E[y8
j1]E[y8

l1]E[y8
m1]

≤

(∑
i

1

p
4

√
E[y8

i1]

)4

≤
∑
i

1

p
E[y8

i1]

≤ K2.

(45)

So, using both of the previous inequalities,

p2(2n− 3)2

n4(n− 1)4

∑
(k1,k

′
1,k
′
2,k3,k

′
3,k
′
4)

under (**) condition

∑
i,j,l,m

1

p4
Cov(yik1yik′1yjk1yjk′2 , ylk3ylk′3ymk3ymk′4)

≤ p2(2n− 3)2

n4(n− 1)4
×Nn((n− 1)2 + n)K2

≤ (2n− 3)2

n2(n− 1)4
×Nn((n− 1)2 + n)K2

1K2

−→
n→∞

0.

(46)

So, from both previous cases, we immediately have:

V[(t3′)] −→
n→∞

0. (47)

• Let’s prove that V[(t4′)]→ 0.

V[(t4′)] =
p2(2n− 1)2

n4(n− 1)4

∑
k1

∑
k′1 6=k1

∑
k3

∑
k′3 6=k3

∑
i,j,l,m

1

p4
Cov(yik1yik′1y

2
jk′1
, ylk3ylk′3y

2
mk′3

). (48)

Similarly as the previous case, let (k1, k
′
1, k3, k

′
3) ∈ J1, nK4 respecting the conditions given in

the sums. Suppose there exists (i, j, l,m) ∈ J1, pK4 such that Cov(yik1yik′1y
2
jk′1
, ylk3ylk′3y

2
mk′3

) 6=
0. Let consider the associated graph G = (V, E).
By independence, the nodes 1 and 3 can’t be isolated. As a consequence, G has at most 3
connected components.
Denoting N the number of graphs with at most 3 connected components and 4 vertices,
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from the preliminary combinatorial result, there are at most Nn((n − 1)2 + 1) different
indices (k1, k

′
1, k3, k

′
3) ∈ J1, nK4 such that

∑
i,j,l,m Cov(yik1yik′1y

2
jk′1
, ylk3ylk′3y

2
mk′3

) 6= 0.

Moreover,∑
i,j,l,m

1

p4
|Cov(yik1yik′1y

2
jk′1
, ylk3ylk′3y

2
mk′3

)| ≤
∑
i,j,l,m

1

p4

√
V[y2

jk′1
yik1yik′1 ]V[y2

mk′3
ylk3ylk′3 ]

≤
∑
i,j,l,m

1

p4

√
E[y4

jk′1
y2
ik1
y2
ik′1

]E[y4
mk′3

y2
lk3
y2
lk′3

]

≤
∑
i,j,l,m

1

p4
4

√
E[y8

jk′1
]
√
E[y8

ik1
]E[y8

ik′1
]E[y8

mk′3
]
√
E[y8

lk3
]E[y8

lk′3
]

≤
∑
i,j,l,m

1

p4

4

√
E[y8

j1]
√
E[y8

i1]E[y8
i1]E[y8

m1]
√
E[y8

l1]E[y8
l1]

≤
∑
i,j,l,m

1

p4
4

√
E[y8

i1]E[y8
j1]E[y8

l1]E[y8
m1]

≤

(∑
i

1

p
4

√
E[y8

i1]

)4

≤
∑
i

1

p
E[y8

i1]

∑
i,j,l,m

1

p4
|Cov(yik1yik′1y

2
jk′1
, ylk3ylk′3y

2
mk′3

)| ≤ K2.

(49)

So,

V[(t4′)] ≤ p2(2n− 1)2

n4(n− 1)4
Nn((n− 1)2 + 1)K2

(2n− 1)2

n(n− 1)4
N((n− 1)2 + 1)K2

1K2

V[(t4′)] −→
n→∞

0.

(50)

• Let’s prove that V[(t5′)]→ 0.

V[(t5′)] =
p2

n4(n− 1)4

∑
k1,k

′
1 6=k1

k2 6=k′1,k
′
2 6=k2

∑
k3,k

′
3 6=k3

k4 6=k′3,k
′
4 6=k4

∑
i,j,l,m

1

p4
Cov(yik1yjk′1yik2yjk′2 , ylk3ymk′3ylk4ymk′4).

(51)

Let (k1, k
′
1, k2, k

′
2, k3, k

′
3, k4, k

′
4) ∈ J1, nK8 and (i, j, l,m) ∈ J1, pK4 such that

Cov(yik1yjk′1yik2yjk′2 , ylk3ymk′3ylk4ymk′4) 6= 0.
Let’s consider the associated graph G, built following the procedure described in the pre-
liminary combinatorial result.
For each node a ∈ V, the connected component of G containing a contains at least 2 nodes
(a and at least an other one). Otherwise, a is isolated, which means that ka is different from
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all the other indices, and so by independence, Cov(yik1yjk′1yik2yjk′2 , ylk3ymk′3ylk4ymk′4) = 0,
which is in contradiction which our hypothesis.
As each connected component contains at least 2 nodes, there are at most 4 connected
components in G.
So, from the preliminary combinatorial result, there are at most n(n−1)(n−2)(n−3)+n(n−
1)(n − 2) + n(n − 1) + n = n

(
(n− 1)(n− 2)2 + n

)
different (k1, k

′
1, k2, k

′
2, k3, k

′
3, k4, k

′
4) ∈

J1, nK8 which have the same associated graph G.
Moreover, there is a finite number N ∈ N (independent of n) of graphs with 8 nodes and
at least 4 connected components.
Finally, combining the previous 2 counting, we deduce that there are at mostNn

(
(n− 1)(n− 2)2 + n

)
terms such that

∑
i,j,l,m

1
p4 Cov(yik1yjk′1yik2yjk′2 , ylk3ymk′3ylk4ymk′4) 6= 0.

As previously, we have also,∑
i,j,l,m

1

p4
|Cov(yik1yjk′1yik2yjk′2 , ylk3ymk′3ylk4ymk′4)| ≤ K2. (52)

Finally,

V[(t5′)] ≤ p2

n4(n− 1)4
Nn

(
(n− 1)(n− 2)2 + n

)
K2

≤ N((n− 1)(n− 2)2 + n)

n(n− 1)3
K2

1K2

V[(t5′)] −→
n→∞

0.

