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ON THE DECAY AND GEVREY REGULARITY OF THE SOLUTIONS TO THE NAVIER-STOKES EQUATIONS IN GENERAL TWO-DIMENSIONAL DOMAINS

Abstract. The present paper is devoted to the proof of time decay estimates for derivatives at any order of finite energy global solutions of the Navier-Stokes equations in general two-dimensional domains. These estimates only depend on the order of derivation and on the L 2 norm of the initial data. The same elementary method just based on energy estimates and Ladyzhenskaya inequality also leads to Gevrey regularity results.

We are concerned with the incompressible Navier-Stokes equations that govern the evolution of the velocity field u = u(t, x) and pressure function P = P (t, x) of homogeneous incompressible viscous flows in a general domain Ω of R 2 or in a two-dimensional periodic box. Adopting standard notation these equations read

(N S)      u t + div (u ⊗ u) -∆u + ∇P = 0 in R + × Ω, div u = 0 in R + × Ω, u| t=0 = u 0 in Ω.
The initial data u 0 is a given divergence free vector-field with normal component vanishing at the boundary ∂Ω of Ω and we supplement (NS) with homogeneous Dirichlet boundary conditions for u at ∂Ω. The global existence theory for (NS) originates from the paper [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] by J. Leray in 1934. In the case Ω = R 3 , by combining the energy balance associated to (NS):

(1)

1 2 u(t) 2 L 2 + t 0 ∇u 2 L 2 dτ = 1 2 u 0 2 L 2 , t ∈ R + ,
with compactness arguments, he succeeded in constructing for any divergence free u 0 in L 2 (R 3 ; R 3 ) a global distributional solution of (NS) satisfying [START_REF] Bae | Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces[END_REF] with an inequality (viz. the left-hand side is bounded by the right-hand side). Leray's result turns out to be very robust and can be adapted to any two or threedimensional domain: we have the following statement that is proved in e.g. [START_REF] Chemin | Mathematical geophysics. An introduction to rotating fluids and the Navier-Stokes equations[END_REF]: Theorem 0.1. Let Ω be a domain of R d (with d = 2, 3) and denote by L 2 σ (Ω) the completion of the set V σ of smooth divergence free vector-fields compactly supported in Ω for the

L 2 (R d ; R d ) norm. Let H 1 0,σ (Ω) be the completion of V σ for the H 1 (R d ; R d ) norm. Then, for any u 0 ∈ L 2 σ (Ω) there exists a global distributional solution (u, P ) of (NS) with u ∈ L ∞ (R + ; L 2 σ (Ω)) ∩ L 2 loc (R + ; H 1 0,σ (Ω)) satisfying (2) 1 2 u(t) 2 L 2 + t 0 ∇u 2 L 2 dτ ≤ 1 2 u 0 2 L 2 , t ∈ R + .
So far, uniqueness of Leray's solutions in dimension three is an open question. In contrast, it holds true in dimension two (see the works by O.A. Ladyzhenskaya in [START_REF] Ladyzhenskaya | Solution "in the large" of the nonstationary boundary value problem for the Navier-Stokes system with two space variables[END_REF], and by J.-L.

Lions and G. Prodi in [START_REF] Lions | Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2[END_REF]). The key to the proof was the following Ladyzhenskaya inequality

(3) z 2 L 4 ≤ C 0 z L 2 ∇z L 2 , z ∈ H 1 0
(Ω) that will also play a decisive role in the present paper.

Since the pioneering work by J. Leray, a huge amount of literature has been devoted to the study of (NS) both in two and three dimensional domains. Our goal here is to derive L 2 decay estimates for time derivatives at any order of two-dimensional finite energy global solutions. We shall see that our method actually gives for free Gevrey regularity for short time (or all time if the data are small).

