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Introduction

We are given a terminal time condition T > 0, an integer number I (with I ≥ 2) and starshaped compact network:

N R = I i=1 R i ,
that consists of I compact rays R i ∼ = [0, R] (R > 0) emanating from a junction point {0}. In this study, we investigate the well-posedness for classical solutions of the following PDE system with parameter posed on N R that involves a local-time Kirchhoff 's boundary condition at {0}:

                                                     ∂ t u i (t, x, l) -a i (t, x, l)∂ 2
x u i (t, x, l) + b i (t, x, l)∂ x u i (t, x, l) +c i (t, x, l)u i (t, x, l) = f i (t, x, l), (t, x, l) ∈ (0, T ) × (0, R) × (0, K),

Local time Kirchhoff 's boundary condition:

∂ l u(t, 0, l) + I i=1 α i (t, l)∂ x u i (t, 0, l) -r(t, l)u(t, 0, l) = ϕ(t, l), (t, l) ∈ (0, T ) × (0, K) ∂ x u i (t, R, l) = 0, (t, l) ∈ (0, T ) × (0, K),

∀(i, j) ∈ [[1, I]] 2 , u i (t, 0, l) = u j (t, 0, l) = u(t, 0, l), (t, l) ∈ |0, T ] × [0, K], ∀i ∈ [[1, I]], u i (t, x, K) = ψ i (t, x), (t, x) ∈ [0, T ] × [0, R], ∀i ∈ [[1, I]], u i (0, x, l) = g i (x, l), (x, l) ∈ [0, R] × [0, K] (1) 
In order to simplify our study, we have assumed in our framework that all the rays R i have the Let us explain the main motivation that grounds our study of the system [START_REF] Band | Scattering Theory[END_REF]. Initially introduced by J. Walsh in [START_REF] Walsh | A diffusion with a discontinuous local time[END_REF], Walsh's Brownian spider motion is a continuous process on a set of I rays embedded in R 2 emanating from {0}. Roughly speaking, to each ray R i we associate a weight α i that corresponds (very) heuristically to the probability for the process to visit R i when it leaves the junction point {0}. Inside each ray and apart from the junction point, the process behaves like a Brownian motion. However, because the trajectories of the Brownian motion are not of bounded variation, this intuitive description does not make sense: starting from {0} the process visits all the rays at once (all the rays are visited on any arbitrary small time interval).

As a generalisation of Walsh's Brownian motion, diffusions on graphs were introduced in the seminal works of Freidlin and Wentzell [START_REF] Freidlin | Diffusion processes on an open book and the averaging principle[END_REF] for a star-shaped network N R and then for general graphs in Freidlin and Sheu [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF].

Given I pairs (σ i , b i ) i∈I of mild coefficients of diffusion from [0, +∞) to R satisfying the following condition of ellipticity: ∀i ∈ [ [1, I]], σ i > 0, and given α 1 , . . . , α I ) positive constants satisfying I i=1 α i = 1, it is proved in [START_REF] Freidlin | Diffusion processes on an open book and the averaging principle[END_REF] that there exists a continuous Feller Markov process x(•), i(•) valued in N R whose generator is given by the following operator:

L :      C 2 (N R ) → C(N R ), f = f i (x) → b i (x)∂ x f i (x) + σ 2 i (x) 2 ∂ 2 x f i (x)
, with domain

D(L) := f ∈ C 2 (N R ), I i=1 α i ∂ x f i (0) = 0 .
In the above, for k = 0, 1, 2, . . . the k-th order continuous class space on the junction network

C k (N R ) is defined as f : N R → R, (x, i) → f i (x) s.t. ∀(i, j) ∈ [[1, I]] 2 , f i (0) = f j (0), f i ∈ C k ([0, R]) .
Remark 1.1. As is standard in the definition of the space C k (N R ) (see [START_REF] Freidlin | Diffusion processes on an open book and the averaging principle[END_REF], [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF], [START_REF] Lions | Viscosity solutions for junctions: Well posedness and stability[END_REF]), we do not impose the existence of a continuous k-th order derivative at the junction, so the notation

C k (N R
) might be a little misleading at first. The reader should keep in mind that -in addition to the existence of k-th order separate derivatives in all directions -only continuity is imposed at the junction 0.