(53)

We showed that each of the 5 terms of ‖S‖2 have a variance that converges to 0 as n goes to
infinity.
So,

V[‖S‖2] −→
n→∞

0. (54)

Which concludes the proof of the first part of the lemma:

d2 − δ2 q.m−→
n→∞

0. (55)

Finally, by property of the expectation, we have that E[(d2−E[d2])2] ≤ E[(d2−δ2)2], so it follows
that:

d2 − E[d2]
q.m−→
n→∞

0. (56)
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6.7 Proof of Lemma 4

E[b̄2] = E

[
1

n2

∑
k

∥∥∥∥ n

n− 1
x̃·k(x̃·k)t − S

∥∥∥∥2
]

= E

[
1

n2

∑
k

∥∥∥∥ n

n− 1
x̃·k(x̃·k)t − Σ + Σ− S

∥∥∥∥2
]

= E

[
1

n2

∑
k

∥∥∥∥ n

n− 1
x̃·k(x̃·k)t − Σ

∥∥∥∥2
]
− 1

n
E
[
‖S − Σ‖2

]
= E

[
1

n2

∑
k

∥∥∥∥ n

n− 1
ỹ·k(ỹ·k)t − Λ

∥∥∥∥2
]
− 1

n
β2

=
1

pn2

∑
i,j

∑
k

E

[(
n

n− 1
(yik − ȳi) (yjk − ȳj)− λij

)2
]
− 1

n
β2

=
n

p(n− 1)2

∑
i,j

E

[(
(yi1 − ȳi) (yj1 − ȳj)−

n− 1

n
λij

)2
]
− 1

n
β2

=
n

p(n− 1)2

∑
i,j

E

[(
(yi1yj1 − λij)−

(
ȳiyj1 −

1

n
λij

)
−
(
ȳjyi1 −

1

n
λij

)
+

(
ȳiȳj −

1

n
λij

))2
]
− 1

n
β2

E[b̄2] =
n

p(n− 1)2

∑
i,j

(
V [yi1yj1] + V [ȳiyj1] + V [ȳjyi1] + V [ȳiȳj ]

− 2E
[
(yi1yj1 − λij)

(
ȳiyj1 −

1

n
λij

)]
− 2E

[
(yi1yj1 − λij)

(
ȳjyi1 −

1

n
λij

)]
+ 2E

[
(yi1yj1 − λij)

(
ȳiȳj −

1

n
λij

)]
+ 2E

[(
ȳiyj1 −

1

n
λij

)(
ȳjyi1 −

1

n
λij

)]
− 2E

[(
ȳiyj1 −

1

n
λij

)(
ȳiȳj −

1

n
λij

)]
− 2E

[(
ȳjyi1 −

1

n
λij

)(
ȳiȳj −

1

n
λij

)])
− 1

n
β2.

(57)

We simplify each of the terms into manageable quantities:

• V [ȳiyj1] = 1
n2V[yi1yj1] + n−1

n2 λiiλjj ,

• V [ȳjyi1] = 1
n2V[yi1yj1] + n−1

n2 λiiλjj ,

• V [ȳiȳj ] = 1
n3

(
V[yi1yj1] + (n− 1)(λiiλjj + λ2

ij)
)
,

• E
[
(yi1yj1 − λij)

(
ȳiyj1 − 1

nλij
)]

= 1
nV[yi1yj1],

• E
[
(yi1yj1 − λij)

(
ȳjyi1 − 1

nλij
)]

= 1
nV[yi1yj1],

• E
[
(yi1yj1 − λij)

(
ȳiȳj − 1

nλij
)]

= 1
n2V[yi1yj1],

• E
[(
ȳiyj1 − 1

nλij
) (
ȳjyi1 − 1

nλij
)]

= 1
n2V[yi1yj1] + n−1

n2 λ
2
ij ,

• E
[(
ȳiyj1 − 1

nλij
) (
ȳiȳj − 1

nλij
)]

= 1
n3

(
V[yi1yj1] + (n− 1)(λiiλjj + λ2

ij)
)
,
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• E
[(
ȳjyi1 − 1

nλij
) (
ȳiȳj − 1

nλij
)]

= 1
n3

(
V[yi1yj1] + (n− 1)(λiiλjj + λ2

ij)
)
.

Adding up all the terms, we obtain:

E
[
b̄2
]

=
1

p(n− 1)

∑
i,j

(
n2 − 3n+ 3

n2
V[yi1yj1] +

2n− 3

n2
λiiλjj +

2n− 3

n2
λ2
ij

)
− 1

n
β2

=
1

p(n− 1)

n2 − 3n+ 3

n2

∑
i,j

V[yi1yj1] + p2 2n− 3

n2
〈Σ, I〉2 + p

2n− 3

n2
‖Σ‖2

− 1

n
β2

E
[
b̄2
]

=
1

p(n− 1)

n2 − 3n+ 3

n2

∑
i,j

V[yi1yj1] + p2 2n− 3

n2
µ2 + p

2n− 3

n2
(α2 + µ2)

− 1

n
β2.

(58)

From the proof of Lemma 1, we have:

1

pn

∑
i,j

V[yi1yj1] = β2 − p+ 1

n(n− 1)
µ2 − 1

n(n− 1)
α2. (59)

Denoting: γn = n(n−1)
n2−3n+3 , λn = n2(n−2)

(n−1)(n2−3n+3) , c0 = 1
γn
− 1

n −
λn
γnn2 , c1 = λn

γnn2 , c2 = (p+ 1)c1,

we notice that:

c0 + c1 =
n2 − 3n+ 3

n(n− 1)
− 1

n
,

c1 = −n
2 − 3n+ 3

n2(n− 1)2
+

2n− 3

n2(n− 1)
,

c2 = − (n2 − 3n+ 3)(p+ 1)

n2(n− 1)2
+

(2n− 3)(p+ 1)

n2(n− 1)
.

(60)

We obtain from the previous lines: E[b̄2] = (c0 + c1)β2 + c1α
2 + c2µ

2.
So, we can conclude using δ2 = α2 + β2: E[b̄2] = c0β

2 + c1δ
2 + c2µ

2.

6.8 Proof of Lemma 5

We compute the expectations of m2 and d2.

E[m2] = µ2 + V[m]. (61)

And,

E[d2] = E[‖S −mI‖2]

= E[‖S − µI‖2 + ‖µI −mI‖2 + 2〈S − µI, µI −mI〉]
= δ2 + V[m]− 2V[m]

E[d2] = δ2 − V[m].

(62)

Moreover, from Lemma 4, we have: E[b̄2] = c0β
2
n + c1δ

2
n + c2µ

2
n.

So, combining the last 3 equations, we obtain: E[b̄2] = c0β
2 + c1E[d2]+ c2E[m2]+(c1− c2)V[m].
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6.9 Proof of Lemma 6

b̄2 − E[b̄2] =

[(
1

n2

∑
k

∥∥∥∥ n

n− 1
x̃·kx̃

T
·k − Σ

∥∥∥∥2
)
− E[b̄2]

]

+

[(
1

n2

∑
k

∥∥∥∥ n

n− 1
x̃·kx̃

T
·k − S

∥∥∥∥2
)
−

(
1

n2

∑
k

∥∥∥∥ n

n− 1
x̃·kx̃

T
·k − Σ

∥∥∥∥2
)]

.

