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Abstract

The focus of this article is studying an optimal control problem for branching dif-
fusion processes. Initially, we introduce the problem in its strong formulation and
expand it to include linearly growing drifts. Then, we present a relaxed formulation
that provides a suitable characterization based on martingale measures. Considering
weak controls, we prove they are equivalent to strong controls in the relaxed set-
ting, and establish the equivalence between the strong and relaxed problem, under
a Filippov-type convexity condition. Furthermore, by defining control rules, we can
restate the problem as the minimization of a lower semi-continuous function over a
compact set, leading to the existence of optimal controls both for the relaxed problem
and the strong one. Finally, with a useful embedding technique, we show that the
value function solves a system of HJB equations, establishing a verification theorem.
We then apply it to a linear-quadratic example and a kinetic one.

MSC Classification- 93E20, 60J60, 60J80, 35K10, 60J70, 60J85
Keywords— Stochastic control, relaxed control, branching diffusion processes, martingale rep-
resentation.

1 Introduction

The focus of this paper is on populations that are optimally controlled. Specifically, we aim to
show the presence of a strong control for controlled branching diffusions and to describe the optimal
dynamics.

The class of branching diffusion processes describes the evolution of particles, whose spatial
movement is modelled by a SDE. Introduced in [40], [27], [25], [26], their study has been developed
extensively, especially for their use in the probabilistic representation of semilinear PDEs (see, e.g.,
[24]) and in the regularized unbalanced optimal transport (see, e.g., [3]).
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Several examples of optimal control for branching processes are discussed in the literature (see,
e.g., [44],[36], [7], [31]). They have been introduced in [44], wherein their modelling employs a topo-
logical sum of Euclidean space. The control, living within a compact space, solely affects the drift
of spatial movement. The author permits each particle to potentially be influenced by any other
living particle, without imposing any additional assumptions on the structure of these interactions.
Moreover, the running cost yields a high degree of generality as well, leading to a correspondingly
complex differential characterization. By selecting the cost function as the product of functions
associated with the living particles at the terminal time, [36] employs controlled branching pro-
cesses as a probabilistic tool to examine a specific group of parabolic Bellman equations. In this
study, the control, still confined to a compact set, influences both drift and volatility. A Hamilton-
Jacobi-Bellmann (HJB) equation is identified, establishing that the value function represents its
unique (viscosity) solution.

In [7], the author goes further in the analysis of this setting. Initially, the controlled processes
are described as measure-valued processes. Using Ulam-Harris-Neveu labelling (see, e.g., [2]) to
describe the genealogy of the particles, the author introduces a label set that assists in defining
the branching events. A set of Brownian motions and Poisson random measures, indexed by these
labels, are used to provide a strong formulation for the controlled branching processes. This fa-
cilitates ing the well-posedness for dynamics where drift, volatility, branching rate, and branching
mechanisms are not only controlled but also dependent on the position of each particle. While these
coefficients are still assumed to be bounded, the control space is no longer necessarily compact.
Since the dynamics are coupled only through the control, the product structure of the cost yields a
branching property that converts the problem into a finite-dimensional one. A PDE characteriza-
tion of the value function is then obtained, leveraging the differential properties of the Euclidean
space where each single particle is defined. In [31], a similar approach is also employed. Here,
the symmetry of the reward function is again used to establish a different branching property that
allows for finite-dimensional rewriting.

This article expands on previous work on optimal control of branching diffusions. Firstly, we
introduce a coupling between the particle dynamics vie the empirical measure of the population,
similar to the interactions in mean field control literature. Secondly, we consider unbounded control
space, and we allow the drift to have linear growth in both space and control while keeping the
other coefficients bounded. We derive an HJB equation to characterize the value function, taking
advantage of the homeomorphism between the topological sum of Euclidean spaces, as in [44], and
the subset of finite measures, as in [7] and [31]. This results in a verification theorem that we
later rewrite as a (sub)martingale condition, similar to [37], to verify optimality. This brings us
closer to the description of these processes as measure-valued and facilitates intuition for solving
optimization problems, applying these results to a linear quadratic example and a kinetic one.

The first part of this paper addresses the issue of the existence of optimal controls. We follow
the approach of [13] and [23], which involves a relaxed formulation of the problem. This formalism
introduces different descriptions of the control problem, namely control rules and natural controls,
allowing for greater flexibility and easier manipulation of the controlled dynamics. Proving that a
control rule (resp. natural control) with a lower cost can be constructed from any relaxed control
(resp. control rule), we establish the equivalence between strong and relaxed problems. Further-
more, we show that the cost function is lower semicontinuous for the control rule case, and, under
some coercivity assumptions, we confine the search for minima to a compact set under a suitable
topology. This rewrites the original optimization as the minimization of a lower semicontinuous
function over a compact space, establishing the existence of optimal values and controls.

Similar methodology has been used in mean-field control theory (see, e.g., [33], [1]) or branching
populations dynamics (see, e.g., [8]). Our approach differs from [8] as they make large use of the
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indexation with respect to the label set. Nonetheless, we use the topology introduced in this article,
to apply it to measures with finite first-order moments.

The study of measure-valued processes in Rd has been ongoing since the late nineties. In sem-
inal works such as [35], [38], and [39], these processes were introduced as solutions to martingale
problems. This strategy, detailed for the case of diffusions in [19], allows for a more abstract
yet clearer manipulation of these objects. In [11], this point of view is applied to describe var-
ious dynamics, such as Fleming-Viot processes and superprocesses. This point of view provides
useful convergence criteria and methods for characterizing their uniqueness in law, which will be
extensively used in the remainder of the paper. In particular, the relaxed formulation of a control
problem relies on the martingale problem formulation, as described in [17]. By exploiting the sym-
metry of the cost function with respect to the labelling, we can confine controls to an admissible
class that preserves this symmetry. This restriction does not affect the problem’s value function
under mild assumptions, but it is crucial for defining relaxed controls, which, to the best of our
knowledge, is the first of its kind. The control is seen as a probability measure of the action space
that depends not only on time but also on space. We begin by presenting the connection between
strong and relaxed controls through Dirac measures, identifying the class of weak controls. We
prove their law uniqueness and use Doob’s functional representation theorem to refer to the strong
formulation. Under a Filippov-type convexity condition is satisfied (see, e.g., [20]), any relaxed
control can be associated with a weak one with lower cost. This gives the equivalence between the
strong and relaxed characterisations and provides optimal strong control via the identification of
weak and strong controls.

Finally, when attempting to optimize trajectories, we consider the concept of the kinetic energy
of the system. This is the case of the Schrödinger bridge problem, as in [22], where one seeks to
identify the random evolution (i.e., a probability measure on path-space) that is closest to a prior
Markov diffusion evolution in the relative entropy sense, while also satisfying certain initial and
final marginals. It has been noted that this problem can be framed as a stochastic control problem,
see, e.g., [10], [9], [5], [6], where the kinetic energy plays a fundamental role in the cost function.
Continuing along this line of reasoning, we present an example involving a comparable cost function
and proceed to solve it with the help of the verification theorem.

The rest of the paper is structured as follows. In Section 2, we provide an introduction to
the setting and the strong formulation for controlled branching processes. The control problem
is defined and its well-posedness is proven. In Section 3, we introduce the relaxed formulation,
presenting equivalent representations and characterizing them using martingale measures. Section
4 establishes the equivalence between the relaxed and strong formulations under a Filippov-type
convexity condition. We introduce natural controls in this setting and show that we can restrict
the problem to this class by conditioning on measures. Then, we compare the embedding of strong
controls with weak ones and show their equivalence via uniqueness in law for these objects and
Doob’s functional representation theorem. Section 5 introduces the set of control rules and uses
it to prove the lower semicontinuity of the cost functions in this set. Here, we show there exists a
minimal solution of the strong control problem, after restricting to a compact set found using the
coercivity assumption of the cost. Finally, in Section 6, we present the system of HJB equations
and use it to solve a linear quadratic example and a kinetic one.
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2 The control problem

2.1 The set of measures

For a Polish space (E, d) with B(E) its Borelian σ-field, we write Cb(E) (resp. C0(E)) for the
subset of the continuous functions that are bounded (resp. that vanish at infinity), and M(E)
(resp. P(E)) for the set of Borel positive finite measures (resp. probability measures) on E. We
equip M(E) with weak* topology, i.e., the weakest topology that makes continuous the maps
M(E) ∋ λ 7→

∫
E φ(x)λ(dx) for any φ ∈ Cb(Rd). We denote ⟨φ, λ⟩ =

∫
E φ(x)λ(dx) for λ ∈ M(E)

and φ ∈ Cb(E).
Denote also by Mp(E) the subspace of measures with finite p-th moment for p ≥ 1, i.e., the

collection of all λ ∈M(E) such that
∫
E d(x, x0)

pλ(dx) <∞ for some x0 ∈ E. The weak* topology
can be metrized in Mp(E) by the Wasserstein type metric dp,E , as introduced in [8, Appendix B].
This means that, if ∂ is a cemetery point, we consider first Ē the enlarged space Ē := E ∪ {∂}.
Defining d(x, ∂) := d(x, x0) + 1, we have that (Ē, d) is Polish. On the space

Mp
m(Ē) := {λ ∈Mp(Ē) : λ(Ē) = m},

consider the Wasserstein distance as follows

dp,E,m(λ, λ
′) =

(
inf

π∈Π(λ,λ′)

∫
Ē×Ē

d(x, y)pπ(dx, dy)

)1/p

, for λ, λ′ ∈Mp
m(Ē),

where Π(λ, λ′) denotes the collection of all non-negative measures on Ē × Ē with marginals λ and
λ′. The distance dp,E on Mp(E) is defined as

dp,E(λ, λ
′) = dp,E,m

(
λ̄m, λ̄

′
m

)
, for λ, λ′ ∈Mp

m(E),

where m ≥ λ(E) ∨ λ′(E) and

λ̄m(·) := λ(· ∩ E) + (m− λ(E))δ∂(·), λ̄′m(·) := λ′(· ∩ E) + (m− λ′(E))δ∂(·).

As proven in [8, Lemma B.1], this definition does not depend on the choice of m. Moreover, for
some x0 ∈ E, we have the natural bound

dpp,E(λ, δx0) ≤
∫
E
d(x, x0)

pλ(dx) + ⟨1, λ⟩p, for λ ∈Mp(E). (2.1)

We can remark that all the results in [8, Appendix B], about the convergence under d1,E , can be
directly generalised for dp,E .

Finally, we write N [E] for the space of atomic measures in E, i.e.,

N [E] :=

{
m∑
i=1

δxi : m ∈ N, xi ∈ E for i ≤ m

}
,

a weakly* closed subset ofM(E). In particular, we remark thatN [Rd] is also a closed set ofMp(Rd)
with respect to the distance dp,E . This is due to the fact that N [Rd] is weakly*-closed and, from
[8, Lemma B.2], convergence in M1(Rd) entails weak*-convergence to some λ ∈ N [Rd] ⊆M1(Rd).

Remark 2.1. Each vector x⃗m = (x1, . . . , xm) ∈ Rdm can be embedded in N [Rd] as ι(x⃗m) :=∑m
i=1 δxi. Fix x⃗m, y⃗m ∈ Rdm. We use the characterisation of the distance d1,E of [8, Lemma B.1]

and obtain

d1,E (ι(x⃗m), ι(y⃗m)) = sup
φ∈Lip01(Rd)

m∑
i=1

|φ(xi)− φ(yi)| ≤
m∑
i=1

|xi − yi| = |x⃗m − y⃗m|.
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where Lip01(Rd) denote the collection of all functions φ : Rd → R with Lipschitz constant smaller
or equal to 1 and such that φ(0) = 0.

2.2 Strong formulation

Fix a finite time horizon T > 0. Let Dd = D([0, T ];M1(Rd)) be the set of càdlàg functions (right
continuous with left limits) from [0, T ] to M1(Rd). We endow this space with Skorohod metric
dDd associated with the metric dRd , which makes it complete (see, e.g., [4]). For P ∈ P(Dd),
Pt ∈ P(M1(Rd)) denotes the time-t marginal of P, i.e., the image of P under the map Dd ∋ µ 7→
µt ∈M1(Rd).

Assumptions We are given dimensions d, d′ ∈ N, a closed subset A of Rm representing the set
of actions, and the following continuous functions

(b, σ, γ, pk) : Rd ×M1(Rd)×A→ Rd × Rd×d
′ × R+ × [0, 1]

for k ≥ 0, such that
∑

k≥0 pk(x, λ, a) = 1 for any (x, λ, a) ∈ Rd ×M1(Rd)×A. Assume that b and
σ are Lipschitz continuous in (x, λ), i.e., there exists L > 0 such that∣∣b(x, λ, a)− b(x′, λ′, a)

∣∣+ ∣∣σ(x, λ, a)− σ(x′, λ′, a)
∣∣ ≤ L(|x− x′|+ dRd(λ, λ′)), (2.2)

for any x, x′ ∈ Rd, λ, λ′ ∈M1(Rd), and a ∈ A. Suppose also that σ and γ are uniformly bounded,
and b has linear growth in (x, a) while bounded in λ, i.e., there exists Cσ, Cγ , Cb > 0 such that

|b(x, λ, a)| ≤ Cb(1 + |x|+ |a|), |σ(x, λ, a)| ≤ Cσ, γ(x, λ, a) ≤ Cγ , (2.3)

for (x, λ, a) ∈ Rd ×M1(Rd)×A. Let Φ be the generating function of (pk)k, i.e.,

Φ(s, x, λ, a) =

∞∑
k=0

pk(x, λ, a)s
k, for (s, x, λ, a) ∈ [0, 1]× Rd ×M1(E)×A.

Assume that the first and second order moments related to (pk)k are uniformly bounded, i.e., there
exist two constants C1

Φ, C
2
Φ > 0 such that

∂sΦ(1, x, λ, a) =
∑
k≥1

kpk(x, λ, a) ≤ C1
Φ, ∂2ssΦ(1, x, λ, a) =

∑
k≥1

k(k − 1)pk(x, λ, a) ≤ C2
Φ, (2.4)

for any (x, λ, a) ∈ Rd×M1(Rd)×A. The generalization to time-dependent coefficients is straight-
forward. We do not address it explicitly not to make the notation heavier. We will make use of
this setting in Section 6.3.

Strong controls We consider the set of labels I = {∅}∪
⋃+∞
n=1Nn and use Ulam-Harris labelling

to consider the genealogy of the particles. Denote by ∅ the mother particle, and i = i1 · · · in the
multi-integer i = (i1, . . . , in) ∈ Nn, n ≥ 1. For i = i1 · · · in ∈ Nn and j = j1 · · · jm ∈ Nm, we
define their concatenation is ij ∈ Nn+m by ij = i1 · · · inj1 · · · jm, and extend it to the entire I
by ∅i = i∅ = i for all i ∈ I. When a particle i = i1 · · · in ∈ Nn gives birth to k particles, the
off-springs are labelled i0, . . . , i(k − 1).

