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Abstract

Our focus is on the study of optimal control problem for branching diffusion pro-
cesses. Initially, we introduce the problem in its strong formulation and expand it to
include linearly growing drifts. To ensure its proper definition, we establish bounds on
the moments of these processes.

We present a relaxed formulation that provides a suitable characterization based
on martingale measure. We introduce the notion of atomic control and demonstrate
their equivalence to strong controls in the relaxed setting. We establish the equivalence
between the strong and relaxed problem, under a Filippov-type convexity condition.
Furthermore, by defining a control rule, we can restate the problem as the minimization
of a lower semi-continuous function over a compact set, leading to the existence of
optimal controls both for the relaxed problem and the strong one.

By utilizing a useful embedding technique, we demonstrate that the value functions
solves a system of HJB equations. This, in turn, leads to the establishment of a
verification theorem. We then apply this theorem to a Linear-Quadratic example and
a Kinetic one.

MSC Classification- 93E20, 60J60, 60J80, 35K10, 60J70, 60J85
Keywords— Stochastic control, relaxed control, branching diffusion processes, martingale rep-
resentation.

1 Introduction

The focus of this paper is on populations that are optimally controlled. Specifically, we aim to
demonstrate the presence of a strong control for controlled branching diffusions and to describe
the optimal dynamics associated with it.

The class of branching diffusion processes describes the evolution of particles, whose spatial
movement is given by a SDE. They were introduced in [39], [20], [18], [19] and their study has been
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developed extensively, specially to their use in the probabilistic representation of semilinear PDEs
(see e.g. [17]) and in the Regularized Unbalanced Optimal Transport (see e.g. [2]).

Several examples of optimal control for branching processes are discussed in the literature (see
e.g. [41],[32], [5], [26]). In [41], a topological sum of Euclidean space is utilized for modeling
purposes, and the control, which is taken from a compact space, is applied only to the drift of
the spatial motion. The coupling between the particles is quite general, and each particle may
depend on the positions of the others at any given time. As a result, the running cost function
is indexed with the number of alive particles. By defining a suitable norm in the space where
these processes are defined, a differential characterization is also provided. In [32], controlled
branching processes are employed as a probabilistic tool to investigate a class of parabolic Bellman
equations. The author considers dynamics where the control, which still belongs to a compact set,
acts on both the drift and volatility. Here, the cost is defined as a product of functions on the
living particles at the final time, and a Hamilton-Jacobi-Bellmann (HJB) equation is identified,
demonstrating that the value function is its unique (viscosity) solution. In [5], the author extends
this approach. Initially, the controlled processes are described as measure-valued processes. Using
Ulam-Harris-Neveu labeling (see e.g., [1]) to describe the genealogy of the particles, the author
introduces a label set that assists in defining the branching events. A set of Brownian motions and
Poisson random measures, indexed by these labels, are utilized to provide a strong formulation
for the controlled branching processes. This facilitates proving the well posedness for dynamics
where drift, volatility, branching rate, and branching mechanisms are not only controlled but also
dependent on the position of each individual particle. While these coefficients are still assumed to
be bounded, the control space is no longer necessarily compact. Since the dynamics are coupled
only through the control, the product structure of the cost yields a branching property that converts
the problem into a finite-dimensional one. A PDE characterization of the value function is then
obtained, leveraging the differential properties of the Euclidean space where each single particle
is defined. In [26], an approach that utilizes the symmetry of the reward function to reduce the
dimensionality of the problem is also employed. Here, the dependence on the measure is reduced
via a new kind of branching property that allows for a finite-dimensional rewriting.

This article expands on previous work on optimal control of branching diffusions from several
angles. Firstly, we introduce a coupling between the particle dynamics vie the empirical measure
of the population, similar to the interactions in Mean Field Control (MFC) literature, bridging
the gap between [41] and [5]. Secondly, we remove the constraints of the control space being
compact and the drift being bounded. Instead, we allow the drift to have linear growth in both
space and control while keeping the other coefficients bounded. We derive an HJB equation to
characterize the value function, taking advantage of the homeomorphism between the topological
sum of Euclidean spaces, as in [41], and the subset of finite measures, as in [5] and [26]. This results
in a verification theorem that we later rewrite as a (sub)martingale condition, similar to [34], to
verify optimality. This brings us closer to the description of these processes as measure-valued
and facilitate intuition for solving optimization problems. Finally, we apply these results to both
a standard Linear Quadratic example and a Kinetic example, which is new to the best of our
knowledge.

The first part of our paper addresses the issue of optimal control existence. We follow the
approach of [10] and [16], which involves a relaxed formulation of the problem. This formulation
introduces intermediate levels of control, namely control rules and natural controls, between the
strong and relaxed formulations. This strategy allows for greater flexibility and easier manipulation
of the controlled dynamics. We construct a control rule (resp. natural control) with a lower
cost for the relaxed control (resp. control rule) formulation, which establishes the equivalence
between strong and relaxed problems. Furthermore, we demonstrate that the cost function is lower
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semicontinuous for the control rule case. By imposing coercivity assumptions on the functionals
defining the problem, we can confine the search for minima to a compact set under a suitable
topology. By reinterpreting the original optimization as the minimization of a lower semicontinuous
function over a compact space, we establish the existence of optimal values and controls.

A similar methodology has been used in optimization problems involving measures, such as
mean-field control theory (see, e.g., [28], [25]) or branching populations (see, e.g., [6]). However,
the approach used in [6] differs from ours, since they consider processes valued in the space of
finite measures on I × Rd, where I is the label set. In contrast, we can focus on processes living
in the space of finite measures on Rd, as we impose the exchangeability of particles. Nonetheless,
the topology introduced in [6] is applicable to measures with finite first-order moments. Therefore,
we utilize their Wasserstein-type metric to handle drift with linear growth and to have moment
bounds with respect to these controlled dynamics.

The study of measure valued processes in Rd has been ongoing since the late nineties. In
seminal works such as [31], [37], and [38], these processes were introduced as solutions to martingale
problems. This strategy, which was elaborated in detail for the case of diffusions in [12], allows
for a more abstract yet clearer manipulation of these objects. In [9], this point of view is applied
to describe various dynamics with respect to their martingale problem, including Fleming-Viot
processes and superprocesses. This point of view provides useful convergence criteria and methods
for characterizing their uniqueness in law, which will be extensively utilized in the remainder of
this paper.

Our problem’s relaxed version is defined precisely through the martingale problem. By exploit-
ing the symmetry of the cost function with respect to the labelling, we can confine controls to
an admissible class that preserves this symmetry. This restriction has no effect on the problem’s
value function under mild assumptions, but it is crucial for defining relaxed controls, which, to the
best of our knowledge, is the first of its kind. The control is regarded as a probability measure
on the action space that depends not only on time but also on space. We begin by presenting
the connection between strong and relaxed controls through Dirac measures. Subsequently, we
identify a subset of relaxed controls, called atomic controls, which turn out to be equivalent to
strong controls in this new formalism. We prove their law uniqueness and use Doob’s functional
representation theorem to refer to the strong formulation. Finally, we recall that control rules can
be viewed as a subset of probability measures on the canonical space that satisfy a specific set of
conditions.

Using the aforementioned description, it is possible to associate any relaxed control with an
atomic control having a lower cost, given that a Filippov-type convexity condition is satisfied
(see e.g.[13]). Thus, the equivalence between the strong and relaxed characterisations is proven.
Additionally, the identification of atomic and strong controls allows for the determination of an
optimal strong control.

The article is concluded by presenting an example known as the ”kinetic example.” When
attempting to optimize trajectories, the concept of kinetic energy is naturally applicable. The
Schrödinger bridge problem, as described in [15], provides a prominent example of this. In this
problem, one seeks to identify the random evolution (i.e., a probability measure on path-space) that
is closest to a prior Markov diffusion evolution in the relative entropy sense, while also satisfying
certain initial and final marginals. It has been noted that this problem can be framed as a stochastic
control problem, see e.g. [35], [8], [3], [4]. The problem is rephrased in our framework, and we
proceed to solve it using a verification theorem.

The rest of the paper is structured as follows. In Section 2, we provide an introduction to the
setting and the strong formulation for controlled branching processes. The control problem is de-
fined and its good definition is proven. In Section 3, we introduce the relaxed formulation using the
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martingale problem. We present equivalent representations and characterize them using martin-
gale measures. Section 4 establishes the equivalence between the relaxed and strong formulations
under a Filippov-type convexity condition. We introduce natural controls in this setting and show
that we can restrict to this class by conditioning on measures. Then, we compare the embedding
of strong controls with the new class of atomic controls and show their equivalence via uniqueness
in law for these objects and Doob’s functional representation theorem. Section 5 introduces the
set of control rules and uses it to prove the lower semicontinuity of the cost functions in this set
and exhibit a minimum for the strong control problem, after restricting to a compact set found
using the coercivity assumption of the cost. Finally, in Section 6, we present the system of HJB
equations and use it to solve a Linear Quadratic example and a Kinetic one.

2 The control problem

2.1 The set of measures

For a Polish space (E, d) with B(E) its Borelian σ-field, we write Cb(E) (resp. C0(E)) for the
subset of the continuous functions that are bounded (resp. that vanish at infinity), and M(E)
(resp. P(E)) for the set of Borel positive finite measures (resp. probability measures) on E.
We equip M(E) with weak* topology, i.e., the weakest topology that makes continuous the maps
M(E) ∋ λ 7→

∫
E φ(x)λ(dx) for any φ ∈ Cb(Rd). We denote ⟨φ, λ⟩ =

∫
E φ(x)λ(dx) for λ ∈ M(E)

and φ ∈ Cb(E).
Denote also by Mp(E) the subspace of measures with finite p-th moment for p ≥ 1, i.e., the

collection of all λ ∈M(E) such that
∫
E d(x, x0)

pλ(dx) <∞ for some x0 ∈ E. The weak* topology
can be metrized in Mp(E) by the Wasserstein type metric dp,E , as introduced in [6, Appendix B].
This means that, if ∂ is a cemetery point, we consider first Ē the enlarged space Ē := E ∪ {∂}.
Defining d(x, ∂) := d(x, x0) + 1, we have that (Ē, d) is Polish. On the space

Mp
m(Ē) := {λ ∈Mp(Ē) : λ(Ē) = m},

consider the Wasserstein distance as follows

dp,E,m(λ, λ
′) =

(
inf

π∈Π(λ,λ′)

∫
Ē×Ē

d(x, y)pπ(dx, dy)

)1/p

, for λ, λ′ ∈Mp
m(Ē),

where Π(λ, λ′) denotes the collection of all non-negative measures on Ē × Ē with marginals λ and
λ′. The distance dp,E on Mp(E) is defined as

dp,E(λ, λ
′) = dp,E,m

(
λ̄m, λ̄

′
m

)
, for λ, λ′ ∈Mp

m(E),

where m ≥ λ(E) ∨ λ′(E) and

λ̄m(·) := λ(· ∩ E) + (m− λ(E))δ∂(·), λ̄′m(·) := λ′(· ∩ E) + (m− λ′(E))δ∂(·).

As proven in [6, Lemma B.1], this definition does not depend on the choice of m. Moreover, for
some x0 ∈ E, we have the natural bound

dpp,E(λ, δx0) ≤
∫
E
d(x, x0)

pλ(dx) + ⟨1, λ⟩p, for λ ∈Mp(E). (2.1)

We can remark that all the results in [6, Appendix B], about the convergence under d1,E , can be
directly generalised for dp,E .
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Finally, we write N [E] for the space of atomic measures in E, i.e.,

N [E] :=

{
m∑
i=1

δxi : m ∈ N, xi ∈ E for i ≤ m

}
,

a weakly* closed subset of M(E). In particular, we remark that N [Rd] is also a closed set of
Mp(Rd) with respect to the distance dp,E . To prove this, first, we remark that N [Rd] is weakly*-
closed. Then, consider a sequence converging with respect to the distance d1,E . From [6, Lemma
B.2], convergence in M1(Rd) entails weak*-convergence to some λ ∈ N [Rd] ⊆M1(Rd).

Remark 2.1. Each vector x⃗m = (x1, . . . , xm) ∈ Rdm can be embedded in N [Rd] as ι(x⃗m) :=∑m
i=1 δxi. Fix x⃗m, y⃗m ∈ Rdm. We use the characterisation of the distance d1,E of [6, Lemma B.1]

and obtain

d1,E (ι(x⃗m), ι(y⃗m)) = sup
φ∈Lip01(Rd)

m∑
i=1

|φ(xi)− φ(yi)| ≤
m∑
i=1

|xi − yi| = |x⃗m − y⃗m|.

where Lip01(Rd) denote the collection of all functions φ : Rd → R with Lipschitz constant smaller
or equal to 1 and such that φ(0) = 0.

2.2 Strong formulation

We now give a strong formulation of the control problem.

State space Fix a finite time horizon T > 0. Let Dd = D([0, T ];M1(Rd)) be the set of càdlàg
functions (right continuous with left limits) from [0, T ] to M1(Rd). We endow this space with
Skorohod metric dDd associated with the metric dRd , which makes it complete (see, e.g., [33]). For
P ∈ P(Dd), Pt ∈ P(M1(Rd)) denotes the time-t marginal of P, i.e., the image of P under the map
Dd ∋ µ 7→ µt ∈M1(Rd).

Standing assumptions We are given dimensions d, d′ ∈ N, a closed subset A of Rm repre-
senting the set of actions, and the following continuous functions

(b, σ, γ, pk) : Rd ×M1(Rd)×A→ Rd × Rd×d
′ × R+ × [0, 1]

for k ≥ 0, such that
∑

k≥0 pk(x, λ, a) = 1 for any (x, λ, a) ∈ Rd ×M1(Rd)×A. Assume that b and
σ are Lipschitz continuous in (x, λ), i.e., there exists L > 0 such that∣∣b(x, λ, a)− b(x′, λ′, a)

∣∣+ ∣∣σ(x, λ, a)− σ(x′, λ′, a)
∣∣ ≤ L(|x− x′|+ dRd(λ, λ′)), (2.2)

for any x, x′ ∈ Rd, λ, λ′ ∈M1(Rd), and a ∈ A. Suppose also that σ and γ are uniformly bounded,
and b has linear growth in (x, a) while bounded in λ, i.e., there exists Cσ, Cγ , Cb > 0 such that

|b(x, λ, a)| ≤ Cb(1 + |x|+ |a|), |σ(x, λ, a)| ≤ Cσ, γ(x, λ, a) ≤ Cγ , (2.3)

for (x, λ, a) ∈ Rd ×M1(Rd)×A. Let Φ be the generating function of (pk)k, i.e.,

Φ(s, x, λ, a) =
∞∑
k=0

pk(x, λ, a)s
k, for (s, x, λ, a) ∈ [0, 1]× Rd ×M1(E)×A.
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Assume that the first and second order moments related to (pk)k are uniformly bounded, i.e., there
exist two constants C1

Φ, C
2
Φ > 0 such that

∂sΦ(1, x, λ, a) =
∑
k≥1

kpk(x, λ, a) ≤ C1
Φ, ∂2ssΦ(1, x, λ, a) =

∑
k≥1

k(k − 1)pk(x, λ, a) ≤ C2
Φ, (2.4)

for any (x, λ, a) ∈ Rd×M1(Rd)×A. The generalization to time-dependent coefficients is straight-
forward. We do not address it explicitly not to make the notation heavier. We will make use of
this setting in Section 6.3.