Exhibiting time decay estimates for smooth and small solutions of (NS) goes back to the papers by S. Kawashima, A. Matsumura and T. Nishida [START_REF] Kawashima | On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation[END_REF] and J.G. Heywood [START_REF] Heywood | The Navier-Stokes equations: on the existence, regularity and decay of solutions[END_REF] devoted to the case Ω = R 3 . In both papers, in addition to be smooth enough, the initial velocity is required to be globally integrable on R 3 . An important breakthrough has been made by M. Schonbek [START_REF] Schonbek | L 2 decay for weak solutions of the Navier-Stokes equations[END_REF] in 1985 who observed that any weak solution supplemented with an initial velocity u 0 in L 1 (R 3 ) ∩ L 2 (R 3 ) satisfies time decay estimates. More accurate decay rates have been obtained shortly after by R. Kajikiya and T. Miyakawa [START_REF] Kajikiya | On L 2 decay of weak solutions of the Navier-Stokes equations in R n[END_REF] and M. Wiegner [START_REF] Wiegner | Decay results for weak solutions of the Navier-Stokes equations on R n[END_REF]. In [START_REF] Schonbek | Large time behaviour of solutions to the Navier-Stokes equations[END_REF], M. Schonbek pointed out that one cannot expect any generic rate of decay for

u(t) L 2 if the initial data is only in L 2 .
It is also worth mentioning works pointing out the Gevrey or even analyticity of the solutions to (NS). For exemple, for periodic boundary conditions, C. Foias and R. Temam proved in [START_REF] Foias | Gevrey class regularity for the solutions of the Navier-Stokes equations[END_REF] that H 1 data give rise to solutions with analytic regularity in time, globally in time in dimension two, and locally in time in dimension three. This result has been adapted to the whole space setting and considerably refined by P.-G. Lemarié-Rieusset [START_REF] Lemarié-Rieusset | Nouvelles remarques sur l'analyticité des solutions milds des équations de Navier-Stokes dans R 3[END_REF] then by M. Oliver and E. Titi in [START_REF] Olivier | Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in R n[END_REF], and translated in the language of critical Besov spaces (u 0 ∈ Ḃ-1+3/p p,q (R 3 ) with 1 ≤ p < ∞ and 1 ≤ q ≤ ∞) by H. Bae, A. Biswas and E. Tadmor in [START_REF] Bae | Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces[END_REF]. By a different approach, J.-Y. Chemin in [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF] obtained (space) analyticity estimates of L 2 type in the case of small data (see also [START_REF] Chemin | On the radius of analyticity of solutions to semi-linear parabolic systems[END_REF]). The more complicated case of the Navier-Stokes equations with potential forces has been investigated by several authors. The reader may in particular refer to the survey paper by C. Foias, L. Huan and J.-C. Saut [START_REF] Foias | Navier and Stokes meet Poincaré and Dulac[END_REF] where asymptotic expansions for large time are presented.

Most of the aforementioned worked dedicated to decay estimates strongly rely on Fourier or spectral analysis. In particular, the Fourier splitting method of M. Schonbek [START_REF] Schonbek | L 2 decay for weak solutions of the Navier-Stokes equations[END_REF] can hardly be adapted to general domains (or at the price of complicated arguments that require the domain to be smooth, see [START_REF] Borchers | Algebraic L 2 decay for Navier-Stokes flows in exterior domains[END_REF]). Here we shall see that using only the energy method and Ladyzhenskaya inequality (3) leads to optimal time decay estimates.

In order to give an idea of our approach, let us consider the linearized version of (NS) about a null solution, namely the following evolutionary Stokes equations:

(4)      u t -∆u + ∇P = 0 in R + × Ω, div u = 0 in R + × Ω, u| t=0 = u 0 in Ω.
Let us explain how to bound just in terms of u 0 L 2 and by elementary arguments (that are valid in any domain) the following quantities for all k ∈ N:

(5) L 2k (t) := t k u (k) t (t) L 2 and H 2k (t) := t k ∇u (k) t (t) L 2 , L 2k+1 (t) := t k+ 1 2 ∇u (k) t (t) L 2 and H 2k+1 (t) := t k+ 1 2 u (k+1) t (t) L 2 ,
where u (k) t stands for the k -th time derivative of u.

To handle the case of even exponents, we start from

∂ t (t k u (k) t ) -∆(t k u (k) t ) + ∇(t k P (k) t ) = kt k-1 u k t then take the L 2 scalar product with t k u (k) t
and perform an integration by parts to get 1 2

d dt L 2 2k + H 2 2k = kH 2 2k-1 .
For odd exponents, we rather take the L 2 scalar product with t k+1 u (k+1) t

and get 1 2

d dt L 2 2k+1 + H 2 2k+1 = k + 1 2 H 2 2k .
In short, we have for all m ∈ N,

1 2 d dt L 2 m + H 2 m = m 2 H 2 m-1
which immediately leads after summation on m and time integration to ( 6)