Thereafter, it is shown in [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF] that there exists a one dimensional Wiener process W defined on a probability space (Ω, F, P) and adapted to the natural filtration of x(•), i(•) , such that the process x(•) satisfies the following stochastic differential equality: dx(t) = b i(t) (x(t))dt + σ i(t) (x(t))dW (t) + dℓ(t) , 0 ≤ t ≤ T.

In the above equality the process ℓ(•) has increasing paths, starts from 0 and satisfies:

∀t ∈ [0, T ], t 0 1 {x(s)>0} dℓ(s) = 0, P -a.s.

Moreover, the following Itô's formula is proved in [START_REF] Freidlin | Diffusion processes on graphs: stochastic differential equations, large deviation principle[END_REF]:

df i(t) (x(t)) = b i(t) (x(t))∂ x f i(t) (x(t)) + 1 2 σ 2 i(t) (x(t))∂ 2 x f i(t) (x(t)) dt + ∂ x f i(t) (x(t))σ i(t) (x(t))dW (t) + I i=1 α i ∂ x f i (0)dℓ(t), P -a.s,
for any sufficiently regular f . The process ℓ(•) can be interpreted as the local time of the process x(•), i(•) at the junction point {0} ; indeed, a quadratic approximation of the local time process ℓ is given by the convergence:

lim ε→0 E P 1 2ε I i=1 • 0 σ 2 i (0)1 {0≤x(s)≤ε,i(s)=i} ds -ℓ(•) 2 (0,T ) = 0. (2) 
In a forthcoming work [START_REF] Martinez | Well-posedness of Martingale problem for Walsh-Spider diffusion with spinning measure selected from its own local time[END_REF], we aim at constructing a spider diffusion process satisfying uniqueness in law, with random spinning measure (α i ) i∈I that may depend on the own local time of the spider process at the junction {0}. In this framework, we conjecture that the underlying process x(•), i(•) , ℓ(•) exists and satisfies the following Itô's rule:

f i(s) (s, x(s), ℓ(s)) -f i(t) (t, x(t), ℓ(t)) = s t ∂ t f i(u) (u, x(u), ℓ(u)) + b i(u) (u, x(u), ℓ(u))∂ x f i(u) (u, x(u), ℓ(u)) + σ 2 i(u) (u, x(u), ℓ(u)) 2 ∂ 2 x f i(u) (u, x(u), ℓ(u)) du + s t σ i(u) (u, x(u), ℓ(u))∂ x f i(u) (u, x(u), ℓ(u))dW (u) + s t ∂ l f (u, 0, ℓ(u)) + I i=1 α i (u, ℓ(u))∂ x f i (u, 0, ℓ(u)) dℓ(u), s ≥ t, (3) 
for sufficiently regular f . In the above, we use the data set {α i : (t, l); (i, t, l) ∈ [ [1, I]] × [0, T ] × [0, +∞)} that denotes the selection spinning coefficients satisfying ∀(t, l) ∈ [0, T ] × [0, +∞),

I i=1 α i (t, l) = 1.
The proof for the existence of such a process satisfying (3) is planned to be performed using the original construction of concatenation of solutions for martingales problems by Stroock and Varadhan in [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF]. The more difficult proof for a criteria that ensures the uniqueness of a weak solution (or uniqueness in law), will be achieved using a PDE argument: this last important issue gives the justification for this contribution.

The precise understanding of the diffraction of Walsh's random motions may have important applications, for instance if one is interested to describe the diffusive behavior of particles subjected to scattering (or diffraction), for which very little physical information is known. As an example, we mention [START_REF] Band | Scattering Theory[END_REF]: the theory of quantum trajectories states that quantum systems can be modelled as scattering processes and that these scattering effects may occur in prescribed directions emanating from a single point. Note that light scattering is a phenomenon that has long-time attracted many scientists for its importance in advanced photonics technologies such as on-chip interconnections, refined bio-imaging, solar-cells, heat-assisted magnetic recording, etc. (For an account on all these topics and the importance of the scattering phenomenon, see for e.g. [START_REF] Stetefeld | Dynamic light scattering: a practical guide and applications in biomedical sciences[END_REF]).