Strong controls We consider the set of labels I = {∅}∪
⋃+∞
n=1Nn and use Ulam-Harris labeling

to consider the genealogy of the particles. Denote by ∅ the mother particle, and i = i1 · · · in the
multi-integer i = (i1, . . . , in) ∈ Nn, n ≥ 1. For i = i1 · · · in ∈ Nn and j = j1 · · · jm ∈ Nm, we
define their concatenation is ij ∈ Nn+m by ij = i1 · · · inj1 · · · jm, and extend it to the entire I
by ∅i = i∅ = i for all i ∈ I. When a particle i = i1 · · · in ∈ Nn gives birth to k particles, the
off-springs are labelled i0, . . . , i(k − 1).

Let (Ωs,F s,Ps) be a probability space supporting two independent families {W i}i∈I and
{Qi}i∈I of mutually independent processes. Let W i be a d′-dimensional Wiener processes, and
Qi(dsdz) a Poisson random measure on [0, T ] × R+ with intensity measure dsdz. Let Fs =
{F s

t }t≥0 be the filtration generated by these processes, i.e., the (right-continuous) completion of(
σ(W i

s , Q
i([0, s]× C) : s ≤ t, i ∈ I, C ∈ B(R+))

)
t≥0

.

Definition 2.1 (Standard strong control). We say that β = (βi)i∈I is a standard strong control
if β is an Fs-progressively measurable AI-valued process, such that

EPs

[
sup
i∈I

∫ T

t
|βis|2ds

]
<∞. (2.5)

Fix a standard control β = (βi)i∈I . We describe the controlled branching diffusion ξβ as the
measure-valued process

ξβt =
∑
i∈Vt

δ
Y i,β
t

where Y i,β
t is the position of the member with label i ∈ I, and Vt the set of alive particles at time

t. This process takes values in N [Rd] and the behaviour of each alive particle i is characterized by
the following three properties:

– Spatial motion: during its lifetime, it moves in Rd according to the following stochastic
differential equation

dY i,β
s = b

(
Y i,β
s , ξβs , β

i
s

)
ds+ σ

(
Y i,β
s , ξβs , β

i
s

)
dWs ;

– Branching rate γ: given a position Y i,β
s at time s, the probability it dies in the time interval

[s, s+ δs) is γ
(
Y i,β
s , ξβs , βis

)
δs+ o(δs).

– Branching mechanism: when it dies at a time s, it leaves behind (at the location where it

died) a random number of offspring with probability
(
pk

(
Y i,β
s , ξβs , βis

))
k∈N

.

6



If the control is constant, i.e., we are in the uncontrolled setting, conditionally on time and place
of birth, offspring evolve independently of each other in the same way as their parent.

Let L be the generator (associated with the spatial motion of each particle) defined on φ ∈
C2
b (Rd) as

Lφ(x, λ, a) = b(x, λ, a)⊤Dφ(x) +
1

2
Tr
(
σσ⊤(x, λ, a)D2φ(x)

)
,

where D and D2 denote gradient and Hessian. A possible representation of previous properties is
given by the following SDE

⟨φ, ξβs ⟩ = ⟨φ, ξβt ⟩+
∫ s

t

∑
i∈Vu

Dφ(Y i,β
u )⊤σ

(
Y i,β
u , ξβu , β

i
u

)
dBi

u +

∫ s

t

∑
i∈Vu

Lφ
(
Y i,β
u , ξβu , β

i
u

)
du

+

∫
(t,s]×R+

∑
i∈Vu−

∑
k≥0

(k − 1)φ(Y i,β
u )1

Ik

(
Y i,β
u ,ξβu ,βi

u

)(z)Qi(dudz) , (2.6)

with

Ik(x, λ, a) =

[
γ(x, λ, a)

k−1∑
ℓ=0

pℓ(x, λ, a), γ(x, λ, a)
k∑
ℓ=0

pℓ(x, λ, a)

)
,

for all (x, λ, a) ∈ Rd×M1(Rd)×A, k ≥ 0, with the value of an empty sum being zero by convention.
Notice that (Ik(x, λ, a))k∈N forms a partition of the interval [0, γ(x, λ, a)).

2.2.1 Existence of branching processes and bounds estimates on the moments

We aim at showing existence of controlled branching diffusions for any standard strong control and
giving bounds on their moments. These two aspects are proved in the following two Propositions,
adapting [5, Proposition 2.1] to our context.

Proposition 2.1. Let t ∈ [0, T ], λ :=
∑

i∈V ∈ N [Rd] with V ⊆ I finite, and β be a standard strong

control. There exists a unique (up to indistinguishability) càdlàg and adapted process
(
ξβs
)
s≥t

satisfying (2.6) such that ξβt = λ. In addition, there exists a constant C > 0 depending only on T
and on the coefficients b, σ, γ and (pk)k such that

EPs

[
sup

u∈[t,t+h]
|Vu|

]
≤ ⟨1, λ⟩eCγC1

Φh, (2.7)

EPs

[
sup

u∈[t,t+h]
|Vu|2

]
≤ ⟨1, λ⟩eCγ(C1

Φ+C
2
Φ)h, (2.8)

EPs

[∫ t+h

t

∑
i∈Vu

|βiu|du

]
≤ C, (2.9)

EPs

[
sup

u∈[t,t+h]

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣] ≤ C

(∑
i∈V

|xi|+ EPs

[∫ t+h

t
|Vu|du

]
(2.10)

+ EPs

[∫ t+h

t

∑
i∈Vu

∣∣βiu∣∣ du
])

,

for any h > 0, where |V | denotes the cardinality of V ⊆ I.
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Proof. Fix
(
t, λ =

∑
i∈V δxi

)
∈ R+ ×N [Rd], and β be a standard strong control. Using induction,

we build the branching events of the population. We later show that such a process satisfies (2.6)
and is well-defined. Since for each branch, the diffusion σ and the jump rate γ are bounded and
the drift b is linear in (x, a), to ensure a good definition we must have that the mass does not
explode in finite time, i.e., (2.7), and the first moment bounded.

Define by induction an increasing sequence of stopping time (τk)k∈N, a sequence of random
variables (Vk)k∈N valued in the set of finite subsets of I and a sequence of processes (Y i,β, i ∈ Vk)k∈N
such that

ξβs =
∑
k≥1

1τk−1≤s<τk
∑
i∈Vk

δ
Y i,β
s
.

We set τ0 = t, V0 = V , and Y i,β
t := xi for all i ∈ V . Then, given τk−1 and Vk−1, define τk as

τk = inf
{
s ∈ (τk−1, T ] : ∃i ∈ Vk−1, Q

i((τk−1, s]× [0, Cγ ]) = 1
}
.

Define Yk, bk(Yk, βs), Σk(Yk, βs), and Wk, as

Yks :=


Y i1,β
s
...

Y
i|Vk−1|,β
s

 , bk(Yks , βs) :=


b
(
Y i1,β
s ,

∑
i∈Vk−1

δ
Y i,β
s
, βi1s

)
...

b

(
Y
i|Vk−1|,β
s ,

∑
i∈Vk−1

δ
Y i,β
s
, β

i|Vk−1|
s

)
 ,

Σk(Yks , βs) :=


σ
(
Y i1,β
s ,

∑
i∈Vk−1

δ
Y i,β
s
, βi1s

)
...

σ

(
Y
i|Vk−1|,β
s ,

∑
i∈Vk−1

δ
Y i,β
s
, β

i|Vk−1|
s

)
 , Wk

s =

 W i1
s
...

W
i|Vk−1|
s

 ,

taking values in Rd|Vk−1|, Rd|Vk−1|, Rd|Vk−1|×d′ , and Rd′|Vk−1| respectively. As recalled in Remark 2.1,
bk and Σk are Lipschitz continuous in Rd|Vk−1|. Therefore, Yk is uniquely (up to indistinguishability)
defined as the continuous and adapted process satisfying

Yks = Ykτk−1
+

∫ s

τk−1

bk(Yku , βu)du+

∫ s

τk−1

Σk(Yku , βu)dWk
u , P− a.s.

Describing what happens at branching events τk, we can conclude the construction of the
branching process. Given the definition of τk, there is an (almost surely) unique label, that we
denote îk ∈ Vk−1, such that

Qîk ((τk−1, τk]× [0, Cγ ]) = 1.

Let χk the [0, Cγ ]-valued random variable such that (τk, χk) belongs to the support of Qîk . We set
Vk as

Vk :=


Vk−1, if χk ∈

[
γ
(
Y îk,β
τk ,

∑
i∈Vk−1

δ
Y i,β
τk

, β îkτk

)
, Cγ

]
,

Vk−1\
{
îk

}
, if χk ∈ I0

(
Y îk,β
τk ,

∑
i∈Vk−1

δ
Y i,β
τk

, β îkτk

)
,

Vk−1\
{
îk

}
∪
{
îk0, . . . , îk(ℓ− 1)

}
, if χk ∈ Iℓ

(
Y îk,β
τk ,

∑
i∈Vk−1

δ
Y i,β
τk

, β îkτk

)
for ℓ ≥ 1,

where we impose the continuity for the flow for the off-spring, i.e., Y i,β
τk := Y îk,β

τk for i ∈ Vk\Vk−1.
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We prove that this process satisfies the SDE (2.6) by induction. Since τ0 = t, it is trivially
satisfied. If it holds true up to τk−1, we have

⟨φ, ξβs∧τK ⟩ = 1s≤τk−1
⟨φ, ξβs ⟩+ 1τk−1<s<τk

∑
i∈Vk−1

φ
(
Y i,β
s

)
+ 1s≥τk

∑
i∈Vk

φ
(
Y i,β
τk

)
. (2.11)

The first term on the r.h.s. satisfies (2.6) by the induction hypothesis. We apply Itô’s formula for
each branch to deal with the second one. Finally, the third term is equal to∑

i∈Vk

φ
(
Y i,β
τk

)
=

∑
i∈Vk−1

φ
(
Y i,β
τk

)
− 1

χk∈
[
0,γ

(
Y

îk,β
τk

,
∑

i∈Vk−1
δ
Y
i,β
τk

,β
îk
τk

))φ(Y îk,β
τk

)

+
∑
ℓ≥1

1
χk∈Iℓ

(
Y

îk,β
τk

,
∑

i∈Vk−1
δ
Y
i,β
τk

,β
îk
τk

) ℓ−1∑
l=1

φ
(
Y îkl,β
τk

)
,

which coincides with the integral w.r.t. the Poisson random measures over (τk−1, τk]. Therefore,
(2.6) is satisfied up to τk and we conclude by induction.

As previously recalled, to achieve a good definition of the population, the last missing ingredi-
ents are (2.7) and (2.10). Let {θn}n∈N be

θ1n := inf {s ≥ t : |Vs| ≥ n}

θ2n := inf

{
s ≥ t :

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣ ≥ n

}
θn := θ1n ∧ θ2n.

The first part of the proof ensures that ξβ is well-defined and satisfies (2.6) up to θn. Let us first
focus on (2.7) and apply (2.6) to the function x 7→ 1, obtaining

|Vs∧θn | = |Vt|+
∫
(t,s∧θn]×R+

∑
i∈Vu−

∑
k≥0

(k − 1)1
Ik

(
Y i,β
u ,ξβu ,βi

u

)(z)Qi(dudz).
Applying Itô’s formula, we also obtain

|Vs∧θn |2 = |Vt|2 +
∫
(t,s∧θn]×R+

∑
i∈Vu−

∑
k≥0

(
(|Vu|+ k − 1)2 − |Vu|2

)
1
Ik

(
Y i,β
u ,ξβu ,βi

u

)(z)Qi(dudz)
= |Vt|2 +

∫
(t,s∧θn]×R+

∑
i∈Vu−

∑
k≥0

(
2(k − 1)|Vu|+ (k − 1)2

)
1
Ik

(
Y i,β
u ,ξβu ,βi

u

)(z)Qi(dudz).
Therefore, we get

sup
u∈[t,s]

|Vu∧θn | ≤ |Vt|+
∫
(t,s∧θn]×R+

∑
i∈Vu−

∑
k≥1

(k − 1)1
Ik

(
Y i,β
u ,ξβu ,βi

u

)(z)Qi(dudz),
sup
u∈[t,s]

|Vu∧θn |2 ≤ |Vt|2 +
∫
(t,s∧θn]×R+

∑
i∈Vu−

∑
k≥1

(
2(k − 1)|Vu|+ (k − 1)2

)
1
Ik

(
Y i,β
u ,ξβu ,βi

u

)(z)Qi(dudz),
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and, taking the expectation,

EPs

[
sup
u∈[t,s]

|Vu∧θn |

]
≤ |Vt|+ EPs

∫ s∧θn

t

∑
i∈Vu

γ
(
Y i,β
u , ξβu , β

i
u

)∑
k≥1

(k − 1)pk

(
Y i,β
u , ξβu , β

i
u

)
du


≤ |Vt|+ CγC

1
ΦEPs

[∫ s∧θn

t
sup
z∈[t,u]

|Vz∧θn |

]
,

EPs

[
sup
u∈[t,s]

|Vu∧θn |

]
≤ |Vt|+ Cγ(C

1
Φ + C2

Φ)EPs

[∫ s∧θn

t
sup
z∈[t,u]

|Vz∧θn |2
]
.

Applying Grönwall’s lemma, we obtain

EPs

[
sup
u∈[t,s]

|Vu∧θn |

]
≤ |Vt|eCγC1

Φ , EPs

[
sup
u∈[t,s]

|Vu∧θn |2
]
≤ |Vt|2eCγ(C1

Φ+C
2
Φ).