Let
(
Ωs,Fs = {F s

t }t≥0 ,F s,Ps
)
be a filtered probability space satisfying the usual conditions.

Suppose that this space supports two independent families {W i}i∈I and {Qi}i∈I of mutually
independent processes. Let W i be a d′-dimensional Wiener processes, and Qi(dsdz) a Poisson
random measure on [0, T ]× R+ with intensity measure dsdz.
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Definition 2.1 (Standard strong control). We say that β = (βi)i∈I is a standard strong control
if β is an Fs-predictable AI-valued process, such that

EPs

[
sup
i∈I

∫ T

t
|βis|2ds

]
<∞. (2.5)

Fix a standard control β = (βi)i∈I . We describe the controlled branching diffusion ξβ as the
measure-valued process

ξβt =
∑
i∈Vt

δ
Y i,β
t

,

where Y i,β
t is the position of the member with label i ∈ I, and Vt the set of alive particles at time

t. This process takes values in N [Rd] and the behaviour of each alive particle i is characterized by
the following three properties:

– Spatial motion: during its lifetime, it moves in Rd according to the following stochastic
differential equation

dY i,β
s = b

(
Y i,β
s , ξβs , β

i
s

)
ds+ σ

(
Y i,β
s , ξβs , β

i
s

)
dWs ;

– Branching rate γ: given a position Y i,β
s at time s, the probability it dies in the time interval

[s, s+ δs) is γ
(
Y i,β
s , ξβs , βis

)
δs+ o(δs).

– Branching mechanism: when it dies at a time s, it leaves behind (at the location where it

died) a random number of offspring with probability
(
pk

(
Y i,β
s , ξβs , βis

))
k∈N

.

If the control is constant, i.e., we are in the uncontrolled setting, conditionally on time and place
of birth, the offspring evolve independently of each other in the same way as their parent.

Let L be the generator (associated with the spatial motion of each particle) defined on φ ∈
C2
b (Rd) as

Lφ(x, λ, a) = b(x, λ, a)⊤Dφ(x) +
1

2
Tr
(
σσ⊤(x, λ, a)D2φ(x)

)
,

where D and D2 denote gradient and Hessian. The representation of previous properties is given
by the following SDE

⟨φ, ξβs ⟩ = ⟨φ, ξβt ⟩+
∫ s

t

∑
i∈Vu

Dφ(Y i,β
u )⊤σ

(
Y i,β
u , ξβu , β

i
u

)
dBi

u +

∫ s

t

∑
i∈Vu

Lφ
(
Y i,β
u , ξβu , β

i
u

)
du

+

∫
(t,s]×R+

∑
i∈Vu−

∑
k≥0

(k − 1)φ(Y i,β
u )1

Ik

(
Y i,β
u ,ξβu ,βi

u

)(z)Qi(dudz) , (2.6)

with

Ik(x, λ, a) =

[
γ(x, λ, a)

k−1∑
ℓ=0

pℓ(x, λ, a), γ(x, λ, a)

k∑
ℓ=0

pℓ(x, λ, a)

)
,

for all (x, λ, a) ∈ Rd×M1(Rd)×A, k ≥ 0, with the value of an empty sum being zero by convention.
Notice that (Ik(x, λ, a))k∈N forms a partition of the interval [0, γ(x, λ, a)).
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2.2.1 Existence of branching processes and moment estimates

We aim at showing the existence of controlled branching diffusions for any standard strong con-
trol and giving bounds on their moments. These two aspects are proved in the following two
propositions, adapting [7, Proposition 2.1] to our context.

Proposition 2.1. Let t ∈ [0, T ], λ :=
∑

i∈V ∈ N [Rd] with V ⊆ I finite, and β be a standard strong

control. There exists a unique (up to indistinguishability) càdlàg and adapted process
(
ξβs
)
s≥t

satisfying (2.6) such that ξβt = λ. In addition, there exists a constant C > 0 depending only on T
and on the coefficients b, σ, γ and (pk)k such that

EPs

[
sup

u∈[t,t+h]
|Vu|

]
≤ ⟨1, λ⟩eCγC1

Φh, (2.7)

EPs

[
sup

u∈[t,t+h]
|Vu|2

]
≤ ⟨1, λ⟩eCγ(C1

Φ+C
2
Φ)h, (2.8)

EPs

[∫ t+h

t

∑
i∈Vu

|βiu|du

]
≤ C, (2.9)

EPs

[
sup

u∈[t,t+h]

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣] ≤ C

(∑
i∈V

|xi|+ EPs

[∫ t+h

t
|Vu|du

]
(2.10)

+ EPs

[∫ t+h

t

∑
i∈Vu

∣∣βiu∣∣ du
])

,

for any h > 0, where |V | denotes the cardinality of V ⊆ I.

Proof. Fix
(
t, λ =

∑
i∈V δxi

)
∈ R+ ×N [Rd], and β be a standard strong control. Using induction,

we build the branching events of the population. We later show that such a process satisfies (2.6)
and is well-defined. From (2.1), we have that (2.7) and (2.10) entail well-posedness for the process
ξβ.

Define by induction an increasing sequence of stopping time (τk)k∈N, a sequence of random vari-

ables (Vk)k∈N valued in the set of finite subsets of I and a sequence of processes
((
Y i,β
s

)
s∈[τk−1,τk)

, i ∈

Vk

)
k∈N

such that

ξβs =
∑
k≥1

1τk−1≤s<τk
∑
i∈Vk

δ
Y i,β
s
.

We set τ0 = t, V0 = V , and Y i,β
t := xi for all i ∈ V . Then, given τk−1 and Vk−1, define τk as

τk = inf
{
s ∈ (τk−1, T ] : ∃i ∈ Vk−1, Q

i((τk−1, s]× [0, Cγ ]) = 1
}
.

7



Define Yk, bk(Yk, βs), Σk(Yk, βs), and Wk, as

Yks :=


Y i1,β
s
...

Y
i|Vk−1|,β
s

 , bk(Yks , βs) :=


b
(
Y i1,β
s ,

∑
i∈Vk−1

δ
Y i,β
s
, βi1s

)
...

b

(
Y
i|Vk−1|,β
s ,

∑
i∈Vk−1

δ
Y i,β
s
, β

i|Vk−1|
s

)
 ,

Σk(Yks , βs) :=


σ
(
Y i1,β
s ,

∑
i∈Vk−1

δ
Y i,β
s
, βi1s

)
...

σ

(
Y
i|Vk−1|,β
s ,

∑
i∈Vk−1

δ
Y i,β
s
, β

i|Vk−1|
s

)
 , Wk

s =

 W i1
s
...

W
i|Vk−1|
s

 ,

taking values in Rd|Vk−1|, Rd|Vk−1|, Rd|Vk−1|×d′ , and Rd′|Vk−1| respectively. As recalled in Remark 2.1,
bk and Σk are Lipschitz continuous in Rd|Vk−1|. Therefore, Yk is uniquely (up to indistinguishability)
defined as the continuous and adapted process satisfying

Yks = Ykτk−1
+

∫ s

τk−1

bk(Yku , βu)du+

∫ s

τk−1

Σk(Yku , βu)dWk
u , P− a.s.

Describing what happens at branching events τk, we can conclude the construction of the
branching process. Given the definition of τk, there is an (almost surely) unique label, that we
denote îk ∈ Vk−1, such that

Qîk ((τk−1, τk]× [0, Cγ ]) = 1.

Let χk the [0, Cγ ]-valued random variable such that (τk, χk) belongs to the support of Qîk . We set
Vk as

Vk :=


Vk−1, if χk ∈

[
γ
(
Y îk,β
τk ,

∑
i∈Vk−1

δ
Y i,β
τk

, β îkτk

)
, Cγ

]
,

Vk−1\
{
îk

}
, if χk ∈ I0

(
Y îk,β
τk ,

∑
i∈Vk−1

δ
Y i,β
τk

, β îkτk

)
,

Vk−1\
{
îk

}
∪
{
îk0, . . . , îk(ℓ− 1)

}
, if χk ∈ Iℓ

(
Y îk,β
τk ,

∑
i∈Vk−1

δ
Y i,β
τk

, β îkτk

)
for ℓ ≥ 1,

where we impose the continuity of the flow for the off-spring, i.e., Y i,β
τk := Y îk,β

τk for i ∈ Vk\Vk−1.
We prove that this process satisfies the SDE (2.6) by induction. Suppose it holds true up to

τk−1, we have

⟨φ, ξβs∧τk⟩ = 1s≤τk−1
⟨φ, ξβs ⟩+ 1τk−1<s<τk

∑
i∈Vk−1

φ
(
Y i,β
s

)
+ 1s≥τk

∑
i∈Vk

φ
(
Y i,β
τk

)
. (2.11)

The first term on the r.h.s. satisfies (2.6) by induction hypothesis. We apply Itô’s formula for each
branch to deal with the second one. Finally, the third term is equal to∑

i∈Vk

φ
(
Y i,β
τk

)
=

∑
i∈Vk−1

φ
(
Y i,β
τk

)
− 1

χk∈
[
0,γ

(
Y

îk,β
τk

,
∑

i∈Vk−1
δ
Y
i,β
τk

,β
îk
τk

))φ(Y îk,β
τk

)

+
∑
ℓ≥1

1
χk∈Iℓ

(
Y

îk,β
τk

,
∑

i∈Vk−1
δ
Y
i,β
τk

,β
îk
τk

) ℓ−1∑
l=1

φ
(
Y îkl,β
τk

)
,
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which coincides with the integral w.r.t. the Poisson random measures over (τk−1, τk]. Therefore,
(2.6) is satisfied up to τk and we can conclude by induction.

We focus now on estimates (2.7)-(2.10). Let {θn}n∈N be defined as follows

θn := inf {s ≥ t : |Vs| ≥ n} ∧ inf

{
s ≥ t :

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣ ≥ n

}
. (2.12)

The first part of the proof ensures that ξβ·∧θn well-defined and satisfies (2.6). Apply (2.6) to the
function x 7→ 1, obtaining

|Vs∧θn | = |Vt|+
∫
(t,s∧θn]×R+

∑
i∈Vu−

∑
k≥0

(k − 1)1
Ik

(
Y i,β
u ,ξβu ,βi

u

)(z)Qi(dudz).
Applying Itô’s formula, we also obtain

|Vs∧θn |2 = |Vt|2 +
∫
(t,s∧θn]×R+

∑
i∈Vu−

∑
k≥0

(
(|Vu|+ k − 1)2 − |Vu|2

)
1
Ik

(
Y i,β
u ,ξβu ,βi

u

)(z)Qi(dudz)
= |Vt|2 +

∫
(t,s∧θn]×R+

∑
i∈Vu−

∑
k≥0

(
2(k − 1)|Vu|+ (k − 1)2

)
1
Ik

(
Y i,β
u ,ξβu ,βi

u

)(z)Qi(dudz).
Therefore, we get

sup
u∈[t,s]

|Vu∧θn | ≤ |Vt|+
∫
(t,s∧θn]×R+

∑
i∈Vu−

∑
k≥1

(k − 1)1
Ik

(
Y i,β
u ,ξβu ,βi

u

)(z)Qi(dudz),
sup
u∈[t,s]

|Vu∧θn |2 ≤ |Vt|2 +
∫
(t,s∧θn]×R+

∑
i∈Vu−

∑
k≥1

(
2(k − 1)|Vu|+ (k − 1)2

)
1
Ik

(
Y i,β
u ,ξβu ,βi

u

)(z)Qi(dudz),
and, taking the expectation,

EPs

[
sup
u∈[t,s]

|Vu∧θn |

]
≤ |Vt|+ EPs

∫ s∧θn

t

∑
i∈Vu

γ
(
Y i,β
u , ξβu , β

i
u

)∑
k≥1

(k − 1)pk

(
Y i,β
u , ξβu , β

i
u

)
du


≤ |Vt|+ CγC

1
ΦEPs

[∫ s∧θn

t
sup
z∈[t,u]

|Vz∧θn |

]
,

EPs

[
sup
u∈[t,s]

|Vu∧θn |

]
≤ |Vt|+ Cγ(C

1
Φ + C2

Φ)EPs

[∫ s∧θn

t
sup
z∈[t,u]

|Vz∧θn |2
]
.

Applying Grönwall’s lemma, we obtain

EPs

[
sup
u∈[t,s]

|Vu∧θn |

]
≤ |Vt|eCγC1

Φ(s−t), EPs

[
sup
u∈[t,s]

|Vu∧θn |2
]
≤ |Vt|2eCγ(C1

Φ+C
2
Φ)(s−t).

Since the bound is uniform in n, θn converges almost surely to infinity, and by Fatou’s lemma, we
retrieve (2.7) and (2.8). This implies also (2.9), since

EPs

[∫ s

t

∑
i∈Vu

|βiu|du

]
≤ EPs

[∫ s

t
|Vu| sup

i∈I
|βiu|du

]
≤ EPs

[
sup
u∈[t,s]

|Vu|
∫ s

t
sup
i∈I

|βiu|du

]
≤ C,

9



where in the last inequality we used Cauchy-Schwartz inequality, (2.5) and (2.8).
Proving (2.10) would be more tricky since the SDE (2.6) cannot be applied directly. We see

that (2.11) is still valid for φ(x) = |x|. Itô’s formula yields, for s ∈ (τk−1, τk),

∑
i∈Vk−1

∣∣∣Y i,β
s

∣∣∣ =
∑

i∈Vk−1

∣∣∣∣∣Y i,β
τk

+

∫ s

τk−1

b
(
Y i,β
u , ξβu , β

i
u

)
du+

∫ s

τk−1

σ
(
Y i,β
u , ξβu , β

i
u

)
dW i

u

∣∣∣∣∣
≤

∑
i∈Vk−1

∣∣∣Y i,β
τk

∣∣∣+ ∑
i∈Vk−1

∫ s

τk−1

∣∣∣b(Y i,β
u , ξβu , β

i
u

)∣∣∣ du+
∑

i∈Vk−1

∣∣∣∣∣
∫ s

τk−1

σ
(
Y i,β
u , ξβu , β

i
u

)
dW i

u

∣∣∣∣∣
≤

∑
i∈Vk−1

∣∣∣Y i,β
τk

∣∣∣+ Cb

∫ s

τk−1

|Vu|du+ Cb
∑

i∈Vk−1

∫ s

τk−1

(∣∣∣Y i,β
u

∣∣∣+ ∣∣βiu∣∣) du+

∑
i∈Vk−1

∣∣∣∣∣
∫ s

τk−1

σ
(
Y i,β
u , ξβu , β

i
u

)
dW i

u

∣∣∣∣∣ ,
where we have used the bound (2.3) over the coefficient b in the last inequality. Since the family
of Brownian motions {W i}i∈I are indipendent from the one of Poisson measures {Qi}i∈I , we have
that taking the conditional expectation with respect to Fτk−1

, we can apply the Burkholder-Davis-
Gundy’s inequalities (see, e.g., [12, Theorem 92]). This means that there exists a constant C > 0
(which may change from line to line) such that

EPs

 sup
u∈[τk−1∧θn,s∧τk∧θn]

∑
i∈Vk−1

∣∣∣∣ ∫ u

τk−1∧θn
σ
(
Y i,β
r , ξβr , β

i
r

)
dW i

r

∣∣∣∣
∣∣∣∣∣Fτk−1


≤ CEPs

 ∑
i∈Vk−1

(∫ s∧τk∧θn

τk−1∧θn
Tr
(
σσ⊤

(
Y i,β
u , ξβu , β

i
u

))
du

)1/2 ∣∣∣∣∣Fτk−1


≤ CEPs

[
(s ∧ τk ∧ θn − τk−1 ∧ θn) |Vk−1|

∣∣∣∣∣Fτk−1

]
= CEPs

[∫ s∧τk∧θn

τk−1∧θn
|Vu|du

∣∣∣∣∣Fτk−1

]
,

using (2.3) in the last line. Therefore, by induction, there exists a constant C > 0 (which may
change from line to line) such that

EPs

 sup
u∈[t,s]

∑
i∈Vu∧θn

∣∣∣Y i,β
u∧θn

∣∣∣
 ≤

∑
i∈V

|xi|+ C

(
EPs

[∫ s∧θn

t
|Vu|du

]
+ EPs

[∫ s∧θn

t

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣ du]

+ EPs

[∫ s∧θn

t

∑
i∈Vu

∣∣βiu∣∣ du
])

,

usinig (2.7) and (2.9) to bound the mass of the population. Applying Grönwall’s lemma, we obtain

EPs

 sup
u∈[t,s]

∑
i∈Vu∧θn

∣∣∣Y i,β
u∧θn

∣∣∣
 ≤ C

(∑
i∈V

|xi|+ EPs

[∫ s

t
|Vu|du

]
+ EPs

[∫ s

t

∑
i∈Vu

∣∣βiu∣∣ du
])

.

