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Statistical self-organization of an assembly of interacting walking drops in a confining potential

A drop bouncing on a vertically-vibrated surface may self-propel forward by standing waves and travels along a fluid interface. This system called walking drop forms a non-quantum wave-particle association at the macroscopic scale. The dynamics of one particle has triggered many investigations and has resulted in spectacular experimental results in the last decade. We investigate numerically the dynamics of an assembly of walkers, i.e. a large number of walking drops evolving on a unbounded fluid interface in the presence of a confining potential acting on the particles. We show that even if the individual trajectories are erratic, the system presents well-defined ordered internal structure that remains invariant to parameter variations such as the number of drops, the memory time and the bath radius. We rationalize such non-stationary self-organization in terms of the symmetry of the waves and show that oscillatory pair potentials form a wavy collective state of active matter.
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I. INTRODUCTION

In a seminal article, Y. Couder and E. Fort [1] have shown that a submillimetric drop may bounce on a vertically-vibrated fluid interface. Above a certain fluid acceleration threshold the drop may self-propel and be guided by standing waves [2][3][4][5][6][7][8][9][10][11][12][13] which are the footprint of Faraday waves [14][15][16]. The system has triggered a flurry of thought-provoking experiments mimicking effects which were previously thought to be peculiar to the quantum scale [2,3]. Specifically, the dynamics of one drop has been investigated in many configurations, like moving through a slit and double slits [17][18][19],

in cavities [20][21][22][23][24], with a Coriolis force [START_REF] Fort | Proceedings of the National Academy of Sci-593 ences[END_REF][START_REF] Labousse | [END_REF][27], in a harmonic potential [13,[START_REF] Labousse | [END_REF][28][29][30], exhibiting Friedel-like oscillations [31], enabling statistical projections [23].

In the last decade, an important effort of research has led to a better understanding of both the emergence of wave-like statistics and the mechanisms responsible for classical quantization on the macroscopic scale [2,3].

In a parallel stream of research, it has been shown, numerically and experimentally, that complex dynamical behaviors such as memory-induced diffusion, and run and tumbling dynamics [32][33][34][35][START_REF] Durey | Chaos: An Interdisci-616 plinary[END_REF][37][38][39][40] appear for a single droplet system, in which the degrees of freedom in the wave field play the role of a tailored thermal bath [40].

Generalized pilot-wave models [41] have shown that these behaviours are observed in parameter regimes beyond those accessible in the laboratory [START_REF] Durey | Chaos: An Interdisci-616 plinary[END_REF].

The dynamics of two drops has also been investigated and promenade modes [5,13,[42][43][44][45], as well as quantized orbiting states have been observed and ratio-55 nalized [1,13,[45][46][47]. In addition, correlated motions of 56 two walkers trapped in a coupled set of cavities has led 57 to analogs of superradiance [48,49] and the violation of 58 static Bell's inequality in a static test [50]. As for the 59 many drops' dynamics, crystalline structures have been 60 obtained in 2D [51][52][53], and the collective dynamics in 61 toroidal channel [54,55] as well as the spatially periodic 62 potentials [56] have been investigated in the linear and 63 non-linear regime [57][58][59][60][61]. Recently, drops trapped 64 in circular cavities distributed over a two-dimensional 65 lattice have shown the spontaneous emergence of 66 long distance motion synchronisation in analogy with 67 ferromagnetism and antiferromagnetism [62]. In all 68 these investigations [51][52][53][54][55][57][58][59][60][61][62], and because of the Finally, we conclude in Sec. IV.

II. NUMERICAL MODEL AND METHODS

We perform a numerical simulation of many walking drops in two dimensions.

Several models [11,12,[START_REF] Fort | Proceedings of the National Academy of Sci-593 ences[END_REF]41,63], varying in their strategies to solve the fluid equation, the impact conditions, and the horizontal dynamics of the drops, have been proposed.

They are in fairly good qualitative agreement as they share the same main essential features (see the review [3] for the comparison and relative merits of all these models). Here, we aim to simulate an assembly of walkers which have long-range interactions. As the connectivity matrix of particles is fully coupled, the computational cost becomes a critical aspect. As a result, we implement the walking drops dynamics by considering a numerically optimized [32,40] version of a discrete time evolution [START_REF] Fort | Proceedings of the National Academy of Sci-593 ences[END_REF], which can be summarized as follows.

First, we model the wave created by a single impact on an unbounded fluid interface by a Bessel function of order 0, J 0 , centered at the point of impact.