Since the bound is uniform in n, θ1n converges almost surely to infinity, and by Fatou’s lemma, we
retrieve (2.7) and (2.8). This implies also (2.9), since

EPs

[∫ s

t

∑
i∈Vu

|βiu|du

]
≤ EPs

[∫ s

t
|Vu| sup

i∈I
|βiu|du

]
≤ EPs

[
sup
u∈[t,s]

|Vu|
∫ s

t
sup
i∈I

|βiu|du

]
≤ C,

where in the last inequality we used Cauchy-Schwartz inequality, (2.5) and (2.8).
Proving (2.10) would be more tricky since the SDE (2.6) cannot be applied directly. We see

that (2.11) is still valid for φ(x) = |x|. Itô’s formula yields, for s ∈ (τk−1, τk),∑
i∈Vk−1

∣∣∣Y i,β
s

∣∣∣ =
∑

i∈Vk−1

∣∣∣∣∣Y i,β
τk

+

∫ s

τk−1

b
(
Y i,β
u , ξβu , β

i
u

)
du+

∫ s

τk−1

σ
(
Y i,β
u , ξβu , β

i
u

)
dW i

u

∣∣∣∣∣
≤

∑
i∈Vk−1

∣∣∣Y i,β
τk

∣∣∣+ ∑
i∈Vk−1

∫ s

τk−1

∣∣∣b(Y i,β
u , ξβu , β

i
u

)∣∣∣ du+
∑

i∈Vk−1

∣∣∣∣∣
∫ s

τk−1

σ
(
Y i,β
u , ξβu , β

i
u

)
dW i

u

∣∣∣∣∣
≤

∑
i∈Vk−1

∣∣∣Y i,β
τk

∣∣∣+ Cb

∫ s

τk−1

|Vu|du+ Cb
∑

i∈Vk−1

∫ s

τk−1

(∣∣∣Y i,β
u

∣∣∣+ ∣∣βiu∣∣) du+

∑
i∈Vk−1

∣∣∣∣∣
∫ s

τk−1

σ
(
Y i,β
u , ξβu , β

i
u

)
dW i

u

∣∣∣∣∣ ,
where we have used the bound (2.3) over the coefficient b in the last inequality. Since the family
of Brownian motions {W i}i∈I are indipendent from the one of Poisson measures {Qi}i∈I , we have
that taking the conditional expectation with respect to Fτk−1

, we can apply the Burkholder-Davis-
Gundy’s inequalities (see, e.g., [7, Theorem 92]). This means that there exists a constant C > 0
(which may change from line to line) such that

EPs

 sup
u∈[τk−1∧θn,s∧τk∧θn]

∑
i∈Vk−1

∣∣∣∣ ∫ u

τk−1∧θn
σ
(
Y i,β
r , ξβr , β

i
r

)
dW i

r

∣∣∣∣
∣∣∣∣∣Fτk−1


≤ CEPs

 ∑
i∈Vk−1

(∫ s∧τk∧θn

τk−1∧θn
Tr
(
σσ⊤

(
Y i,β
u , ξβu , β

i
u

))
du

)1/2 ∣∣∣∣∣Fτk−1


≤ CEPs

[
(s ∧ τk ∧ θn − τk−1 ∧ θn) |Vk−1|

∣∣∣∣∣Fτk−1

]
= CEPs

[∫ s∧τk∧θn

τk−1∧θn
|Vu|du

∣∣∣∣∣Fτk−1

]
.
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where we have used (2.3) in the last line. Therefore, by induction, we have that there exists a
constant C > 0 (which may change from line to line) such that

EPs

 sup
u∈[t,s]

∑
i∈Vu∧θn

∣∣∣Y i,β
u∧θn

∣∣∣
 ≤

∑
i∈V

|xi|+ C

(
EPs

[∫ s∧θn

t
|Vu|du

]
+ EPs

[∫ s∧θn

t

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣ du]

+ EPs

[∫ s∧θn

t

∑
i∈Vu

∣∣βiu∣∣ du
])

,

where we have used (2.7) and (2.9) to bound the term depending on the mass of the population.
Applying Grönwall’s lemma, we obtain

EPs

 sup
u∈[t,s]

∑
i∈Vu∧θn

∣∣∣Y i,β
u∧θn

∣∣∣
 ≤ C

(∑
i∈V

|xi|+ EPs

[∫ s

t
|Vu|du

]
+ EPs

[∫ s

t

∑
i∈Vu

∣∣βiu∣∣ du
])

.

Since the bound is uniform in n, θ2n converges almost surely to infinity, and by Fatou’s lemma, we
retrieve (2.10).

2.2.2 Control problem

We are given the continuous functions ψ : Rd ×M1(Rd)× A → R, Ψ : M1(Rd) → R. We suppose
that there exists CΨ, cψ > 0 such that

Ψ(λ) ≤ CΨ

(
1 +

∫
Rd

|x|2λ(dx) + ⟨1, λ⟩2
)

(2.12)

Ψ(µ) ≥ −CΨ

(
1 +

∫
Rd

|x|λ(dx) + ⟨1, λ⟩
)

(2.13)

ψ(x, λ, a) ≤ CΨ

(
1 + |x|2 +

∫
Rd

|x|λ(dx) + |a|2
)

(2.14)

ψ(x, λ, a) ≥ −CΨ (1 + |x|) + cψ|a|2 (2.15)

for λ ∈M1(Rd).
Fix a standard strong control β and (t, λ) ∈ [0, T ]×N [Rd] a starting condition. We define the

cost function as

J(t, λ;β) := EPs

[∫ T

t

∑
i∈Vs

ψ
(
Y i,β
s , ξβs , β

i
s

)
ds+Ψ

(
ξβT

) ∣∣∣∣∣ξβt = λ

]
.

Since J depends on the label only throught the spatial components and the control, we restrict
the set of controls. This is done to keep the existing simmetry between the positions in Rd and
the selected control in A. This will allow for achieving a natural embedding of strong controls into
relaxed ones.

Definition 2.2 (Admissible strong control). Fix (t, λ) ∈ [0, T ]×N [Rd]. We say that β = (βi)i∈I
is an admissible strong control, and we denote β ∈ Rs

(t,λ), if β is a standard strong control and

EPs

∫ T

t

∑
i,j∈Vs,i ̸=j

1
Y i,β
s =Y j,β

s ,βi
s ̸=β

j
s
ds

 = 0. (2.16)
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We state the strong control problem as

vs(t, λ) = inf
{
J(t, λ;β) : β ∈ Rs

(t,λ)

}
, (2.17)

for (t, λ) ∈ [0, T ]×N [Rd].

Remark 2.2. Under additional assumptions, restricting from standard to admissible controls does
not impact the value function. For example, whenever σ is uniformly elliptic, i.e., there exist ε > 0
such that σσ⊤(x, λ, a) ≥ εId, with Id being the identity matrix of dimension d×d, all alive particles
take different positions dt⊗ dP-a.s. Therefore, all standard controls are admissible.

2.3 Well posedness of the control problem

To finally give a good definition of the control problem, we must prove the finite second order of the
Branching Processes, at least close to an optimal value. We apply the techniques from Proposition
2.1 to prove the next lemma.

Lemma 2.1. Let (t, λ) ∈ R+×N [Rd], and β be a standard strong control. There exists a constant
C > 0 depending only on T and on the coefficients b, σ, γ and (pk)k such that

EPs

[
sup

u∈[t,t+h]

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣2] ≤ C

(∑
i∈V

|xi|2 + EPs

[∫ t+h

t
|Vu|du

]
(2.18)

+ EPs

[∫ t+h

t

∑
i∈Vu

∣∣βiu∣∣2 du
])

,

for any h > 0.

Proof. Fix
(
t, λ =

∑
i∈V δxi

)
∈ R+ ×N [Rd], and β be a standard strong control. Let {θn}n∈N be

θn := inf {s ≥ t : |Vs| ≥ n} ∧ inf

{
s ≥ t :

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣ ≥ n

}
.

We have that ξβ is satisfied (2.6) up to θn. Applying (2.6) to the function x 7→ |x|2, we get

∑
i∈Vs∧θn

∣∣∣Y i,β
s∧θn

∣∣∣2 =
∑
i∈V

|xi|2 +
∫ s∧θn

t

∑
i∈Vu

2
(
Y i,β
u

)⊤
σ
(
Y i,β
u , ξβu , β

i
u

)
dBi

u

+

∫ s∧θn

t

∑
i∈Vu

2
(
Y i,β
u

)⊤
b
(
Y i,β
u , ξβu , β

i
u

)
du+

+

∫ s∧θn

t

∑
i∈Vu

Tr
(
σσ⊤

(
Y i,β
u , ξβu , β

i
u

))
du

+

∫
(t,s∧θn]×R+

∑
i∈Vu−

∑
k≥0

(k − 1)
∣∣∣Y i,β
u

∣∣∣2 1
Ik

(
Y i,β
u ,ξβu ,βi

u

)(z)Qi(dudz) ,
Taking the supremum in the interval [t, s] and taking the expectation, we bound each term in the
r.h.s. Applying Burkholder-Davis-Gundy’s inequalities to the second term, there exists a constant
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C > 0 (which may change from line to line) such that

EPs

[
sup
u∈[t,s]

∫ u∧θn

t

∑
i∈Vr

2
(
Y i,β
r

)⊤
σ
(
Y i,β
r , ξβr , β

i
r

)
dBi

r

]

≤ CEPs

(∫ s∧θn

t

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣2Tr(σσ⊤ (Y i,β
u , ξβu , β

i
u

))
du

)1/2
 ≤ CEPs

[∫ s∧θn

t

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣2 du] .
From (2.3) on the growth of b and σ, the third and the fourth terms can be bounded as follows

EPs

[
sup
u∈[t,s]

∫ u∧θn

t

∑
i∈Vr

(
2
(
Y i,β
r

)⊤
b
(
Y i,β
r , ξβr , β

i
r

)
+Tr

(
σσ⊤

(
Y i,β
r , ξβr , β

i
r

)))
dr

]

≤ CEPs

[∫ s∧θn

t
|Vu|+

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣2 + ∣∣βiu∣∣2 du
]
,

using that a⊤b ≤ 1
2

(
|a|2 + |b|2

)
for a, b ∈ Rd. Finally, the last term gives

EPs

 sup
u∈[t,s]

∫
(t,u∧θn]×R+

∑
i∈Vr−

∑
k≥0

(k − 1)
∣∣∣Y i,β
r

∣∣∣2 1
Ik

(
Y i,β
r ,ξβr ,βi

r

)(z)Qi(drdz)


≤ EPs

∫ s∧θn

t

∑
i∈Vu−

γ
(
Y i,β
u , ξβu , β

i
u

)∑
k≥1

(k − 1)
∣∣∣Y i,β
u

∣∣∣2 pk (Y i,β
u , ξβuβ

i
u

)
du


≤ CEPs

[∫ s∧θn

t

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣2 du] .
Combining all the terms and using Gronwall’s inequality first and Fatou’s lemma then, we obtain
(2.18).

This lemma tells us that whenever EPs
[∫ T
t

∑
i∈Vu

∣∣βiu∣∣2 du] <∞, we have |J(t, λ;β)| <∞ from

the coercivity bounds. This condition suggests that whenever we are close to the minimum, this
condition must be satisfied, as shown in the following proposition.

Proposition 2.2. Fix (t, λ) ∈ [0, T ] × N [Rd]. Let ε > 0, and let Rs,ε
(t,λ) be the set of β ∈ Rs

(t,λ)
satisfying

J(t, λ;β) ≤ vs(t, λ) + ε.

Then

sup
β∈Rs,ε

(t,λ)

EPs

[∫ T

t

∑
i∈Vu

∣∣βiu∣∣2 du
]
<∞. (2.19)

Moreover, vs(t, λ) > −∞.
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Proof. We use (2.13) and (2.15) along with Lemma 2.1 to find a constant C > 0 (which may change
from line to line) such that, for all β ∈ Rs

(t,λ),

J(t, λ;β) ≥ −CEPs

[
1 + sup

u∈[t,T ]
|Vu|2 + sup

u∈[t,T ]

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣]+ cψEPs

[∫ T

t

∑
i∈Vu

∣∣βiu∣∣2 du
]

≥ −CEPs

[
1 +

∫ T

t

∑
i∈Vu

∣∣βiu∣∣ du
]
+ cψEPs

[∫ T

t

∑
i∈Vu

∣∣βiu∣∣2 du
]

(2.20)

This already proves vs(t, λ) > −∞, as the function a 7→ cψ|a|2 − C|a| is bounded from above. To

prove the first claim, fix arbitrarily a constant control βa0,is := a0 ∈ A. Lemma 2.1 and Proposition
2.1 imply

EPs

[
sup

u∈[t,t+h]

∑
i∈Vu

∣∣∣Y i,βa0

u

∣∣∣2] ≤ C

(
1 + EPs

[∫ t+h

t

∑
i∈Vu

∣∣βa0,iu

∣∣2 du]) ≤ C
(
1 + |a0|2

)
.

Then, from (2.12) and (2.14), we have show J(t, λ;βa0) < ∞. Therefore, for β ∈ Rs,ε
(t,λ), we have

J(t, λ;β) ≤ J(t, λ;βa0) + ε. This and (2.20) yield

sup
β∈Rs,ε

(t,λ)

EPs

[∫ T

t

∑
i∈Vu

(∣∣βiu∣∣2 − C
∣∣βiu∣∣) du

]
<∞.

This gives (2.19), by Proposition 2.1.

3 Relaxed formulation

We give the relaxed formulation for the branching diffusion control problem by working with relaxed
controls and weak solutions of the previous SDE.

We equip the product space [0, T ]× Rd ×A with the σ-algebra B([0, T ])⊗ B(Rd)⊗ B(A). Let
ALeb ⊆ M1([0, T ] × Rd × A) be the set of measures, whose projection on [0, T ] is the Lebesgue
measure. Each α ∈ ALeb can be identified with its disintegration (see, e.g., [23, Corollary 1.26,
Chapter 1]). In particular, we have α(ds, dx, da) = dsys(dx)ᾱs(x, da), for a process (ys(dx))s
(resp. (ᾱs(x, da))s) taking values in the set of functions from [0, T ] (resp. [0, T ]× Rd) to M1(Rd)
(resp. M1(A)). Let ALeb,·,1 ⊆ ALeb,·,· be the set of elements α such that ᾱs(x, da) ∈ P1(A) for any
(s, x) ∈ [0, T ]× Rd. For x = (xs)s ∈ Dd fixed, we denote the space of relaxed controls ALeb,x,1 as

ALeb,x,1 :=
{
α ∈ ALeb,·,1 : α(ds, dx, da) = dsxs(dx)ᾱs(x, da) a.e. s ∈ [0, T ]

}
,

which is weakly* closed.
We equip Dd ×ALeb,·,1 with the product topology.

3.1 Martingale model

Let L be the generator defined on the cylindrical functions Fφ = F (⟨φ, ·⟩), for F ∈ C2
b (R) and

φ ∈ C2
b (Rd), as

LFφ(x, λ, a) = F ′(⟨φ, λ⟩)Lφ(x, λ, a) + 1

2
F ′′(⟨φ, λ⟩) |Dφ(x)σ(x, λ, a)|2

+γ(x, λ, a)

∑
k≥0

F
(
⟨φ, λ⟩+ (k − 1)φ(x)

)
pk(x, λ, a)− Fφ (λ)

 .
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For simplicity, we write F ′
φ(λ) for F

′(⟨φ, λ⟩) and F ′′
φ(λ) for F

′′(⟨φ, λ⟩). Moreover, for F = {Fs}s≥0

a filtration, we denote F̂ =
{
F̂s
}
s≥0

the filtration such that F̂s := B(Rd)⊗Fs for any s ≥ 0.

Definition 3.3 (Relaxed control). Fix (t, λ) ∈ [0, T ]×N [Rd]. We say that C is a relaxed control,
and we denote C ∈ Rr

(t,λ), if

C =
(
Ω,F ,P,F = {Fs}s≥0 , (Xs)s≥0 , (ᾱs)s≥0

)
where

(i) (Ω,F ,P) is a probability space with complete right-continuous filtration F;

(ii) (Xs)s≥0 is an F-progressively measurable process living in Dd such that P(Xt = λ) = 1;

(iii) ᾱ : [0, T ]×Rd×Ω → P1(A) is a F̂-progressively measurable process associated with α ∈ ALeb,·,1

such that P(α ∈ ALeb,X,1) = 1, i.e.,

P
(
α(ds, dx, da) = dsXs(dx)ᾱs(x, da) a.e. s ∈ [0, T ]

)
= 1,

EP
[∫ T

t

∫
Rd×A

|a|ᾱs(x, da)Xs(dx)ds

]
<∞;

(iv) for any Fφ = F (⟨φ, ·⟩), with F ∈ C2
b (R) and φ ∈ C2

b (Rd), the process

M
Fφ
s = Fφ(Xs)−

∫ s

t

∫
Rd×A

LFφ(x,Xu, a)ᾱu(x, da)Xu(dx)du (3.21)

is a (P,F)-martingale for s ≥ t.