Since the estimate is uniform in n and θn converges almost surely to infinity, applying Fatou’s
lemma, we retrieve (2.10).
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2.2.2 Control problem

We are given the continuous functions ψ : Rd ×M1(Rd)× A → R, Ψ : M1(Rd) → R. We suppose
that there exists CΨ, cψ > 0 such that

Ψ(λ) ≤ CΨ

(
1 +

∫
Rd

|x|2λ(dx) + ⟨1, λ⟩2
)

(2.13)

Ψ(µ) ≥ −CΨ

(
1 +

∫
Rd

|x|λ(dx) + ⟨1, λ⟩
)

(2.14)

ψ(x, λ, a) ≤ CΨ

(
1 + |x|2 +

∫
Rd

|x|λ(dx) + |a|2
)

(2.15)

ψ(x, λ, a) ≥ −CΨ (1 + |x|) + cψ|a|2 (2.16)

for λ ∈M1(Rd).
Fix a standard strong control β and (t, λ) ∈ [0, T ]×N [Rd] a starting condition. We define the

cost function as

J(t, λ;β) := EPs

[∫ T

t

∑
i∈Vs

ψ
(
Y i,β
s , ξβs , β

i
s

)
ds+Ψ

(
ξβT

) ∣∣∣∣∣ξβt = λ

]
.

As the dependence of the cost J on the label is solely through the spatial components and the
control, we limit the set of controls. This restriction is implemented to maintain symmetry between
positions in Rd and the chosen control in A, enabling a natural embedding of strong controls into
relaxed ones.

Definition 2.2 (Admissible strong control). Fix (t, λ) ∈ [0, T ]×N [Rd]. We say that β = (βi)i∈I
is an admissible strong control, and we denote β ∈ Rs

(t,λ), if β is a standard strong control and

EPs

∫ T

t

∑
i,j∈Vs,i ̸=j

1
Y i,β
s =Y j,β

s ,βi
s ̸=β

j
s
ds

 = 0. (2.17)

We can now state the strong control problem as

vs(t, λ) = inf
{
J(t, λ;β) : β ∈ Rs

(t,λ)

}
, (2.18)

for (t, λ) ∈ [0, T ]×N [Rd].

Remark 2.2. Under additional assumptions, restricting from standard to admissible controls does
not impact the value function. For example, whenever σ is uniformly elliptic, i.e., there exist ε > 0
such that σσ⊤(x, λ, a) ≥ εId, with Id being the identity matrix of dimension d×d, all alive particles
take different positions dt⊗ dP-a.s. Therefore, all standard controls are admissible.

2.3 Well-posedness of the control problem

To finally give a well-posedness of the control problem, we must prove the finite second order of
the Branching Processes, at least close to an optimal value. We apply the techniques used to prove
Proposition 2.1 to get the next lemma.
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Lemma 2.1. Let (t, λ) ∈ R+×N [Rd], and β be a standard strong control. There exists a constant
C > 0 depending only on T and on the coefficients b, σ, γ and (pk)k such that

EPs

[
sup

u∈[t,t+h]

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣2] ≤ C

(∑
i∈V

|xi|2 + EPs

[∫ t+h

t
|Vu|du

]
(2.19)

+ EPs

[∫ t+h

t

∑
i∈Vu

∣∣βiu∣∣2 du
])

,

for any h > 0.

Proof. Fix
(
t, λ =

∑
i∈V δxi

)
∈ R+ ×N [Rd], and β be a standard strong control. Let {θn}n∈N be

as in (2.12). We have that ξβ·∧θn satisfies (2.6). Applying (2.6) to the function x 7→ |x|2, we get

∑
i∈Vs∧θn

∣∣∣Y i,β
s∧θn

∣∣∣2 =
∑
i∈V

|xi|2 +
∫ s∧θn

t

∑
i∈Vu

2
(
Y i,β
u

)⊤
σ
(
Y i,β
u , ξβu , β

i
u

)
dBi

u

+

∫ s∧θn

t

∑
i∈Vu

2
(
Y i,β
u

)⊤
b
(
Y i,β
u , ξβu , β

i
u

)
du+

+

∫ s∧θn

t

∑
i∈Vu

Tr
(
σσ⊤

(
Y i,β
u , ξβu , β

i
u

))
du

+

∫
(t,s∧θn]×R+

∑
i∈Vu−

∑
k≥0

(k − 1)
∣∣∣Y i,β
u

∣∣∣2 1
Ik

(
Y i,β
u ,ξβu ,βi

u

)(z)Qi(dudz) ,
Taking the supremum in the interval [t, s] and taking the expectation, we bound each term in the
r.h.s. Applying Burkholder-Davis-Gundy’s inequalities to the second term, there exists a constant
C > 0 (which may change from line to line) such that

EPs

[
sup
u∈[t,s]

∫ u∧θn

t

∑
i∈Vr

2
(
Y i,β
r

)⊤
σ
(
Y i,β
r , ξβr , β

i
r

)
dBi

r

]

≤ CEPs

(∫ s∧θn

t

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣2Tr(σσ⊤ (Y i,β
u , ξβu , β

i
u

))
du

)1/2
 ≤ CEPs

[∫ s∧θn

t

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣2 du] .
From (2.3) on the growth of b and σ, the third and the fourth terms can be bounded as follows

EPs

[
sup
u∈[t,s]

∫ u∧θn

t

∑
i∈Vr

(
2
(
Y i,β
r

)⊤
b
(
Y i,β
r , ξβr , β

i
r

)
+Tr

(
σσ⊤

(
Y i,β
r , ξβr , β

i
r

)))
dr

]

≤ CEPs

[∫ s∧θn

t
|Vu|+

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣2 + ∣∣βiu∣∣2 du
]
,
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using that a⊤b ≤ 1
2

(
|a|2 + |b|2

)
for a, b ∈ Rd. Finally, the last term gives

EPs

 sup
u∈[t,s]

∫
(t,u∧θn]×R+

∑
i∈Vr−

∑
k≥0

(k − 1)
∣∣∣Y i,β
r

∣∣∣2 1
Ik

(
Y i,β
r ,ξβr ,βi

r

)(z)Qi(drdz)


≤ EPs

∫ s∧θn

t

∑
i∈Vu−

γ
(
Y i,β
u , ξβu , β

i
u

)∑
k≥1

(k − 1)
∣∣∣Y i,β
u

∣∣∣2 pk (Y i,β
u , ξβuβ

i
u

)
du


≤ CEPs

[∫ s∧θn

t

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣2 du] .
Combining all the terms and using Gronwall’s inequality first and Fatou’s lemma then, we obtain
(2.19).

This lemma tells us that whenever EPs
[∫ T
t

∑
i∈Vu

∣∣βiu∣∣2 du] <∞, we have |J(t, λ;β)| <∞ from

the coercivity bounds. Therefore, ε-optimal controls must satisfies this condition, as shown in the
following proposition.

Proposition 2.2. Fix (t, λ) ∈ [0, T ] × N [Rd]. Let ε > 0, and let Rs,ε
(t,λ) be the set of β ∈ Rs

(t,λ)
satisfying

J(t, λ;β) ≤ vs(t, λ) + ε.

Then

sup
β∈Rs,ε

(t,λ)

EPs

[∫ T

t

∑
i∈Vu

∣∣βiu∣∣2 du
]
<∞. (2.20)

Moreover, vs(t, λ) > −∞.

Proof. We use (2.14) and (2.16) along with Lemma 2.1 to find a constant C > 0 (which may change
from line to line) such that, for all β ∈ Rs

(t,λ),

J(t, λ;β) ≥ −CEPs

[
1 + sup

u∈[t,T ]
|Vu|2 + sup

u∈[t,T ]

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣]+ cψEPs

[∫ T

t

∑
i∈Vu

∣∣βiu∣∣2 du
]

≥ −CEPs

[
1 +

∫ T

t

∑
i∈Vu

∣∣βiu∣∣ du
]
+ cψEPs

[∫ T

t

∑
i∈Vu

∣∣βiu∣∣2 du
]

(2.21)

This already proves vs(t, λ) > −∞, as the function a 7→ cψ|a|2 − C|a| is bounded from above. To

prove the first claim, fix arbitrarily a constant control βa0,is := a0 ∈ A. Lemma 2.1 and Proposition
2.1 imply

EPs

[
sup

u∈[t,t+h]

∑
i∈Vu

∣∣∣Y i,βa0

u

∣∣∣2] ≤ C

(
1 + EPs

[∫ t+h

t

∑
i∈Vu

∣∣βa0,iu

∣∣2 du]) ≤ C
(
1 + |a0|2

)
.

Then, from (2.13) and (2.15), we have show J(t, λ;βa0) < ∞. Therefore, for β ∈ Rs,ε
(t,λ), we have

J(t, λ;β) ≤ J(t, λ;βa0) + ε. This and (2.21) yield

sup
β∈Rs,ε

(t,λ)

EPs

[∫ T

t

∑
i∈Vu

(∣∣βiu∣∣2 − C
∣∣βiu∣∣) du

]
<∞.

This gives (2.20), by Proposition 2.1.
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3 Relaxed formulation

We give the relaxed formulation for the branching diffusion control problem by working with relaxed
controls and weak solutions of the previous SDE.

We equip the product space [0, T ]× Rd ×A with the σ-algebra B([0, T ])⊗ B(Rd)⊗ B(A). Let
ALeb ⊆ M1([0, T ] × Rd × A) be the set of measures, whose projection on [0, T ] is the Lebesgue
measure. Each α ∈ ALeb can be identified with its disintegration (see, e.g., [30, Corollary 1.26,
Chapter 1]). In particular, we have α(ds, dx, da) = dsys(dx)ᾱs(x, da), for a process (ys(dx))s
(resp. (ᾱs(x, da))s) taking values in the set of functions from [0, T ] (resp. [0, T ]× Rd) to M1(Rd)
(resp. M1(A)). Let ALeb,·,1 ⊆ ALeb,·,· be the set of elements α such that ᾱs(x, da) ∈ P1(A) for any
(s, x) ∈ [0, T ]× Rd. For x = (xs)s ∈ Dd fixed, we denote the space of relaxed controls ALeb,x,1 as

ALeb,x,1 :=
{
α ∈ ALeb,·,1 : α(ds, dx, da) = dsxs(dx)ᾱs(x, da) a.e. s ∈ [0, T ]

}
,

which is weakly* closed.

3.1 Martingale model

Let L be the generator defined on the cylindrical functions Fφ = F (⟨φ, ·⟩), for F ∈ C2
b (R) and

φ ∈ C2
b (Rd), as

LFφ(x, λ, a) = F ′(⟨φ, λ⟩)Lφ(x, λ, a) + 1

2
F ′′(⟨φ, λ⟩) |Dφ(x)σ(x, λ, a)|2

+γ(x, λ, a)

∑
k≥0

F
(
⟨φ, λ⟩+ (k − 1)φ(x)

)
pk(x, λ, a)− Fφ (λ)

 .

For simplicity, we write F ′
φ(λ) for F

′(⟨φ, λ⟩) and F ′′
φ(λ) for F

′′(⟨φ, λ⟩). Moreover, for F = {Fs}s≥0

a filtration, we denote F̂ =
{
F̂s
}
s≥0

the filtration such that F̂s := B(Rd)⊗Fs for any s ≥ 0.

Definition 3.3 (Relaxed control). Fix (t, λ) ∈ [0, T ]×N [Rd]. We say that C is a relaxed control,
and we denote C ∈ Rr

(t,λ), if

C =
(
Ω,F ,P,F = {Fs}s≥0 , (Xs)s≥0 , (ᾱs)s≥0

)
where

(i) (Ω,F ,P) is a probability space with filtration F;

(ii) (Xs)s≥0 is an F-progressively measurable process living in Dd such that P(Xt = λ) = 1;

(iii) ᾱ : [0, T ]× Rd × Ω → P1(A) is a F̂-predictable process associated with α ∈ ALeb,·,1 such that
P(α ∈ ALeb,X,1) = 1, i.e.,

P
(
α(ds, dx, da) = dsXs(dx)ᾱs(x, da) a.e. s ∈ [0, T ]

)
= 1,

EP
[∫ T

t

∫
Rd×A

|a|ᾱs(x, da)Xs(dx)ds

]
<∞;
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(iv) for any Fφ = F (⟨φ, ·⟩), with F ∈ C2
b (R) and φ ∈ C2

b (Rd), the process

M
Fφ
s = Fφ(Xs)−

∫ s

t

∫
Rd×A

LFφ(x,Xu, a)ᾱu(x, da)Xu(dx)du (3.22)

is a (P,F)-martingale for s ≥ t.

Remark 3.3. We highlight two main aspects of this definition.

1. For C ∈ Rr
(t,λ), we are only interested in the time interval [t, T ]. Therefore, Xs and αs can

be redefined for s ∈ [0, t) as Xs = λ and αs = δa0 for some a0 ∈ A.