The standing wave frequency f F is directly linked to the vibration frequency of the bath f 0 by the relation [8,9,[14][15][16][64][65][66][67][68] corresponding to a quasimonochromatic wave at a wavelength λ F = 6.1 mm. As the drops impact the bath at constant relative phase every period T F = 1/f F = 40 ms, the wave field is updated periodically. Thus, a single impact at the surface position, r 0 , gives rise to a surface standing wave field with a spatial structure proportional to J 0 (k F rr 0 ), where r is a two-dimensional vector, and k F = 2π/λ F the Faraday wave vector. Experimentally, taking into account the fluid bath viscosity is known to lead to a spatial decay more pronounced than a Bessel function [12,41,69]. However considering a simplified Bessel wave field is a widely used approximation which has provided most of the theoretical predictions in the field. As a consequence, we keep this simplified Bessel approximation for the wave field expression [3,[START_REF] Labousse | Etude d'une dynamique mémoire de 687 chemin: une expérimentation théorique[END_REF].

f F = f 0 /2
Secondly, the persistence time of these waves is defined by the memory time, Me × T F , with Me the memory parameter. The larger the value, the longer the waves remain on the surface and influence the dynamics of the drops. Experimentally, the memory time is tuned by varying the acceleration amplitude of the bath relative to the critical Faraday acceleration threshold. In the numerical model, the memory is a scalar parameter Me which we can vary at will. Me ∼ 10 is considered as a low memory regime, and Me ∼ 50 as a moderately small memory regime [40]. We only investigate Me values ranging from 10 to 50. In practice, this memory range corresponds to an acceleration amplitude of the fluid 

143 bath γ m /γ F = (1 -1/Me) ∈ [0.
v i (t p+1 ) = v i (t p ) + T F -ηv i (t p ) + F wave,i (t p ) + F wall,i + F drops→drop i . (1 
The first sum accounts for the linear superposition of the wave generated by the drops j (j ∈ {1 . . . N }). The second sum originates from the memory kernel which indicates that the amplitude of the waves generated by the j- [START_REF] Labousse | [END_REF]33] expected from a drop of diameter 0.9 mm. Rigorously, the sum over k should start from k = 0 but thanks to the exponential term, we start the summation from p -3Me, neglecting the other residual terms (5 %). This truncation enables us to reduce significantly the computational costs, without observable difference in the statistical convergence of the pair correlation function introduced later. F wall is the force per unit mass accounting for the presence of the outer wall. It is phenomenologically modelled by a step of force at a radius R max . It is only acting for a radius larger than R max as sketched in Fig. 1b. It writes F drops→drop i = 0, unless explicitly stated otherwise.

th drop at time t k < t p is exponentially damped. C = 1.1 m.s -3 is a coupling coefficient
F wall = -F 0 e r H (r i (t p ) -R max ) (3) 
This sum of forces determines the evolution of velocity of a given drop (Eq. 2) hence its position, period by period.

The initial position of the drops is generated randomly and uniformly on a circular area of radius equal to half the radius of the whole accessible domain. We initialize the memory kernel by generating randomly and uniformly the 3×Me last past positions around each drop within a distance 0.01×λ F from the given drop.

The drops evolve along the fluid interface for at least 10 4 Faraday periods, which is more than two orders of magnitude larger than the time required for a drop to move across the whole domain. Except for the cases with less than five drops, this simulation time is found to be sufficient to obtain a converged pair-correlation function as presented in Sec. III. For numerical simulation with droplets and Me = 30. It does not have any particular structure and is homogenous up to some fluctuations which we assume to be due to the spatial coarse-graining.

Then, we compute the convolution between the PDF and the Bessel wave kernel which gives the mean wave field, h, according to the mean wave field theorem of Durey et al. [34]. We decompose h into a wave polar basis (J n (2πr/λ F )e inθ ) n∈Z and calculate the weight modes a n . The mean wave field is mainly dominated by the axisymmetric mode (n = 0) which takes the spatial form of the Bessel function J 0 . This is expected as the distribution of drops is found to be homogenous.

So, because of this angular invariance, the only mode which contributes is the axisymmetric one. It is also a difference with [40] where the mean wave field of a single particle, in asymptotically large memory limit, is not only a function of the density but requires the knowledge of higher-order temporal correlation functions. The comparison of the mean wave field with that obtained in [START_REF] Tambasco | Chaos (Focus Issue: Hydro-690 dynamic Quantum[END_REF] with walking drops in a central circular well with a Bessel potential, is interesting. In both cases, the spatial structure of the mean wave field is expected to be the same as the trajectories are statistically invariant by rotation. However, the prefactors must be very different as they encode the particular shape of the radial distributions which strongly differ between the two.