There have been several works on linear and quasilinear parabolic non degenerate equations of the form (1) -but without involving any dependence with respect to some 'external variable'

-that present a classical formulation of the boundary Kirchhoff's condition:

I i=1 α i (t)∂ x f i (t, 0) = 0, t ∈ (0, T ).
For linear equations, up to our knowledge, one of the most relevant work is the one by Von Below in references [START_REF] Below | Classical solvability of linear parabolic equations on networks[END_REF][START_REF] Below | A maximum principle for semi linear parabolic network equations[END_REF][START_REF] Below | An existence result for semi linear parabolic network equations with dynamical node conditions[END_REF]. Essentially, it is shown in [START_REF] Below | Classical solvability of linear parabolic equations on networks[END_REF] that -under natural smoothness and strong compatibility conditions -linear boundary value problems defined on a star-shape network that involve a linear boundary Kirchhoff's condition at the junction point are well-posed. The proof relies on a particular linear transformation that mutis mutandis permits to retrieve the classical framework of parabolic systems. Note that this approach increases the dimension of the original problem and cannot be adapted directly to the framework of this contribution -at least to the best of our abilities. We revisit the result of [START_REF] Below | Classical solvability of linear parabolic equations on networks[END_REF] in Section 3 by presenting another path for the construction of solutions: namely, we follow the main ideas presented by the second author in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF] (in a Quasi-linear parabolic framework) and proceed to proof of the convergence of elliptic schemes as was successively performed in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF] for the existence of classical solutions in suitable Hölder spaces for non degenerate quasi-linear parabolic systems.

Let us recall that in [START_REF] Below | A maximum principle for semi linear parabolic network equations[END_REF], the strong maximum principle for semi linear parabolic operators with Kirchhoff's condition was proved, while in [START_REF] Below | An existence result for semi linear parabolic network equations with dynamical node conditions[END_REF] the author studied the classical global solvability for a class of semilinear parabolic equations on ramified networks, where a time-dynamical condition is prescribed at each node of the underlying network. Compared to the results stated in [START_REF] Below | Classical solvability of linear parabolic equations on networks[END_REF] (when no dependency on the 'external variable' l is involved), our methodology permits to re-state the well-posedness of the problem in the fully linear case with a weakening on the necessary compatibility conditions for the data at the boundary and also on the required regularity of the coefficients at the junction point {0}. We will investigate also useful bounds for the derivatives of the solution -especially the key term |∂ t u(t, 0)| -these bounds play a crucial role in the construction of the solution to the system (1).

In the linear setting, let us mention also another approach that was developed by M.K. Fijavz, D.M ugnolo and E. Sikolya in [START_REF] Fijavz | Variational and semigroup methods for waves and diffusion in networks[END_REF]: their idea is to combine semi-group theory with variational methods in order to understand how the spectrum of the operator relates to the structure of the network. We will not investigate these issues in this contribution.

Parabolic (or elliptic) equations posed on networks can also be analyzed in terms of viscosity solutions. To our knowledge, the first results on viscosity solutions for Hamilton-Jacobi equations on networks have been obtained by Schieborn in [START_REF] Schieborn | Viscosity solutions of Hamilton-Jacobi equations of Eikonal type on ramified spaces[END_REF] for the Eikonal equation. Later, investigations have been discussed in many contributions on first order problems [START_REF] Camilli | The vanishing viscosity limit for Hamilton-Jacobi equations on networks[END_REF][START_REF] Imbert | Generalized junction conditions for degenerate parabolic equations[END_REF][START_REF] Lions | Lectures at Collège de France[END_REF], elliptic equations [START_REF] Lions | Viscosity solutions for junctions: Well posedness and stability[END_REF] and second order problems with vanishing diffusion at the vertex [START_REF] Lions | Well posedness for multi-dimensional junction problems with Kirchhofftype conditions[END_REF]. In contrast and to the best of our expertise, mainly because of the difficulty of this subject, second order Hamilton-Jacobi equations on networks with a non-vanishing viscosity at the vertices have seldom been studied in the literature.

The construction of the solution of the system (1) involving the local time variable l is achieved by proving the convergence of a parabolic scheme that uses a discretization grid corresponding to the variable l (see Section 4).