2. For (t, λ) ∈ [0, T ] × N [Rd], admissible strong controls are embedded in Rr
(t,λ). Indeed, it

suffices to consider (Ω,F ,P,F) as in Section 2 and define (ᾱs)s as ᾱs(x, da) = δa(s,x) for

a(s, x) :=

∑
i∈Vs− β

i
s−1Y i,β

s− =x∑
i∈Vs− 1Y i,β

s− =x

1{|Vs−|>0} + a01{|Vs−|=0}∪{s≤t}, (3.23)

for some a0 ∈ A and with the convention 0/0 := a0. The SDE (2.6), combined with Itô’s
formula for semimartingales, implies (3.22). Hence, it is a relaxed control, and, with abuse
of notation we denote β ∈ Rr

(t,λ).

We can find equivalent representations of (3.22), an important tool in the manipulation of these
objects. It is given using the quadratic variation of a martingale (see, e.g., [28, Chapter I-4e]).

Lemma 3.2. Given (t, λ) ∈ [0, T ]×N [Rd], let C = (Ω,F ,P,F = {Fs}s , (Xs)s , (αs)s) be such that
conditions (i), (ii), and (iii) in the definition 3.3 are satisfied. The following are equivalent.

(i) We have C ∈ Rr
(t,λ).

(ii) For any φ ∈ C2
b (Rd) such that φ > ε for some ε > 0 and supRd φ ≤ 1,

M
explogφ
s = e⟨logφ,Xs⟩ −

∫ s

t

∫
Rd×A

(
Lφ(x,Xu, a) + γ(x,Xu, a)(Φ(φ(x), x,Xu, a)− φ(x))

φ(x)

)
ᾱu(x, da)Xu(dx) e

⟨logφ,Xu⟩du (3.24)

is a (P,F)-martingale for s ≥ t.

(iii) For any φ ∈ C2
b (Rd) the process

M̄φ
s = ⟨φ,Xt⟩ −

∫ s

t

∫
Rd×A

Lφ(x,Xu, a)ᾱu(x, da)Xu(dx)du (3.25)

−
∫ s

t

∫
Rd×A

γ(x,Xu, a) (∂sΦ(1, x,Xu, a)− 1)φ(x)

ᾱu(x, da)Xu(dx)du , s ∈ [t, T ].

is a (P,F)-martingale with quadratic variation process[
M̄φ

]
s

=

∫ s

t

∫
Rd×A

(
Tr
(
σσ⊤(x,Xu, a)DφDφ

⊤(x)
)

(3.26)

+γ(x,Xu, a)
(
∂2ssΦ(1, x,Xu, a)− ∂sΦ(1, x,Xu, a) + 1

)
φ2(x)

)
ᾱu(x, da)Xu(dx)du , s ∈ [t, T ].
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Proof. (i) =⇒ (ii): We need to prove that (3.22) is a martingale for the function Flogφ with
F (x) = exp(x) and φ ∈ C2

b (Rd) such that φ > ε for some ε > 0 and supRd φ ≤ 1. The process
M explogφ , as in (3.24), is a local martingale. To prove that it is a martingale, we show its quadratic
variation has a finite expectation. Since the compensator of (M explogφ)2 is the same ofM exp2 logφ =
M explogφ2 , we get the quadratic variation of M explogφ applying (3.22) to F ∈ C2

b (R) and φ2.
Therefore, it is equal to

[M explogφ ]s =

∫ s

t

∫
Rd×A

(
Lφ2(x,Xu, a) + γ(x,Xu, a)(Φ(φ

2(x), x,Xu, a)− φ2(x))

φ2(x)

)
ᾱu(x, da)Xu(dx) e

⟨logφ2,Xu⟩du.

Since [M explogφ ] is uniformly bounded, using Itô’s isometry, M explogφ is a martingale.
(ii) =⇒ (iii): Fix f ∈ C2

b (Rd). For θ > 0, and Mf := supRd |f |, we define φ1 := eθ(f−Mf ) and
φ2 := e−θMf . Since f is bounded, there exists ε > 0 such that φ1 > ε and supRd φ1 ≤ 1. Applying
(3.24) to φ1 and φ2, we get

EP
[
e⟨θ(f−Mf ),Xs+h⟩ − e⟨θ(f−Mf ),Xs⟩

−
∫ s+h

s

∫
Rd×A

(
θLf(x,Xu, a) + θ2Tr

(
σσ⊤(x,Xu, a)DfDf

⊤(x)
)

(3.27)

+ γ(x,Xu, a)
Φ
((
eθ(f(x)−Mf )

)
, x,Xu, a

)
− eθ(f(x)−Mf )

eθ(f(x)−Mf )

)
ᾱu(x, da)Xu(dx)e

⟨θ(f−Mf ),Xu⟩du

∣∣∣∣Fs] = 0 ,

EP
[
e⟨−θMf ,Xs+h⟩ − e⟨−θMf ,Xs⟩ −

∫ s+h

s

∫
Rd×A

γ(x,Xu, a) (3.28)

Φ
(
e−θMf , x,Xu, a

)
−
(
e−θMf

)
e−θMf

ᾱu(x, da)Xu(dx)e
⟨−θMf ,Xu⟩du

∣∣∣∣Fs] = 0 .

Since all the functions are bounded, we are allowed to differentiate with respect to θ. Dividing
by θ, subtracting (3.27) and (3.28), and setting θ = 0, we get (3.25). Differentiating twice with
respect to θ, dividing by θ2subtracting (3.27) and (3.28) and setting θ = 0, we get (3.26).

(iii) =⇒ (i): We prove the last implication using Itô’s formula for semimartingales. Fix
F ∈ C2(Rn) and f ∈ C2

b (Rn). We have that ⟨f,Xs⟩s≥t is a P-semimartingale, and so, by Itô’s
formula, we have (3.22).

3.2 Representation and relaxed control problem

In this section, we show that relaxed controls can be expressed as solutions to stochastic differential
equations. This representation proves valuable in establishing the non-explosion property and,
subsequently, the well-posedness of the control problem. This characterization relies on martingale
measures within extensions of the designated space. Succinct definitions and pertinent results
concerning these entities are summarized in [15] (for a comprehensive study on the subject, refer
to [42]). Here, we provide a brief recap of their definition.

Definition 3.4. Let (G,G) be a Lusin space with its σ-algebra, and (Ω,F ,P,F = {Fs}s) a filtered
space satisfying the usual condition, where we define P the predictable σ-field. A process M on
Ω× [0, T ]× G is called martingale measure on G if
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(i) M0(E) = 0 a.s. for any E ∈ G;

(ii) Mt is a σ-finite, L2(Ω)-valued measure for all t ∈ [0, T ];

(iii) (Mt(E))t∈[0,T ] is an F-martingale for any E ∈ G.

We say that M is orthogonal if the product Mt(E)Mt(E
′) is a martingale for any two disjoint

sets E,E′ ∈ G. We also say, on one hand, that is continuous if (Mt(E))t≥0 is continuous, purely
discontinuous, on the other hand, if (Mt(E))t≥0 is a purely discontinuous martingale for any
E ∈ G.

For a strong representation of relaxed controls, we rely on the notion of predictable projection
and intensity that we briefly recall. For an R-valued F-adapted process Y , there exists (see, e.g.,
[28, Theorem 2.28, Chapter I]) a (−∞,∞]-valued process, called the predictable projection of Y and
denoted by PY . It is determined uniquely up to a negligible set by the following two conditions:

(i) it is predictable;

(ii) PYT = EP [YT |FT−] on {T <∞} for all predictable stopping times T .

For a continuous orthogonal martingale measure M on G, there exists a random, predictable
real-valued measure I on B([0, T ])⊗G, called intensity ofM, defined by: [M(E)]s =

∫ t
0

∫
E I(dx, ds)

P-a.s., for all t > 0. We can construct a stochastic integral with respect to M for all functions φ
defined on Ω× [0, T ]×G, P ⊗ G measurable, such that

EP
[∫ t

0

∫
E
φ2(ω, s, x)I(ω, dx, ds)

]
<∞,

denoted by
∫ t
0

∫
E φ(s, x)M(dx, ds). We refer to [42, Chapter 2] for the proofs.

The representation of these processes is grounded in the representation theorems for continuous
and purely discontinuous martingale measures, as done in [35]. We apply her construction in our
context and get the following proposition.

Proposition 3.3. Let C = (Ω,F ,P,F = {Fs}s , (Xs)s , (αs)s) ∈ Rr
(t,λ). There exists an extension(

Ω̂ = Ω× Ω̃, F̂ = F ⊗ F̃ , P̂ = P⊗ P̃,
{
F̂s = Fs ⊗ F̃s

}
s

)
of (Ω,F ,P,F), where we naturally extend

X and α, that satisfies the following properties.

1. (Ω̂, F̂ , F̂, P̂) is a filtered probability space supporting a continuous F̂-martingale measures Mc

on Ω̂× [0, T ]×Rd×A, with intensity measure dsXs(dx)ᾱs(x, da), and a purely discontinuous
F̂-martingale measure Md on Ω̂ × [0, T ] × Rd × R+ × A, with dual predictable projection
measure dsXs(dx)dzᾱs(x, da).

2. P̂ ◦X−1
t = λ.

3. P̂(α ∈ ALeb,X,1) = 1.

4. X satisfies the following dynamics

⟨f,Xs⟩ = ⟨f, λ⟩ +

∫ s

t

∫
Rd×A

(
Lf(x,Xr, a) +

γ(x,Xr, a) (∂sΦ(1, x,Xr, a)− 1) f(x)
)
ᾱr(x, da)Xr(dx)dr

+

∫ s

t

∫
Rd×A

Df(x)σ(x,Xs, a)Mc(dr, dx, da) (3.29)

+

∫ s

t

∫
Rd×R+×A

∑
k≥0

⟨f, (k − 1)δx⟩1Ik(x,Xr,a)(z)M
d(dr, dx, dz, da) .
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for all f ∈ C∞
b (Rd) and all [t, s] ⊆ [0, T ].

Proof. We follow the ideas in [35, Theorem 2.7] and [35, Theorem 2.9] to characterize the martingale

M̄f
s in (3.25). From [28, Theorem 4.18], every square integrable martingale starting at 0 can be

uniquely decomposed in the sum of a continuous martingale M̄f,c and a purely discontinuous
martingale M̄f,d, which is the compensated sum of its jumps. We show the connection of these
two processes with X and α.

First, we focus on M̄f,d. Since a purely discontinuous martingale M̄f,d is the compensated
sum of its jumps, we look at ∆Xs = Xs −Xs−. Let Ñ be the Lévy system of X, i.e., a measure
on M1(Rd) × R+ given by Ns(Xs, dv)ds where Ns(X̄, dv) is the image measure of the measure
νs(x, X̄, du)X̄(dx) by the mapping (u, x) 7→ uδx from R+ ×Rd to M1(Rd), and a certain kernel ν.
Comparing the last term in expressions (3.22) and [16, Théorème 7 (4)], we identify ν as

νs(x, λ, dz) =

∫
A

∑
k≥0

(k − 1)1Ik(x,λ,a)(z)ᾱs(x, da)dz.

This means that, for F bounded positive measurable function on R+ ×M1(Rd), we have that∑
t<r≤s

F (r,∆Xr)1{∆Xr ̸=0}

−
∫ s

t

∫
Rd

∫
(0,∞)

∫
A

∑
k≥0

F (r, (k − 1)δx)1Ik(x,Xr,a)(z)ᾱr(x, da)dzXr(dx)dr

=
∑
t<r≤s

F (r,∆Xr)1{∆Xr ̸=0} (3.30)

−
∫ s

t

∫
Rd×A

∑
k≥0

F (r, (k − 1)δx)γ(x,Xr, a)pk(x,Xr, a)ᾱr(x, da)Xr(dx)dr

is a F-martingale. With this description of ν and Ns(Xs, dv)ds, we use [35, Proposition 2.8] to
prove that we satisfy the hypothesis of [14, Theorem 12]. Therefore, there exists an extension(
Ω̄1 = Ω × Ω1, F̄1 = F ⊗ F1, P̄1 = P ⊗ P1,

{
F̄1
s = Fs ⊗F1

s

}
s

)
, and martingale measures Md on

[0, T ]×Rd×R+×A in it, such that its dual predictable projection measure is drXr(dx)dzᾱr(x, da),
and

M̄f,d
s =

∫ s

t

∫
Rd×R+×A

∑
k≥0

⟨f, (k − 1)δx⟩1Ik(x,Xr,a)(z)M
d(dr, dx, dz, da).

Focus now on M̄f,c. The first term in (3.26) comes from the continuous martingale, i.e.,[
M̄f,c

]
s
=

∫ s

t

∫
Rd×A

Tr
(
σσ⊤(x,Xr, a)DφDφ

⊤(x)
)
ᾱr(x, da)Xr(dx)dr.

Since σ ∈ L2(Xs(dx)αs(da)ds), from [15, Theorem III-7], there exist an extension
(
Ω̄2 = Ω̄1 ×

Ω2, F̄2 = F̄1⊗F2, P̄2 = P̄1⊗P2,
{
F̄2
s = F̄1

s ⊗F2
s

}
s

)
, and a continuous martingale measure Mc on

[0, T ]× Rd ×A on this space, such that its intensity is dsXs(dx)ᾱs(x, da), and we have

M̄f,c
s =

∫ s

t

∫
Rd×A

Df(x)σ(x,Xr, a)Mc(dr, dx, da).

The imposed dependence on X and α over Md and Mc implies that (3.29) is satisfied.
Conversely, if a M1(Rd)-valued process satisfies (3.29), applying Itô’s formula, we have (3.24).
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We can now define the relaxed control problem. For C ∈ Rr
(t,λ), we define the cost function as

J(t, λ; C) = EP
[∫ T

t

∫
Rd×A

ψ (s,Xs, a) ᾱs(x, da)Xs(dx)ds+Ψ(XT )

]
, (3.31)

and the relaxed control problem as

vr(t, λ) = inf
{
J(t, λ; C) : C ∈ Rr

(t,λ)

}
, (3.32)

for any (t, λ) ∈ [0, T ]×N [Rd].
To achieve the well-posedness of this problem, akin to the case of strong controls, it is necessary

to get non-explosion bounds, as presented in Proposition 2.1 and Proposition 2.2. However, we
choose an alternative approach instead of replicating similar results within this new framework.
Firstly, we establish an equivalence between the strong and relaxed formulations. Subsequently,
we employ this equivalence to retrieve estimates for the relaxed formulation, thereby ensuring the
well-posedness of the relaxed control problem.

4 Equivalence between strong and relaxed formulation

We state the following straightforward adaptation of [23, Lemma 3.7]. This enables the process X
to be reduced to its canonical filtration. It is important to emphasize that the following lemma is
presented in relation to the filtration generated by the processes, rather than its right-continuous
extension or its completion with respect to a specific probability measure. This construction aligns
with the approach described in [23], where the only requirement is the existence of a countably
dense set of test functions that define the martingale problem.