Remark 3.3. There are two important aspects of this definition.

1. For C ∈ Rr
(t,λ), we are only interested in the time interval [t, T ]. Therefore, Xs and αs can

be redefined for s ∈ [0, t) as Xs = λ and αs = δa0 for some a0 ∈ A.

2. For (t, λ) ∈ [0, T ] × N [Rd], admissible strong controls are embedded in Rr
(t,λ). Indeed, it

suffices to consider (Ω,F ,P,F) as in Section 2 and define (ᾱs)s as ᾱs(x, da) = δa(s,x) for

a(s, x) :=

∑
i∈Vs− β

i
s−1Y i,β

s− =x∑
i∈Vs− 1Y i,β

s− =x

1{|Vs−|>0} + a01{|Vs−|=0}∪{s≤t}, (3.22)

for some a0 ∈ A and with the convention 0/0 := a0. The SDE (2.6), combined with Itô’s
formula for semimartingales, implies (3.21). Hence, it is a relaxed control, and, with abuse
of notation we denote β ∈ Rr

(t,λ).

We can find equivalent representations of (3.21), an important tool in the manipulation of these
objects. It is given using the quadratic variation of a martingale (see, e.g., [21, Chapter I-4e]).

Lemma 3.2. Given (t, λ) ∈ [0, T ]×N [Rd], let C = (Ω,F ,P,F = {Fs}s , (Xs)s , (αs)s) be such that
conditions (i), (ii), and (iii) in the definition 3.3 are satisfied. The following are equivalent.

(i) We have C ∈ Rr
(t,λ).
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(ii) For any φ ∈ C2
b (Rd) such that φ > ε for some ε > 0 and supRd φ ≤ 1,

M
explogφ
s = e⟨logφ,Xs⟩ −

∫ s

t

∫
Rd×A

(
Lφ(x,Xu, a) + γ(x,Xu, a)(Φ(φ(x), x,Xu, a)− φ(x))

φ(x)

)
ᾱu(x, da)Xu(dx) e

⟨logφ,Xu⟩du (3.23)

is a (P,F)-martingale for s ≥ t.

(iii) For any φ ∈ C2
b (Rd) the process

M̄φ
s = ⟨φ,Xt⟩ −

∫ s

t

∫
Rd×A

Lφ(x,Xu, a)ᾱu(x, da)Xu(dx)du (3.24)

−
∫ s

t

∫
Rd×A

γ(x,Xu, a) (∂sΦ(1, x,Xu, a)− 1)φ(x)

ᾱu(x, da)Xu(dx)du , s ∈ [t, T ].

is a (P,F)-martingale with quadratic variation process

[
M̄φ

]
s

=

∫ s

t

∫
Rd×A

(
Tr
(
σσ⊤(x,Xu, a)DφDφ

⊤(x)
)

(3.25)

+γ(x,Xu, a)
(
∂2ssΦ(1, x,Xu, a)− ∂sΦ(1, x,Xu, a) + 1

)
φ2(x)

)
ᾱu(x, da)Xu(dx)du , s ∈ [t, T ].

Proof. (i) =⇒ (ii): We need to prove that (3.21) is a well defined martingale for the function
Flogφ with F (x) = exp(x) and φ ∈ C2

b (Rd) such that φ > ε for some ε > 0 and supRd φ ≤ 1. The
process M explogφ , as in (3.23), is a local martingale. To prove that it is a martingale, we show its
quadratic variation has a finite expectation. Since the compensator of (M explogφ)2 is the same of
M exp2 logφ = M explogφ2 , we get the quadratic variation of M explogφ applying (3.21) to F ∈ C2

b (R)
and φ2. Therefore, it is equal to

[M explogφ ]s =

∫ s

t

∫
Rd×A

(
Lφ2(x,Xu, a) + γ(x,Xu, a)(Φ(φ

2(x), x,Xu, a)− φ2(x))

φ2(x)

)
ᾱu(x, da)Xu(dx) e

⟨logφ2,Xu⟩du.

Since [M explogφ ] is uniformly bounded, using Itô’s isometry, M explogφ is a martingale.
(ii) =⇒ (iii): Fix f ∈ C2

b (Rd). For θ > 0, and Mf := supRd |f |, we define φ1 := eθ(f−Mf ) and
φ2 := e−θMf . Since f is bounded, there exists ε > 0 such that φ1 > ε and supRd φ1 ≤ 1. Applying
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(3.23) to φ1 and φ2, we get

EP
[
e⟨θ(f−Mf ),Xs+h⟩ − e⟨θ(f−Mf ),Xs⟩

−
∫ s+h

s

∫
Rd×A

(
θLf(x,Xu, a) + θ2Tr

(
σσ⊤(x,Xu, a)DfDf

⊤(x)
)

(3.26)

+ γ(x,Xu, a)
Φ
((
eθ(f(x)−Mf )

)
, x,Xu, a

)
− eθ(f(x)−Mf )

eθ(f(x)−Mf )

)
ᾱu(x, da)Xu(dx)e

⟨θ(f−Mf ),Xu⟩du

∣∣∣∣Fs] = 0 ,

EP
[
e⟨−θMf ,Xs+h⟩ − e⟨−θMf ,Xs⟩ −

∫ s+h

s

∫
Rd×A

γ(x,Xu, a) (3.27)

Φ
(
e−θMf , x,Xu, a

)
−
(
e−θMf

)
e−θMf

ᾱu(x, da)Xu(dx)e
⟨−θMf ,Xu⟩du

∣∣∣∣Fs] = 0 .

Since all the functions are bounded, we are allowed to differentiate with respect to θ. Dividing
by θ, subtracting (3.26) and (3.27), and setting θ = 0, we get (3.24). Differentiating twice with
respect to θ, dividing by θ2subtracting (3.26) and (3.27) and setting θ = 0, we get (3.25).

(iii) =⇒ (i): We prove the last implication using Itô’s formula for semimartingales. Fix
F ∈ C2(Rn) and f ∈ C2

b (Rn). We have that ⟨f,Xs⟩s≥t is a P-semimartingale, and so, by Itô’s
formula, we have (3.21).

3.2 Representation and relaxed control problem

This section shows that relaxed controls can be represented as solutions to stochastic differential
equations. This will be handy in proving the non-explosion property, and, consequently, the good
definition of the control problem.

This characterisation makes use of martingale measures, in extensions of the considered space.
Relevant definitions and results on these objects are concisely summarised in [24] (see, e.g., [42]
for a monograph on the subject). We recall briefly their definition.

Definition 3.4. Let (G,G) be a Lusin space with its σ-algebra, and (Ω,F ,P,F = {Fs}s) a filtered
space satisfying the usual condition, where we define P the predictable σ-field. A process M on
Ω× [0, T ]× G is called martingale measure on G if

(i) M0(E) = 0 a.s. for any E ∈ G;

(ii) Mt is a σ-finite, L2(Ω)-valued measure for all t ∈ [0, T ];

(iii) (Mt(E))t∈[0,T ] is an F-martingale for any E ∈ G.

We say that M is orthogonal if the product Mt(E)Mt(E
′) is a martingale for any two disjoint

sets E,E′ ∈ G. We also say, on one hand, that is continuous if (Mt(E))t≥0 is continuous, purely
discontinuous, on the other hand, if (Mt(E))t≥0 is a purely discontinuous martingale for any
E ∈ G.

For a strong representation of relaxed controls, we rely on the notion of predictable projection
and intensity that we briefly recall. For an R-valued F-adapted process Y , there exists (see, e.g.,
[21, Theorem 2.28, Chapter I]) a (−∞,∞]-valued process, called the predictable projection of Y and
denoted by PY . It is determined uniquely up to a negligible set by the following two conditions:
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(i) it is predictable;

(ii) PYT = EP [YT |FT−] on {T <∞} for all predictable stopping times T .

For a continuous orthogonal martingale measure M on G, there exists a random, predictable
real-valued measure I on B([0, T ])⊗G, called intensity ofM, defined by: [M(E)]s =

∫ t
0

∫
E I(dx, ds)

P-a.s., for all t > 0. We can construct a stochastic integral with respect to M for all functions φ
defined on Ω× [0, T ]×G, P ⊗ G measurable, such that

EP
[∫ t

0

∫
E
φ2(ω, s, x)I(ω, dx, ds)

]
<∞,

denoted by
∫ t
0

∫
E φ(s, x)M(dx, ds). We refer to [42, Chapter 2] for the proofs.

The representation of these processes is grounded in the representation theorems for continuous
and purely discontinuous martingale measures, as done in [31]. We apply her construction in our
context and get the following proposition.

Proposition 3.3. Let C = (Ω,F ,P,F = {Fs}s , (Xs)s , (αs)s) ∈ Rr
(t,λ). There exists an extension(

Ω̂ = Ω× Ω̃, F̂ = F ⊗ F̃ , P̂ = P⊗ P̃,
{
F̂s = Fs ⊗ F̃s

}
s

)
of (Ω,F ,P,F), where we naturally extend

X and α, that satisfies the following properties.

1. (Ω̂, F̂ , F̂, P̂) is a filtered probability space supporting a continuous F̂-martingale measures Mc

on Ω̂× [0, T ]×Rd×A, with intensity measure dsXs(dx)ᾱs(x, da), and a purely discontinuous
F̂-martingale measure Md on Ω̂ × [0, T ] × Rd × R+ × A, with dual predictable projection
measure dsXs(dx)dzᾱs(x, da).

2. P̂ ◦X−1
t = λ.

3. P̂(α ∈ ALeb,X,1) = 1.

4. X satisfies the following dynamics

⟨f,Xs⟩ = ⟨f, λ⟩ +

∫ s

t

∫
Rd×A

(
Lf(x,Xr, a) +

γ(x,Xr, a) (∂sΦ(1, x,Xr, a)− 1) f(x)
)
ᾱr(x, da)Xr(dx)dr

+

∫ s

t

∫
Rd×A

Df(x)σ(x,Xs, a)Mc(dr, dx, da) (3.28)

+

∫ s

t

∫
Rd×R+×A

∑
k≥0

⟨f, (k − 1)δx⟩1Ik(x,Xr,a)(z)M
d(dr, dx, dz, da) .

for all f ∈ C∞
b (Rd) and all [t, s] ⊆ [0, T ].

Proof. We follow the ideas in [31, Theorem 2.7] and [31, Theorem 2.9] to characterize the martingale

M̄f
s in (3.24). As proven in [21, Theorem 4.18], every square integrable martingale starting at 0 can

be uniquely decomposed in the sum of a continuous martingale M̄f,c and a purely discontinuous
martingale M̄f,d, which is the compensated sum of its jumps. We show the connection of these
two processes with X and α.

First, we focus on M̄f,d. Since a purely discontinuous martingale M̄f,d is the compensated
sum of its jumps, we look at ∆Xs = Xs −Xs−. Let Ñ be the Lévy system of X, i.e., a measure
on M1(Rd) × R+ given by Ns(Xs, dv)ds where Ns(X̄, dv) is the image measure of the measure
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νs(x, X̄, du)X̄(dx) by the mapping (u, x) 7→ uδx from R+ ×Rd to M1(Rd), and a certain kernel ν.
Comparing the last term in expressions (3.21) and [36, Théorème 7 (4)], we identify ν as

νs(x, λ, dz) =

∫
A

∑
k≥0

(k − 1)1Ik(x,λ,a)(z)ᾱs(x, da)dz.

This means that, for F bounded positive measurable function on R+ ×M1(Rd), we have that∑
t<r≤s

F (r,∆Xr)1{∆Xr ̸=0}

−
∫ s

t

∫
Rd

∫
(0,∞)

∫
A

∑
k≥0

F (r, (k − 1)δx)1Ik(x,Xr,a)(z)ᾱr(x, da)dzXr(dx)dr

=
∑
t<r≤s

F (r,∆Xr)1{∆Xr ̸=0} (3.29)

−
∫ s

t

∫
Rd×A

∑
k≥0

F (r, (k − 1)δx)γ(x,Xr, a)pk(x,Xr, a)ᾱr(x, da)Xr(dx)dr

is a F-martingale. With this description of ν and Ns(Xs, dv)ds, we use [31, Proposition 2.8] to
prove that we satisfy the hypothesis of [29, Theorem 12]. Therefore, there exists an extension(
Ω̄1 = Ω × Ω1, F̄1 = F ⊗ F1, P̄1 = P ⊗ P1,

{
F̄1
s = Fs ⊗F1

s

}
s

)
, and martingale measures Md on

[0, T ]×Rd×R+×A in it, such that its dual predictable projection measure is drXr(dx)dzᾱr(x, da),
and

M̄f,d
s =

∫ s

t

∫
Rd×R+×A

∑
k≥0

⟨f, (k − 1)δx⟩1Ik(x,Xr,a)(z)M
d(dr, dx, dz, da).

We focus now on M̄f,c. The first term in (3.25) comes from the continuous martingale, i.e.,[
M̄f,c

]
s
=

∫ s

t

∫
Rd×A

Tr
(
σσ⊤(x,Xr, a)DφDφ

⊤(x)
)
ᾱr(x, da)Xr(dx)dr.

Since σ ∈ L2(Xs(dx)αs(da)ds), from [24, Theorem III-7], there exist an extension
(
Ω̄2 = Ω̄1 ×

Ω2, F̄2 = F̄1⊗F2, P̄2 = P̄1⊗P2,
{
F̄2
s = F̄1

s ⊗F2
s

}
s

)
, and a continuous martingale measure Mc on

[0, T ]× Rd ×A on this space, such that its intensity is dsXs(dx)ᾱs(x, da), and we have

M̄f,c
s =

∫ s

t

∫
Rd×A

Df(x)σ(x,Xr, a)Mc(dr, dx, da).

The imposed dependence on X and α over Md and Mc implies that (3.28) is satisfied.
Conversely, if a M1(Rd)-valued process satisfies (3.28), applying Itô’s formula, we have (3.23).

We can now define the relaxed control problem. For C ∈ Rr
(t,λ), we define the cost function as

J(t, λ; C) = EP
[∫ T

t

∫
Rd×A

ψ (s,Xs, a) ᾱs(x, da)Xs(dx)ds+Ψ(XT )

]
, (3.30)

and the relaxed control problem as

vr(t, λ) = inf
{
J(t, λ; C) : C ∈ Rr

(t,λ)

}
, (3.31)
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for any (t, λ) ∈ [0, T ]×N [Rd].
As proven for the strong controls, we need to show that this problem is well-defined. One could

prove non-explosion bounds similar to the ones set out in Proposition 2.1 and Proposition 2.2 in
order to achieve this. We opt for an alternative approach instead of attempting to demonstrate
a similar result in this new context. First, we achieve an equivalence between the strong and the
relaxed formulation. Then, we use it to ensure bounds for the relaxed formulation and assure good
definition of the relaxed control problem.