∞ m=0 L 2 m (t) m! + t 0 ∞ m=0 L 2 m (τ ) m! dτ = u 0 2 L 2 , t ∈ R + .
We shall proceed in the same way for the Navier-Stokes system, treating the nonlinear term by combination of Hölder and Ladyzhenskaya inequalities (this is the only place where dimension two comes into play). This will lead to the following results:

-Gevrey type regularity (almost as good as ( 6)), that implies time decay estimates for derivatives of arbitrary order in the case of small initial data; -decay estimates at any order, in terms of u 0 L 2 for general finite energy solutions; -small time Gevrey regularity in the case of large data; -faster decay for all derivatives in case it is known beforehand that u(t) L 2 has some algebraic decay. We conclude this introduction pointing out that we here only considered the decay of time derivatives both for simplicity and because proving similar results for the space derivatives requires the fluid domain to have enough smoothness. The reader may refer to Remark 2.1 for a short development on this issue.

The case of small data

The main goal of this section is to prove the following theorem.

Theorem 1.1. Let α > 0. There exists a constant c α depending only on α such that for any data u 0 in L 2 σ satisfying u 0 L 2 ≤ c α , the corresponding global finite energy solution u satisfies

(7) ∞ k=0 t 2k 2 2k (k!) 2+α u (k) t (t) 2 L 2 + t 2k+1 2 2k+1 k!((k + 1)!) 1+α ∇u (k) t (t) 2 L 2 + 1 2 ∞ k=0 t 0 τ 2k 2 2k (k!) 2+α ∇u (k) τ (τ ) 2 L 2 + τ 2k+1 2 2k+1 k!((k + 1)!) 1+α u (k+1) τ (τ ) 2 L 2 dτ ≤ u 0 2 L 2 .
Proof. Here and in the following sections, we concentrate on the proof of a priori estimates. The underlying idea is that one can get exactly the same bounds for any approximation that relies on the use of spectral orthogonal projectors (like e.g. the Galerkin method) and that following the compactness procedure that is used for proving Theorem 0.1 ensures that the solution that is constructed in this way satisfies the announced inequalities. Now, with the notation introduced in (5), the energy balance (1) translates into

(8) 1 2 L 2 0 (t) + t 0 H 2 0 dτ = 1 2 u 0 2 L 2 .
To handle L m and H m in the case of odd index m, we apply ∂ k-1 t (for any k ≥ 1) to (NS) and use Leibniz formula, getting:

u (k) t -∆u (k-1) t + ∇P (k-1) t = - k-1 j=0 k -1 j div u (j) t ⊗ u (k-1-j) t •
Taking the scalar product with t 2k-1 u

(k) t
and integrating by parts where needed yields

t k-1 2 u (k) t 2 L 2 + Ω t 2k-1 ∇u (k-1) t • ∂ t ∇u (k-1) t dx = - k-1 j=0 k -1 j R j,2k-1 with R j,2k-1 := Ω div t j u (j) t ⊗ (t k-1-j u (k-1-j) t ) • (t k u (k) t ) dx, whence (9) 1 2 d dt L 2 2k-1 + H 2 2k-1 = k - 1 2 H 2 2k-2 - k-1 j=0 k -1 j R j,2k-1 .
For all j ∈ {0 • • • , k -1}, performing an integration by parts gives

R j,2k-1 := - Ω t j u (j) t ⊗ (t k-1-j u (k-1-j) t ) • (t k ∇u (k) t ) dx,
whence using Hölder and Ladyzhenskaya inequality and the definition of L m and H m ,

R j,2k-1 ≤ t j u (j) t L 4 t k-1-j u (k-1-j) t L 4 t k ∇u (k) t L 2 ≤ C 0 L 1/2 2j H 1/2 2j L 1/2 2k-2-2j H 1/2 2k-2-2j H 2k . Hence we have (10) 1 2 d dt L 2 2k-1 + H 2 2k-1 ≤ k - 1 2 H 2 2k-2 + C 0 k-1 j=0 k-1 j L 1/2 2j H 1/2 2j L 1/2 2k-2-2j H 1/2 2k-2-2j H 2k .
In order to handle even indices, we apply t k ∂ k t to (NS). Using Leibniz formula yields:

∂ t (t k u (k) t ) + div u ⊗ t k u (k) t -∆(t k u (k) t ) + ∇(t k P (k) t ) = kt k-1 u (k) t - k j=1 k j div t j u (j) t ⊗ (t k-j u (k-j) t ) •
Hence taking the L 2 scalar product with t k u (k) t and performing suitable integration by parts gives: [START_REF] Ladyzhenskaya | Solution "in the large" of the nonstationary boundary value problem for the Navier-Stokes system with two space variables[END_REF] 1 2

d dt L 2 2k + H 2 2k = kH 2 2k-1 - k j=1 k j R j,2k
with R j,2k :=

Ω div t j u (j) t ⊗ (t k-j u (k-j) t ) • (t k u (k) t ) dx.
Observe that

(12) R j,2k := - Ω t j u (j) t ⊗ (t k-j u (k-j) t ) • (t k ∇u (k) t ) dx.
Therefore, combining Hölder inequality and (3) gives

R j,2k ≤ t j u (j) t L 4 t k-j ∇u (k-j) t L 4 t k ∇u (k) t L 2 ≤ C 0 L 1/2 2j H 1/2 2j L 1/2 2k-2j H 1/2 2k-2j H 2k . Hence we have (13) 1 2 d dt L 2 2k + H 2 2k ≤ kH 2 2k-1 + C 0 k-1 j=0 k j L 1/2 2j H 1/2 2j L 1/2 2k-2j H 1/2 2k-2j H 2k .
Let us use renormalize the functionals L m and H m as follows:

(14) L 2k := L 2k 2 k k! , H 2k := H 2k 2 k k! , L 2k-1 := √ 2 L 2k-1 2 k (k-1)!k! and H 2k-1 := √ 2 H 2k-1 2 k (k-1)!k! •
Then, [START_REF] Kawashima | On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation[END_REF] and ( 13) become:

1 2 d dt L 2 2k-1 + H 2 2k-1 ≤ 1 2 k -1 2 k H 2 2k-2 + C 0 k-1 j=0 L 1/2 2j H 1/2 2j L 1/2 2k-2-2j H 1/2 2k-2-2j H 2k , 1 2 
d dt L 2 2k + H 2 2k ≤ 1 2 H 2 2k-1 + C 0 k-1 j=1 L 1/2 2j H 1/2 2j L 1/2 2k-2j H 1/2 2k-2j H 2k .
In order to get a nice control of the sum, we perform a second renormalization as follows for some suitable nonnegative nondecreasing sequence (c m ) m∈N :

(15) L 2m-1 = c m L 2m-1 , H 2m-1 = c m H 2m-1 , L 2m = c m L 2m and H 2m = c m H 2m .
The above inequalities translate into 1 2

d dt L 2 2k-1 + H 2 2k-1 ≤ 1 2 c 2 k-1 c 2 k H 2 2k-2 + C 0 k-1 j=0 c j c k-1-j c k L 1/2 2j H 1/2 2j L 1/2 2k-2-2j H 1/2 2k-2-2j H 2k , 1 2 
d dt L 2 2k + H 2 2k ≤ 1 2 H 2 2k-1 + C 0 k j=1 c j c k-j c k L 1/2 2j H 1/2 2j L 1/2 2k-2j H 1/2 2k-2j H 2k .
Let us take c j = (j!) α with α > 0 so that

c j c k-j c k = k j -α . Since i k-j+i ≤ j k for all i ∈ {1, • • • , j}, we have k j ≥ k j j for all j ∈ {0, • • • , k}. Remembering that k j = k k-j , we get c j c k-j c k ≤ min j k αj , k -j k α(k-j)
•

Using the obvious bound j/k ≤ 1/2 for j ≤ k/2, we conclude that ( 16)

c j c k-j c k ≤ min 2 -jα , 2 -(k-j)α for all j ∈ {0, • • • , k}.
Hence we have

k j=0 c j c k-j c k L 1/2 2j H 1/2 2j L 1/2 2k-2j H 1/2 2k-2j ≤ k j=0 2 -jα L 2j H 2j 2 -(k-j)α L 2k-2j H 2k-2j .
Similarly, as c k-1 ≤ c k , we have

k-1 j=0 c j c k-1-j c k L 1/2 2j H 1/2 2j L 1/2 2k-2-2j H 1/2 2k-2-2j ≤ k-1 j=0 2 -jα L 2j H 2j 2 -(k-1-j)α L 2k-2-2j H 2k-2-2j •
Hence, summing up the above two inequalities yields for all k ≥ 1,

d dt L 2 2k-1 + L 2 2k + 1 2 H 2 2k-1 + H 2 2k ≤ 1 2 H 2 2k-2 + C 0 k j=0 2 -jα L 2j H 2j 2 -(k-j)α L 2k-2j H 2k-2j H 2k + C 0 k-1 j=0 2 -jα L 2j H 2j 2 -(k-1-j)α L 2k-2j-2 H 2k-2j-2 H 2k . (17) 1 2 
Let us introduce the notation:

L 2 m := m k=0 L 2 k and H 2 m := m k=0 H 2 k .
Then summing up ( 8) and ( 17) from k = 1 to k = n gives after using the convolution inequality

n k=0 n j=0 a j b k-j c k ≤ (a j ) ℓ 4/3 n (b j ) ℓ 4/3 n (c j ) ℓ 2 n with ℓ r n := ℓ r ({0, • • • , n}), (18) 1 2 
d dt L 2 2n + 1 2 H 2 2n + 1 2 H 2 2n ≤ 2C 0 (2 -jα L 2j H 2j ) ℓ 2/3 n H 2n .
Hölder inequality implies that

(2 -jα L 2j H 2j ) ℓ 2/3 n ≤ (2 -jα ) ℓ 2 (L 2j ) ℓ 2 (H 2j ) ℓ 2 ≤ C α L 2n H 2n with C α := 1 1 -2 -2α • Hence, whenever 2C 0 C α L 2n ≤ 1/4, we have d dt L 2 2n + 1 2 H 2 2n ≤ 0. Since L 2n (0) = u 0 L 2 , a bootstrap argument allows to conclude that if (19) 8C 0 C α u 0 L 2 < 1,
then we have for all time t ≥ 0 and n ∈ N,

L 2 2n (t) + 1 2 t 0 H 2 2n (τ ) dτ ≤ u 0 2 L 2 .
Applying the monotonous convergence theorem then leads to [START_REF] Foias | Gevrey class regularity for the solutions of the Navier-Stokes equations[END_REF].

The case of large data

Here we want to establish time decay estimates for derivatives of u at any order, in the case of general, possibly large, finite energy data. The main result is: Theorem 2.1. Let α > 0. There exists a constant C α depending only on α such that for any initial data u 0 in L 2 σ and integer n, we have

(20) n k=0 t 2k 2 2k (k!) 2+α u (k) t (t) 2 L 2 + t 2k+1 2 2k+1 k!((k + 1)!) 1+α ∇u (k) t (t) 2 L 2 + 1 2 n k=0 t 0 τ 2k 2 2k+1 (k!) 2+α ∇u (k) τ (τ ) 2 L 2 + τ 2k+1 2 2k+1 k!((k + 1)!) 1+α u (k+1) τ (t) 2 L 2 dτ ≤ C 2 n -1 α u 0 2 L 2 exp C 2 0 u 0 2 L 2 2 2 n
, where C 0 stands for the optimal constant in (3).

Proof. To handle the case of general data, we slightly modify [START_REF] Lemarié-Rieusset | Nouvelles remarques sur l'analyticité des solutions milds des équations de Navier-Stokes dans R 3[END_REF]. In fact, starting from [START_REF] Ladyzhenskaya | Solution "in the large" of the nonstationary boundary value problem for the Navier-Stokes system with two space variables[END_REF], we use ( 12) only for j = 0, • • • , k -1 and bound R k,2k as follows:

R k,2k ≤ ∇u L 2 t k u (k) t 2 L 4 ≤ C 0 H 0 L 2k H 2k . This leads to 1 2 d dt L 2 2k + H 2 2k ≤ kH 2 2k-1 + C 0 k-1 j=0 k j L 1/2 2j H 1/2 2j L 1/2 2k-2j H 1/2 2k-2j H 2k + C 0 H 0 L 2k H 2k .
Then, adding up (10) leads after the same succession of renormalizations as in the previous section to 1 2

d dt (L 2 2k + L 2 2k+1 ) + H 2 2k+1 + 1 2 H 2 2k ≤ 1 2 H 2 2k-1 + C 0 H 0 L 2k H 2k +C 0 k j=0 2 -jα L 2j H 2j 2 -(k-1-j)α L 2k-2-2j H 2k-2-2j +C 0 k-1 j=1 2 -jα L 2j H 2j 2 -(k-j)α L 2k-2j H 2k-2j • We may use for each k that C 0 H 0 L 2k H 2k ≤ 1 2 H 2 2k + 1 2 C 2 0 H 2 0 L 2 2k
and, after summing for k = 1 to n, the second and third lines may be bounded by