Using classical arguments, we prove that uniqueness for solutions of system (1) holds true for solutions that have enough regularity (see Theorem 2.6). Under mild assumptions, we will see that classical solutions of the system (1) belong to the class C 1,2 in the interior of each edge and C 0,1 in the whole domain (with respect to the time-space variables (t, x)). Since the variable l drives dynamically the system only at the junction point {0} with the presence of the derivative ∂ l u(t, 0, l) in the local time Kirchhoff's boundary condition, one can expect a regularity in the class C 1 for l → u(t, 0, l) and this is indeed the case (see our main Theorem 2.4 and point iv)

in Definition 2.1). Inside each ray, because of the lack of information on the dependency of the solution w.r.t. the variable l, we believe there is very little hope to prove the existence of a partial derivative with respect to l in the classical sense. However, we manage to prove that the solution of the system admits a square integrable generalized derivative ∂ l u with respect to the variable l (see again Theorem 2.4 and point v) in Definition 2.1).

Recall that the roots of our study of system (1) are grounded to our inquiry regarding the possible construction of a Walsh-spider diffusion living on N R having a spinning measure that selects directions with respect to its own local time. Having this in mind, one should remember that the local time at the junction point {0} exists only if diffusion coefficients are non degenerate.

Clearly, both problems are deeply connected. From a PDE technical aspect pointing towards the construction of the corresponding Walsh-spider diffusion, the main challenge is to obtain an Hölder continuity of the partial functions l → ∂ t u i (t, x, l), ∂ x u i (t, x, l), ∂ 2 x u i (t, x, l) for any

x > 0. We will show that such regularity is guaranteed by the central assumption on the ellipticity of the diffusion coefficients on each rays together with the mild dependency of the coefficients and free term with respect to the variable l.

The paper is organized as follows. In Section 2 we introduce all the necessary material needed for our purposes and we announce our main Theorem 2.4. We also state a comparison theorem (Theorem 2.6) that will be of constant use in the proofs. Without involving the additional local time variable 'l' at this stage but under somewhat weaker assumptions, we provide in Section 3

another proof of the main result obtained in [START_REF] Below | Classical solvability of linear parabolic equations on networks[END_REF] for parabolic systems that involve a standard boundary Kirchhoff's transmission condition. In particular, by adapting the same methods as those employed in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF], we manage to derive interesting bounds for the solution and its partial derivatives. Finally in Section 4, we prove our main result concluding to the well-posedness of system (1).

Introduction and Main results

In this section we state our main result -Theorem 2.4 -regarding the solvability of the parabolic problem (1) involving the local-time Kirchhoff 's boundary condition at the junction point, posed on a star-shaped compact network.

2.1. Notations and preliminary results. Let us start by introducing the main notations as well as some preliminary results.

Let I ∈ N * be the number of edges and R > 0 be the common length of each ray. The bounded star-shaped compact network N R is defined by:

N R = I i=1 R i where ∀i ∈ [[1, I]] R i := [0, R] and ∀(i, j) ∈ [[1, I]] 2 , i ̸ = j, R i ∩ R j = {0}.
The intersection of all the rays (R i ) 1≤i≤I is called the junction point and is denoted by {0}.

We identify all the points of N R by couples (x, i)

(with i ∈ [[1, I]], x ∈ |0, R])
, such that we have:

(x, i) ∈ N R , if and only if x ∈ R i .
The compact star-shaped network N R taken without the junction point {0} is denoted by:

N * R = N R \ {0}.
The 'space domain' where the PDE system (1) will be studied is the following one:

Ω = • N R × (0, K) ∋ ((x, i), l),
whereas the 'time-space domain' will be denoted by:

Ω T = (0, T ) × Ω ∋ (t, (x, i), l),
where T > 0 denotes some fixed horizon time.

For the functional Hölder spaces that will be used in the sequel we will use standard notations

(see e.g. Chapter 1.1 of [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF]). We recall that for any bounded Lipschitz domain O of R n , then

W 1,∞ (O)
is the set of real valued bounded Lipschitz functions endowed with the norm

|•| W 1,∞ (O) .
We write for any

f ∈ W 1,∞ (O): |f | ⌊W 1,∞ (O)⌋ = |∂f | ∞ the best Lipschitz constant for f and |f | W 1,∞ (O) = |f | ∞ + |∂f | ∞ .
Let us now give the definition of the class of regularity for our solution of the PDE system (1).

Definition 2.1. Let α ∈ (0, 1).