Finally, we compute the speed probability distribution in Fig. 3d, from which we measure a mean speed v = 1.40, 1.59, 1.38, 1.49 cm/s, respectively, for (N, R max ) = (5, 3λ F ), (30, 3λ F ), (5, 5λ F ), (30, 5λ F ), respectively. The mean speeds are in the range expected experimentally. We observe that increasing the radius tends to decrease the mean drops' speed. Finally, we note that the systems with larger numbers of drops have more pronounced high-speed excursions. We investigate in more details this point in Figure 4 by plotting the speed density for increasing number of drops, up to 300.

We rationalize the evolution of the speed PDF by taking inspirations from the active statistical theory developed in [40]. In the large memory regime (Me 10 2 ) investigated by the authors, the motion of one single drop is equivalent to a self-propelled particle coupled to a white noise thermal bath. Following [40], we fit, in Fig. 4a, the numerical speed probability density functions with h(v) = αv exp -β((v -v 0 ) 2 ) , wherein v 0 originates from a constrain on the speed arising from the self-propulsion of the drops and β the effective temperature of the system. α is a normalisation factor such that h(v)dv = 1. Note that in the theoretical asymptotic limit v 0 → 0, h identifies to a two-dimensional Maxwell-Boltzmann distribution as one would expect from a classical ideal gas in two dimensions. We observe some systematic quantitative differences between the numerical results and the fitting model especially with the tail of the distribution, suggesting strong remaining correlations.

348

To reveal these correlations, we measure in Fig. 4b 349 and 4c, the evolution of the mean speed and of its 
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We conclude that we do not reach a statistical limit by 357 increasing the number of drops, an important difference 358 with an ideal gas and with the behavior of one single 359 drop in the large memory regime [40]. We note that the The speed fluctuations also increase with the num-365 ber of drops (see Fig. 4c) and we rationalize its 366 evolution as follows. We expect that the squared speed 367 fluctuation of a particle i, σ 2 i , should be the sum of two 368 contributions: one intrinsic, denoted σ 2 i,0 , and one due 369 to the presence of all the other drops j = i, denoted Σ 2 i :

370 σ 2 i = σ 2 i,0 + Σ 2 i . ( 4 
)

371

In principle, Σ 2 i is a function of (i) the number of drops, To investigate these internal correlations in more de-396 tails, we aim at spotting the signature of any internal 397 structure. To do so, we compute the drops pair correla- where . . . denotes an average over time. As there 401 is no preferred orientation, we assume g(r) = g(r).

398 tion function 399 g(r) = i,j,i =j δ (r -(r i -r j )) (6 

402

The corresponding results are presented sequentially in This quantized distance originates from the force due 431 to the wave field (Eq. 2), which we rationalize now by 432 considering the dominant terms in Eq. 2. We introduce 433 the notations (see also Fig. 6): r ij (t p ) = r i (t p ) -r j (t p ) 434 is a vector pointing from the drop j to the drop i, 435 and ∆ j (t p , t k ) = r j (t k ) -r j (t p ) linking the current 436 position of the drop j to one of its position in the 437 past. Additionally, we denote the associated distances 438 r i,j (t p ) = r ij (t p ) , ∆ j (t p , t k ) = ∆ j (t p , t k ) , J n the 439 Bessel function of first kind of order n and θ i,j (t p , t k ) the 440 relative angle between r ij (t p ) and ∆ j (t p , t k ). Note that 441 the symbol i in the complex exponential in Eq. 7 denotes 

U 0,j (r ij ) = J 0 (k F r ij (t p ))J 0 (k F ∆ j (t p , t k ))
, to be the lead-463 ing term. As the wave-induced force, F wave,i in Eq. 2
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derives from the gradient of the wave field, we expect 465 the equilibrium solution to be given by the extrema of 466 U 0,j (r ij ), apart from stability aspects. This can be found by looking for the zeros of r → J 1 (2πr/λ F ) which are r * /λ F ≈ 0, 0.63, 1.13, 1.63, 2.13, 2.63, 3.13, . . . . (8) The even zeros correspond to those found numerically up to the uncertainty measurement (see vertical dashed lines in Fig. 5b). We recall that the situation is unstable and does not correspond to a crystalline structure. We conjecture that the odd zeros correspond to pair modes that are linearly unstable similarly to that observed in [45]. The peaks in the pair correlation function are the signature of a dynamically evolving internal structure and we have established its statistical wave origin.