(63)

Firstly, we want to show that the variance of the first term converges to 0 a n goes to infinity.
Following the decomposition developed in Lemma 4, we have:

V

[
1

n2

∑
k

∥∥∥∥ n

n− 1
x̃·kx̃

T
·k − Σ

∥∥∥∥2
]

= V

[
1

(n− 1)2

∑
k

∥∥∥∥ỹ·kỹT·k − n− 1

n
Λ

∥∥∥∥2
]

= V

 1

p(n− 1)2

∑
k

∑
i,j

(
(yik − ȳi)(yjk − ȳj)−

n− 1

n
λij

)2


= V

 1

p(n− 1)2

∑
k

∑
i,j

(
(yikyjk − λij)− (ȳiyjk −

1

n
λij)− (yikȳj −

1

n
λij) + (ȳiȳj −

1

n
λij)

)2


= V

[
1

p(n− 1)2

∑
k

∑
i,j

(
[yikyjk − λij ]2 +

[
ȳiyjk −

1

n
λij

]2

+

[
ȳjyik −

1

n
λij

]2

+

[
ȳiȳj −

1

n
λij

]2

− 2

[
(yikyjk − λij)

(
ȳiyjk −

1

n
λij

)]
− 2

[
(yikyjk − λij)

(
ȳjyik −

1

n
λij

)]
+ 2

[
(yikyjk − λij)

(
ȳiȳj −

1

n
λij

)]
+ 2

[(
ȳiyjk −

1

n
λij

)(
ȳjyik −

1

n
λij

)]
− 2

[(
ȳiyjk −

1

n
λij

)(
ȳiȳj −

1

n
λij

)]
− 2

[(
ȳjyik −

1

n
λij

)(
ȳiȳj −

1

n
λij

)])]
.

(64)

We then prove that the variance of each of the 10 separated sums converges to 0. For that, let’s
show a useful inequality.
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6.9.1 Preliminary inequality

Let (k1, k
′
1, k2, k

′
2, k3, k

′
3, k4, k

′
4) ∈ J1, nK8. Then, using multiple Cauchy-Schwarz and Jensen

inequalities, we have:

Cov
((
yik1yjk′1 − λij1k1=k′1

) (
yik2yjk′2 − λij1k2=k′2

)
,
(
ylk3ymk′3 − λlm1k3=k′3

) (
ylk4ymk′4 − λlm1k4=k′4

))
= Cov

(
yik1yjk′1yik2yjk′2 , ylk3ymk′3ylk4ymk′4

)
− λij1k1=k′1

Cov
(
yik2yjk′2 , ylk3ymk′3ylk4ymk′4

)
− λij1k2=k′2

Cov
(
yik1yjk′1 , ylk3ymk′3ylk4ymk′4

)
− λlm1k3=k′3

Cov
(
yik1yjk′1yik2yjk′2 , ylk4ymk′4

)
− λlm1k4=k′4

Cov
(
yik1yjk′1yik2yjk′2 , ylk3ymk′3

)
+ λijλlm1k1=k′1

1k3=k′3
Cov

(
yik2yjk′2 , ylk4ymk′4

)
+ λijλlm1k1=k′1

1k4=k′4
Cov

(
yik2yjk′2 , ylk3ymk′3

)
+ λijλlm1k2=k′2

1k3=k′3
Cov

(
yik1yjk′1 , ylk4ymk′4

)
+ λijλlm1k2=k′2

1k4=k′4
Cov

(
yik1yjk′1 , ylk3ymk′3

)
= Cov

(
yik1yjk′1yik2yjk′2 , ylk3ymk′3ylk4ymk′4

)
− E[yik1yjk′1 ]Cov

(
yik2yjk′2 , ylk3ymk′3ylk4ymk′4

)
− E[yik2yjk′2 ]Cov

(
yik1yjk′1 , ylk3ymk′3ylk4ymk′4

)
− E[ylk3ymk′3 ]Cov

(
yik1yjk′1yik2yjk′2 , ylk4ymk′4

)
− E[ylk4ymk′4 ]Cov

(
yik1yjk′1yik2yjk′2 , ylk3ymk′3

)
+ E[yik1yjk′1 ]E[ylk3ymk′3 ]Cov

(
yik2yjk′2 , ylk4ymk′4

)
+ E[yik1yjk′1 ]E[ylk4ymk′4 ]Cov

(
yik2yjk′2 , ylk3ymk′3

)
+ E[yik2yjk′2 ]E[ylk3ymk′3 ]Cov

(
yik1yjk′1 , ylk4ymk′4

)
+ E[yik2yjk′2 ]E[ylk4ymk′4 ]Cov

(
yik1yjk′1 , ylk3ymk′3

)
≤ 9 4

√
E[y8

i1]E[y8
j1]E[y8

l1]E[y8
m1].

(65)

So, for all (k1, k
′
1, k2, k

′
2, k3, k

′
3, k4, k

′
4) ∈ J1, nK8, we have,∑

i,j,l,m

1

p4
Cov

( (
yik1yjk′1 − λij1k1=k′1

) (
yik2yjk′2 − λij1k2=k′2

)
,

(
ylk3ymk′3 − λlm1k3=k′3

) (
ylk4ymk′4 − λlm1k4=k′4

) )
≤ 9K2.

(66)

6.9.2 Variance of the first term

Now, we can prove that the variance of each of the 10 separated sums converges to 0.
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• We have:

V

 1

p(n− 1)2

∑
k

∑
i,j

(yikyjk − λij)2


=

p2

(n− 1)4

∑
k1,k2

∑
i,j,l,m

1

p4
Cov

(
(yik1yjk1 − λij)

2
, (ylk2ymk2 − λlm)

2
)
.

(67)

If k1 6= k2, the covariance is trivially null. So,

V

 1

p(n− 1)2

∑
k

∑
i,j

(yikyjk − λij)2


=

p2

(n− 1)4

∑
k1

∑
i,j,l,m

1

p4
Cov

(
(yik1yjk1 − λij)

2
, (ylk1ymk1 − λlm)

2
)

≤ K2
1n

3

(n− 1)4

∑
i,j,l,m

1

p4
Cov

(
(yi1yj1 − λij)2

, (yl1ym1 − λlm)
2
)
.

(68)

And we have from the preliminary inequality,∑
i,j,l,m

1

p4
Cov

(
(yi1yj1 − λij)2

, (yl1ym1 − λlm)
2
)
≤ 9K2. (69)

Finally, we can conclude,

V

 1

p(n− 1)2

∑
k

∑
i,j

(yikyjk − λij)2

 ≤ n3

(n− 1)4
× 9K2

1K2

V

 1

p(n− 1)2

∑
k

∑
i,j

(yikyjk − λij)2

 −→
n→∞

0.

(70)

• We have:

V

 1

p(n− 1)2

∑
k

∑
i,j

(
ȳiyjk −

1

n
λij

)2


=
p2

(n− 1)4n4

∑
k1,k

′
1,k
′′
1

k2,k
′
2,k
′′
2

∑
i,j,l,m

1

p4
Cov

((
yik′1yjk1 − λij1k′1=k1

) (
yik′′1 yjk1 − λij1k′′1 =k1

)
,
(
ylk′2ymk2 − λlm1k′2=k2

) (
ylk′′2 ymk2 − λlm1k′′2 =k2

))
.