4 Equivalence between strong and relaxed formulation

We state the following straightforward adaptation of [16, Lemma 3.7]. This enables the process X
to be reduced to its canonical filtration.

Lemma 4.3. Fix (t, λ) ∈ [0, T ]×N [Rd] and C = (Ω,F ,P, {Fs}s≥0 , (Xs)s≥0 , (ᾱs)s≥0) ∈ Rr
(t,λ). If{

FX
s

}
s
is the filtration generated by X and {Gs}s≥0 another filtration such that FX

s ⊆ Gs ⊆ Fs for
any s ≥ 0. Then, there exists

(
ᾱG
s

)
s≥0

such that

C̄ =
(
Ω,GT ,P, {Gs}s≥0 , (Xs)s≥0 ,

(
ᾱG
s

)
s≥0

)
is in Rr

(t,λ) and J(t, λ; C) = J(t, λ; C̄).

Let µ denote the canonical process on Dd, and Fµ = {Fµ
s }s≥0 its right continuous filtration.

The previous lemma hints at considering a subset of relaxed controls as follows.

Definition 4.5. Fix (t, λ) ∈ [0, T ]×N [Rd]. C = (Ω,F ,P, {Fs}s , (Xs)s , (ᾱs)s) in Rr
(t,λ) is a natural

control, and we say that C is in Rn
(t,λ), if Ω = Dd, F = Fµ

T , Fs = Fµ
s for s ∈ [t, T ], X = µ, and

P (µs = λ, s ∈ [0, t]) = 1.

We observe that the pair (P, ᾱ) determine natural controls, consisting in a probability measure
on Dd, i.e., the distribution of µ, and the control process (ᾱs)s. With abuse of notation, we use
(P, ᾱ) to refer to CP,ᾱ := (Dd,Fµ

T ,P, {F
µ
s }s , (µs)s , (ᾱs)s) in Rn

(t,λ).

4.1 Atomic controls

Keeping in mind the embedding of Remark 3.3, we can consider a subset of natural control, the
atomic control. In addition, the elements of this class admit uniqueness in law. Such a property
will be the final link to identify the class of the strong controls in the relaxed ones.

For a fixed x ∈ Dd, the set of measurable functions a : [0, T ]×Rd → A is canonically embedded
in ALeb,x,1 by αa(ds, dx, da) := dsxs(dx)δa(s,x)(da).

Definition 4.6. Fix (t, λ) ∈ [0, T ]×N [Rd]. We say that (P, a) is an atomic control, and we write
(P, a) ∈ Ru

(t,λ), if a : [0, T ]× Rd × Ω → A is F̂µ-progressively measurable, and (P, αa) ∈ Rn
(t,λ).

Therefore, for P ∈ Ru
(t,λ), we have that

Fφ(µs)−
∫ s

t

∫
Rd

LFφ(x, a(u, x), µu)µu(dx)du
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is a (P,Fµ)-martingale for s ≥ t, F ∈ C2
b (R) and φ ∈ C2

b (Rd).
We will prove that we can restrict the class of controls from Rn

(t,λ) to Ru
(t,λ) without impacting

the value function. This is done by showing that we can always associate a natural control and an
atomic one with the same cost under the following assumption.

Assumption A1. The following set

K(x, λ) :=
{(
b(x, λ, a), σσ⊤(x, λ, a),

(
(γpk)(x, λ, a)

)
k≥0

, z
)
: a ∈ A, z ≥ ψ(x, λ, a)

}
⊆ Rd × Rd×d × R∞

+ × R

is convex for all (x, λ) ∈ Rd ×M1(Rd).

This convexity assumption is the so-called Filippov condition, which is common in the control
literature. It holds when A is a convex subset of a vector space, and the parameters are affine in
a, which is the case of the Linear-Quadratic example presented in Section 6.3.

Proposition 4.4. Fix (t, λ) ∈ [0, T ]×N [Rd]. Suppose that Assumption A1 holds. For (P, (αs)s) ∈
Rn

(t,λ), there exists a such that (P, a) ∈ Ru
(t,λ) and J

(
t, λ; CP,δa

)
≥ J

(
t, λ; CP,ᾱ).

Proof. Given (P, (αs)s) in Rn
(t,λ), we define c by

c1(s, x, λ, ω) =

∫
A

(
b, σσ⊤, (γpk)k≥0

)
(x, λ, a)ᾱs(x, da),

c2(s, x, λ, ω) =

∫
A
ψ(x, λ, a)ᾱs(x, da).

All the functions defining K are continuous, therefore, for almost all (x, λ) ∈ Rd×M1(Rd), K(x, λ)
is closed. Since K(x, λ) is closed and convex, (c1, c2)(s, x, λ, ω) is in K(x, λ) for any (x, λ) and
almost all (s, ω). Moreover, (c1, c2) is F̂µ-progressively measurable. We apply [16, Theorem A.9]
and obtain that there is a F̂µ-progressively measurable A-valued process a such that

c1(s, x, λ, ω) =
(
b, σσ⊤, (γpk)k≥0

)
(x, λ, a(s, x, λ, ω)), (4.32)

c2(s, x, λ, ω) ≥ ψ(x, λ, a(s, x, λ, ω)) (4.33)

for any (x, λ) and for almost all (s, ω). For F ∈ C2
b (R) and φ ∈ C2

b (Rd), we must have∫
Rd×A

LFφ(x, µu, au)ᾱu(x, da)µu(dx) =
∫
Rd

LFφ(x, a(s, x, µu), µu)µu(dx)

for almost all (s, ω). Hence, Fφ(µs)−
∫ s
t

∫
Rd×A LFφ(x, a(s, x, µu), µu)µu(dx)du is a martingale, for

all s ≥ t. Therefore, (P, a) ∈ Ru
(t,λ), and, from (4.32), we get J(t, λ; CP,δa) ≤ J(t, λ; CP,ᾱ).

4.2 Uniqueness in law for atomic controls

We introduce the domain D as the set of function h : R+ ×Dd → R of the form

h(s,x) = F
(
⟨f1(s ∧ t1, ·),xs∧t1⟩, . . . , ⟨fp(s ∧ t1, ·),xs∧tp⟩

)
, (s,x) ∈ R+ ×Dd,
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for some p ≥ 1, 0 ≤ t1 < · · · < tp ≤ T , F ∈ C2
b (Rp), and f1, . . . , fp ∈ C1,2

b ([0, T ] × Rd). For

f ∈ C1,2
b ([0, T ] × Rd) , we use the notation Lf(s, x, µ, a) = Lf(s, ·)(x, µ, a). For a measurable

function a : Rd → A, we then define the operator La on D by

Lah(s,x) = DF
(
⟨f1(s ∧ t1, ·),xs∧t1⟩, . . . , ⟨fp(s ∧ tp, ·),xs∧tp⟩

)⊤
Laf(s,x)

+
1

2
Tr
(〈

Saf(Saf)⊤(s, ·),xs
〉
D2F

(
⟨f1(s ∧ t1, ·),xs∧t1⟩, . . . , ⟨fp(s ∧ tp, ·),xs∧tp⟩

))
+

p∑
j=1

1tj−1<s≤tj

∫
Rd

∑
k≥0

γ(x, a(s, x),xs)pk(x, a(s, x),xs)(
F
(
⟨f1(s ∧ t1, ·),xs∧t1⟩, . . . , ⟨fj−1(s ∧ tj−1, ·),xs∧tj−1⟩,G1

kfj(s, x,xs), . . . ,G
1
kfp(s, x,xs)

)
−F

(
⟨f1(s ∧ t1, ·),xs∧t1⟩, . . . , ⟨fp(s ∧ tp, ·),xs∧tp⟩

))
xs(dx)

with t0 = 0, where

Laf(s,x) :=

 1s≤t1
∫
Rd ∂tf1(s, x) + Lf1(s, x,xs, a(s, x))xs(dx)

...
1s≤tp

∫
Rd ∂tfp(s, x) + Lfp(s, x,xs, a(s, x))xs(dx)

 ,

Saf(s, x,x) :=

 1s≤t1 |Df1(s, x)σ(x,xs, a(s, x))|
...

1s≤tp |Dfp(s, x)σ(x,xs, a(s, x))|

 ,

Gn
kfj(s, x,x) := ⟨fj(s, ·),xs⟩+

k − 1

n
fj(s, x),

for (s, x,x) ∈ [0, T ]× Rd ×Dd, and k, j, n ≥ 0.
Considering the canonical process µ ∈ Dd, we take the extended process x defined by

xs = (s, (µu∧s)), s ∈ [t, T ],

valued in R×Dd, which is separable. Note that for (P, a) ∈ Ru
(t,λ) the process

h(xs)−
∫ s

t
Lah(xu)du, t ≤ u ≤ T, (4.34)

is a Fµ-martingale under P. Therefore, we have that this condition gives information about the
marginals.

Proposition 4.5. Fix (t, λ) ∈ [0, T ] × N [Rd] and (P, a) ∈ Ru
(t,λ). For any (P′, a) ∈ Ru

(t,λ), P and

P′ have the same one dimensional marginals:

P(xs ∈ B) = P′(xs ∈ B) (4.35)

for s ∈ [t, T ] and B ∈ B([0, T ]×Dd).

Proof. We first endow the measurable space (Dd × Dd,Fµ
T ⊗ Fµ

T ) with the probability measure
Q = P⊗ P′. For h ∈ D, we have

EQ [h⊗ h(xs, xt)] = EQ [h⊗ h(xt, xs)]
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Indeed, the processes

h⊗ h(xs, xt)−
∫ s

t
Lah(xu)h(xt)du, t ≤ s ≤ T

and

h⊗ h(xt, xs)−
∫ s

t
h(xt)Lah(xu)du, t ≤ s ≤ T

are both martingales under Q. Since all the considered functions are bounded, we can take the
expectation and get

EQ [h⊗ h(xt, xs)] = EQ [h⊗ h(xs, xt)]

and

EP [h(xs)] = EP′
[h(xs)] .

Since any bounded B(X)-measurable function can be approximated almost everywhere for P and
P′ by a sequence of D we get (4.35).

Theorem 4.1. Fix (t, λ) ∈ [0, T ]×N [Rd] and a a F̂µ-progressively measurable process from [0, T ]×
Rd to A. There exists at most one P ∈ P1(Dd) such that (P, a) ∈ Ru

(t,λ), and we denote it Pa.

Proof. The proof is a direct consequence of [12, Theorem 4.2, Chapter 4] and Proposition 4.5.

4.3 Equivalence between relaxed and strong formulations

Proposition 4.6. Fix (t, λ) ∈ [0, T ] × N [Rd]. For a a F̂µ-progressively measurable process from
[0, T ]× Rd to A, there exist β ∈ Rs

(t,λ) and Pa ∈ P1(Dd) such that (Pa, a) ∈ Ru
(t,λ), and the law of

ξβ under Ps is the same of the one on µ under Pa.

Proof. Since a is F̂µ-progressively measurable, from Doob’s functional representation theorem (see,
e.g., Lemma 1.13 in [22]), there exists a B([0, T ])⊗B(Rd)⊗B(Dd)-measurable function κa : [0, T ]×
Rd × Dd → A such that a(s, x, ω) = κa(s, x, µ(ω.∧s)) = κa(s, x, µ(ω)) for any s ∈ [0, T ], x ∈ Rd,
and ω ∈ Ω.

Fix some a0 ∈ A. We consider the filtered space (Ω,F ,F,P) as in Section 2. We can then
define the standard strong control βa as

βa,is = κa
(
s, Y i,β

s ,
(
ξβu∧s

)
u∈[0,T ]

)
1i∈Vs + a01i/∈Vs ,

where ξβ (resp. Y i,β for i ∈ Vs) is the strongly controlled population (resp. particle) associated
with βa. From Proposition 2.1, we know that exists a unique càdlàg process that satisfies (2.6)
associated with this control βa. Moreover, condition (2.16) is satisfied, hence βa ∈ Rs

(t,λ).
With the embedding given in Remark 3.3, we can associate to βa the relaxed control

Ca = (Ωa,Fa,Pa, {Fa
s }s , (X

a
s )s , (ᾱ

a
s)s).

From Lemma 4.3, we get a natural control (Pn,a, ᾱn,a). Following the argument of [16, Lemma 3.7],
since ᾱa is a Dirac measure Pa-a.s., we have that ᾱn,a is a Dirac measures Pn,a-a.s. Moreover, we
can see that ᾱn,a

s (x, da) = δκa(s,x,µ(ω.∧s)) = δa(s,x) Pn,a-a.s., hence (Pn,a, a) ∈ Ru
(t,λ).
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Combining Theorem 4.1 and Proposition 4.6, we have that an atomic control is specified by
the F̂µ-progressively measurable control a. With abuse of notation, we write a ∈ Ru

(t,λ) (resp.

J(t, λ; a)) to denote Ca :=
(
Dd,Fµ

T ,P
a, {Fµ

s }s , (µs)s ,
(
δa(s,·)

)
s

)
∈ Rr

(t,λ) (resp. J(t, λ; C
P)).

Proposition 4.7. Suppose Assumption A1 holds. For (t, λ) ∈ [0, T ]×N [Rd], we have

v(t, λ) := inf
{
J(t, λ; C) : C ∈ Rr

(t,λ)

}
= inf

{
J(t, λ; a) : a ∈ Ru

(t,λ)

}
= inf

{
J(t, λ;β) : β ∈ Rs

(t,λ)

}
.

Proof. We denote vr(t, λ) = inf
{
J(t, λ; C) : C ∈ Rr

(t,λ)

}
, vu(t, λ) = inf

{
J(t, λ; a) : a ∈ Ru

(t,λ)

}
and

vs(t, λ) = inf
{
J(t, λ;β) : β ∈ Rs

(t,λ)

}
. From the embedding of Remark 3.3, we have that vr(t, λ) ≤

vs(t, λ). Using Lemma 4.3 and Proposition 4.4, for each relaxed control, there exists an atomic
control that does not increase the value functions. This means that vr(t, λ) = vu(t, λ). Finally,
from Proposition 4.6, any atomic control finds a representation in the strong controls set. This
means that vs(t, λ) ≤ vu(t, λ).

We can now give the bounds on the moments of the controlled processes in the relaxed frame-
work.

Proposition 4.8. Let (t, λ) ∈ [0, T ]×N [Rd], and

C =
(
Ω,F ,P,F = {Fs}s≥0 , (Xs)s≥0 , (ᾱs)s≥0

)
∈ Rr

(t,λ).