We say that

f : Ω T → R, t, (x, i), l → f i (t, x, l) is in the class f ∈ C 1+ α 2 ,2+α, α 2 {0} Ω T if: (i) for all (t, l) ∈ [0, T ]×[0, K], for all (i, j) ∈ [[1, I]] 2 , f i (t, 0, l) = f j (t, 0, l) = f (t, 0, l) (continuity condition at the junction point {0}); (ii) for all i ∈ [[1, I]], the map (t, x, l) → f i (t, x, l) is in the Hölder class C α 2 ,α, α 2 [0, T ] × [0, R] × [0, K], R ∩ C α 2 ,1+α, α 2 [0, T ] × [0, R] × [0, K), R ; (iii) for all i ∈ [[1, I]],
the map (t, x, l) → f i (t, x, l) has an incremented Hölder regularity in the interior of each ray R i and belongs to

C 1+ α 2 ,2+α, α 2 (0, T ) × (0, R) × (0, K), R ; moreover, (∂ t f i , ∂ 2 x f i ) ∈ L ∞ (0, T ) × (0, R) × (0, K) ; (iv) at the junction point {0}, the map (t, l) → f (t, 0, l) belongs to C α 2 ,1+ α 2 [0, T ] × [0, K), R ; (v) finally, for all i ∈ [[1, I]], on each ray R i , f admits a generalized derivative with respect to the variable l in q∈(1,+∞) L q (0, T ) × (0, R) × (0, K) .
In the same way, we define the classes C 1,2,0 {0} Ω T analogously to i) -ii) -iii) -iv) -v) but without any additional Hölder regularity; Lip 2,0

{0} Ω is defined analogously to i) -ii) -iii)iv) -v) but removing the dependence on the time variable and with Lipschitz regularity.

Let us recall a very useful lemma of interpolation. The main ingredients of its proof can be found in Lemma 2.1 of [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF] ; for the convenience of the reader, we provide a sketch of the proof at the end of this work (see Appendix A).

Lemma 2.2. Fix K > 0. Assume that u := u(t, x, l) ∈ C 0,1,0 ([0, T ] × [0, R] × [0, K]) satisfies ∀(t, s, l, q) ∈ [0, T ] 2 × [0, K] 2 s.t. |t -s| ≤ 1, |l -q| ≤ 1, and ∀x, y ∈ [0, R] : |u(t, x, l) -u(s, x, q)| ≤ ν 1 |t -s| α + ν 2 |l -q| β , |∂ x u(t, x, l) -∂ x u(t, y, l)| ≤ ν 3 |x -y| γ
for some given constants ν 1 , ν 2 , ν 3 ∈ R + and α, β, γ ∈ (0, 1). Then

∀(t, s, l, q) ∈ [0, T ] 2 × [0, K] 2 , s.t. |t -s| ≤ 1, |l -q| ≤ 1, and ∀x ∈ [0, R] : |∂ x u(t, x, l) -∂ x u(s, x, l)| ≤ 2ν 3 ν 1 γν 3 γ 1+γ + 2ν 1 γν 3 ν 1 -1 1+γ |t -s| αγ 1+γ , |∂ x u(s, x, l) -∂ x u(s, x, q)| ≤ 2ν 3 ν 2 γν 3 γ 1+γ + 2ν 2 γν 3 ν 2 -1 1+γ |l -q| βγ 1+γ .
One of the main important technical issues when one wants to study the well posedness of the system (1) is to characterize the regularity of the derivatives ∂ t u, ∂ x u, ∂ 2

x u with respect to the variable l of some possible generalized solution u. Here, we will see that the smoothness of a generalized solution (the term generalized being applied only on each ray R i separately, leaving the junction {0} out) is determined only by the smoothness of the coefficients and free terms.

We state the following important lemma.

Lemma 2.3. Suppose that u ∈ W 1,2,0 2 (0, T ) × (0, R) × (0, K) ∩ C α 2 ,α, α 2 [0, T ] × [0, R] × [0, K] ,
(α ∈ (0, 1)) is a generalized solution of the following parametric parabolic problem w.r.t to the variable l ∈ [0, K]:

∂ t u(t, x, l) -a(t, x, l)∂ 2 x u(t, x, l) + b(t, x, l)∂ x u(t, x, l) + c(t, x, l)u(t, x, l) -f (t, x, l) = 0, (4) 
namely T 0 R 0 K 0 ∂u(t, x, l) -a(t, x, l)∂ x u(t, x, l) + c(t, x, l)u(t, x, l) -f (t, x, l) ϕ(t, x, l)dtdxdl = 0, for any ϕ ∈ C ∞ c [0, T ] × [0, R] × [0, K]
in the class of infinite differential functions with compact support strictly included in (0, T ) × (0, R) × (0, K) .