Lemma 4.3. Fix (t, λ) ∈ [0, T ]×N [Rd] and C = (Ω,F ,P, {Fs}s≥0 , (Xs)s≥0 , (ᾱs)s≥0) ∈ Rr
(t,λ). If{

FX
s

}
s
is the filtration generated by X and {Gs}s≥0 another filtration such that FX

s ⊆ Gs ⊆ Fs for
any s ≥ 0. Then, there exists

(
ᾱG
s

)
s≥0

such that

C̄ =
(
Ω,GT ,P, {Gs}s≥0 , (Xs)s≥0 ,

(
ᾱG
s

)
s≥0

)
is in Rr

(t,λ) and J(t, λ; C) = J(t, λ; C̄).

Denoting the canonical process on Dd as µ, we define Fµ = {Fµ
s }s≥0 as the filtration generated

by this process. The previous lemma hints at considering a subset of relaxed controls as follows.

Definition 4.5. Fix (t, λ) ∈ [0, T ]×N [Rd]. C = (Ω,F ,P, {Fs}s , (Xs)s , (ᾱs)s) in Rr
(t,λ) is a natural

control, and we say that C is in Rn
(t,λ), if Ω = Dd, F = Fµ

T , Fs = Fµ
s for s ∈ [t, T ], X = µ, and

P (µs = λ, s ∈ [0, t]) = 1.

We observe that the pair (P, ᾱ) determine natural controls, consisting in a probability measure
on Dd, i.e., the distribution of µ, and the control process (ᾱs)s. With abuse of notation, we use
(P, ᾱ) to refer to CP,ᾱ := (Dd,Fµ

T ,P, {F
µ
s }s , (µs)s , (ᾱs)s) in Rn

(t,λ).
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4.1 Weak controls

Considering the implications highlighted in Remark 3.3, we can focus on a subset of controls known
as weak controls. Notably, the elements within this class exhibit uniqueness in terms of their
probability distributions. This particular property serves as the crucial connection for identifying
the class of strong controls within the realm of relaxed controls.

For a fixed x ∈ Dd, the set of measurable functions a : [0, T ]×Rd → A is canonically embedded
in ALeb,x,1 by αa(ds, dx, da) := dsxs(dx)δa(s,x)(da).

Definition 4.6. Fix (t, λ) ∈ [0, T ] × N [Rd]. We say that (P, a) is a weak control, and we write
(P, a) ∈ R0

(t,λ), if a : [0, T ]× Rd × Ω → A is F̂µ-predictable, and (P, αa) ∈ Rn
(t,λ).

Therefore, for P ∈ R0
(t,λ), we have that

Fφ(µs)−
∫ s

t

∫
Rd

LFφ(x, a(u, x), µu)µu(dx)du

is a (P,Fµ)-martingale for s ≥ t, F ∈ C2
b (R) and φ ∈ C2

b (Rd).
We now prove how to restrict the class of controls from Rn

(t,λ) to R0
(t,λ) without impacting the

value function. This is done by showing that we can always associate natural and weak control
with the same cost under the following assumption.

Assumption A1. The following set

K(x, λ) :=
{(
b(x, λ, a), σσ⊤(x, λ, a),

(
(γpk)(x, λ, a)

)
k≥0

, z
)
: a ∈ A, z ≥ ψ(x, λ, a)

}
⊆ Rd × Rd×d × R∞

+ × R

is convex for all (x, λ) ∈ Rd ×M1(Rd).

This convexity assumption is the so-called Filippov condition, common in the control literature.
It holds, for example, when A is a convex subset of a vector space, and the parameters are affine
in a, which is the case of the Linear-Quadratic example presented in Section 6.3.

Proposition 4.4. Fix (t, λ) ∈ [0, T ]×N [Rd]. Suppose that Assumption A1 holds. For (P, (αs)s) ∈
Rn

(t,λ), there exists a such that (P, a) ∈ R0
(t,λ) and J

(
t, λ; CP,δa

)
≥ J

(
t, λ; CP,ᾱ).

Proof. Given (P, (αs)s) in Rn
(t,λ), we define c by

c1(s, x, λ, ω) =

∫
A

(
b, σσ⊤, (γpk)k≥0

)
(x, λ, a)ᾱs(x, da),

c2(s, x, λ, ω) =

∫
A
ψ(x, λ, a)ᾱs(x, da).

All the functions defining K are continuous, therefore, for almost all (x, λ) ∈ Rd×M1(Rd), K(x, λ)
is closed. Since K(x, λ) is closed and convex, (c1, c2)(s, x, λ, ω) is in K(x, λ) for any (x, λ) and
almost all (s, ω). Moreover, from [23, Lemma A.1], we can take (c1, c2) to be F̂µ-predictable. We
apply [23, Theorem A.9] and obtain that there is a F̂µ-predictable A-valued process a such that

c1(s, x, λ, ω) =
(
b, σσ⊤, (γpk)k≥0

)
(x, λ, a(s, x, λ, ω)), (4.33)

c2(s, x, λ, ω) ≥ ψ(x, λ, a(s, x, λ, ω)) (4.34)
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for any (x, λ) and for almost all (s, ω). For F ∈ C2
b (R) and φ ∈ C2

b (Rd), we must have∫
Rd×A

LFφ(x, µu, au)ᾱu(x, da)µu(dx) =
∫
Rd

LFφ(x, a(s, x, µu), µu)µu(dx)

for almost all (s, ω). Hence, Fφ(µs)−
∫ s
t

∫
Rd×A LFφ(x, a(s, x, µu), µu)µu(dx)du is a martingale, for

all s ≥ t. Therefore, (P, a) ∈ R0
(t,λ), and, from (4.33), we get J(t, λ; CP,δa) ≤ J(t, λ; CP,ᾱ).

4.2 Uniqueness in law for weak controls

We introduce the domain D as the set of function h : R+ ×Dd → R of the form

h(s,x) = F
(
⟨f1(s ∧ t1, ·),xs∧t1⟩, . . . , ⟨fp(s ∧ t1, ·),xs∧tp⟩

)
, (s,x) ∈ R+ ×Dd,

for some p ≥ 1, 0 ≤ t1 < · · · < tp ≤ T , F ∈ C2
b (Rp), and f1, . . . , fp ∈ C1,2

b ([0, T ] × Rd). For

f ∈ C1,2
b ([0, T ] × Rd) , we use the notation Lf(s, x, µ, a) = Lf(s, ·)(x, µ, a). For a measurable

function a : Rd → A, define the operator La on D by

Lah(s,x) = DF
(
⟨f1(s ∧ t1, ·),xs∧t1⟩, . . . , ⟨fp(s ∧ tp, ·),xs∧tp⟩

)⊤
Laf(s,x)

+
1

2
Tr
(〈

Saf(Saf)⊤(s, ·),xs
〉
D2F

(
⟨f1(s ∧ t1, ·),xs∧t1⟩, . . . , ⟨fp(s ∧ tp, ·),xs∧tp⟩

))
+

p∑
j=1

1tj−1<s≤tj

∫
Rd

∑
k≥0

γ(x, a(s, x),xs)pk(x, a(s, x),xs)(
F
(
⟨f1(s ∧ t1, ·),xs∧t1⟩, . . . , ⟨fj−1(s ∧ tj−1, ·),xs∧tj−1⟩,G1

kfj(s, x,xs), . . . ,G
1
kfp(s, x,xs)

)
−F

(
⟨f1(s ∧ t1, ·),xs∧t1⟩, . . . , ⟨fp(s ∧ tp, ·),xs∧tp⟩

))
xs(dx)

with t0 = 0, where

Laf(s,x) :=

 1s≤t1
∫
Rd ∂tf1(s, x) + Lf1(s, x,xs, a(s, x))xs(dx)

...
1s≤tp

∫
Rd ∂tfp(s, x) + Lfp(s, x,xs, a(s, x))xs(dx)

 ,

Saf(s, x,x) :=

 1s≤t1 |Df1(s, x)σ(x,xs, a(s, x))|
...

1s≤tp |Dfp(s, x)σ(x,xs, a(s, x))|

 ,

Gn
kfj(s, x,x) := ⟨fj(s, ·),xs⟩+

k − 1

n
fj(s, x),

for (s, x,x) ∈ [0, T ]× Rd ×Dd, and k, j, n ≥ 0.
Considering the canonical process µ ∈ Dd, we take the extended process x defined by

xs = (s, (µu∧s)), s ∈ [t, T ],

valued in R×Dd, which is separable. Note that for (P, a) ∈ R0
(t,λ) the process

h(xs)−
∫ s

t
Lah(xu)du, t ≤ u ≤ T, (4.35)

is a Fµ-martingale under P. Therefore, we have that this condition gives information about the
marginals.
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Proposition 4.5. Fix (t, λ) ∈ [0, T ] × N [Rd] and (P, a) ∈ R0
(t,λ). For any (P′, a) ∈ R0

(t,λ), P and

P′ have the same one dimensional marginals:

P(xs ∈ B) = P′(xs ∈ B) (4.36)

for s ∈ [t, T ] and B ∈ B([0, T ]×Dd).

Proof. We first endow the measurable space (Dd × Dd,Fµ
T ⊗ Fµ

T ) with the probability measure
Q = P⊗ P′. For h ∈ D, we have

EQ [h⊗ h(xs, xt)] = EQ [h⊗ h(xt, xs)]

Indeed, the processes

h⊗ h(xs, xt)−
∫ s

t
Lah(xu)h(xt)du, t ≤ s ≤ T

and

h⊗ h(xt, xs)−
∫ s

t
h(xt)Lah(xu)du, t ≤ s ≤ T

are both martingales under Q. Since all the considered functions are bounded, we can take the
expectation and get

EQ [h⊗ h(xt, xs)] = EQ [h⊗ h(xs, xt)]

and

EP [h(xs)] = EP′
[h(xs)] .

Since any bounded B(X)-measurable function can be approximated almost everywhere for P and
P′ by a sequence of D we get (4.36).

Theorem 4.1. Fix (t, λ) ∈ [0, T ] × N [Rd] and a a F̂µ-predictable process from [0, T ] × Rd to A.
There exists at most one P ∈ P1(Dd) such that (P, a) ∈ R0

(t,λ), and we denote it Pa.

Proof. The proof is a direct consequence of [19, Theorem 4.2, Chapter 4] and Proposition 4.5.

4.3 Equivalence between relaxed and strong formulations

Proposition 4.6. Fix (t, λ) ∈ [0, T ] × N [Rd]. For a a F̂µ-predictable process from [0, T ] × Rd to
A, there exist β ∈ Rs

(t,λ) and Pa ∈ P1(Dd) such that (Pa, a) ∈ R0
(t,λ), and the law of ξβ under Ps is

the same of the one on µ under Pa.

Proof. Since a is F̂µ-predictable, from Doob’s functional representation theorem (see, e.g., Lemma
1.13 in [29]), there exists a B([0, T ])⊗B(Rd)⊗B(Dd)-measurable function κa : [0, T ]×Rd×Dd → A
such that a(s, x, ω) = κa(s, x, µ(ω.∧s)) = κa(s, x, µ(ω)) for any s ∈ [0, T ], x ∈ Rd, and ω ∈ Ω.

Fix some a0 ∈ A. We consider the filtered space (Ω,F ,F,P) as in Section 2 and define the
standard strong control βa as

βa,is = κa
(
s, Y i,β

s ,
(
ξβu∧s

)
u∈[0,T ]

)
1i∈Vs + a01i/∈Vs ,
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where ξβ (resp. Y i,β for i ∈ Vs) is the strongly controlled population (resp. particle) associated
with βa. From Proposition 2.1, there exists a unique càdlàg process that satisfies (2.6) associated
with this control βa. Moreover, condition (2.17) is satisfied, hence βa ∈ Rs

(t,λ).
With the embedding given in Remark 3.3, we can associate to βa the relaxed control

Ca = (Ωa,Fa,Pa, {Fa
s }s , (X

a
s )s , (ᾱ

a
s)s).

From Lemma 4.3, we get a natural control (Pn,a, ᾱn,a). Following [23, Lemma 3.7], since ᾱa is a
Dirac measure Pa-a.s., we have that ᾱn,a is a Dirac measures Pn,a-a.s. Moreover, we can see that
ᾱn,a
s (x, da) = δκa(s,x,µ(ω.∧s)) = δa(s,x) Pn,a-a.s., hence (Pn,a, a) ∈ R0

(t,λ).

Combining Theorem 4.1 and Proposition 4.6, we have that a weak control is specified by the
F̂µ-predictable control a. With abuse of notation, we write a ∈ R0

(t,λ) (resp. J(t, λ; a)) to denote

Ca :=
(
Dd,Fµ

T ,P
a, {Fµ

s }s , (µs)s ,
(
δa(s,·)

)
s

)
∈ Rr

(t,λ) (resp. J(t, λ; C
P)).

Proposition 4.7. Suppose Assumption A1 holds. For (t, λ) ∈ [0, T ]×N [Rd], we have

v(t, λ) := inf
{
J(t, λ; C) : C ∈ Rr

(t,λ)

}
= inf

{
J(t, λ; a) : a ∈ R0

(t,λ)

}
= inf

{
J(t, λ;β) : β ∈ Rs

(t,λ)

}
.

Proof. We denote vr(t, λ) = inf
{
J(t, λ; C) : C ∈ Rr

(t,λ)

}
, v0(t, λ) = inf

{
J(t, λ; a) : a ∈ R0

(t,λ)

}
and

vs(t, λ) = inf
{
J(t, λ;β) : β ∈ Rs

(t,λ)

}
. From the embedding of Remark 3.3, we have that vr(t, λ) ≤

vs(t, λ). Using Lemma 4.3 and Proposition 4.4, for each relaxed control, there exists a weak
control that does not increase the value functions. This means that vr(t, λ) = v0(t, λ). Finally,
from Proposition 4.6, any weak control finds a representation in the strong controls set. This means
that vs(t, λ) ≤ v0(t, λ).

We can now give the bounds on the moments of the controlled processes in the relaxed frame-
work.

Proposition 4.8. Let (t, λ) ∈ [0, T ]×N [Rd], and

C =
(
Ω,F ,P,F = {Fs}s≥0 , (Xs)s≥0 , (ᾱs)s≥0

)
∈ Rr

(t,λ).

There exists a constant C > 0 depending only on T and on the coefficients b, σ, γ and (pk)k such
that

EP

[
sup

u∈[t,t+h]
⟨1, Xu⟩

]
≤ ⟨1, λ⟩eCγC1

Φh, (4.37)

EP

[
sup

u∈[t,t+h]
⟨1, Xu⟩2

]
≤ ⟨1, λ⟩eCγ(C1

Φ+C
2
Φ)h, (4.38)

EP

[
sup

u∈[t,t+h]
⟨| · |, Xu⟩

]
≤ C

(
⟨| · |, λ⟩+ EP

[∫ t+h

t
⟨1, Xu⟩du

]
(4.39)

+ EP
[∫ t+h

t

∫
Rd×A

|a|ᾱu(x, da)Xu(dx)du

])
,

EP

[
sup

u∈[t,t+h]
⟨| · |2, Xu⟩

]
≤ C

(
⟨| · |2, λ⟩+ EP

[∫ t+h

t
⟨1, Xu⟩du

]
(4.40)

+ EP
[∫ t+h

t

∫
Rd×A

|a|2ᾱu(x, da)Xu(dx)du

])
,
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for any h > 0, where | · | (resp. | · |2) denote the function x 7→ |x| (resp. x 7→ |x|2). Moreover, for
ε > 0, if Rr,ε

(t,λ) denotes the set of C ∈ Rr
(t,λ) satisfying J(t, λ; C) ≤ v(t, λ) + ε. Then

sup
β∈Rr,ε

(t,λ)

EP
[∫ t+h

t

∫
Rd×A

|a|2ᾱu(x, da)Xu(dx)du

]
<∞. (4.41)

Proof. From Lemma 4.3, any bound established on relaxed control transposes exactly on natural
controls. Fix (P, (αs)s) ∈ Rn

(t,λ). From the proof of Proposition 4.4, we see that the weak control

(P, a) ∈ R0
(t,λ) associated with this natural control does not modify the probability measure P, nor

the law of µ, using Assumption A1. In particular, this procedure can be applied for any kind of
cost functions (ψ,Ψ) as soon as they satisfy the bounds (2.13)-(2.16).