There exists a constant C > 0 depending only on T and on the coefficients b, σ, γ and (pk)k such
that

EP

[
sup

u∈[t,t+h]
⟨1, Xu⟩

]
≤ ⟨1, λ⟩eCγC1

Φh, (4.36)

EP

[
sup

u∈[t,t+h]
⟨1, Xu⟩2

]
≤ ⟨1, λ⟩eCγ(C1

Φ+C
2
Φ)h, (4.37)

EP

[
sup

u∈[t,t+h]
⟨| · |, Xu⟩

]
≤ C

(
⟨| · |, λ⟩+ EP

[∫ t+h

t
⟨1, Xu⟩du

]
(4.38)

+ EP
[∫ t+h

t

∫
Rd×A

|a|ᾱu(x, da)Xu(dx)du

])
,

EP

[
sup

u∈[t,t+h]
⟨| · |2, Xu⟩

]
≤ C

(
⟨| · |2, λ⟩+ EP

[∫ t+h

t
⟨1, Xu⟩du

]
(4.39)

+ EP
[∫ t+h

t

∫
Rd×A

|a|2ᾱu(x, da)Xu(dx)du

])
,

for any h > 0, where | · | (resp. | · |2) denote the function x 7→ |x| (resp. x 7→ |x|2). Moreover, for
ε > 0, if Rr,ε

(t,λ) denotes the set of C ∈ Rr
(t,λ) satisfying J(t, λ; C) ≤ v(t, λ) + ε. Then

sup
β∈Rr,ε

(t,λ)

EP
[∫ t+h

t

∫
Rd×A

|a|2ᾱu(x, da)Xu(dx)du

]
<∞. (4.40)
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Proof. From Lemma 4.3, we see that any bound made on relaxed control transpose exactly on
natural controls. Fix (P, (αs)s) ∈ Rn

(t,λ). From the proof of Proposition 4.4, we see that the atomic

control (P, a) ∈ Ru
(t,λ) associated with this natural control does not modify the probability measure

P, nor the law of µ, using Assumption A1. In particular, this procedure can be applied for any
kind of cost functions (ψ,Ψ) as soon as they satisfy the bounds (2.12)-(2.15).

Define now ψ1(x, λ, a) := |a| (resp. ψ2(x, λ, a) := |a|2). Since ψ1 (resp. ψ2) satisfies (2.12)-
(2.15), we consider a1 (resp. a1) the atomic control associated with the couple (ψ1, 0) (resp. (ψ2, 0)).
In the notation of the paper, the cost functions associated with these couples are respectively

Jp(t, λ; C) = EP
[∫ T

t

∫
Rd×A

|a|pᾱs(x, da)µs(dx)ds
]
, for p = 1, 2.

Using the identification between atomic, controls and strong controls, we have that (2.7) ,(2.8),
(2.10), and (2.18) extend directly to the framework of atomic controls. Therefore, since the first
two depend only on the parameters of the model and the initial condition (t, λ), we get (4.36) and
(4.37).

Since the association from α to a1 (resp. a2) given by Proposition 4.4 is non-increasing in the
cost function, we have that

EP
[∫ T

t

∫
Rd

|a1(s, x)|µs(dx)ds
]

≤ EP
[∫ T

t

∫
Rd×A

|a|ᾱs(x, da)µs(dx)ds
]
,

EP
[∫ T

t

∫
Rd

|a2(s, x)|2µs(dx)ds
]

≤ EP
[∫ T

t

∫
Rd×A

|a|2ᾱs(x, da)µs(dx)ds
]
.

Therefore, combining these inequalities with (2.10) and (2.18), we get exactly (4.38) and (4.39).
Finally, to retrieve (4.40), we argue exactly as in Proposition 2.2 directly in the relaxed control

setting. This is again a consequence that the function a 7→ |a|2 − C|a| is bounded below and
(2.12)-(2.15).

5 Existence of Optimal Controls

To show the existence of optimal controls, we look for canonic relaxed controls. From Lemma 4.3,
we can define the control problem 3.30-3.31 with respect to any class R· such that Rn ⊆ R· ⊆ Rr

without increasing the value function. Since we focus on the pair (X,α) in the definition of relaxed
controls, canonic relaxed controls are defined in Ω = Dd × ALeb,·,1. Let (µ,a) be the projection
maps (or canonical processes) on Dd × ALeb,·,1, and Fµ,a =

{
Fµ,a
s

}
s
the filtration generated by

them, i.e., the augmentation of

σ
(
µs(B1),a([0, s

′]×B2 ×B3], for s, s
′ ∈ [0, T ], B1, B2 ∈ B(Rd), B3 ∈ B(A)

)
.

Definition 5.7 (Control rule). Fix (t, λ) ∈ [0, T ] × N [Rd]. C = (Ω,F ,P, {Fs}s , (Xs)s , (ᾱs)s) ∈
Rr

(t,λ) is a control rule, and we write C ∈ R(t,λ), if Ω = Dd × ALeb,·,1, F = Fµ,a
T , Fs = Fµ,a

s for

s ∈ [t, T ], X = µ, α = a and

P (µs = λ, s ∈ [0, t]) = 1.

A control rule is specified by P ∈ P1(Dd ×ALeb,·,1), i.e., the distribution of (µ,a). With abuse
of notation, we write P ∈ R(t,λ) (resp. J(t, λ;P)) to denote CP := (Dd,Fµ

T ,P, {F
µ
s }s , (µs)s , (ās)s) ∈

R(t,λ) (resp. J(t, λ; CP)).
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From Lemma 4.3, any relaxed control is associated with a control rule with the same cost
function J . Therefore,

v(t, λ) = inf
{
J(t, λ; C) : C ∈ Rr

(t,λ)

}
= inf

{
J(t, λ;P) : P ∈ R(t,λ)

}
.

We aim at applying the same procedure, as in [16] and [28], to exhibit the existence of a
relaxed control. This means proving the optimization problem consists of minimizing a lower
semicontinuous function on a compact set. Therefore, to conclude we need to show that J is lower
semicontinuous and Rε

(t,λ) := Rr,ε
(t,λ) ∩R(t,λ) is compact in P1(Dd ×ALeb,·,1) for ε > 0.

Lemma 5.4. For (t, λ) ∈ [0, T ]×N [Rd], J(t, λ; ·) is lower semicontinuous on P1(Dd ×ALeb,·,1).

Proof. Consider f : Dd ×ALeb,·,1 → R, defined as

f(x, α) :=

∫ T

t

∫
Rd×A

ψ (x,xs, a) ᾱs(x, da)xs(dx)ds+Ψ(xT ) .

This function is lower semicontinuous as a consequence of the continuity of ψ and Ψ and their
growth conditions (2.15) and (2.13). This means that J(t, λ;P) =

∫
fdP is lower semicontinuous.

For a Polish space (E, d) and P ∈ P(M(E)), define the mean measure mP ∈ P(E) by

mP(C) :=
∫
M(E)

λ(C)P(dλ).

Since dp,E is a Wasserstein type distance and we have the bound (2.1), the results from [27,
Appendix B] can be naturally extended to this setting. As the primary focus is on convergence in
weak* topology in the first part, we will examine an alternative metrization that is simpler than
dp,E .

A family F ⊆ Cb(E) is said to be separating if, whenever ⟨φ, λ⟩ = ⟨φ, λ′⟩ for all φ ∈ F , and
some λ, λ′ ∈M(E), we necessarily have λ = λ′. Since E is Polish, from the Portmanteau theorem
(see, e.g., [40, Theorem 1.1.1]), the set of uniformly continuous functions, for any metric equivalent
to d, is separating. Using Tychonoff’s embedding theorem (see, e.g., [43, Theorem 17.8]), Cb(E) is
also separable. Therefore, there exists a countable and separating family FE = {φk, k ∈ N} subset
of Cb(E) such that the function E ∋ x 7→ 1 belongs to FE and ||φk||∞ := supE |φk| ≤ 1 for all
k ∈ N since multiplying by a positive constant do not impact the property of being separating.
With the use of this family,

dweak*,E(λ, λ
′) =

∑
φk∈FE

1

2k
∣∣⟨φk, λ⟩ − ⟨φk, λ′⟩

∣∣ ,
for λ, λ′ ∈ M(E). As in [40, Theorem 1.1.2], this distance dweak,E induces on M(E) the weak*
topology. Whenever E = Rd, we adjust this metric to take into account useful differential proper-
ties. Let FRd be taken as a subset of C2

b (Rd), the set of real functions with bounded, continuous
derivatives over Rd up to order two. Without loss of generality, since C2 is dense in C0, we sup-
pose this set to be separating under local uniform convergence (application of [14, Theorem 8.14]).
Moreover, since x 7→ 1 belongs to FRd , adding a constant or multiplying by a non-negative con-
stant to each function does not change the property of being a separating set, we assume φk ≥ 0.
We define the distance

dweak*,Rd(λ, λ′) =
∑

φk∈FRd

1

2kqk

∣∣⟨φk, λ⟩ − ⟨φk, λ′⟩
∣∣ , (5.41)

with qk = max{1, ||Dφk||∞, ||D2φk||∞}.
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Proposition 5.9. Given (t, λ) ∈ [0, T ]×N [Rd] and ε > 0, Rε
λ is compact in P1(Dd ×ALeb,·,1).

Proof. The proof of this lemma breaks into four steps.

Step 1. First, we aim at proving that
{
mP

Dd : P ∈ Rε
(t,λ)

}
⊆ P(Db) is tight. To do that, we

verify Aldous’ criterion (see, e.g., [22, Theorem 14.11]), i.e., proving

lim
δ↓0

sup
P∈Rλ

sup
τ

EP [dweak*,Rd(µ(τ+δ)∧T , µτ )
]
= 0, (5.42)

where the innermost supremum is over stopping times τ valued in [0, T ].
From Proposition 3.3, we know there exists an extension Ω̂ of Dd × ALeb,·,1 where µ can be

represented as the solution of (3.28). This SDE is driven by Mc orthogonal continuous martingale
measure on Ω̂×[0, T ]×Rd×A, with intensity measure dsµs(dx)ās(x, da), and a purely discontinuous
martingale measure Md on Ω̂ × [0, T ] × Rd × R+ × A, with dual predictable projection measure
dsµs(dx)dzās(x, da). Applying (3.28) to φk ∈ FRd , we get

⟨φk, µ(s+δ)∧T ⟩ = ⟨φk, µs⟩ +

∫ (s+δ)∧T

s

∫
Rd×A

(
Lφk(x, µ, ar) +

γ(x, µ, ar) (∂sΦ(1, x, µ, ar)− 1)φk(x)
)
ār(x, da)µr(dx)dr +

+

∫ (s+δ)∧T

s

∫
Rd×A

Dφk(x)σ(x,Xr, a)Mc(dr, dx, da)

+

∫ (s+δ)∧T

s

∫
Rd×R+×A

∑
k≥0

⟨φk, (k − 1)δx⟩1Ik(x,µr,a)(z)M
d(dr, dx, dz, da).

for s ∈ [0, T ], k ∈ N. Therefore, to bound the quantity EP [|⟨φk, µ(s+δ)∧T ⟩ − ⟨φk, µs⟩|
]
, it suffices

to bound the last three terms in the r.h.s. There is a constant C > 0 that depends only on b, σ, γ
and Φ (which may change from line to line) such that

EP

[∣∣∣∣∣
∫ (s+δ)∧T

s

∫
Rd×A

(
Lφk(x, µ, ar) + γ(x, µ, ar) (∂sΦ(1, x, µ, ar)− 1)φk(x)

)
ār(x, da)µr(dx)dr

∣∣∣∣∣
]
≤

≤ CqkEP

[∫ (s+δ)∧T

s
(⟨1, µu⟩+ ⟨| · |, µu⟩) du+

∫ (s+δ)∧T

s

∫
Rd×A

|a|āu(x, da)µu(dx)du

]
.

Applying Burkholder-Davis-Gundy inequality, we obtain

EP

[∣∣∣∣∣
∫ (s+δ)∧T

s

∫
Rd×A

Dφk(x)σ(x,Xr, a)Mc(dr, dx, da)

∣∣∣∣∣
]
≤ CqkEP

[∫ (s+δ)∧T

s
⟨1, µu⟩du

]
.

Finally, since φk ≥ 0, we have

EP

[∣∣∣∣∣
∫ (s+δ)∧T

s

∫
Rd×R+×A

∑
k≥0

⟨φk, (k − 1)δx⟩1Ik(x,µr,a)(z)M
d(dr, dx, dz, da)

∣∣∣∣∣
]

≤ EP

[∣∣∣∣∣
∫ (s+δ)∧T

s

∫
Rd×A

φk(x)
∑
k≥1

(k − 1)γ (x, µr, a) pk (x, µr, a) ār(x, da)µr(dx)dr

∣∣∣∣∣
]

≤ CqkEP

[∫ (s+δ)∧T

s
⟨1, µu⟩du

]
.
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Combining these inequalities, we get

EP [|⟨φk, µ(s+δ)∧T ⟩ − ⟨φk, µs⟩|
]

≤ CqkEP

[∫ (s+δ)∧T

s
(⟨1, µu⟩+ ⟨| · |, µu⟩) du+

∫ (s+δ)∧T

s

∫
Rd×A

|a|āu(x, da)µu(dx)du

]

≤ δCqk

(
EP

[
sup

u∈[0,T ]
(⟨1, µu⟩+ ⟨| · |, µu⟩)

]
+ EP

[∫ (s+δ)∧T

s

∫
Rd×A

|a|āu(x, da)µu(dx)du

])
.

Combining (4.36) and (4.39), together with the uniform bound (4.40), we obtain EP[|⟨φk, µ(s+δ)∧T ⟩−
⟨φk, µs⟩|

]
≤ Cqkδ. Multiplying for 1

2kqk
, summing over k ∈ N and applying the monotone conver-

gence theorem, we get EP [dRd(µ(s+δ)∧T , µs)
]
≤ δC, which gives us (5.42).

Step 2. Secondly, we prove that
{
P

Dd : P ∈ Rε
(t,λ)

}
⊆ P1(Db) is relatively compact. Combining

the bound (4.39) with (4.40) and (4.36), we get

sup
P∈Rε

(t,λ)

EP

[
sup
u∈[t,T ]

∫
Rd

|x|2µu(dx)

]
<∞.

This bound, together with (4.37) and (2.1), gives that

sup
P∈Rε

(t,λ)

EP

[
sup
u∈[t,T ]

d2
2,Rd(µu, δ0)

]
<∞. (5.43)

Putting together Step 1 and this bound, we have from [27, Corollary B.2] that
{
P

Dd : P ∈ Rε
(t,λ)

}
⊆

P1(Db) is relatively compact.

Step 3. From the first step, we have that
{
P ◦ µ−1 : P ∈ Rε

(t,λ)

}
is tight in P1(Db). Adding this

to (4.40) and (5.43), we have that
{
P

ALeb,·,1 : P ∈ Rε
(t,λ)

}
is compact in P1(ALeb,·,1). This entails

that Rε
(t,λ) is relatively compact in P1(Dd×ALeb,·,1) since

{
P

Dd : P ∈ Rε
(t,λ)

}
and

{
P

ALeb,·,1 : P ∈

Rε
(t,λ)

}
are relatively compact in P1(Dd) and P1(ALeb,·,1) respectively.