(71)

If k1, k
′
1, k
′′
1 , k2, k

′
2, k
′′
2 are all different, then, the covariance is null. So there are at most

n6 − n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5) non-zero terms in the sum over k-indices.
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And we have from the preliminary inequality,∑
i,j,l,m

1

p4
Cov

( (
yik′1yjk1 − λij1k′1=k1

) (
yik′′1 yjk1 − λij1k′′1 =k1

)
,

(
ylk′2ymk2 − λlm1k′2=k2

) (
ylk′′2 ymk2 − λlm1k′′2 =k2

) )
≤ 9K2.

(72)

So,

V

 1

p(n− 1)2

∑
k

∑
i,j

(
ȳiyjk −

1

n
λij

)2
 ≤ p2(n6 − n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5))

(n− 1)4n4
× 9K2

≤ n2(n6 − n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5))

(n− 1)4n4
× 9K2

1K2

V

 1

p(n− 1)2

∑
k

∑
i,j

(
ȳiyjk −

1

n
λij

)2
 −→
n→∞

0.

(73)

• Immediately from the previous point,

V

 1

p(n− 1)2

∑
k

∑
i,j

(
ȳjyik −

1

n
λij

)2
 −→
n→∞

0. (74)

• We have:

V

 1

p(n− 1)2

∑
k

∑
i,j

(
ȳiȳj −

1

n
λij

)2


=
p2

(n− 1)4n6

∑
k1,k

′
1,k2,k

′
2

k3,k
′
3,k4,k

′
4

∑
i,j,l,m

1

p4
Cov

((
yik1yjk′1 − λij1k1=k′1

) (
yik2yjk′2 − λij1k2=k′2

)
,
(
ylk3ymk′3 − λlm1k3=k′3

) (
ylk4ymk′4 − λlm1k4=k′4

))
.

(75)

If k1, k
′
1, k2, k

′
2, k3, k

′
3, k4, k

′
4 are all different, then, the covariance is null. So there are at

most n8 − n(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)(n − 6)(n − 7) non-zero terms in the sum
over k-indices.
And we have from the preliminary inequality,∑

i,j,l,m

1

p4
Cov

( (
yik1yjk′1 − λij1k1=k′1

) (
yik2yjk′2 − λij1k2=k′2

)
,

(
ylk3ymk′3 − λlm1k3=k′3

) (
ylk4ymk′4 − λlm1k4=k′4

) )
≤ 9K2.

(76)
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So,

V

 1

p(n− 1)2

∑
k

∑
i,j

(
ȳiȳj −

1

n
λij

)2


≤ p2(n8 − n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)(n− 7))

(n− 1)4n6
× 9K2

≤ n2(n8 − n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)(n− 7))

(n− 1)4n6
× 9K2

1K2

−→
n→∞

0.

(77)

• We have:

V

 1

p(n− 1)2

∑
k

∑
i,j

(yikyjk − λij)
(
ȳiyjk −

1

n
λij

)
=

p2

(n− 1)4n2

∑
k1,k′1,k2,k

′
2

∑
i,j,l,m

1

p4
Cov

(
(yik1yjk1 − λij)

(
yik′1yjk1 − λij1k1=k′1

)
, (ylk2ymk2 − λlm)

(
ylk′2ymk2 − λlm1k2=k′2

))
.

(78)

If k′1 /∈ {k1, k2, k
′
2} , then, the covariance is null. So there are at most n4 − n(n − 1)3

non-zero terms in the sum over k-indices.
And we have from the preliminary inequality,

∑
i,j,l,m

1

p4
Cov

(
(yik1yjk1 − λij)

(
yik′1yjk1 − λij1k1=k′1

)
, (ylk2ymk2 − λlm)

(
ylk′2ymk2 − λlm1k2=k′2

))
≤ 9K2.

(79)

So,

V

 1

p(n− 1)2

∑
k

∑
i,j

(yikyjk − λij)
(
ȳiyjk −

1

n
λij

)
≤ p2(n4 − n(n− 1)3)

(n− 1)4n2
× 9K2

≤ n2(n4 − n(n− 1)3)

(n− 1)4n2
× 9K2

1K2

−→
n→∞

0.

(80)

• Immediately from the previous point,

V

 1

p(n− 1)2

∑
k

∑
i,j

(yikyjk − λij)
(
ȳjyi1 −

1

n
λij

) −→
n→∞

0. (81)
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• We have:

V

 1

p(n− 1)2

∑
k

∑
i,j

(yikyjk − λij)
(
ȳiȳj −

1

n
λij

)
=

p2

(n− 1)4n4

∑
k1,k

′
1,k
′′
1

k2,k
′
2,k
′′
2

∑
i,j,l,m

1

p4
Cov

(
(yik1yjk1 − λij)

(
yik′1yjk′′1 − λij1k′1=k′′1

)
, (ylk2ymk2 − λlm)

(
ylk′2ymk′′2 − λlm1k′2=k′′2

))
.

(82)

If k′1 /∈ {k1, k
′′
1 , k2, k

′
2, k
′′
2} , then, the covariance is null. So there are at most n6−n(n−1)5

non-zero terms in the sum over k-indices.
And we have from the preliminary inequality,∑

i,j,l,m

1

p4
Cov

(
(yik1yjk1 − λij)

(
yik′1yjk′′1 − λij1k′1=k′′1

)
,

(ylk2ymk2 − λlm)
(
ylk′2ymk′′2 − λlm1k′2=k′′2

) )
≤ 9K2.

(83)

So,

V

 1

p(n− 1)2

∑
k

∑
i,j

(yikyjk − λij)
(
ȳiȳj −

1

n
λij

)
≤ p2(n6 − n(n− 1)5

(n− 1)4n4
× 9K2

≤ n2(n6 − n(n− 1)5)

(n− 1)4n4
× 9K2

1K2

−→
n→∞

0.

(84)

• We have:

V

 1

p(n− 1)2

∑
k

∑
i,j

(
ȳiyjk −

1

n
λij

)(
yikȳj −

1

n
λij

)

=
p2

(n− 1)4n4

∑
k1,k

′
1,k
′′
1

k2,k
′
2,k
′′
2

∑
i,j,l,m

1

p4
Cov

( (
yik′1yjk1 − λij1k′1=k1

) (
yik1yjk′′1 − λij1k1=k′′1

)
,

(
ylk′2ymk2 − λlm1k2=k′2

) (
ylk2ymk′′2 − λlm1k2=k′′2

) )
.

(85)

If k′1 /∈ {k1, k
′′
1 , k2, k

′
2, k
′′
2} , then, the covariance is null. So there are at most n6−n(n−1)5

non-zero terms in the sum over k-indices.
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And we have from the preliminary inequality,∑
i,j,l,m

1

p4
Cov

( (
yik′1yjk1 − λij1k′1=k1

) (
yik1yjk′′1 − λij1k1=k′′1

)
,

(
ylk′2ymk2 − λlm1k2=k′2

) (
ylk2ymk′′2 − λlm1k2=k′′2

) )
≤ 9K2.