Finally, we numerically predict that the pair correlation function exhibits a maximum at the origin. Experimentally, it is obviously impossible as short distance interactions must be taken into account. We present briefly in this last paragraph the influence of a short-distance elastic repulsion interaction. In Fig. 7, we observe that the systems with repulsion have pair correlation function g(r) vanishing when r tends to 0, contrary to the system in the absence of repulsion. The stronger the repulsion, the more efficient the convergence towards 0 at r = 0, is. We also observe that including short distance interactions let the positions of the peaks, outside the origin, unchanged while their aspects are mainly unaltered.

IV. CONCLUSION AND DISCUSSION

We It is relatively surprising that the internal order evidenced in the pair correlation function do not lead to any identifiable signature in the position probability density function as reported in corral experiments [20].

However, we remain in a parameter regime with a low 
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 69 of preventing the coalescence during drop 70 collisions, the drops are carefully initially placed in either 71 particular positions or specific relative distances to each 72 other. As a result of these constraints, and although 73 it would be a remarkable playground for active matter 74 and statistical physics, a active gas phase of walkers, 75 i.e. many interacting walking drops confined in a single 76 large domain (see Fig. 1) is experimentally unexplored.

77A

  numerical investigation is a necessary first step to 78 trigger and motivate further experimental realisations. 79 In this article, we numerically investigate the dynamics 80 of a large number of walking drops evolving on a 81 unbounded fluid interface in the presence of a confining 82 wall potential acting on the particles.83 84 The article is organised as follows. In Sec. II, we 85 introduce the numerical model. Then, in Sec. III, we 86 characterize and rationalize the properties of the dynam-ical phases and propose a mechanism to predict the main properties of this statistical quantized self-organization.

FIG. 1 .

 1 FIG. 1. Schematics of the system. (a) Example of the system with N = 3 drops, Me = 30, Rmax = 3λF , seen from a top view. The coloured surface illustrates the wave field (in arbitrary units) created by the bouncing drops dotted in grey. The waves are not restrained by the outer wall, only the drops are. (b) A sketch of the confining force per unit mass: it is equivalent to a step of force of 1 N/kg acting beyond a distance to the center larger than Rmax.

) 160 wherein η is the dissipation coefficient is set to 4. 72 161s - 1

 721 [START_REF] Labousse | [END_REF]33], which corresponds to the situation of a sil-162 icone oil with a kinematic viscosity of 20 cSt. It takes 163 into account both the friction due to the lubrication layer 164 between the drop and the bath, and the transfer of mo-165 mentum to the fluid bath. F wave,i is the force per unit 166 mass propelling the i-th drop and is proportional to the 167 local value of the two-dimensional gradient of the wave 168

  with e r the radial unit vector pointing outward the center, H the Heaviside step function, r i = r i the distance of the i-th drop to the center and F 0 = 1 N/kg the wall force magnitude per unit mass. In practice, F wall is a step of force whose magnitude in the external region is at least one order of magnitude larger than all the other forces. Finally, F drops→drop i accounts for the short-range drop-drop repulsion which we model as an elastic repulsion, with a spring constant (per unit mass) K, provided the distance between a pair of drops is smaller than twice the drop radius and zero otherwise. In what follows, we consider, K = 0, i.e.

FIG. 2 .10 3 2 F

 232 FIG.2. Screenshots of 30 walking drops evolving after 10 3 time steps for a memory parameter Me = 30, with different bath sizes (a) 3λF and (b) 5λF . The grey circles represent the drops with diameter 0.9 mm. The blue lines link a drop to its Me past positions to illustrate the magnitude of the memory parameter. Two movies showing the drops moving during a few tens of periods are available in Supplemental Materials.

FigureFIG. 3 .

 3 Figure3cshows the 2D probability density function established for a simulation time 10 4 T F , 30
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  standard deviation as a function of the number of drops 351 along with their fits with 95% confidence intervals. We 352 observe a small and steady increase of the mean speed 353 with the number of drops. It is a difference with the 354 case of the promenade mode in which two correlated 355 drops move slower than the case of one single drop.
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  increase of the mean speed should obviously reach an 361 upper limit in experiments as nonlinear wave effects are 362 expected to start playing a saturation role.363 364

372Ndeviation δv takes the form 388 δv 2 = δv 2 0 + δv 2 m N ν ( 5 )

 388225 , and (ii) all possible degrees of freedom of all the other 373 drops j = i. All drops being indistinguishable, we assume 374 that Σ 2 i can be factorized as Σ 2 i = Σ 2 m,i F (N ) where F 375 is a function independent on i and only dependent on 376 the number of drops, while Σ 2 m,i is a function which de-377 pends, in all generality, on all possible degrees of freedom 378 of all the other drops j = i. This factorization ansatz 379 is equivalent to a meanfield approach, which we expect 380 to hold for large N . Additionally, the number of drops 381 is a scale-free parameter, so F (N ) is expected to be an 382 algebraic function of N , specifically F (N ) = N ν . ν is 383 an exponent to be determined from the fitting onto the 384 numerical results. By combining Eq. 4 with the factor-385 ization ansatz, and then averaging on both time and on 386 all drops i = 1 . . . N , we infer that the speed standard 387 389 with δv 0 and δv m two constants to be determined from 390 the numerical results. Fig. 4c indicates a good agreement 391 with the proposed fit (Eq. 5).