Step 4. Finally, we prove Rε
(t,λ) is closed. To do that, we show that P∞ belongs to Rε

(t,λ)

for Pn → P∞ in P1(Dd × ALeb,·,1), with Pn ∈ Rε
(t,λ). Since µt has law λ under Pn, the same is

true under P∞. Analogously, since Pn(α ∈ ALeb,µ,1) = 1, the same is true under P∞. For any

F ∈ C2
b (R) and φ ∈ C2

b (Rd) and P ∈ P1(Dd ×ALeb,·,1), define M
P,Fφ
s : Dd ×ALeb,·,1 → R by

M
P,Fφ
s (x, α) = Fφ(xs)−

∫ s

t

∫
Rd×A

LFφ(y,yu, a)ᾱu(y, da)yu(dy)δyu=xudu.

Recalling the definition of L, we see that there exists a constant C > 0 depending only on the
bounds of F , φ and the constants Cb, Cσ, Cγ such that

|LFφ(y, λ, a)| ≤ C(1 + |x|+ |a|).

This implies∣∣∣MP,Fφ
s (x, α)

∣∣∣ ≤ C

(
1 + sup

u∈[t,T ]
d1,Rd (xu, δ0) +

∫ T

t

∫
Rd×A

|a|ᾱu(x, da)yu(dx)du

)
.
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Combining this with the continuity of b, σ, γ and pk for k ∈ N, we have that (P,x, α) 7→M
P,Fφ
s (x, α)

is a continuous function for each s ∈ [t, T ], F ∈ C2
b (R) and φ ∈ C2

b (Rd) using [27, Corollary A.5].
Since Pn → P∞ in P1(Dd ×ALeb,·,1), it follows that

EP∞
[(
M

P∞,Fφ

s+u −M
P∞,Fφ
s

)
Λ
]
= lim

n→∞
EPn

[(
M

Pn,Fφ

s+u −M
Pn,Fφ
s

)
Λ
]
,

for every s ∈ [t, T ], u ≥ 0 such that s+ u ≤ T , any F ∈ C2
b (R) and φ ∈ C2

b (Rd), and any bounded
continuous function Λ on Dd × ALeb,·,1, measurable with respect to σ (µu, āu : u ∈ [t, s]). Since

Pn ∈ Rε
(t,λ), the process

(
M

Pn,Fφ
s (µ,a)

)
s∈[0,T ]

is a martingale under Pn, and the above quantity is

zero. This shows that
(
MP∞,φ
s (µ,a)

)
s∈[0,T ]

is a martingale under P∞, and so P∞ ∈ R(t,λ).

Moreover, by Lemma 5.4 we get since J is lower semicontinuous. Therefore,

J (t, λ;P∞) ≤ lim inf
n→∞

J(t, λ;Pn) ≤ v(t, λ) + ε,

which means that P∞ ∈ Rε
(t,λ).

Therefore, we state the last theorem.

Theorem 5.2. For (t, λ) ∈ [0, T ]×N [Rd], there exists an optimal control β∗ ∈ Rs
(t,λ) such that

v(t, λ) = J(t, λ;β∗). (5.44)

Proof. Fix ε > 0. We have that infP∈R(t,λ)
J(t, λ;P) = infP∈Rε

(t,λ)
J(t, λ;P). By Proposition 5.9,

Rε
(t,λ) is compact and, by Lemma 5.4, J is lower-semicontinuous. Therefore, since v(t, λ) is the

supremum of a continuous function over a nonempty compact set, it exists P∗ ∈ R(t,λ) such that
v(t, λ) = J(t, λ;P∗). From Lemma 4.3 and Proposition 4.4, under Assumption A1, we have the
existence of optimal atomic control a∗ such that J(t, λ; a∗) ≤ J(t, λ;P∗). Immerging this atomic
control in the class of strong controls, we find β∗ that satisfies (5.44).

6 HJB equation

6.1 Homeomorphisms with ∪m≥0Rdm

We proved the existence of optimal control for the studied problem. This proof holds under general
hypotheses. However, the formalism so far discussed gives no recipe on where to look for these
optimal controls. One step in this direction is the differential characterisation of the value function,
known as the HJB equation.

Though the problem has been stated in terms of finite measures, this depiction cannot be
employed directly to tackle the task at hand. Indeed, the subset N [Rd] where our processes live is
not open in

(
M1(Rd),d1,Rd

)
.

As recalled in Remark 2.1, we can embed Rdm to N [Rd] for any m ∈ Rd via ι. Denoting(
Rd
)0

:= {∅}, and ι(∅) := O, which is the measure equal to 0, we see that ι
(⋃

m≥0

(
Rd
)m)

= N [Rd].
Therefore, we can define the HJB system exploiting the differential structure of each Rdm.

For each m ∈ N, let vm : [0, T ]×
(
Rd
)m → R be

vm(t, x1, . . . , xm) := v

(
t,

m∑
i=1

δxi

)
= v (t, ι(x⃗m)) , (6.45)
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with x⃗m = (x1, . . . , xm)
⊤. Analogously, we define (bm,Σm) :

(
Rd
)m ×Am → Rdm × Rdm×d′ as

bm (x⃗m, a⃗m) :=

 b (x1, ι(x⃗
m), a1)

...
b (xm, ι(x⃗

m), am)

 , Σm (x⃗m, a⃗m) :=

 σ (x1, ι(x⃗
m), a1)

...
σ (xm, ι(x⃗

m), am)

 .

For any m ∈ N, we define the generator Lm as

Lmvm (x⃗m, a⃗m) := bm (x⃗m, a⃗m)⊤Dvm (x⃗m) +
1

2
Tr
(
Σm(Σm)⊤ (x⃗m, a⃗m)D2vm (x⃗m)

)
+

m∑
i=1

γ (xi, ι(x⃗
m), ai)

(∑
k≥0

vm+(k−1)

(
x1, . . . , xi−1, xi, . . . , xi︸ ︷︷ ︸

(k−1)−times

, xi+1, . . . , xm

)

pk (xi, ι(x⃗
m), ai)− vm (x⃗m)

)
.

Remark 6.4. These notations look like the one used in Proposition 2.1. As seen in their construc-
tion, branching processes behave as diffusion processes between two different branching events, that
are defined via a Poisson random measure independent of each Brownian motion. This is why the
first two terms of Lm are Itô’s-like terms while the last one takes into account what happens in the
branching events.

Since our aim is giving a Verification Theorem, we need to find a way to associate an admissible
control from a set of functions âm : [0, T ]×

(
Rd
)m → Am. As done in [5] and [26], we consider the

partial ordering relation ⪯ (resp. ≺) by

j ⪯ i ⇔ ∃ℓ ∈ I : i = jℓ

(resp. j ≺ i ⇔ ∃ℓ ∈ I \ {∅} : i = jℓ)

for all i, j ∈ I. With respect to this partial ordering, for i = i0 . . . ip, j = j0 . . . jq ∈ I, we define
i∧ j as ∅ in the case i0 ̸= j0, and as i0 . . . iℓ−1 with ℓ ≤ min{p, q} if jk = ik for k = 0, . . . , ℓ− 1 and
jk ̸= ik. If I⪯ is defined as

I⪯ = {V ⊆ I : |V | <∞, i ⊀ j for i, j ∈ V } ,

the set of labels that could describe a population in N [Rd] must belong to I⪯. For any V ⊂ I⪯,
we can give a total order. If i = i0 . . . ip, j = j0 . . . jq ∈ V and i ∧ j = i0 . . . iℓ−1, we denote i < j if
iℓ < jℓ. This means that for any V ⊂ I⪯, there exists a bijection ϕV : V → {1, . . . , |V |} associated
with this total order in V .

Let âm : [0, T ]×
(
Rd
)m → Am be a function that is symmetric in the last m variables, for any

m ≥ 1. Let β̂ be the control defined as follows

β̂is :=
∑
k≥1

1τk−1≤s<τk

(
a01i ̸=Vk + â

|Vk|
ϕ|Vk|(i)

(
s, Y (ϕ|Vk|)−1(1),β

s , . . . , Y (ϕ|Vk|)−1(|Vk|),β
s

))
. (6.46)

Remark 6.5. The relationship between a control and a sequence of functions âm informs us on how
to approach the optimal control problem by examining the associated HJB equation. The equation
itself will be dependent on vm, with each branching event being linked to the switching of regime m.
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6.2 Verification Theorem

Theorem 6.3. Let w be a function in C0
(
[0, T ]×N [Rd]

)
such that

−Cw (1 + ⟨1, λ⟩+ ⟨| · |, λ⟩) ≤ wt(λ) ≤ Cw
(
1 + ⟨1, λ⟩2 + ⟨| · |2, λ⟩

)
. (6.47)

for some constant Cw > 0. Assume that wm, defined as in (6.45), is in C1,2
(
[0, T ]× Rdm

)
for any

m ∈ N.

(i) Suppose that

−∂twm (t, x⃗m)− inf
a⃗m∈Am

{
Lmwm (x⃗m, a⃗m) +

m∑
i=1

ψ (xi, ι(x⃗
m), ai)

}
≤ 0,

wm (T, x⃗m) ≤ Ψ(ι (x⃗m)) ,(6.48)

for any m ∈ N, t ∈ [0, T ], and x⃗m ∈ Rdm. Then w ≤ v on [0, T ]×N [Rd].

(ii) Suppose further wm (T, x⃗m) = Ψ (ι (x⃗m)), for any m ∈ N, and x⃗m ∈ Rdm, and there exist
measurable functions a⃗m (t, x⃗m), for m ∈ N, and (t, x⃗m) ∈ [0, T )×N [Rd], valued in Am such
that

−∂twm (t, x⃗m) − inf
a⃗m∈Am

{
Lmwm (x⃗m, a⃗m)−

m∑
i=1

ψ (xi, ι(x⃗
m), ai)

}
(6.49)

= −∂twm (t, x⃗m)−

{
Lmwm (x⃗m, a⃗m (t, x⃗m))−

m∑
i=1

ψ (xi, ι(x⃗
m), ami (t, x⃗m))

}
= 0.

Defining β̂ as in (6.46) associated with the functions a⃗m for m ≥ 1, we assume that the
following SDE admits a unique solution

⟨φ, ξβ̂s ⟩ = ⟨φ, λ⟩+
∫ s

t

∑
i∈Vu

Dφ(Y i,β̂
u )⊤σ

(
Y i,β̂
u , ξβ̂u , β̂

i
u

)
dBi

u +

∫ s

t

∑
i∈Vu

Lφ
(
Y i,β̂
u , ξβ̂u , β̂

i
u

)
du

+

∫
(t,s]×R+

∑
i∈Vu−

∑
k≥0

(k − 1)φ(Y i,β̂
u )1

Ik

(
Y i,β̂
u ,ξβ̂u ,β̂i

u

)(z)Qi(dudz) .

Suppose, moreover, that β̂ ∈ Rs
(t,λ) for any (t, λ) ∈ N [Rd]. Then, w = v on [0, T ] × N [Rd],

and β̂ is an optimal Markov control.

Proof. (i) We consider once again the notation adopted in Proposition 2.1. Fix a starting condition
(t, x⃗m) ∈ [0, T ]× Rdm and an admissible control β ∈ Rs

(t,ι(x⃗m)) we consider the stopping times

τk = inf
{
s ∈ (τk−1, T ] : ∃i ∈ Vk−1, Q

i((τk−1, s]× [0, Cγ ]) = 1
}
,

θn := inf {s ∈ [t, T ] : |Vs| ≥ n} ∧ inf

{
s ∈ [t, T ] :

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣ ≥ n

}
.

With these stopping times, we can describe the population ξβ as

ξβs =
∑
k≥1

1τk−1≤s<τk
∑
i∈Vk

δ
Y i,β
s

=
∑
k≥1

1τk−1≤s<τkι
(
Y⃗ β,|Vk|
s

)
.
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As noted in Remark 6.4, between the branching events τk−1 and τk, the population behave like
a controlled diffusion living in Rd|Vk−1|. Therefore, Itô’s formula describes here the evolution of a
function valued in ξβ in each interval [τk−1 ∧ θn, τk ∧ θn).

Using the embedding ι, we have that (2.6) translates into

EPs
[
wmn

k

(
s ∧ τk ∧ θn, Y⃗

β,mn
k

s∧τk∧θn

)
− wmn

k−1

(
s ∧ τk−1 ∧ θn, Y⃗

β,mn
k−1

s∧τk−1∧θn

)]
= EPs

[∫ s∧τ1∧θn

s∧τk−1∧θn

{
∂tw

mn
k−1

(
t, Y⃗

β,mn
k−1

u

)
+ Lmn

k−1wmn
k−1

(
Y⃗
β,mn

k−1
u , β⃗

mn
k−1

u

)}
du

]
,

where mn
k := |Vτk∧θn | and β⃗

mn
k−1

u :=
(
βiu
)
i∈Vτk−1∧θn

. Therefore, we have that

EPs
[
w|Vs∧θn |

(
s ∧ θn, Y⃗

β,|Vs∧θn |
s∧θn

)]
− wm (t, x⃗m) (6.50)

= EPs

∑
k≥1

(
wmn

k

(
s ∧ τk ∧ θn, Y⃗

β,mn
k

s∧τk∧θn

)
− wmn

k−1

(
s ∧ τk−1 ∧ θn, Y⃗

β,mn
k−1

s∧τk−1∧θn

))
= EPs

∑
k≥1

∫ s∧τ1∧θn

s∧τk−1∧θn

{
∂tw

mn
k−1

(
t, Y⃗

β,mn
k−1

u

)
+ Lmn

k−1wmn
k−1

(
Y⃗
β,mn

k−1
u , β⃗

mn
k−1

u

)}
du

 .
Since w satisfies (6.49), we have

∂tw
mn

k

(
t, Y⃗

β,mn
k

u

)
+ Lmn

kwmn
k

(
Y⃗
β,mn

k
u , β⃗

mn
k

u

)
+

∑
i∈Vτk∧θn

ψ
(
Y i,β
u , ξβu , β

i
u

)
≥ 0,

for any β ∈ Rs
(t,ι(x⃗m)), k ≥ 0 and u ∈ [τk ∧ θn, τk+1 ∧ θn). Thus,

EPs
[
w|Vs∧θn |

(
s ∧ θn, Y⃗

β,|Vs∧θn |
s∧θn

)]
− wm (t, x⃗m) ≥ −EPs

[∫ s∧θn

t

∑
i∈Vu

ψ
(
Y i,β
u , ξβu , β

i
u

)
du

]
. (6.51)

From (2.14)-(2.15), we have∣∣∣∣∣
∫ s∧θn

t

∑
i∈Vu

ψ
(
Y i,β
u , ξβu , β

i
u

)
du

∣∣∣∣∣ ≤ CΨ

(
1 +

∫ T

t

(
|Vu|2 +

∑
i∈Vu

∣∣∣Y i,β
u

∣∣∣2 + ∑
i∈Vu

∣∣βiu∣∣2
)
du

)
,

therefore the r.h.s. in (6.51) is integrable for β ∈ Rs,ε
(t,ι(x⃗m)) using (2.8), (2.18) and (2.19). Anal-

ogously, from (6.47), we also have that l.h.s. in (6.51) explodes to infinity or is integrable for
β ∈ Rs,ε

(t,ι(x⃗m)). We can then apply the dominated convergence theorem, and send n to infinity into

(6.51):

EPs
[
w|Vs|

(
s, Y⃗ β,|Vs|

s

)]
− wm (t, x⃗m) ≥ −EPs

[∫ s

t

∑
i∈Vu

ψ
(
Y i,β
u , ξβu , β

i
u

)
du

]
, for β ∈ Rs,ε

(t,ι(x⃗m)).