C α L 2n-2 H 2n-2 H 2n . Hence, d dt L 2 2n + H 2 2n ≤ C 2 0 H 2 0 L 2 2n + 4C 0 C α L 2n-2 H 2n-2 H 2n , n ≥ 1.
Performing the change of function:

L 2n (t) = e 1 2 t 0 C 2 0 H 2 0 (τ ) dτ L 2n (t) and H 2n (t) = e 1 2 t 0 C 2 0 H 2 0 (τ ) dτ H 2n (t)
and using (8) yields

d dt L 2 2n + 1 2 H 2 2n ≤ 1 2 A 2 α,u 0 L 2 2n-2 H 2 2n-2
and thus, after time integration, (21)

L 2 2n (t) + 1 2 t 0 H 2 2n dτ ≤ u 0 2 L 2 + 1 2 A 2 α,u 0 t 0 L 2 2n-2 H 2 2n-2 dτ.
Let us denote (assuming of course that u 0 = 0)

X n := u 0 -2 L 2 sup t≥0 L 2 2n (t) + 1 2 ∞ 0 H 2 2n dτ
and use the inequality 2ab ≤ (a + b) 2 . Then, X 0 = 1 and (21) can be rewritten as

X n ≤ 1 + A 2 α,u 0 u 0 2 L 2 2 X 2 n-1 , n ≥ 1.
Since obviously X n ≥ 1 for all n ∈ N, we have

X n ≤ KX 2 n-1 with K := 1 + A 2 α,u 0 u 0 2 L 2 2 , which implies that ∀n ∈ N, X n ≤ K 2 n -1 and thus L 2 2n (t) + 1 2 t 0 H 2 2n dτ ≤ u 0 2 L 2 1 + A 2 α,u 0 u 0 2 L 2 2 2 n -1
.

Clearly, the computations here are relevant only if (19) is not satisfied, so that, up to an harmless change of C α in the definition of A α,u 0 , we have

1 + A 2 α,u 0 u 0 2 L 2 2 ≤ A 2 α,u 0 u 0 2 L 2 .
In the end, we get a constant C α with behavior α -1/2 near 0 such that for all t ≥ 0,

L 2 2n (t) + 1 2 t 0 H 2 2n dτ ≤ C 2 n -1 α u 0 2 L 2 exp C 2 0 u 0 2 L 2 2 2 n
• This gives (20).

Remark 2.1. As a consequence of the regularity theory for the Stokes system, in the case where the domain Ω is smooth with a 'reasonable shape' (like e.g. bounded simply connected or exterior domains), then one can deduce decay estimates at any order for the space derivatives of u.

Indeed, we have u| ∂Ω = 0,

-∆u + ∇P = -u t -u • ∇u and div u = 0 in Ω.
Hence there exists a constant C depending only on Ω (if it is e.g uniformly C 2 and bounded) such that:

∇ 2 u L 2 + ∇P L 2 ≤ C u t + u • ∇u L 2 .
Multiplying by t and using Hölder and Ladyzhenskaya inequality yields

t∇ 2 u L 2 + t∇P L 2 ≤ C tu t L 2 + CC 0 u 1/2 L 2 √ t∇u L 2 t∇ 2 u 1/2 L 2 .
Using Young inequality allows to conclude that for some constant still denoted by C,

t∇ 2 u L 2 + t∇P L 2 ≤ C tu t L 2 + u L 2 √ t ∇u 2 L 2 •
This allows to get a uniform bound of the left-hand side in terms of u 0 L 2 , due to (20) with n = 1.

By the same token, it is easy to bound t k+1 ∇ 2 u (k) t L 2 for any integer k since (u

(k) t , P (k) t ) satisfies u (k) t | ∂Ω = 0, -∆u (k) t + ∇P (k) t = -u (k+1) t - k j=0 k j u j t • ∇u (k-j) t
and div u

(k) t = 0 in Ω.
Hence, requiring only C 2 regularity for Ω gives

t k+1 ∇ 2 u (k) t L 2 + t k+1 ∇P (k) t L 2 ≤ C t k+1 u (k+1) t L 2 + k j=0 k j (t j+ 1 4 u j t ) • (t k-j+ 3 4 ∇u (k-j) t ) L 2 •
The right-hand side may be bounded in terms of u 0 L 2 by combining Hölder inequality, ( 3) and ( 20) with n = k + 1.