Assume that the coefficient a is elliptic:

∀(t, x, l) ∈ [0, T ] × [0, R] × [0, K], a(t, x, l) ≥ a > 0
and the coefficients and free terms (a, b, c, f ) have Hölder regularity in the class

C α 2 ,α, α 2 (0, T ) × (0, R) × (0, K) . Then u belongs to the class C 1+ α 2 ,2+α, α 2 (0, T ) × (0, R) × (0, K) .
Remark that one could choose C α,β,γ (0, T ) × (0, R) × (0, K) as the class of regularity for the coefficients and free terms and show that the solution belongs to C 1+α,2+β,γ (0, T ) × (0, R) × (0, K) . For the reader's convenience, we have used here the classical terminology given in [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF], pointing towards a possible extension of the well-posedness of similar systems as (1) to the quasi-linear framework.

Proof. Introduction: a short reminder for the interior regularity of weak solutions in the classical case When there is not dependency with respect to the variable l, results on the interior regularity of weak solutions of parabolic equations may be found for example in Theorem 12.1 III of [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF].

Before getting into all the details of the proof, let us provide for the convenience of the reader a short remainder of the main ideas that lead to the result of the classical case given in Theorem 12.1 III of [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF].

Let us recall that, if u ∈ C 1+ α 2 ,2+α (0, T ) × (0, R) stands for some classical solution of the following parabolic problem

∂ t u(t, x) -a(t, x)∂ 2 x u(t, x) + b(t, x)∂ x u(t, x) + c(t, x)u(t, x) = f (t, x). ( 5 
)
with smooth data given in the domain (0, T ) × (0, R), then the classical Schauder's estimate reads:

∥u∥ C 1+α,2+α (O) ≤ C ∥f ∥ C α 2 ,α (U ) + ∥u∥ L∞(U ) , (6) 
for any open smooth domains O ⊂⊂ U ⊂ (0, T ) × (0, R) (see for e.g. [START_REF] Krylov | Lectures on Elliptic and Parabolic Equations in Holder Spaces[END_REF] Section 10 Chapter 8). Now, assume that w is some continuous representative of a generalized solution of the last problem [START_REF] Freidlin | Diffusion processes on an open book and the averaging principle[END_REF] and that w belongs to the class

W 1,2 (0, T ) × (0, R) ∩ L ∞ (0, T ) × (0, R) .
Associated to w, we introduce the following parabolic problem:

∂ t v n (t, x) -a(t, x)∂ 2 x v n (t, x) + b(t, x)∂ x v n (t, x) + c(t, x)v n (t, x) = f (t, x), (t, x) ∈ U, v n (t, x) = w n (t, x), (t, x) ∈ L ∂U
where L ∂U denotes the lateral boundary surface of U ⊂ (0, T ) × (0, R).

Here, in the setting of this classical parabolic Dirichlet problem, we have regularized the value of w -for instance by standardly using a family of convolution kernels (ξ n ) that tend weakly to the Dirac mass -in order to ensure the regularity of the solution v n at the boundary.

Classical arguments guarantee that the solution v n is in the class C 1+ α 2 ,2+α (U). Then, the classical Schauder's estimates (written for v n ) combined with the use of Ascoli's theorem ensure that -up to a subsequence -the sequence (v n ) converges locally uniformly to v ∈ C 1+ α 2 ,2+α (U) 

solution of ∂ t v(t, x) -a(t, x)∂ 2 x v(t, x) + b(t, x)∂ x v(t, x) + c(t, x)v(t, x) = f (t, x), (t, x) ∈ U, v(t, x) = w(t,
O, that w ∈ C 1+ α 2 ,2+α (0, T ) × (0, R)
. Hence, we conclude as in Theorem 12.1 III of [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF] for the classical interior regularity of the weak solution w.

In order to adapt these arguments to our setting, we see that the key point is to obtain a Schauder's type estimate for the parametric parabolic problem (that involves the variable l).