(86)

So,

V

 1

p(n− 1)2

∑
k

∑
i,j

(ȳiyjk − λij)
(
yikȳj −

1

n
λij

)
≤ p2(n6 − n(n− 1)5)

(n− 1)4n4
× 9K2

≤ n2(n6 − n(n− 1)5)

(n− 1)4n4
× 9K2

1K2

−→
n→∞

0.

(87)

• Immediately from the fourth point,

V

 1

p(n− 1)2

∑
k

∑
i,j

(
ȳiyjk −

1

n
λij

)(
ȳiȳj −

1

n
λij

) −→
n→∞

0. (88)

• Immediately from the previous point,

V

 1

p(n− 1)2

∑
k

∑
i,j

(
ȳjyik −

1

n
λij

)(
ȳiȳj −

1

n
λij

) −→
n→∞

0. (89)

So, the first term has its variance converging to 0:

V

[
1

n2

∑
k

∥∥∥∥ n

n− 1
x̃·kx̃

T
·k − Σ

∥∥∥∥2
]
−→
n→∞

0. (90)

6.9.3 Variance of the second term

The variance of the second term converges to 0 as n goes to infinity. Indeed, from the proof of
Lemma 3.4 in (Ledoit and Wolf, 2004) [10]:(

1

n2

∑
k

∥∥∥∥ n

n− 1
x̃·kx̃

T
·k − S

∥∥∥∥2
)
−

(
1

n2

∑
k

∥∥∥∥ n

n− 1
x̃·kx̃

T
·k − Σ

∥∥∥∥2
)

=
1

n
‖S − Σ‖2. (91)

And we have:

E
[
‖S − Σ‖4

]
≤ E

[
(‖S − µI‖+ ‖µI − Σ‖)4

]
. (92)

E[‖S−µI‖4] and ‖µI−Σ‖ are bounded, from Lemma 2 and Lemma 1 respectively, so E
[
‖S − Σ‖4

]
is bounded. Consequently, V

[
1
n‖S − Σ‖2

]
−→
n→∞

0. To conclude, V
[
b̄2
]
−→
n→∞

0.
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6.10 Proof of Lemma 7

V[m] = E

(1

p

∑
i

1

n− 1

∑
k

(yik − ȳi)2 − 1

p

∑
i

λii

)2


= E

(1

p

∑
i

1

n− 1

∑
k

(
(yik − ȳi)2 − n− 1

n
λii

))2


=
1

(n− 1)2
E

∑
k1

∑
k2

(
1

p

∑
i

(
(yik1 − ȳi)2 − n− 1

n
λii

))1

p

∑
j

(
(yjk2 − ȳj)2 − n− 1

n
λjj

)
=

1

p2(n− 1)2

∑
k1,k2

∑
i,j

E
[(
y2
ik1 − 2yik1 ȳi + ȳ2

i −
n− 1

n
λii

)(
y2
jk2 − 2yjk2 ȳj + ȳ2

j −
n− 1

n
λjj

)]
.

(93)

Fully developing the terms, we obtain,

V[m] =
1

p2(n− 1)2

∑
k1

∑
k2

∑
i,j

E
[(
y2
ik1 − λii

) (
y2
jk2 − λjj

)]
(t1)

− 2E
[(
y2
ik1 − λii

)(
yjk2 ȳj −

1

n
λjj

)]
(t2)

+ E
[(
y2
ik1 − λii

)(
ȳ2
j −

1

n
λjj

)]
(t3)

− 2E
[(
yik1 ȳi −

1

n
λii

)(
y2
jk2 − λjj

)]
(t4)

+ 4E
[(
yik1 ȳi −

1

n
λii

)(
yjk2 ȳj −

1

n
λjj

)]
(t5)

− 2E
[(
yik1 ȳi −

1

n
λii

)(
ȳ2
j −

1

n
λjj

)]
(t6)

+ E
[(
ȳ2
i −

1

n
λii

)(
y2
jk2 − λjj

)]
(t7)

− 2E
[(
ȳ2
i −

1

n
λii

)(
yjk2 ȳj −

1

n
λjj

)]
(t8)

+ E
[(
ȳ2
i −

1

n
λii

)(
ȳ2
j −

1

n
λjj

)]
(t9).

(94)
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We compute the expectations separately for simplicity.

(t1) :E
[(
y2
ik1 − λii

) (
y2
jk2 − λjj

)]
= V[yi1yj1] + λ2

ij − λiiλjj if k1 = k2,

= 0 otherwise.

(t2) :E
[(
y2
ik1 − λii

)(
yjk2 ȳj −

1

n
λjj

)]
=

1

n

(
V[yi1yj1] + λ2

ij − λiiλjj
)

if k1 = k2,

= 0 otherwise.

(t3) :E
[(
y2
ik1 − λii

)(
ȳ2
j −

1

n
λjj

)]
=

1

n2

(
V[yi1yj1] + λ2

ij − λiiλjj
)

if k1 = k2,

= 0 otherwise.

(t4) :E
[(
yik1 ȳi −

1

n
λii

)(
y2
jk2 − λjj

)]
=

1

n

(
V[yi1yj1] + λ2

ij − λiiλjj
)

if k1 = k2,

= 0 otherwise.

(t5) :E
[(
yik1 ȳi −

1

n
λii

)(
yjk2 ȳj −

1

n
λjj

)]
=

1

n2

(
V[yi1yj1] + nλ2

ij − λiiλjj
)

if k1 = k2,

=
1

n2
λ2
ij otherwise.

(t6) :E
[(
yik1 ȳi −

1

n
λii

)(
ȳ2
j −

1

n
λjj

)]
=

1

n3

(
V[yi1yj1] + (2n− 1)λ2

ij − λiiλjj
)
.

(t7) :E
[(
ȳ2
i −

1

n
λii

)(
y2
jk2 − λjj

)]
=

1

n2

(
V[yi1yj1] + λ2

ij − λiiλjj
)
.

(t8) :E
[(
ȳ2
i −

1

n
λii

)(
yjk2 ȳj −

1

n
λjj

)]
=

1

n3

(
V[yi1yj1] + (2n− 1)λ2

ij − λiiλjj
)
.

(t9) :E
[(
ȳ2
i −

1

n
λii

)(
ȳ2
j −

1

n
λjj

)]
=

1

n3

(
V[yi1yj1] + (2n− 1)λ2

ij − λiiλjj
)
.