In order to bound higher order space derivatives, we use that if Ω is smooth then, for all j ∈ N, there exists a constant C j depending only on Ω and j such that

∇ j+2 u L 2 + ∇ j+1 P L 2 ≤ C j ∇ j u t L 2 + ∇ j (u • ∇u) L 2 •
Similar inequalities at any order may be written for ∇ j+2 u k t . Then using a careful induction argument allows to bound t k+j/2 ∇ j u (k) t L 2 in terms of u 0 at any order. The (tedious) verifications are left to the reader.

Small time Gevrey regularity in the case of large data

In this section we address the question of Gevrey regularity in the case where u 0 is large. Since the solution (ℓ, Q) to the Stokes system (4) has analytic regularity (recall [START_REF] Foias | Navier and Stokes meet Poincaré and Dulac[END_REF]), it suffices to study the regularity of the fluctuation f := u -ℓ that, by definition, satisfies f | ∂Ω = 0, f | t=0 = 0, and, for some scalar function R,

(22) f t -∆f + ∇R = -u • ∇u in R + × Ω, div f = 0 in R + × Ω.
The main result of this section reads:

Theorem 3.1. Let α > 0.
There exists a positive constant C α , a positive time T α,u 0 and a continuous increasing function φ α,u 0 : [0, T α,u 0 ] → R + vanishing at 0 such that the fluctuation f satisfies for all t ∈ [0, T α,u 0 ]:

∞ k=0 t 2k 2 2k (k!) 2+α f (k) t (t) 2 L 2 + t 2k+1 2 2k+1 k!((k + 1)!) 1+α ∇f (k) t (t) 2 L 2 + ∞ k=0 t 0 τ 2k 2 2k+1 (k!) 2+α ∇f (k) τ (τ ) 2 L 2 + τ 2k+1 2 2k+1 k!((k + 1)!) 1+α f (k+1) τ (τ ) 2 L 2 dτ ≤ φ α,u 0 (t).
Proof. Denote by L ℓ m and H ℓ m (resp. L f m and H f m ) the quantities L m and H m defined in (15) pertaining to ℓ (resp. f ). According to Leibniz rule, we have for all k ∈ N,

f (k) t -∆f (k-1) t + ∇R k-1 t = - k-1 j=0 k -1 j u (j) t • ∇u (k-1-j) t .
Hence taking the scalar product with t 2k-1 f (k) t

(odd case) or with t 2k f (k) t (even case) and using the following type of inequalities:

t j u (j) t L 4 t k-j u (k-j) t L 4 ≤ t j ℓ (j) t L 4 t k-j ℓ (k-j) t L 4 + t j ℓ (j) t L 4 t k-j f (k-j) t L 4 + t j f (j) t L 4 t k-j ℓ (k-j) t L 4 + t j f (j) t L 4 t k-j f (k-j) t L 4
which implies, thanks to (3) that

t j u (j) t L 4 t k-j u (k-j) t L 4 ≤ C 0 L ℓ 2j H ℓ 2j L ℓ 2k-2j H ℓ 2k-2j + L ℓ 2j H ℓ 2j L f 2k-2j H f 2k-2j + L f 2j H f 2j L ℓ 2k-2j H ℓ 2k-2j + L f 2j H f 2j L f 2k-2j H f 2k-2j , the counterpart of (18) now reads 1 2 d dt (L f 2n ) 2 + 1 2 (H f 2n ) 2 + 1 2 (H f 2n ) 2 ≤ 2C 0 (2 -jα L f 2j H f 2j ) ℓ 2/3 n H f 2n +4C 0 (2 -jα L ℓ 2j H ℓ 2j ) ℓ 2/3 n (2 -jα L f 2j H f 2j ) ℓ 2/3 n H f 2n + 2C 0 (2 -jα L ℓ 2j H ℓ 2j ) ℓ 2/3 n H f 2n with L p m := m k=0 (L p k ) 2 and H p m := m k=0 (H p k ) 2 for p ∈ {f, ℓ}.
Using the Young inequality to bound the right-hand side, this inequality implies that

d dt (L f 2n ) 2 + (H f 2n ) 2 + (H f 2n ) 2 ≤ 8C 0 (2 -jα L f 2j H f 2j ) ℓ 2/3 n H f 2n + 8C 0 (2 -jα L ℓ 2j H ℓ 2j ) ℓ 2/3 n H f 2n ≤ 8C 0 C α L f 2n (H f 2n ) 2 + 8C 0 C α L ℓ 2n H ℓ 2n H f 2n ≤ 1 4 + 8C 0 C α L f 2n (H f 2n ) 2 + 64C 2 0 C 2 α (L ℓ 2n H ℓ 2n ) 2 .
Therefore, whenever