Define now ψ1(x, λ, a) := |a| (resp. ψ2(x, λ, a) := |a|2). Since ψ1 (resp. ψ2) satisfies (2.13)-
(2.16), we consider a1 (resp. a2) the weak control associated with the couple (ψ1, 0) (resp. (ψ2, 0)).
In the notation of the paper, the cost functions associated with these couples are respectively

Jp(t, λ; C) = EP
[∫ T

t

∫
Rd×A

|a|pᾱs(x, da)µs(dx)ds
]
, for p = 1, 2.

Using the identification between weak, controls and strong controls, we have that (2.7) ,(2.8),
(2.10), and (2.19) extend directly to the framework of weak controls. Therefore, since the first
two depend only on the parameters of the model and the initial condition (t, λ), we get (4.37) and
(4.38).

Since the association from α to a1 (resp. a2) given by Proposition 4.4 is non-increasing in the
cost function, we have that

EP
[∫ T

t

∫
Rd

|a1(s, x)|µs(dx)ds
]

≤ EP
[∫ T

t

∫
Rd×A

|a|ᾱs(x, da)µs(dx)ds
]
,

EP
[∫ T

t

∫
Rd

|a2(s, x)|2µs(dx)ds
]

≤ EP
[∫ T

t

∫
Rd×A

|a|2ᾱs(x, da)µs(dx)ds
]
.

Therefore, combining these inequalities with (2.10) and (2.19), we get exactly (4.39) and (4.40).
Finally, to retrieve (4.41), we argue exactly as in Proposition 2.2 directly in the relaxed control

setting. This is again a consequence that the function a 7→ |a|2 − C|a| is bounded below and
(2.13)-(2.16).

5 Existence of Optimal Controls

We look for canonic relaxed controls to show the existence of optimal controls. From Lemma 4.3,
we can define the control problem 3.31-3.32 with respect to any class R· such that Rn ⊆ R· ⊆ Rr

without increasing the value function. Since we focus on the pair (X,α) in the definition of relaxed
controls, canonic relaxed controls are defined in Ω = Dd × ALeb,·,1. Let (µ,a) be the projection
maps (or canonical processes) on Dd × ALeb,·,1, and Fµ,a =

{
Fµ,a
s

}
s
the filtration generated by

them, i.e.,

σ
(
µs(B1),a([0, s

′]×B2 ×B3], for s, s
′ ∈ [0, T ], B1, B2 ∈ B(Rd), B3 ∈ B(A)

)
.
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Definition 5.7 (Control rule). Fix (t, λ) ∈ [0, T ] × N [Rd]. C = (Ω,F ,P, {Fs}s , (Xs)s , (ᾱs)s) ∈
Rr

(t,λ) is a control rule, and we write C ∈ R(t,λ), if Ω = Dd × ALeb,·,1, F = Fµ,a
T , Fs = Fµ,a

s for

s ∈ [t, T ], X = µ, α = a and

P (µs = λ, s ∈ [0, t]) = 1.

A control rule is specified by P ∈ P1(Dd×ALeb,·,1), i.e., the distribution of (µ,a). With abuse
of notation, we write P ∈ R(t,λ) (resp. J(t, λ;P)) to denote CP := (Dd,Fµ

T ,P, {F
µ
s }s , (µs)s , (ās)s) ∈

R(t,λ) (resp. J(t, λ; CP)).
From Lemma 4.3, any relaxed control is associated with a control rule with the same cost

function J . Therefore,

v(t, λ) = inf
{
J(t, λ; C) : C ∈ Rr

(t,λ)

}
= inf

{
J(t, λ;P) : P ∈ R(t,λ)

}
.

We aim at applying the same procedure, as in [23] and [33], to exhibit the existence of a relaxed
control. This means proving the optimization problem consists of minimizing a lower semicontin-
uous function on a compact set. Therefore, we aim at showing that J is lower semicontinuous and
Rε

(t,λ) := Rr,ε
(t,λ) ∩R(t,λ) is compact in P1(Dd ×ALeb,·,1) for ε > 0.

Lemma 5.4. For (t, λ) ∈ [0, T ]×N [Rd], J(t, λ; ·) is lower semicontinuous on P1(Dd ×ALeb,·,1).

Proof. Consider f : Dd ×ALeb,·,1 → R, defined as

f(x, α) :=

∫ T

t

∫
Rd×A

ψ (x,xs, a) ᾱs(x, da)xs(dx)ds+Ψ(xT ) .

This function is lower semicontinuous as a consequence of the continuity of ψ and Ψ and their
growth conditions (2.16) and (2.14). This means that J(t, λ;P) =

∫
fdP is lower semicontinuous.

For a Polish space (E, d) and P ∈ P(M(E)), we define the mean measure mP ∈ P(E) by

mP(C) :=
∫
M(E)

λ(C)P(dλ).

Since dp,E is a Wasserstein type distance, from (2.1), the results from [32, Appendix B] can be
naturally extended to this setting. As the primary focus is on convergence in weak* topology in
the first part, we will examine an alternative metrization, simpler than dp,E .

A family F ⊆ Cb(E) is said to be separating if, whenever ⟨φ, λ⟩ = ⟨φ, λ′⟩ for all φ ∈ F , and
some λ, λ′ ∈M(E), we necessarily have λ = λ′. Since E is Polish, from the Portmanteau theorem
(see, e.g., [41, Theorem 1.1.1]), the set of uniformly continuous functions, for any metric equivalent
to d, is separating. Using Tychonoff’s embedding theorem (see, e.g., [43, Theorem 17.8]), Cb(E) is
also separable. Therefore, there exists a countable and separating family FE = {φk, k ∈ N} subset
of Cb(E) such that the function E ∋ x 7→ 1 belongs to FE and ||φk||∞ := supE |φk| ≤ 1 for all
k ∈ N since multiplying by a positive constant do not impact the property of being separating.
With the use of this family,

dweak*,E(λ, λ
′) =

∑
φk∈FE

1

2k
∣∣⟨φk, λ⟩ − ⟨φk, λ′⟩

∣∣ ,
for λ, λ′ ∈ M(E). As in [41, Theorem 1.1.2], this distance dweak,E induces on M(E) the weak*
topology. Whenever E = Rd, we can adjust this metric to take into account useful differential
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properties. Let FRd be taken as a subset of C2
b (Rd), the set of real functions with bounded,

continuous derivatives over Rd up to order two. Without loss of generality, since C2 is dense
in C0, this set is separating under local uniform convergence (application of [21, Theorem 8.14]).
Moreover, since x 7→ 1 belongs to FRd , adding a constant or multiplying by a non-negative constant
to each function does not change the property of being a separating set, we assume φk ≥ 0. We
define the distance

dweak*,Rd(λ, λ′) =
∑

φk∈FRd

1

2kqk

∣∣⟨φk, λ⟩ − ⟨φk, λ′⟩
∣∣ , (5.42)

with qk = max{1, ||Dφk||∞, ||D2φk||∞}.

Proposition 5.9. Given (t, λ) ∈ [0, T ]×N [Rd] and ε > 0, Rε
λ is compact in P1(Dd ×ALeb,·,1).

Proof. The proof of this lemma breaks into four steps.

Step 1. First, we aim at proving that
{
mP

Dd : P ∈ Rε
(t,λ)

}
⊆ P(Db) is tight. To do that, we

verify Aldous’ criterion (see, e.g., [29, Theorem 14.11]), i.e., proving

lim
δ↓0

sup
P∈R(t,λ)

sup
τ

EP [dweak*,Rd(µ(τ+δ)∧T , µτ )
]
= 0, (5.43)

where the innermost supremum is over stopping times τ valued in [t, T ].
From Proposition 3.3, we know there exists an extension Ω̂ of Dd × ALeb,·,1 where µ can be

represented as the solution of (3.29). This SDE is driven by Mc orthogonal continuous martingale
measure on Ω̂×[0, T ]×Rd×A, with intensity measure dsµs(dx)ās(x, da), and a purely discontinuous
martingale measure Md on Ω̂ × [0, T ] × Rd × R+ × A, with dual predictable projection measure
dsµs(dx)dzās(x, da). Applying (3.29) to φk ∈ FRd , we get

⟨φk, µ(s+δ)∧T ⟩ = ⟨φk, µs⟩ +

∫ (s+δ)∧T

s

∫
Rd×A

(
Lφk(x, µ, ar) +

γ(x, µ, ar) (∂sΦ(1, x, µ, ar)− 1)φk(x)
)
ār(x, da)µr(dx)dr +

+

∫ (s+δ)∧T

s

∫
Rd×A

Dφk(x)σ(x,Xr, a)Mc(dr, dx, da)

+

∫ (s+δ)∧T

s

∫
Rd×R+×A

∑
k≥0

⟨φk, (k − 1)δx⟩1Ik(x,µr,a)(z)M
d(dr, dx, dz, da).

for s ∈ [0, T ], k ∈ N. Therefore, to bound the quantity EP [|⟨φk, µ(s+δ)∧T ⟩ − ⟨φk, µs⟩|
]
, it suffices

to bound the last three terms in the r.h.s. There is a constant C > 0 that depends only on b, σ, γ
and Φ (which may change from line to line) such that

EP

[∣∣∣∣∣
∫ (s+δ)∧T

s

∫
Rd×A

(
Lφk(x, µ, ar) + γ(x, µ, ar) (∂sΦ(1, x, µ, ar)− 1)φk(x)

)
ār(x, da)µr(dx)dr

∣∣∣∣∣
]
≤

≤ CqkEP

[∫ (s+δ)∧T

s
(⟨1, µu⟩+ ⟨| · |, µu⟩) du+

∫ (s+δ)∧T

s

∫
Rd×A

|a|āu(x, da)µu(dx)du

]
.

Applying Burkholder-Davis-Gundy inequality, we obtain

EP

[∣∣∣∣∣
∫ (s+δ)∧T

s

∫
Rd×A

Dφk(x)σ(x,Xr, a)Mc(dr, dx, da)

∣∣∣∣∣
]
≤ CqkEP

[∫ (s+δ)∧T

s
⟨1, µu⟩du

]
.
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Finally, since φk ≥ 0, we have

EP

[∣∣∣∣∣
∫ (s+δ)∧T

s

∫
Rd×R+×A

∑
k≥0

⟨φk, (k − 1)δx⟩1Ik(x,µr,a)(z)M
d(dr, dx, dz, da)

∣∣∣∣∣
]

≤ EP

[∣∣∣∣∣
∫ (s+δ)∧T

s

∫
Rd×A

φk(x)
∑
k≥1

(k − 1)γ (x, µr, a) pk (x, µr, a) ār(x, da)µr(dx)dr

∣∣∣∣∣
]

≤ CqkEP

[∫ (s+δ)∧T

s
⟨1, µu⟩du

]
.

Combining these inequalities, we get

EP [|⟨φk, µ(s+δ)∧T ⟩ − ⟨φk, µs⟩|
]

≤ CqkEP

[∫ (s+δ)∧T

s
(⟨1, µu⟩+ ⟨| · |, µu⟩) du+

∫ (s+δ)∧T

s

∫
Rd×A

|a|āu(x, da)µu(dx)du

]

≤ δCqk

(
EP

[
sup

u∈[0,T ]
(⟨1, µu⟩+ ⟨| · |, µu⟩)

]
+ EP

[∫ (s+δ)∧T

s

∫
Rd×A

|a|āu(x, da)µu(dx)du

])
.

Combining (4.37) and (4.40), together with the uniform bound (4.41), we obtain EP[|⟨φk, µ(s+δ)∧T ⟩−
⟨φk, µs⟩|

]
≤ Cqkδ. Multiplying for 1

2kqk
, summing over k ∈ N and applying the monotone conver-

gence theorem, we get EP [dRd(µ(s+δ)∧T , µs)
]
≤ δC, which gives us (5.43).

Step 2. Secondly, we prove that
{
P

Dd : P ∈ Rε
(t,λ)

}
⊆ P1(Db) is relatively compact. Combining

the bound (4.40) with (4.41) and (4.37), we get

sup
P∈Rε

(t,λ)

EP

[
sup
u∈[t,T ]

∫
Rd

|x|2µu(dx)

]
<∞.

This bound, together with (4.38) and (2.1), gives that

sup
P∈Rε

(t,λ)

EP

[
sup
u∈[t,T ]

d2
2,Rd(µu, δ0)

]
<∞. (5.44)

Putting together Step 1 and this bound, we have from [32, Corollary B.2] that
{
P

Dd : P ∈ Rε
(t,λ)

}
⊆

P1(Db) is relatively compact.

Step 3. From the first step, we have that
{
P ◦ µ−1 : P ∈ Rε

(t,λ)

}
is tight in P1(Db). Adding this

to (4.41) and (5.44), we have that
{
P

ALeb,·,1 : P ∈ Rε
(t,λ)

}
is compact in P1(ALeb,·,1). This entails

that Rε
(t,λ) is relatively compact in P1(Dd×ALeb,·,1) since

{
P

Dd : P ∈ Rε
(t,λ)

}
and

{
P

ALeb,·,1 : P ∈

Rε
(t,λ)

}
are relatively compact in P1(Dd) and P1(ALeb,·,1) respectively.

Step 4. Finally, we prove Rε
(t,λ) is closed. To do that, we show that P∞ belongs to Rε

(t,λ)

for Pn → P∞ in P1(Dd × ALeb,·,1), with Pn ∈ Rε
(t,λ). Since µt has law λ under Pn, the same is

true under P∞. Analogously, since Pn(α ∈ ALeb,µ,1) = 1, the same is true under P∞. For any

F ∈ C2
b (R) and φ ∈ C2

b (Rd) and P ∈ P1(Dd ×ALeb,·,1), define M
P,Fφ
s : Dd ×ALeb,·,1 → R by

M
P,Fφ
s (x, α) = Fφ(xs)−

∫ s

t

∫
Rd×A

LFφ(y,yu, a)ᾱu(y, da)yu(dy)δyu=xudu.
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Recalling the definition of L, we see that there exists a constant C > 0 depending only on the
bounds of F , φ and the constants Cb, Cσ, Cγ such that

|LFφ(y, λ, a)| ≤ C(1 + |y|+ |a|).