(95)

Injecting those expectations in the main equation, we obtain:

V[m] =
1

p2(n− 1)2

∑
i,j

[
n2 − 2n+ 1

n
V[yi1yj1] +

n2 − 1

n
λ2
ij −

n2 − 2n+ 1

n
λiiλjj

]
=

1

p2n(n− 1)

∑
i,j

[
(n− 1)V[yi1yj1] + (n+ 1)λ2

ij − (n− 1)λiiλjj
]

=
1

p2n

∑
i,j

V[yi1yj1] +
n+ 1

pn(n− 1)
‖Σ‖2 − 1

n
〈Σ, I〉2

=
1

p2n

∑
i,j

V[yi1yj1] +
n+ 1

pn(n− 1)
(α2 + µ2)− 1

n
µ2

V[m] =
1

p2n

∑
i,j

V[yi1yj1] +
n+ 1

pn(n− 1)
(δ2 − β2 + µ2)− 1

n
µ2.

(96)

From the proof Lemma 1, we have:

β2 =
1

pn

∑
i,j

V[yi1yj1] +
p+ 1

n(n− 1)
µ2 +

1

n(n− 1)
(δ2 − β2). (97)
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So, combining those two equations, we obtain:

V[m] =
1

p

(
β2 − p+ 1

n(n− 1)
µ2 − 1

n(n− 1)
(δ2 − β2)

)
+

n+ 1

pn(n− 1)
(δ2 − β2 + µ2)− 1

n
µ2

=
n− 2

p(n− 1)
β2 +

1

p(n− 1)
δ2 − p− 1

p(n− 1)
µ2

V[m] = q0β
2 + q1δ

2 − q2µ
2.

(98)

which concludes the proof.

6.11 Proof of Lemma 8

From the proof of Lemma 5, we have:

E[m2] = µ2 + V[m], E[d2] = δ2 − V[m]. (99)

And from Lemma 7, we have:

V[m] = q0β
2 + q1δ

2 − q2µ
2. (100)

Which immediately finishes the proof:

V[m] =
1

1− q1 − q2
(q0β

2 + q1E[d2]− q2E[m2]). (101)

6.12 Proof of Lemma 9

From Lemma 5:

E[b̄2] = c0β
2 + c1E[d2] + c2E[m2] + (c1 − c2)V[m]. (102)

And from Lemma 8:

V[m] =
1

1− q1 − q2
(q0β

2 + q1E[d2]− q2E[m2]). (103)

So,

E[b̄2] = c0β
2 + c1E[d2] + c2E[m2] +

c1 − c2
1− q1 − q2

(q0β
2 + q1E[d2]− q2E[m2])

= cf0β
2 + cf1E[d2] + cf2E[m2].

(104)

Then, we deduce:

E[b2] =
1

cf0

(
(cf0β

2 + cf1E[d2] + cf2E[m2])− cf1E[d2]− cf2E[m2]
)

E[b2] = β2.

(105)

So, b2 is an unbiased estimator of β2.

Concerning the quadratic mean convergence, we use the fact that the variances of m2, d2 and
b̄2 converge to 0 as n goes to infinity, from Corollary 2, and Lemma 3 and 6 respectively. So,

b2 − β2 = b2 − E[b2] −→
q.m

0. (106)
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6.13 Proof of Lemma 10

For the upper bound:

b2u − β2 = min(b2+, d
2)− β2

≤ b2+ − β2 ≤ |b2 − β2|
≤ max(|b2 − β2|, |d2 − δ2|).

(107)

For the lower bound:

b2u − β2 = min(b2+ − β2, d2 − β2)

≥ min(b2+ − β2, d2 − δ2)

≥ min(−|b2 − β2|,−|d2 − δ2|)
≥ −max(|b2 − β2|, |d2 − δ2|).

(108)

So,

E[(b2u − β2)2] ≤ E[max(|b2 − β2|, |d2 − δ2|)2]

≤ E[(b2 − β2)2] + E[(d2 − δ2)2].
(109)

So, from Lemma 3 and 9,

E[(b2u − β2)2] −→ 0. (110)

Which leads trivially to:

E[(a2
u − α2)2] −→ 0. (111)

6.14 Proof of Theorem 2

We will use the proof of Theorem 3.2 in (Ledoit and Wolf, 2004) [10] to prove ours. We check
that we have the set of hypotheses required by the proof to work:

• α2, β2, δ2 are non-negative, bounded, and α2 + β2 = δ2,

• m− µ converges to 0 in quartic mean,

• d2
u is nonnegative, and d2

u − δ2 −→
q.m

0,

• 0 ≤ a2
u ≤ d2

u and a2
u − α2 −→

q.m
0,

• a2
u + b2u = d2

u, with b2u ≥ 0.

Then, we can apply the result of the theorem 3.2 from (Ledoit and Wolf, 2004) [10], so E[‖S∗n −
Σ∗n‖2]→ 0 and S∗n has the same asymptotic expected loss as Σ∗n, i.e. E[‖S∗n − Σn‖2n]− E[‖Σ∗n −
Σn‖2n]→ 0.

6.15 Proof of Lemma 11

The proof from (Ledoit and Wolf, 2004) [10] can be applied here, as the hypotheses of their
Lemma A.1 [10] are verified for u2 = |a2

ub
2
uδ

2 − α2β2d2
u|, τ1 = 2 and τ2 = 2, from the same

arguments they used.
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6.16 Proof of Theorem 3

Solving the convex minimization problem, we obtain easily that Σ∗∗ = µI + α2

d2 (S −mI), with
α2 = 〈S,Σ〉 −mµ, is a minimizer. We have then:

‖S∗ − Σ∗∗‖2 =

∥∥∥∥(m− µ)I +
a2
u − α2

d2
(S −mI)

∥∥∥∥2

‖S∗ − Σ∗∗‖2 = (m− µ)2 +
(a2
u − α2)2

d2
.

(112)

(m − µ)2 converges to 0 in quadratic mean by Lemma 2. For the second term, we will use the
Lemma A.1 from Ledoit and Wolf [10] with u2 = (a2

u−α2)2, τ1 = 2 and τ2 = 0. In the following,

we check the assumptions of the Lemma A.1, i.e.
(a2u−α2)2

d2 ≤ 2d2 + 2δ2 and E[(a2
u − α2)2] → 0.

We notice:

|α2| = |〈Σ− µI, S −mI〉| ≤ ‖Σ− µI‖‖S −mI‖ = δd. (113)

It comes that:

(a2
u − α2)2

d2
=
a4
u + α2

2 − 2a2
uα2

d2

≤ 2a4
u + 2α2

2

d2

≤ 2d2 + 2δ2.

(114)

In order to prove E[(a2
u − α2)2]→ 0, let’s show that E[(α2 − α2)2] = V[α2]→ 0.

V[α2] = V[〈S,Σ〉 −mµ]

= V[〈S,Σ〉] + V[mµ]− 2Cov(〈S,Σ〉,mµ)

≤ 2V[〈S,Σ〉] + 2µ2V[m].