8C 0 C α L f 2n (t) ≤ 1/4, we have (L f 2n (t)) 2 + 1 2 t 0 (H f 2n ) 2 dτ ≤ 64C 2 0 C 2 α t 0 L ℓ 2n H ℓ 2n 2 dτ ≤ 64C 2 0 C 2 α u 0 2 L 2 t 0 H ℓ 2n 2 dτ. Since (6) guarantees that ∞ 0 ∞ k=0 (H ℓ k ) 2 dt < ∞, (23) 
Lebesgue dominated convergence theorem ensures that there exists T 0 > 0 such that

8C 0 C α u 0 L 2 T 0 0 ∞ k=0 (H ℓ k ) 2 dt < 1 32C 0 C α •
Reverting to the above inequality and bootstrapping, one can now conclude that (23) is satisfied on [0, T 0 ] for all n ∈ N, and that we thus have for all t ∈ [0, T 0 ],

∞ k=0 (L f k (t)) 2 + 1 2 t 0 ∞ k=0 H f k 2 dτ ≤ 64C 2 0 C 2 α u 0 2 L 2 t 0 ∞ k=0 (H ℓ 2k ) 2 dτ.
As the right-hand side is a continuous nondecreasing function vanishing at zero, this completes the proof.

Faster decay

In this last section, we assume that there exist K ≥ 0 and γ > 0 such that our reference solution satisfies (24) u(t) L 2 ≤ Kt -γ , t > 0.

It is known that (24) holds true with γ = 1/2 if u 0 is in L 1 (see [START_REF] Kajikiya | On L 2 decay of weak solutions of the Navier-Stokes equations in R n[END_REF]). Fix some α > 0 and set for all k ∈ N and t ≥ t 0 ≥ 0, Clearly, this latter condition is satisfied for any t 0 ≥ 0 if 8C 0 C α u 0 L 2 ≤ 1, or, due to (24), at t 0 = t/2 if t ≥ 2(8C 0 C α K) 1/γ in the general case. Consequently, we have proved the following statement: Theorem 4.1. Let α > 0. Assume that the considered finite energy global solution u to (NS) satisfies (24). Then there exists t 0 ≥ 0 such that for all t ≥ t 0 we have, (25)

L
∞ k=0 t 2k+2γ 2 4k (k!) 2+α u (k) t (t) 2 L 2 + t 2k+1+2γ 2 4k+1 k!((k+1)!) 1+α ∇u (k) t (t) 2 L 2 + ∞ k=0 t 0 τ 2k+2γ 2 4k (k!) 2+α ∇u (k) τ (τ ) 2 L 2 + τ 2k+1+2γ 2 4k+1 k!((k+1)!) 1+α u (k+1) τ (τ ) 2 L 2 dτ ≤ 2 2γ K 2 .

  L 2 2 k (k!) 1+α and H 2k (t, t 0 ) := (t -t 0 ) k ∇u L 2 2 k k!(k+1) ((k+1)!) α and H 2k+1 (t, t 0 ) := (t -t 0 ) k+ 1 2 u

						(k) t (t) L 2 2 k (k!) 1+α	,
	L 2k+1 (t, t 0 ) :=	(t -t 0 ) k+ 1 2 ∇u	(k)			(k+1) t 2 k k!(k+1)! ((k+1)!) α (t) L 2	•
	Then, repeating the computations leading to (7), we arrive at
		L 2 2n (t, t 0 ) +	1 2	0	t	H 2 2n (τ, t 0 ) dτ ≤ u(t 0 ) 2 L 2
	with				
			2n			2n
		L 2 2n (t, t 0 ) :=	L 2 k (t, t 0 ) and H 2 2n :=	H 2 k (t, t 0 )
			k=0			k=0
	whenever 8C 0 C				

2k (t, t 0 ) := (t -t 0 ) k u (k) t (t) t (t) α u(t 0 ) L 2 ≤ 1.