This implies∣∣∣MP,Fφ
s (x, α)

∣∣∣ ≤ C

(
1 + sup

u∈[t,T ]
d1,Rd (xu, δ0) +

∫ T

t

∫
Rd×A

|a|ᾱu(x, da)yu(dx)du

)
.

Combining this with the continuity of b, σ, γ and pk for k ∈ N, we have that (P,x, α) 7→M
P,Fφ
s (x, α)

is a continuous function for each s ∈ [t, T ], F ∈ C2
b (R) and φ ∈ C2

b (Rd) using [32, Corollary A.5].
Since Pn → P∞ in P1(Dd ×ALeb,·,1), it follows that

EP∞
[(
M

P∞,Fφ

s+u −M
P∞,Fφ
s

)
Λ
]
= lim

n→∞
EPn

[(
M

Pn,Fφ

s+u −M
Pn,Fφ
s

)
Λ
]
,

for every s ∈ [t, T ], u ≥ 0 such that s+ u ≤ T , any F ∈ C2
b (R) and φ ∈ C2

b (Rd), and any bounded
continuous function Λ on Dd × ALeb,·,1, measurable with respect to σ (µu, āu : u ∈ [t, s]). Since

Pn ∈ Rε
(t,λ), the process

(
M

Pn,Fφ
s (µ,a)

)
s∈[0,T ]

is a martingale under Pn, and the above quantity is

zero. This shows that
(
MP∞,φ
s (µ,a)

)
s∈[0,T ]

is a martingale under P∞, and so P∞ ∈ R(t,λ).

Moreover, by Lemma 5.4 we get since J is lower semicontinuous. Therefore,

J (t, λ;P∞) ≤ lim inf
n→∞

J(t, λ;Pn) ≤ v(t, λ) + ε,

which means that P∞ ∈ Rε
(t,λ).

Theorem 5.2. For (t, λ) ∈ [0, T ]×N [Rd], there exists an optimal control β∗ ∈ Rs
(t,λ) such that

v(t, λ) = J(t, λ;β∗). (5.45)

Proof. Fix ε > 0. We have that infP∈R(t,λ)
J(t, λ;P) = infP∈Rε

(t,λ)
J(t, λ;P). By Proposition 5.9,

Rε
(t,λ) is compact and, by Lemma 5.4, J is lower-semicontinuous. Therefore, since v(t, λ) is the

infimum of a continuous function over a nonempty compact set, it exists P∗ ∈ R(t,λ) such that
v(t, λ) = J(t, λ;P∗). From Lemma 4.3 and Proposition 4.4, under Assumption A1, we have the
existence of optimal weak control a∗ such that J(t, λ; a∗) ≤ J(t, λ;P∗). Immerging this weak control
in the class of strong controls, we find β∗ that satisfies (5.45).

6 HJB equation

6.1 Homeomorphisms with ∪m≥0Rdm

We have established the existence of an optimal control for the problem under consideration, which
holds true under general assumptions. However, the formalism we have discussed thus far does
not provide guidance on how to determine these optimal controls. A step towards addressing this
is the differential characterization of the value function, commonly referred to as the Hamilton-
Jacobi-Bellman (HJB) equation.

Though the problem has been stated in terms of finite measures, this depiction cannot be
employed directly to tackle the task at hand. Indeed, the subset N [Rd] where our processes live
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is not open in
(
M1(Rd),d1,Rd

)
. As recalled in Remark 2.1, we can embed Rdm to N [Rd] for any

m ∈ Rd via ι. Denoting
(
Rd
)0

:= {∅}, and ι(∅) := O, which is the measure equal to 0, we see

that ι
(⋃

m≥0

(
Rd
)m)

= N [Rd]. Therefore, we can define a HJB system exploiting the differential

structure of each Rdm.
For each m ∈ N, let vm : [0, T ]×

(
Rd
)m → R be

vm(t, x1, . . . , xm) := v

(
t,

m∑
i=1

δxi

)
= v (t, ι(x⃗m)) , (6.46)

with x⃗m = (x1, . . . , xm)
⊤. Analogously, we define (bm,Σm) :

(
Rd
)m ×Am → Rdm × Rdm×d′ as

bm (x⃗m, a⃗m) :=

 b (x1, ι(x⃗
m), a1)

...
b (xm, ι(x⃗

m), am)

 , Σm (x⃗m, a⃗m) :=

 σ (x1, ι(x⃗
m), a1)

...
σ (xm, ι(x⃗

m), am)

 .

For any m ∈ N, let Lm be the generator as follows

Lmvm (x⃗m, a⃗m) := bm (x⃗m, a⃗m)⊤Dvm (x⃗m) +
1

2
Tr
(
Σm(Σm)⊤ (x⃗m, a⃗m)D2vm (x⃗m)

)
+

m∑
i=1

γ (xi, ι(x⃗
m), ai)

(∑
k≥0

vm+(k−1)

(
x1, . . . , xi−1, xi, . . . , xi︸ ︷︷ ︸

(k−1)−times

, xi+1, . . . , xm

)

pk (xi, ι(x⃗
m), ai)− vm (x⃗m)

)
.

Remark 6.4. These notations look like the one used in Proposition 2.1. As seen in their construc-
tion, branching processes behave as diffusion processes between two different branching events, that
are defined via a Poisson random measure independent of each Brownian motion. This is why the
first two terms of Lm are Itô’s-like terms while the last one takes into account the results of the
branching events.

Since our aim is giving a Verification Theorem, we associate an admissible control from a set
of functions âm : [0, T ] ×

(
Rd
)m → Am in the following way. As done in [7] and [31], we consider

the partial ordering relation ⪯ (resp. ≺) by

j ⪯ i ⇔ ∃ℓ ∈ I : i = jℓ (resp. j ≺ i ⇔ ∃ℓ ∈ I \ {∅} : i = jℓ)

for all i, j ∈ I. With respect to this partial ordering, for i = i0 . . . ip, j = j0 . . . jq ∈ I, we define
i∧ j as ∅ in the case i0 ̸= j0, and as i0 . . . iℓ−1 with ℓ ≤ min{p, q} if jk = ik for k = 0, . . . , ℓ− 1 and
jk ̸= ik. If I⪯ is defined as

I⪯ = {V ⊆ I : |V | <∞, i ⊀ j for i, j ∈ V } ,

the set of labels that could describe a population in N [Rd] must belong to I⪯. For any V ⊂ I⪯,
we can give a total order. If i = i0 . . . ip, j = j0 . . . jq ∈ V and i ∧ j = i0 . . . iℓ−1, we denote i < j if
iℓ < jℓ. This means that for any V ⊂ I⪯, there exists a bijection ϕV : V → {1, . . . , |V |} associated
with this total order in V .

Let âm : [0, T ]×
(
Rd
)m → Am be a function that is symmetric in the last m variables, for any

m ≥ 1. Let β̂ be the control defined as follows

β̂is :=
∑
k≥1

1τk−1≤s<τk

(
a01i ̸=Vk + â

|Vk|
ϕVk (i)

(
s, Y (ϕVk )−1(1),β

s , . . . , Y (ϕVk )−1(|Vk|),β
s

))
. (6.47)
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Remark 6.5. The connection between a control and a sequence of functions âm provides insight
into approaching the problem of optimal control through the examination of the corresponding HJB
equation. The equation itself is dependent on vm, where each branching event is associated with
the switching of regime m.

6.2 Verification Theorem

Theorem 6.3. Let w be a function in C0
(
[0, T ]×N [Rd]

)
such that

−Cw (1 + ⟨1, λ⟩+ ⟨| · |, λ⟩) ≤ wt(λ) ≤ Cw
(
1 + ⟨1, λ⟩2 + ⟨| · |2, λ⟩

)
. (6.48)

for some constant Cw > 0. Assume that wm, defined as in (6.46), is in C1,2
(
[0, T ]× Rdm

)
for any

m ∈ N.

(i) Suppose that

−∂twm (t, x⃗m)− inf
a⃗m∈Am

{
Lmwm (x⃗m, a⃗m) +

m∑
i=1

ψ (xi, ι(x⃗
m), ai)

}
≤ 0,

wm (T, x⃗m) ≤ Ψ(ι (x⃗m)) ,(6.49)

for any m ∈ N, t ∈ [0, T ], and x⃗m ∈ Rdm. Then w ≤ v on [0, T ]×N [Rd].

(ii) Suppose further wm (T, x⃗m) = Ψ (ι (x⃗m)), for any m ∈ N, and x⃗m ∈ Rdm, and there exist
measurable functions a⃗m (t, x⃗m), for m ∈ N, and (t, x⃗m) ∈ [0, T )×N [Rd], valued in Am such
that

−∂twm (t, x⃗m) − inf
a⃗m∈Am

{
Lmwm (x⃗m, a⃗m)−

m∑
i=1

ψ (xi, ι(x⃗
m), ai)

}
(6.50)

= −∂twm (t, x⃗m)−

{
Lmwm (x⃗m, a⃗m (t, x⃗m))−

m∑
i=1

ψ (xi, ι(x⃗
m), ami (t, x⃗m))

}
= 0.

Defining β̂ as in (6.47) associated with the functions a⃗m for m ≥ 1, we assume that the
following SDE admits a unique solution

⟨φ, ξβ̂s ⟩ = ⟨φ, λ⟩+
∫ s

t

∑
i∈Vu

Dφ(Y i,β̂
u )⊤σ

(
Y i,β̂
u , ξβ̂u , β̂

i
u

)
dBi

u +

∫ s

t

∑
i∈Vu

Lφ
(
Y i,β̂
u , ξβ̂u , β̂

i
u

)
du

+

∫
(t,s]×R+

∑
i∈Vu−

∑
k≥0

(k − 1)φ(Y i,β̂
u )1

Ik

(
Y i,β̂
u ,ξβ̂u ,β̂i

u

)(z)Qi(dudz) .
Suppose, moreover, that β̂ ∈ Rs

(t,λ) for any (t, λ) ∈ N [Rd]. Then, w = v on [0, T ] × N [Rd],
and β̂ is an optimal Markov control.

Proof. (i) We consider the notation adopted in Proposition 2.1. Fix a starting condition (t, x⃗m) ∈
[0, T ]× Rdm and an admissible control β ∈ Rs

(t,ι(x⃗m)). Define the two sequences of stopping times

(τk)k∈N and (θn)n∈N

τk = inf
{
s ∈ (τk−1, T ] : ∃i ∈ Vk−1, Q

i((τk−1, s]× [0, Cγ ]) = 1
}
,

θn := inf {s ∈ [t, T ] : |Vs| ≥ n} ∧ inf

{
s ∈ [t, T ] :

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣ ≥ n

}
.
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With these stopping times, we can describe ξβ as

ξβs =
∑
k≥1

1τk−1≤s<τk
∑
i∈Vk

δ
Y i,β
s

=
∑
k≥1

1τk−1≤s<τkι
(
Y⃗ β,|Vk|
s

)
.

As noted in Remark 6.4, between the branching events τk−1 and τk, the population behave like
a controlled diffusion living in Rd|Vk−1|. Therefore, Itô’s formula describes here the evolution of a
function valued in ξβ in each interval [τk−1 ∧ θn, τk ∧ θn).

Using the embedding ι, we have that (2.6) translates into

EPs
[
wmn

k

(
s ∧ τk ∧ θn, Y⃗

β,mn
k

s∧τk∧θn

)
− wmn

k−1

(
s ∧ τk−1 ∧ θn, Y⃗

β,mn
k−1

s∧τk−1∧θn

)]
= EPs

[∫ s∧τ1∧θn

s∧τk−1∧θn

{
∂tw

mn
k−1

(
t, Y⃗

β,mn
k−1

u

)
+ Lmn

k−1wmn
k−1

(
Y⃗
β,mn

k−1
u , β⃗

mn
k−1

u

)}
du

]
,

where mn
k := |Vτk∧θn | and β⃗

mn
k−1

u :=
(
βiu
)
i∈Vτk−1∧θn

. Therefore, we have that

EPs
[
w|Vs∧θn |

(
s ∧ θn, Y⃗

β,|Vs∧θn |
s∧θn

)]
− wm (t, x⃗m) (6.51)

= EPs

∑
k≥1

(
wmn

k

(
s ∧ τk ∧ θn, Y⃗

β,mn
k

s∧τk∧θn

)
− wmn

k−1

(
s ∧ τk−1 ∧ θn, Y⃗

β,mn
k−1

s∧τk−1∧θn

))
= EPs

∑
k≥1

∫ s∧τ1∧θn

s∧τk−1∧θn

{
∂tw

mn
k−1

(
t, Y⃗

β,mn
k−1

u

)
+ Lmn

k−1wmn
k−1

(
Y⃗
β,mn

k−1
u , β⃗

mn
k−1

u

)}
du

 .
Since w satisfies (6.50), we have

∂tw
mn

k

(
t, Y⃗

β,mn
k

u

)
+ Lmn

kwmn
k

(
Y⃗
β,mn

k
u , β⃗

mn
k

u

)
+

∑
i∈Vτk∧θn

ψ
(
Y i,β
u , ξβu , β

i
u

)
≥ 0,

for any β ∈ Rs
(t,ι(x⃗m)), k ≥ 0 and u ∈ [τk ∧ θn, τk+1 ∧ θn). Thus,

EPs
[
w|Vs∧θn |

(
s ∧ θn, Y⃗

β,|Vs∧θn |
s∧θn

)]
− wm (t, x⃗m) ≥ −EPs

[∫ s∧θn

t

∑
i∈Vu

ψ
(
Y i,β
u , ξβu , β

i
u

)
du

]
. (6.52)

From (2.15)-(2.16), we get∣∣∣∣∣
∫ s∧θn

t

∑
i∈Vu

ψ
(
Y i,β
u , ξβu , β

i
u

)
du

∣∣∣∣∣ ≤ CΨ

(
1 +

∫ T

t

(
|Vu|2 +

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣2 + ∑
i∈Vu

∣∣βiu∣∣2
)
du

)
,

therefore the r.h.s. in (6.52) is integrable for β ∈ Rs,ε
(t,ι(x⃗m)) using (2.8), (2.19) and (2.20). Anal-

ogously, from (6.48), we also have that l.h.s. in (6.52) explodes to infinity or is integrable for
β ∈ Rs,ε

(t,ι(x⃗m)). We can then apply the dominated convergence theorem, and send n to infinity into

(6.52), obtaining

EPs
[
w|Vs|

(
s, Y⃗ β,|Vs|

s

)]
− wm (t, x⃗m) ≥ −EPs

[∫ s

t

∑
i∈Vu

ψ
(
Y i,β
u , ξβu , β

i
u

)
du

]
, for β ∈ Rs,ε

(t,ι(x⃗m)).
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Since w is continuous on [0, T ]×N [Rd], by sending s to T , we obtain by the dominated convergence
theorem and by (6.49) that

EPs
[
Ψ
(
ξβT

)]
− wm (t, x⃗m) ≥ −EPs

[∫ T

t

∑
i∈Vu

ψ
(
Y i,β
u , ξβu , β

i
u

)
du

]
, for β ∈ Rs,ε

(t,ι(x⃗m)).