(115)
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µ is bounded by Lemma 1 and V[m] → 0 by Lemma 2, so µ2V[m] → 0. Considering the other
term, we have:

V[〈S,Σ〉] = V
[〈

1

n− 1
Ỹ Ỹ T ,Λ

〉]
= V

[
1

p(n− 1)

∑
i

λii
∑
k

(yik − ȳi)2

]

= V

 1

pn(n− 1)

∑
i

λii
∑
k,k′ 6=k

yik(yik − yik′)

 (Identity 1)

=
1

n2(n− 1)2

∑
k1,k

′
1 6=k1

k2,k
′
2 6=k2

Cov

(
1

p

∑
i

λiiyik1(yik1 − yik′1),
1

p

∑
i

λiiyik2(yik2 − yik′2)

)

=
1

n2(n− 1)2

∑
k1,k

′
1 6=k1

k2,k
′
2 6=k2

Cov

(
1

p

∑
i

λiiy
2
ik1 ,

1

p

∑
i

λiiy
2
ik2

)

+
1

n2(n− 1)2

∑
k1,k

′
1 6=k1

k2,k
′
2 6=k2

Cov

(
1

p

∑
i

λiiyik1yik′1 ,
1

p

∑
i

λiiyik2yik′2

)

=
1

n2

∑
k1

Cov

(
1

p

∑
i

λiiy
2
ik1 ,

1

p

∑
i

λiiy
2
ik1

)

+
1

n2(n− 1)2

∑
k1,k′1 6=k1

Cov

(
1

p

∑
i

λiiyik1yik′1 ,
1

p

∑
i

λiiyik1yik′1

)

+
1

n2(n− 1)2

∑
k1,k′1 6=k1

Cov

(
1

p

∑
i

λiiyik1yik′1 ,
1

p

∑
i

λiiyik′1yik1

)

=
1

n
V

[
1

p

∑
i

λiiy
2
i1

]
+

2

n(n− 1)
V

[
1

p

∑
i

λiiyi1yi2

]

≤ 1

n
E

(1

p

∑
i

λiiy
2
i1

)2
+

2

n(n− 1)
E

(1

p

∑
i

λiiyi1yi2

)2


≤ 1

n
E

[(
1

p

∑
i

λ2
ii

)(
1

p

∑
i

y4
i1

)]
+

2

n(n− 1)
E

[(
1

p

∑
i

λ2
ii

)(
1

p

∑
i

y2
i1y

2
i2

)]

=
1

n

(
1

p

∑
i

E
[
y2
i1

]2)(1

p

∑
i

E
[
y4
i1

])
+

2

n(n− 1)

(
1

p

∑
i

E
[
y2
i1

]2)2

≤ n+ 1

n(n− 1)

(
1

p

∑
i

E
[
y4
i1

])2

≤ n+ 1

n(n− 1)

1

p

∑
i

E
[
y8
i1

]
V[〈S,Σ〉] ≤ n+ 1

n(n− 1)
K2.
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(116)

So, V[〈S,Σ〉]→ 0, and so E[(α2 − α2)2]→ 0. As E[(a2
u − α2)2]→ 0 by Lemma 9, it comes that

E[(a2
u − α2)2] → 0. Therefore, the assumptions of Lemma A.1 of (Ledoit and Wolf, 2004) [10]

are verified by u2 = (a2
u − α2)2, τ1 = 2 and τ2 = 0. It proves that:

E
[

(a2
u − α2)2

d2

]
→ 0. (117)

Backing up, we have shown that E[‖S∗ − Σ∗∗‖2] → 0. We complete the proof of the theorem
with the following inequality:

E
[
|‖S∗ − Σ‖2 − ‖Σ∗∗ − Σ‖2

∣∣] = E [|〈S∗ − Σ∗∗, S∗ + Σ∗∗ − 2Σ〉|]

≤
√
E [‖S∗ − Σ∗∗‖2]

√
E [‖S∗ + Σ∗∗ − 2Σ‖2].

(118)

The first term converges to 0 as we showed above, and the second term is bounded because
E[‖S∗ − Σ‖2] is bounded. So, the product converges to 0, which completes the proof.

6.17 Proof of Theorem 4

The proof from (Ledoit and Wolf, 2004) [10] can be applied as it is, because it uses only the
results of Theorem 3 which are the same as Theorem 3.3 in [10].

6.18 Proof of Theorem 5

Respectively from Lemma 2 and 3, mr −µ converges to 0 in quartic mean and d2
r − δ2 converges

to 0 in quadratic mean.
Let’s define:

b̄2r =
1

(n− 1)2

n∑
k=1

∥∥x̃·k(x̃·k)t − S
∥∥2
. (119)

Let’s show that b̄2r − β2 converges to 0 in quadratic mean. We use the following decomposition:

b̄2r =
1

(n− 1)2

∑
k

∥∥∥∥x̃kx̃tk − n− 1

n
S − 1

n
S

∥∥∥∥2

= b̄2 − 2

(n− 1)2

∑
k

〈
x̃kx̃

t
k −

n− 1

n
S,

1

n
S

〉
+

1

n(n− 1)2
‖S‖2

b̄2r = b̄2 +
1

n(n− 1)2
‖S‖2.

(120)

b̄2−β2 converges to 0 in quadratic mean by Lemma 6. Moreover, ‖S‖2−E[‖S‖2] converges to 0
in quadratic mean by Lemma 3, and E[‖S‖2] = β2 + α2 + µ2, so E[‖S‖2] is bounded by Lemma
1. So, 1

n(n−1)2 ‖S‖
2 converges to 0 in quadratic mean, which finally proves that b̄2r−β2 converges

to 0 in quadratic mean.
Following the idea of proof of Lemma 10, we have:

−max(|b̄2r − β2|, |d2
r − δ2|) ≤ b2r − β2 ≤ max(|b̄2r − β2|, |d2

r − δ2|). (121)
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So,

E[(b2r − β2)2] ≤ E[max(|b̄2r − β2|, |d2
r − δ2|)2]

≤ E[(b̄2r − β2)2] + E[(d2
r − δ2)2].

(122)

Which, as previously, leads to the 2 following results: E[(b2r − β2)2] → 0, E[(a2
r − α2)2] → 0.

Finally, we check that we have the set of hypotheses required by the proof of Theorem 2 to work:

• α2, β2, δ2 are non-negative, bounded, and α2 + β2 = δ2,

• mr − µ converges to 0 in quartic mean,

• d2
r is nonnegative, and d2

r − δ2 −→
q.m

0,

• 0 ≤ a2
r ≤ d2

s and a2
r − α2 −→

q.m
0,

• a2
r + b2r = d2

r, with b2r ≥ 0.

Then, we can apply the result of the theorem 3.2 from (Ledoit and Wolf, 2004) [10], so iden-
tically we have that E[‖S∗r − Σ∗‖2] → 0 and S∗r has the same asymptotic expected loss as
E
[∣∣‖S∗r − Σ‖2n − ‖Σ∗∗ − Σ‖2

∣∣]→ 0.