Step 1. Proof of a Schauder's type estimate

In the sequel and for the proof itself we consider the following data (a, b, c, f

) ∈ C α 2 ,α, α 2 [0, T ]× [0, R] × [0, K]
and we assume the ellipticity assumption for the leading coefficient a:

inf (t,x,l) a(t, x, l) ≥ a > 0.
We begin to prove that if

v ∈ W 1,2,0 2 (0, T ) × (0, R) × (0, K) ∩ C α 2 ,α, α 2 [0, T ] × [0, R] × [0, K] is such that for each l ∈ [0, K], the map v(•, • , l) is a classical C 1+ α 2 ,2+α (0, T ) × (0, R) solution
of the following linear parabolic problem posed on the domain (0, T ) × (0, R):

∂ t v(t, x, l) -a(t, x, l)∂ 2 x v(t, x, l) + b(t, x, l)∂ x v(t, x, l) + c(t, x, l)v(t, x, l) = f (t, x, l), ∀(t, x) ∈ (0, T ) × (0, R), (7) 
then the map (t, x, l) → v(t, x, l) belongs to the class

C 1+ α 2 ,2+α, α 2 (0, T ) × (0, R) × (0, K) .
Moreover, under the same assumptions, we provide a Schauder's type estimate: for any open set O ⊂⊂ (0, T ) × (0, R) × (0, K) strictly separated from the boundary of the domain (0, T ) × (0, R) × (0, K) by a positive distance δ > 0, there exists a positive constant C > 0 depending only on the data δ, α, a, ∥a∥

C α 2 ,α, α 2 , ∥b∥ C α 2 ,α, α 2 , ∥c∥ C α 2 ,α, α
2 , T , such that:

∥v∥ C 1+α,2+α, α 2 (O) ≤ C ∥f ∥ C α 2 ,α, α 2 + ∥v∥ C α 2 ,α, α 2 . (8) 
We prove [START_REF] Fijavz | Variational and semigroup methods for waves and diffusion in networks[END_REF]. For any l ∈ [0, K] and any open set V included in the domain [0, T ] × [0, R] × [0, K], we will denote by:

V l := (t, x) ∈ [0, T ] × [0, R], (t, x, l) ∈ V the l-level set of V. Clearly, under this notation V l is an open set of [0, T ] × [0, R].
Let O be then an open smooth domain strictly included in (0, T ) × (0, R) × (0, K) and let

W a second open domain also strictly included in (0, T ) × (0, R) × (0, K) such that W contains strictly O with O well separated from ∂W (we write in this case O ⊂⊂ W). The classical results given by the Schauder's estimates (see for e.g. [START_REF] Krylov | Lectures on Elliptic and Parabolic Equations in Holder Spaces[END_REF]) lead to the existence of a constant C(l) depending on the norm of the data (a, b, c, f )(., l) in the class

C α 2 ,α [0, T ] × [0, R] ,
and

(a, δ(l) := dist(O l , W l ), T ), such that: ∀l ∈ [0, K], ∥v(•, l)∥ C 1+ α 2 ,2+α (O l ) ≤ C(l) ∥f (•, l)∥ C α 2 ,α (W l ) + ∥v(•, l)∥ C 0 (W l ) . (9) 
By giving a closer look to the estimations given in [START_REF] Krylov | Lectures on Elliptic and Parabolic Equations in Holder Spaces[END_REF] Chapter 8 Section 10 (see also [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF] IV- §10, but the dependence of the constant w.r.t to the distance to the boundary is less apparent), we observe the non decreasing behavior of C(l) with respect to δ(l)

:= dist(O l , W l ); since ∀l ∈ [0, K], δ(l) ≥ γ := (dist(O, W)) > 0,
we see that we are allowed to choose C(l) = C > 0 independent of l ∈ [0.K] in [START_REF] Lions | Lectures at Collège de France[END_REF].

Fix now (l, q) ∈ [0, K] and denote by v(•, l) and v(•, q) two solutions of the parametric problem [START_REF] Krylov | Lectures on Elliptic and Parabolic Equations in Holder Spaces[END_REF], with parameters l and q. Remark that v(•, l) -v(•, q) solves the following parabolic problem with unknown function w:

∀(t, x) ∈ (0, T ) × (0, R), ∂ t w(t, x) -a(t, x, l)∂ 2 x w(t, x) + b(t, x, l)∂ x w(t, x) + c(t, x, l)w(t, x) = F (t, x, l, q)
where in the last equation the expression of the free term F is given by: F (t, x, l, q) = -a(t, x, q) -a(t, x, l) ∂ 2 x v(t, x, q) + b(t, x, q) -b(t, x, l) ∂ x v(t, x, q) + c(t, x, q) -c(t, x, l) v(t, x, q) + f (t, x, l) -f (t, x, q).