Since w is continuous on [0, T ]×N [Rd], by sending s to T , we obtain by the dominated convergence
theorem and by (6.48)

EPs
[
Ψ
(
ξβT

)]
− wm (t, x⃗m) ≥ −EPs

[∫ T

t

∑
i∈Vu

ψ
(
Y i,β
u , ξβu , β

i
u

)
du

]
, for β ∈ Rs,ε

(t,ι(x⃗m)).
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From the arbitrariness of β ∈ Rs,ε
(t,ι(x⃗m)), we deduce that wm (t, x⃗m) ≤ vm (t, x⃗m), for any m ≥ 1,

and (t, x⃗m) ∈ [0, T ]× Rdm, i.e., w (t, λ) ≤ v (t, λ) for any (t, λ) ∈ [0, T ]×N [Rd].
(ii) From the definition of the control β̂, we have that

−∂twm (t, x⃗m)−

{
Lmvm (x⃗m, a⃗m (t, x⃗m))−

m∑
i=1

ψ (xi, ι(x⃗
m), ami (t, x⃗m))

}
= 0.

Applying this to (6.50), we get

wm (t, x⃗m) = EPs

[
w|Vs∧θn |

(
s ∧ θn, Y⃗

β̂,|Vs∧θn |
s∧θn

)
+

∫ s∧θn

t

∑
i∈Vu

ψ
(
Y i,β̂
u , ξβ̂u , β̂

i
u

)
du

]
,

for any n ≥ 1. For Fatou’s lemma, we obtain

wm (t, x⃗m) ≥ EPs

[
w|Vs|

(
s, Y⃗ β̂,|Vs|

s

)
+

∫ s

t

∑
i∈Vu

ψ
(
Y i,β̂
u , ξβ̂u , β̂

i
u

)
du

]
.

Sending s to T and using again Fatou’s lemma, together with the fact wp (T, y⃗p) = Ψ (ι (y⃗p)), for
any p ∈ N, and y⃗p ∈ Rdp, we see that

wm (t, x⃗m) ≥ EPs

[
Ψ
(
ξβ̂T

)
+

∫ s

t

∑
i∈Vu

ψ
(
Y i,β̂
u , ξβ̂u , β̂

i
u

)
du = J

(
t, (x⃗m) ; β̂

)
.

]
.

This shows that wm (t, x⃗m) ≥ J
(
t, (x⃗m) ; β̂

)
≥ vm (t, x⃗m), and finally that w = v with β̂ as an

optimal Markovian control.

This verification theorem has the advantage to be prove not only the optimality of a solu-
tion, but also showing some function is smaller than the value function. This description is the
generalization of [41, Theorem II.3.1] for general value functions.

However, this description is far from the one used to introduce the controlled processes. This
is why we wan to consider an equivalent verification theorem when it comes to prove optimality.
The following proposition gives a characterization of optimality without resort to the embedding
to ∪m≥0Rdm. This is done via a (sub)martingale criterion as in [34, Lemma 2.1].

Proposition 6.10. Let w be a function in C0
(
[0, T ]×N [Rd]

)
such that

−Cw (1 + ⟨1, λ⟩+ ⟨| · |, λ⟩) ≤ wt(λ) ≤ Cw
(
1 + ⟨1, λ⟩2 + ⟨| · |2, λ⟩

)
. (6.52)

for some constant Cw > 0. Fix (t, λ̄) ∈ N [Rd], and assume the following

(i) wT (λ) = g(λ), for λ ∈ N [Rd];

(ii)

{
ws

(
ξβs
)
+

∫ s

t

∑
i∈Vu

ψ
(
Y i,β
u , ξβu , β

i
u

)
du : s ∈ [t, T ]

}
is a Ps-local submartingale, for any β ∈

Rs
(t,λ̄)

;

(iii) there exists β̂ ∈ Rs
(t,λ̄)

such that

{
ws

(
ξβ̄s
)
+

∫ s

t

∑
i∈Vu

ψ
(
Y i,β̄
u , ξβ̄u , β̄

i
u

)
du : s ∈ [t, T ]

}
is a Ps-

local martingale.

33



Then, β̄ is an optimal control for v(t, λ̄), i.e., v(t, λ̄) = J(t, λ̄; β̄), and v(t, λ̄) = wt(λ̄).

Proof. By the local submartingale property in condition (ii), there exists a nondecreasing sequence
of stopping times (τn)n such that τn ↑ T a.s. and

E

[
ws∧τn

(
ξβs∧τn

)
+

∫ s∧τn

t

∑
i∈Vu

ψ
(
Y i,β
u , ξβu , β

i
u

)
du

]
≥ wt(λ̄), for β ∈ Rs

(t,λ̄). (6.53)

We fix ε > 0 and restrict to consider β ∈ Rs,ε

(t,λ̄)
. From (6.52) and (2.14)-(2.15), we see that for

all n and β ∈ Rs,ε

(t,λ̄)
, the r.h.s. is integrable and bounded by an integrable quantity. Applying

dominated convergence theorem, by sending n to infinity into (6.53), we get

wt(λ̄) ≤ E

[
wT

(
ξβT

)
+

∫ T

t

∑
i∈Vu

ψ
(
Y i,β
u , ξβu , β

i
u

)
du

]

≤ E

[
g
(
ξβT

)
+

∫ T

t

∑
i∈Vu

ψ
(
Y i,β
u , ξβu , β

i
u

)
du

]
= J(t, λ̄;β),

using the terminal condition (i), and (3.30). Since β is arbitrary in Rs,ε

(t,λ̄)
, this shows that v(t, λ̄) ≥

wt(λ̄). To obtain the reverse inequality when the local martingale property for β̄ in condition (iii)
holds, we need to proceed as in the point (iii) of Theorem 6.3. This means that (6.53) is an equality
and we conclude applying Fatou’s lemma.

6.3 Examples

The paper concludes by providing two examples that belong to the Linear Quadratic framework.
By demonstrating the equivalence between atomic controls and strong ones, we opt to use the
former formalism as it involves less cumbersome notation.

6.3.1 Standard Linear-Quadratic case

We follow the path outlined in [34] and [30]. Let A := Rq, d′ = d and let the coefficients be as
follows:

bt(x, λ, a) = Btx+ B̄ta, σt(x, λ, a) = σtI,
γt(x, λ, a) = γt, pk(x, λ, a) = pk,

with I being the identity matrix, and B, B̄, σ̄, γ̄ are bounded valued in Rd×d, Rd×p, Rd×d and R+

respectively. Since the control does not impact the coefficients that describe the branching, the
search for a minimal control in (6.49) just focuses on each function wm, without involving wm+k−1

for k ≥ 0.
Let ψ and Ψ be as

ψt(x, λ, a) = x⊤Ctx+ ct⟨1, λ⟩+ a⊤C̄ta

Ψ(λ) =

∫
Rd

x⊤Hx+ h⟨1, λ⟩2,

where t 7→ Ct (resp. t 7→ C̄t) is a bounded function in Sd (resp. Sm), the set of symmetric matrices
in Rd×d (resp. Rm×m), t 7→ ct ∈ R+ is bounded, H ∈ Sd and h ≥ 0.

We shall make the following assumptions on the coefficients of the model:
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(i) C and H are non-negative a.s.;

(ii) C̄ is uniformly positive definite, i.e., C̄t ≥ ϵIm for some ϵ > 0.

We are now ready to use Proposition (6.10) by seeking a field
{
wt(λ) : λ ∈ N [Rd], t ∈ [0, T ]

}
that satisfies the local (sub)martingality conditions.

Let w be as follows

wt(λ) = w1
t (λ) + w2

t (λ) + w3
t (λ), with w1

t (λ) =

∫
Rd

x⊤Qtxλ(dx),

w2
t (λ) = pt⟨1, λ⟩2, w3

t (λ) = p̄t⟨1, λ⟩,

for some funnctions (Q, p, p̄) with values in Sd × R× R such that
dQt = Q̇tdt, for t ∈ [0, T ], QT = H,

dpt = ṗtdt, for t ∈ [0, T ], pT = h,

dp̄t = ˙̄ptdt, for t ∈ [0, T ], p̄T = 0.

The terminal conditions ensure that wt(λ) = Ψ(λ). Now, we need to determine the generators Q̇,
ṗ and ˙̄p to satisfy (6.49). Generalizing (3.21) to time-dependent functions, we have

w (t, µt) +

∫ t

0

∫
Rd

ψ(x, µu, au(x))µu(dx)du

= w (0, µ0) +

∫ t

0

∫
Rd

Du(x, µu, au(x), Qu, pu, p̄u)µu(dx)du+Mt, (6.54)

with

Du(x, λ, a,Q, p, p̄) := x⊤Q̇x+ ṗ⟨1, λ⟩+ ˙̄p+
(
Bux+ B̄ua

)⊤
Qx

+x⊤Q
(
Bux+ B̄ua

)
+ σ2uTr(Q) + (γ̄uM1)x

⊤Qx

+pγu (M2 +M1⟨1, λ⟩) + p̄γuM1 + x⊤Cux+ cu⟨1, λ⟩+ a⊤C̄ua

and M is a martingale (after an eventual localization), andM1 :=
∑

k≥0(k−1)pk,M2 :=
∑

k≥0(k−
1)2pk. Completing the square in D, we obtain

Du(x, λ, a,Q, p, p̄) := (ṗ+ pγuM1 + cu) ⟨1, λ⟩+
(
˙̄p+ σ2uTr(Q) + p̄γuM1 + pγuM2

)
+x⊤

(
Q̇+B⊤

u Q+QBu + (γ̄uM1)Q+ Cu +
(
B̄uQ+ B̄⊤

u Q
)⊤

C̄−1
u

(
B̄uQ+ B̄⊤

u Q
))

x

+(a− âu(x,Q))⊤C̄u(a− âu(x,Q)),

where

âu(x,Q) := −C̄−1
u

(
B̄uQ+ B̄⊤

u Q
)
x.

Therefore, whenever

Q̇+B⊤
u Q+QBu + (γ̄uM1)Q+ Cu + 2Q

(
B̄uC̄

−1
u B̄u + B̄⊤

u C̄
−1
u B̄u

)
Q = 0, (6.55)

ṗ+ pγuM1 + cu = 0, (6.56)

˙̄p+ σ2uTr(Q) + p̄γuM1 + pγuM2 = 0, (6.57)
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holds for t ∈ [0, T ], we have

Du(x, λ, a,Q, p, p̄) = (a− âu(x,Q))⊤ C̄u(a− âu(x,Q)).

Therefore, D ≥ 0 for any a ∈ A and it is zero for a = âu(x,Q). Additionally, it is worth noting
that equations (6.55)-(6.57) have a solution due to the fact that the first equation is a conventional
Riccati equation, while the remaining two are linear ODEs.

This means that if the system of equations (6.57)-(6.57) is satisfied, from (6.54) and the fact
that D ≥ 0, we get the local submartingale property (ii) of Proposition 6.10. Moreover, it is clear
that it is zero for au(x) := âu(x,Q), with Q solution to (6.55), satisfying the local martingale
property (iii) of Proposition 6.10. Therefore, such a control is an optimal one.

6.3.2 A Kinetic Example

In the case of a standard diffusion, we consider controls β such that the diffusion satisfies the
following SDE

dXt =
(
b(t,Xt) + βs

)
dt+ σdBt,

with b Lipschitz in x uniformly in t and σ a positive constant. In this setting, we look for a

minimization of the cost function E
[
1
2

∫ T
0 |βs|2

]
, which is usually called the kinetic energy for the

controlled diffusion.
We adapt this problem to the case of branching processes. Let A := Rq, d′ = d and let the

coefficients be as follows:

bt(x, λ, a) = b(t, x) + a, σt(x, λ, a) = I,
γt(x, λ, a) = γt(x), pk(x, λ, a) = pk(x),

with b, γ and pk satisfying (2.2), (2.3) and (2.4). Let ψ(x, λ, a) := 1
2 |a|

2. We seek for a field{
wt(λ) : λ ∈ N [Rd], t ∈ [0, T ]

}
such that

wt(λ) =

∫
Rd

h(t, x)λ(dx),

for a certain function h. From (3.21), we have

w (t, µt) +

∫ t

0

∫
Rd

ψ(x, µu, au(x))µu(dx)du

= w (0, µ0) +

∫ t

0

∫
Rd

Du(x, µu, au(x), h)µu(dx)du+Mt, (6.58)

where

Dt(x, λ, a, h) := ∂th+ b(t, x)⊤Dh+ a⊤Dh+
1

2
∆h+

1

2
|a|2 + ϕ(t, x)h,

with ϕ(x) := γt(x)
(∑

k≥0 kpk(x)− 1
)
, M a martingale (after an eventual localization), and ∆ the

Laplacian. Operating as in the previous example, we see that whenever h satisfies the following
PDE {

∂th+ b(t, x)⊤Dh− 1
2 |Dh|

2 + 1
2∆h+ ϕ(t, x)h = 0

h(T, x) = 0
, (6.59)
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we have

Du(x, λ, a, h) =
1

2
|a+Dh|2.

This means that under (6.59), D ≥ 0 for any a ∈ A and it is zero for a = −Dh. Therefore,
under (6.59), we get property (ii) of Proposition 6.10, and property (iii), for as(x) := −Dh(s, x),
showing such a control is an optimal one. Solution of (6.59) is standard and is an application of
the Hopf-Cole transformation.

7 Conclusion

Our study focused on demonstrating the existence of an optimal solution for controlled branching
diffusions with final and running costs. We presented the strong formalism, expanding it to cover
controlled populations with linearly growing drifts. Furthermore, we established bounds that ensure
proper problem definition, which strengthens and broadens the existing literature on the subject.

Given appropriate conditions, we introduced the concept of relaxed controls in this new setting.
This differs from [6] for the consideration of the label and is more focused on the law of the process
living in M(Rd). By defining natural and atomic controls, we were able to narrow down the scope
of the problem. Uniqueness was demonstrated for the class of atomic controls, with strong controls
being associated with them. Through a Filippov-type convexity condition, we showed equivalence
among all formulations. Shifting our focus to control rules, we established a class that is easy to
manipulate for convergence properties. We demonstrated that the optimization problem can be
confined to a compact set and that the cost function is lower semicontinuous. This guarantees the
existence of an optimal value for the relaxed problem, and subsequently, the strong problem as
well.

An homeomorphism is established between N [Rd] and ∪m≥0Rdm. Leveraging the differential
properties of the latter space, we derive a system of HJB equations for the problem and establish a
verification theorem by extracting a control from the minimization of the HJB equations. Finally,
a Linear-Quadratic example is presented to demonstrate the results.

We believe that describing strong controls as atomic controls provides a useful framework for
introducing the rescaled version of the problem. In future research, we will concentrate on rescaling
such processes, as done in [9] and [11], to develop controlled superprocesses. Since these processes
will no longer have the advantage of the homeomorphism with ∪m≥0Rdm, it will be necessary to
find a differential characterizations in M(Rd) directly.
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