) 400 FIG. 4 .

 4004 FIG. 4. Analysis of speed probability density functions. (a) Speed PDF for different numbers of drops, Me = 30 and Rmax = 5λF . The dashed lines represent the fits by h(v) = αv exp(-β(v -v0) 2 ) of the numerical speed probability density functions (plain transparent lines). (b) Evolution of the mean speed as a function of the number of drops N . The fitting functions used is of the form aN b + c with a = 0.0161, b = 0.7201, c = 0.3190 and a determination coefficient R 2 = 0.9987. (c) Evolution of the speed standard deviation as a function of the number of drops N . The fitting functions used is of the form of Eq. (5) with ν = 0.681, δv 2 0 = 1.36 10 -2 cm 2 /s 2 , δv 2 m = 0.262 cm 2 /s 2 with a determination coefficient, R 2 = 0.9996.

  403

Fig. 5 ,

 5 Fig. 5, each panel corresponding to the variations of 404
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  the imaginary number and differs from the italicized 443 subscript i. We identify the dominant terms in Eq. 2 by 444 proceeding as follows. As varying the memory leaves the 445 position of maxima unchanged, we consider the regime 446 of large Me which means that we neglect the exponential 447 decay hereafter in Eq. 2. Then, we note that the wave 448 term 'J 0 ' in Eq. 2 can be written 449 J0(kF ri(tp) -rj(t k ) ) = J0 (kF (ri(tp) -rj(tp)) -(rj(t k ) -rj(tp)) ) = J0 (kF rij(tp) -∆j(tp, t k ) ) = +∞ n=-∞ Jn(kF rij(tp))Jn(kF ∆j(tp, t k ))e inθ i,j (tp,t k ) (7) 450 In the first equality, we only added and subtracted 451 r j (t p ). To get the second equality, we use the notation 452 defined above. Then, we use the Graf's addition theo-453 rem [72] to obtain the last equality. Then, to get the 454 total wave field as in Eq. 2, we still have to perform a 455 double summation over both the past positions (indexed 456 by k) and droplets pairs ((indexed by i and j)). Because 457 of both this double summation and the erratic form of 458 the drops' individual dynamics, the terms in Eq. 7 con-459 taining a complex phase rapidly cancel out and so give 460 rise to only small contributions to the wave field. As a 461 consequence, we expect the term n = 0 in Eq. 7, namely 462

  have numerically investigated the dynamics of a large number of walking drops that are confined by an external potential well while the surface Faraday waves are created as if they were in an unbounded fluid domain. The drops interact between each other by the wave they collectively generate and evolve in a complex chaotic dynamics which explores the whole accessible domain. A statistical analysis of the dynamics shows that for a simulation time smaller than 10 4 T F the drops probability density distribution is homogeneous up to a radial distance approximately located at the edge R max -λ F . A fine analysis of the pairwise correlation functions shows that while being dynamic, time-evolving and presenting many indications of a good mixing in the phase space, the system adopts, on average, preferred inter-drops distances whose origin has been rationalized by analysing the internal symmetry of the waves. Thus, this numerical investigation sheds light on a statistical many-body wave self-organization in an apparent erratic dynamics.

FIG. 5 .

 5 FIG. 5. Evolution of the pair correlation function g for various (a) confining potential radii Rmax, (b) memory parameters Me, and (c) numbers of drops N . The dashed lines in (a) represent the theoretical situation for which all the drops where homogeneously distributed in a circular domain of radius Rmax. Vertical black lines in (b) represent the theoretical predictions for the position of the stable maxima (even solutions in Eq. 8)

FIG. 7 .

 7 FIG.7. Evolution of pairwise density function g for the system N = 30, Me = 30, Rmax = 5λF for various repulsion strengths. Color code: from light grey to black, the spring constant per unit mass is K = 500, 1000, 1500, 2000 , 2500 s -1 .kg -1 . Darker curves correspond to higher repulsions. The salmon curve is the case in the absence of repulsion. Inset: zoom at low inter-drops distance. The blue vertical dashed line corresponds to the drop size in λF units.

The C++ numerical code to adapt to var-