From the arbitrariness of β ∈ Rs,ε
(t,ι(x⃗m)), we deduce that wm (t, x⃗m) ≤ vm (t, x⃗m), for any m ≥ 1,

and (t, x⃗m) ∈ [0, T ]× Rdm, i.e., w (t, λ) ≤ v (t, λ) for any (t, λ) ∈ [0, T ]×N [Rd].
(ii) From the definition of the control β̂, we have that

−∂twm (t, x⃗m)−

{
Lmvm (x⃗m, a⃗m (t, x⃗m))−

m∑
i=1

ψ (xi, ι(x⃗
m), ami (t, x⃗m))

}
= 0.

Applying this to (6.51), we get

wm (t, x⃗m) = EPs

[
w|Vs∧θn |

(
s ∧ θn, Y⃗

β̂,|Vs∧θn |
s∧θn

)
+

∫ s∧θn

t

∑
i∈Vu

ψ
(
Y i,β̂
u , ξβ̂u , β̂

i
u

)
du

]
,

for any n ≥ 1. From Fatou’s lemma, we obtain

wm (t, x⃗m) ≥ EPs

[
w|Vs|

(
s, Y⃗ β̂,|Vs|

s

)
+

∫ s

t

∑
i∈Vu

ψ
(
Y i,β̂
u , ξβ̂u , β̂

i
u

)
du

]
.

Sending s to T and using again Fatou’s lemma, together with the fact wp (T, y⃗p) = Ψ (ι (y⃗p)), for
any p ∈ N, and y⃗p ∈ Rdp, we see that

wm (t, x⃗m) ≥ EPs

[
Ψ
(
ξβ̂T

)
+

∫ s

t

∑
i∈Vu

ψ
(
Y i,β̂
u , ξβ̂u , β̂

i
u

)
du = J

(
t, (x⃗m) ; β̂

)
.

]
.

This shows that wm (t, x⃗m) ≥ J
(
t, (x⃗m) ; β̂

)
≥ vm (t, x⃗m), and finally that w = v with β̂ as an

optimal Markovian control.

The verification theorem presented here offers the advantage of not only establishing the op-
timality of a solution but also showing that a certain function is smaller than the value function.
This characterization serves as a generalization of [44, Theorem II.3.1] for value functions in a
broader context. However, this description differs significantly from the one used to introduce the
controlled processes. Hence, to ensure the proof of optimality, we provide an equivalent verification
theorem. The subsequent proposition establishes a characterization of optimality without relying
on the embedding to ∪m≥0Rdm. Instead, it employs a (sub)martingale criterion similar to [37,
Lemma 2.1].

Proposition 6.10. Let w be a function in C0
(
[0, T ]×N [Rd]

)
such that

−Cw (1 + ⟨1, λ⟩+ ⟨| · |, λ⟩) ≤ wt(λ) ≤ Cw
(
1 + ⟨1, λ⟩2 + ⟨| · |2, λ⟩

)
. (6.53)

for some constant Cw > 0. Fix (t, λ̄) ∈ N [Rd], and assume the following

(i) wT (λ) = g(λ), for λ ∈ N [Rd];
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(ii)

{
ws

(
ξβs
)
+

∫ s

t

∑
i∈Vu

ψ
(
Y i,β
u , ξβu , β

i
u

)
du : s ∈ [t, T ]

}
is a Ps-local submartingale, for any β ∈

Rs
(t,λ̄)

;

(iii) there exists β̂ ∈ Rs
(t,λ̄)

such that

{
ws

(
ξβ̄s
)
+

∫ s

t

∑
i∈Vu

ψ
(
Y i,β̄
u , ξβ̄u , β̄

i
u

)
du : s ∈ [t, T ]

}
is a Ps-

local martingale.

Then, β̄ is an optimal control for v(t, λ̄), i.e., v(t, λ̄) = J(t, λ̄; β̄), and v(t, λ̄) = wt(λ̄).

Proof. By the local submartingale property in condition (ii), there exists a nondecreasing sequence
of stopping times (τn)n such that τn ↑ T a.s. and

E

[
ws∧τn

(
ξβs∧τn

)
+

∫ s∧τn

t

∑
i∈Vu

ψ
(
Y i,β
u , ξβu , β

i
u

)
du

]
≥ wt(λ̄), for β ∈ Rs

(t,λ̄). (6.54)

We fix ε > 0 and restrict to consider β ∈ Rs,ε

(t,λ̄)
. From (6.53) and (2.15)-(2.16), we see that for

all n and β ∈ Rs,ε

(t,λ̄)
, the r.h.s. is integrable and bounded by an integrable quantity. Applying

dominated convergence theorem, by sending n to infinity into (6.54), we get

wt(λ̄) ≤ E

[
wT

(
ξβT

)
+

∫ T

t

∑
i∈Vu

ψ
(
Y i,β
u , ξβu , β

i
u

)
du

]

≤ E

[
g
(
ξβT

)
+

∫ T

t

∑
i∈Vu

ψ
(
Y i,β
u , ξβu , β

i
u

)
du

]
= J(t, λ̄;β),

using the terminal condition (i), and (3.31). Since β is arbitrary in Rs,ε

(t,λ̄)
, this shows that v(t, λ̄) ≥

wt(λ̄). To obtain the reverse inequality when the local martingale property for β̄ in condition (iii)
holds, we need to proceed as in the point (iii) of Theorem 6.3. This means that (6.54) is an equality
and we conclude by applying Fatou’s lemma.

6.3 Examples

We include two examples within the linear-quadratic framework. By establishing the equivalence
between weak controls and strong controls, we choose to utilize the former formalism due to its
simpler notation, avoiding unnecessary complexities.

6.3.1 Standard Linear-Quadratic case

We follow the path outlined in [37] and [34]. Let A := Rq, d′ = d and let the coefficients be as
follows

bt(x, λ, a) = Btx+ B̄ta, σt(x, λ, a) = σtI,
γt(x, λ, a) = γt, pk(x, λ, a) = pk,

with I being the identity matrix, and B, B̄, σ̄, γ̄ are bounded valued in Rd×d, Rd×p, Rd×d and R+

respectively. Since the control does not impact the coefficients that describe the branching, the
search for a minimal control in (6.50) just focuses on each function wm, without involving wm+k−1

for k ≥ 0.
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Let ψ and Ψ be as

ψt(x, λ, a) = x⊤Ctx+ ct⟨1, λ⟩+ a⊤C̄ta

Ψ(λ) =

∫
Rd

x⊤Hx+ h⟨1, λ⟩2,

where t 7→ Ct (resp. t 7→ C̄t) is a bounded function in Sd (resp. Sm), the set of symmetric matrices
in Rd×d (resp. Rm×m), t 7→ ct ∈ R+ is bounded, H ∈ Sd and h ≥ 0.

We shall make the following assumptions

(i) C and H are non-negative a.s.;

(ii) C̄ is uniformly positive definite, i.e., C̄t ≥ ϵIm for some ϵ > 0.

We are now ready to use Proposition (6.10) by seeking a field
{
wt(λ) : λ ∈ N [Rd], t ∈ [0, T ]

}
that satisfies the local (sub)martingality conditions. Let w be as follows

wt(λ) = w1
t (λ) + w2

t (λ) + w3
t (λ), with w1

t (λ) =

∫
Rd

x⊤Qtxλ(dx),

w2
t (λ) = pt⟨1, λ⟩2, w3

t (λ) = p̄t⟨1, λ⟩,

for some funnctions (Q, p, p̄) with values in Sd × R× R such that
dQt = Q̇tdt, for t ∈ [0, T ], QT = H,

dpt = ṗtdt, for t ∈ [0, T ], pT = h,

dp̄t = ˙̄ptdt, for t ∈ [0, T ], p̄T = 0.

The terminal conditions ensure that wt(λ) = Ψ(λ). Now, we need to determine the generators Q̇,
ṗ and ˙̄p to satisfy (6.50). Generalizing (3.22) to time-dependent functions, we have

w (t, µt) +

∫ t

0

∫
Rd

ψ(x, µu, au(x))µu(dx)du

= w (0, µ0) +

∫ t

0

∫
Rd

Du(x, µu, au(x), Qu, pu, p̄u)µu(dx)du+Mt, (6.55)

with

Du(x, λ, a,Q, p, p̄) := x⊤Q̇x+ ṗ⟨1, λ⟩+ ˙̄p+
(
Bux+ B̄ua

)⊤
Qx

+x⊤Q
(
Bux+ B̄ua

)
+ σ2uTr(Q) + (γ̄uM1)x

⊤Qx

+pγu (M2 +M1⟨1, λ⟩) + p̄γuM1 + x⊤Cux+ cu⟨1, λ⟩+ a⊤C̄ua

and M is a martingale (after an eventual localization), andM1 :=
∑

k≥0(k−1)pk,M2 :=
∑

k≥0(k−
1)2pk. Completing the square in D, we obtain

Du(x, λ, a,Q, p, p̄) := (ṗ+ pγuM1 + cu) ⟨1, λ⟩+
(
˙̄p+ σ2uTr(Q) + p̄γuM1 + pγuM2

)
+x⊤

(
Q̇+B⊤

u Q+QBu + (γ̄uM1)Q+ Cu +
(
B̄uQ+ B̄⊤

u Q
)⊤

C̄−1
u

(
B̄uQ+ B̄⊤

u Q
))

x

+(a− âu(x,Q))⊤C̄u(a− âu(x,Q)),

where

âu(x,Q) := −C̄−1
u

(
B̄uQ+ B̄⊤

u Q
)
x.
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Therefore, whenever

Q̇+B⊤
u Q+QBu + (γ̄uM1)Q+ Cu + 2Q

(
B̄uC̄

−1
u B̄u + B̄⊤

u C̄
−1
u B̄u

)
Q = 0, (6.56)

ṗ+ pγuM1 + cu = 0, (6.57)

˙̄p+ σ2uTr(Q) + p̄γuM1 + pγuM2 = 0, (6.58)

holds for t ∈ [0, T ], we have

Du(x, λ, a,Q, p, p̄) = (a− âu(x,Q))⊤ C̄u(a− âu(x,Q)).

Therefore, D ≥ 0 for any a ∈ A and it is zero for a = âu(x,Q). Additionally, it is worth noting that
equations (6.56)-(6.58) have a solution since the first equation is a conventional Riccati equation,
while the remaining two are linear ODEs.

This means that if the system of equations (6.58)-(6.58) is satisfied, from (6.55) and the fact
that D ≥ 0, we get the local submartingale property (ii) of Proposition 6.10. Moreover, it is clear
that it is zero for au(x) := âu(x,Q), with Q solution to (6.56), satisfying the local martingale
property (iii) of Proposition 6.10. Therefore, such a control is an optimal one.

6.3.2 A Kinetic Example

In the case of a standard diffusion, we talk about kinetic energy when considering the following
optimization setting. Consider controls β such that the diffusion satisfies the following SDE

dXt =
(
b(t,Xt) + βs

)
dt+ σdBt,

with b Lipschitz in x uniformly in t and σ a positive constant. We look for a minimization of the

cost function E
[
1
2

∫ T
0 |βs|2

]
, usually called the kinetic energy of the controlled diffusion.

We adapt this framework to the case of branching processes. Let A := Rq, d′ = d and consider
the following

bt(x, λ, a) = b(t, x) + a, σt(x, λ, a) = I,
γt(x, λ, a) = γt(x), pk(x, λ, a) = pk(x),

with b, γ and pk satisfying (2.2), (2.3) and (2.4). Taking the running cost as ψ(x, λ, a) := 1
2 |a|

2,
we seek for a field

{
wt(λ) : λ ∈ N [Rd], t ∈ [0, T ]

}
of the following form

wt(λ) =

∫
Rd

h(t, x)λ(dx),

for a certain function h. From (3.22), we have

w (t, µt) +

∫ t

0

∫
Rd

ψ(x, µu, au(x))µu(dx)du

= w (0, µ0) +

∫ t

0

∫
Rd

Du(x, µu, au(x), h)µu(dx)du+Mt, (6.59)

where

Dt(x, λ, a, h) := ∂th+ b(t, x)⊤Dh+ a⊤Dh+
1

2
∆h+

1

2
|a|2 + ϕ(t, x)h,
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with ϕ(x) := γt(x)
(∑

k≥0 kpk(x)− 1
)
, M a martingale (after an eventual localization), and ∆ the

Laplacian. Operating as in the previous example, we see that whenever h satisfies the following
PDE {

∂th+ b(t, x)⊤Dh− 1
2 |Dh|

2 + 1
2∆h+ ϕ(t, x)h = 0

h(T, x) = 0
, (6.60)

we have

Du(x, λ, a, h) =
1

2
|a+Dh|2.

This means that under (6.60), D ≥ 0 for any a ∈ A and is zero for a = −Dh. Therefore, under
(6.60), we get property (ii) of Proposition 6.10, and property (iii), for as(x) := −Dh(s, x), showing
that this control is an optimal one. Under sufficient regularity of the function ϕ, solution of (6.60)
can be established and found as an application of the Hopf-Cole transformation.

7 Conclusion

Our study focused on proving the existence of an optimal solution for controlled branching diffusions
with final and running costs. We presented the strong formalism, expanding it to cover controlled
populations with linearly growing drifts. Furthermore, we established bounds that ensure proper
problem definition, which strengthens and broadens the existing literature on the subject.

Given appropriate conditions, we introduced the concept of relaxed controls in this new setting.
This differs from [8] on how we deal with the label of each particle and is more focused on the law
of the process living in M(Rd). By defining natural and weak controls, we were able to narrow
down the scope of the problem. Uniqueness was proved for the class of weak controls, with strong
controls being associated with them. Through a Filippov-type convexity condition, we showed
equivalence among all formulations. Shifting our focus to control rules, we deal with this class for
its topological properties. We showed that the optimization problem can be confined to a compact
set and that the cost function is lower semicontinuous. This guarantees the existence of an optimal
value for the relaxed problem, and subsequently, for the strong problem as well.

An homeomorphism is established between N [Rd] and ∪m≥0Rdm. Leveraging the differential
properties of the latter space, we derive a system of HJB equations for the problem and establish a
verification theorem by extracting a control from the minimization of the HJB equations. Finally,
two linear-quadratic examples are presented with the use of these results.

We believe that describing strong controls as weak controls provides a useful framework for
introducing the rescaled version of the problem. In future research, we will concentrate on rescaling
such processes, as done in [11] and [18], to develop controlled superprocesses. Since these processes
will no longer have the advantage of the homeomorphism with ∪m≥0Rdm, it will be necessary to
find a differential characterisation in M(Rd) directly.

Acknowledgements. I gratefully acknowledge my PhD supervisor Idris Kharroubi for super-
vising this work.
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