6.19 Proof of Theorem 6

Respectively from Lemma 2 and 3, mm−µ converges to 0 in quartic mean and d2
m−δ2 converges

to 0 in quadratic mean.
b̄2−β2 converges to 0 in quadratic mean by Lemma 6, and following the idea of proof of Lemma
10, we have:

−max(|b̄2 − β2|, |d2
m − δ2|) ≤ b2m − β2 ≤ max(|b̄2 − β2|, |d2

m − δ2|). (123)

So,

E[(b2m − β2)2] ≤ E[max(|b̄2 − β2|, |d2
m − δ2|)2]

≤ E[(b̄2 − β2)2] + E[(d2
m − δ2)2].

(124)

Which, as previously, leads to the 2 following results: E[(b2m − β2)2] → 0, E[(a2
m − α2)2] → 0.

Finally, we check that we have the set of hypotheses required by the proof of Theorem 2 to work:

• α2, β2, δ2 are non-negative, bounded, and α2 + β2 = δ2,

• mm − µ converges to 0 in quartic mean,

• d2
m is nonnegative, and d2

m − δ2 −→
q.m

0,

• 0 ≤ a2
m ≤ d2

s and a2
m − α2 −→

q.m
0,

• a2
m + b2m = d2

s, with b2m ≥ 0.

Then, we can apply the result of the theorem 3.2 from (Ledoit and Wolf, 2004) [10], so identically
we have that E[‖S∗m − Σ∗‖2] → 0 and S∗m has the same asymptotic expected loss as Σ∗, i.e.
E
[∣∣‖S∗m − Σ‖2 − ‖Σ∗ − Σ‖2

∣∣]→ 0.
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6.20 Proof of Theorem 7

As d2
s = d2 and b2s = b2m, we trivially have the quadratic convergence to δ2 and β2 respectively

with Lemma 3 and Theorem 6. ms = n−1
n m, and m − µ converges in quartic mean to 0 with

µ bounded, so ms − µ converges in quartic mean to 0. Similarly, a2
s = n−1

n a2
m and a2

m − α2

converges in quadratic mean with α2 bounded, so a2
s −α2 converges in quadratic mean. Finally,

as S∗s = n−1
n S∗m, we have:

E[‖S∗s − Σ∗‖2] =
(n− 1)2

n2
E

[∥∥∥∥S∗m − Σ∗ − 1

n− 1
Σ∗
∥∥∥∥2
]

=
(n− 1)2

n2
E
[
‖S∗m − Σ∗‖2 − 2

n− 1
〈S∗m − Σ∗,Σ∗〉+

1

n2
‖Σ∗‖2

]
E[‖S∗s − Σ∗‖2] ≤ (n− 1)2

n2
E
[
‖S∗m − Σ∗‖2 +

1

n2
‖Σ∗‖2

]
+

2(n− 1)

n2

√
E[‖S∗m − Σ∗‖2]E[‖Σ∗‖2].

(125)

Using Theorem 6 and that E[‖Σ∗‖2] bounded, we have that E[‖S∗s − Σ∗‖2]→ 0 and S∗s has the
same asymptotic expected loss as Σ∗, i.e. E

[∣∣‖S∗s − Σ‖2 − ‖Σ∗ − Σ‖2
∣∣]→ 0.

6.21 Proof of Lemma 12

Let X·,k ∼ N (0,Σ), k ∈ J1, nK, n iid samples. Trivially, µ = 1
p tr(Σ), α2 = ‖Σ− µI‖2.

For β2, we will use the equation from the proof of Lemma 1.

β2 =
1

pn

∑
i,j

V[yi1yj1] +
p+ 1

n(n− 1)
µ2 +

1

n(n− 1)
α2. (126)

As X is Gaussian, we have for all (i, j) ∈ J1, pK2,V[yi1yj1] = λiiλjj + λ2
ij . So,

1

pn

∑
i,j

V[yi1yj1] =
1

n

(
‖Σ‖2 +

1

p
tr(Σ)

2

)
=

1

n
(α2 + (p+ 1)µ2). (127)

Which finally leads to,

β2 =
p+ 1

n(n− 1)
µ2 +

1

n(n− 1)
α2 +

1

n
(α2 + (p+ 1)µ2)

β2 =
p+ 1

n− 1
µ2 +

1

n− 1
α2.

(128)

And, of course, δ2 = α2 + β2.

6.22 Proof of Lemma 13

Let ν > 8, Σ a covariance matrix, X·,k ∼ tν(0, Σ̃), k ∈ J1, nK, n iid samples, with scale matrix

Σ̃ = ν−2
ν Σ.

With this setup, we have as expected: V[X] = Σ. Obviously, µ = 1
p tr(Σ), α2 = ‖Σ− µI‖2.

For β2, we will use the equation from the proof of Lemma 1, as in the Gaussian case.

β2 =
1

pn

∑
i,j

V[yi1yj1] +
p+ 1

n(n− 1)
µ2 +

1

n(n− 1)
α2. (129)
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To easily compute the variance term, we will use a characterization of multivariate t-distributions.
In fact, as for all k ∈ J1, nK, X·,k ∼ tν(0, Σ̃), there exists two independant random variables Uk
and Z·,k such that:

Uk ∼ χ2
ν , Z·,k ∼ N

(
0,
ν − 2

ν
Λ

)
, Y·,k = Σ−1/2X·,k =

√
ν

Uk
Z·,k. (130)

We deduce then,

V[yi1yj1] = ν2V
[
ZiZj
U

]
= ν2E[Z2

i Z
2
j ]E

[
1

U2

]
− E[YiYj ]

2

V[yi1yj1] = (ν − 2)2
(
λiiλjj + 2λ2

ij

)
E
[

1

U2

]
− λ2

ij .

(131)

We have:

E
[

1

U2

]
=

(1/2)ν/2−1

Γ(ν/2)

∫
R
x
ν−4
2 −1e−x/2dx

=
(1/2)ν/2

Γ(ν/2)

Γ((ν − 4)/2)

(1/2)(ν−4)/2
×
∫
R

(1/2)(ν−4)/2−1

Γ((ν − 4)/2)
x
ν−4
2 −1e−x/2︸ ︷︷ ︸

pdf of χ2
ν−4

dx

=
(1/2)ν/2

Γ(ν/2)

Γ((ν − 4)/2)

(1/2)(ν−4)/2

=
1

4

1

(ν/2− 1)(ν/2− 2)

E
[

1

U2

]
=

1

(ν − 2)(ν − 4)
.

(132)

So,

V[yi1yj1] =
ν − 2

ν − 4

(
λiiλjj + 2λ2

ij

)
− λ2

ij . (133)

And,

1

pn

∑
i,j

V[yi1yj1] =
1

n

((
2
ν − 2

ν − 4
− 1

)
‖Σ‖2 +

ν − 2

p(ν − 4)
tr(Σ)

2

)

=
1

n

(
ν

ν − 4
(α2 + µ2) +

ν − 2

ν − 4
pµ2

)
.

(134)

We can conclude,

β2 =

(
ν − 2

(ν − 4)n
+

1

n(n− 1)

)
pµ2 +

1

n

(
ν

ν − 4
+

1

n− 1

)
(α2 + µ2). (135)

And, of course, δ2 = α2 + β2.
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