Using the classical Schauder's estimate on the following open sets:

(O l ∪ O q ) ⊂⊂ (W l ∪ W q ),
we see that there exists a constant C > 0, independent of (l, q) such that:

∥v(•, l) -v(•, q)∥ C 1+ α 2 ,2+α (O l ∪Oq) ≤ C ∥F (•, l, q)∥ C α 2 ,α (W l ∪Wq) + ∥v(•, l) -v(•, q)∥ C 0 (W l ∪Wq) . ( 10 
)
Recall that by assumption,

v ∈ C 1+ α 2 ,2+α, α 2 [0, T ] × [0, R] × [0, K] . So that: ∥v(•, l) -v(•, q)∥ C 0 (W l ∪Wq) ≤ |l -q| α 2 ∥v∥ C α 2 ,α, α 2 ([0,T ]×[0,R]×[0,K]) .
From the assumptions of the data, remark also that

∥F (•, l, q)∥ C α 2 ,α (W l ∪Wq) ≤ |l -q| α 2 C∥v(•, q)∥ C 1+ α 2 ,2+α (W l ∪Wq) ,
for some other constant C > 0, depending only on the norm of the data. But, applying the classical Schauder's estimates for v(•, q) on the domains

W l ∪ W q ⊂⊂ [0, T ] × [0, R],
we have:

∥v(•, q)∥ C 1+ α 2 ,2+α (W l ∪Wq) ≤ C ∥f ∥ C α 2 ,α, α 2 ([0,T ]×[0,R]×[0,K]) + ∥v∥ C 0 ([0,T ]×[0,R]×[0,K]) ,
where the constant C > 0 is independent of q.

In turn, we obtain from [START_REF] Lions | Viscosity solutions for junctions: Well posedness and stability[END_REF] that

∥v(•, l) -v(•, q)∥ C 1+ α 2 ,2+α (O l ∪Oq) ≤ M |l -q| α 2 ∥f ∥ C α 2 ,α, α 2 ([0,T ]×[0,R]×[0,K]) + ∥v∥ C α 2 ,α, α 2 ([0,T ]×[0,R]×[0,K]) ,
where the constant M > 0 is independent of (l, q) and depends only on:

δ, a, ∥a∥ C α 2 ,α, α 2 , ∥b∥ C α 2 ,α, α 2 , ∥c∥ C α 2 ,α, α 2 , T (Recall that δ > 0 is the strictly positive distance separating O from the boundary of [0, T ] × [0, R] × [0, K]).
We obtain therefore that:

sup ∥v(•, l) -v(•, q)∥ C 1+ α 2 ,2+α (O l ∪Oq) |l -q| α 2 (l, q) ∈ [0, K] 2 , l ̸ = q ≤ M ∥f ∥ C α 2 ,α, α 2 ([0,T ]×[0,R]×[0,K]) + ∥v∥ C α 2 ,α, α 2 ([0,T ]×[0,R]×[0,K]) . Now since O = l∈[0,K] O l , we can conclude finally that v ∈ C 1+ α 2 ,2+α, α
2 O and that there exists a positive constant C > 0, depending only on the data δ, α, a, ∥a∥

C α 2 ,α, α 2 , ∥b∥ C α 2 ,α, α 2 , ∥c∥ C α 2 ,α, α 2 
, T , such that:

∥v∥ C 1+α,2+α, α 2 (O) ≤ C ∥f ∥ C α 2 ,α, α 2 + ∥u∥ C α 2 ,α, α 2 , (11) 
namely that (8) holds true. Thus we have proved [START_REF] Fijavz | Variational and semigroup methods for waves and diffusion in networks[END_REF] and the arbitrary choice of the open set O allows to state finally that v is in the class

C 1+ α 2 ,2+α, α 2 (0, T ) × (0, R) × (0, K) .
Step 2. Proof of the interior regularity for weak solutions of (4)

We are now in position to adapt the arguments exposed in the introduction of the proof to our context, taking into account the dependency on l.

Let u ∈ W 1,2,0 2 (0, T ) × (0, R) × (0, K) ∩ C α 2 ,α, α 2 [0, T ] × [0, R] × [0, K] a generalized solution
of the parametric parabolic problem in the statement of the lemma.

In order to adapt the arguments exposed in the introduction of the proof to our context, we introduce naturally the following parabolic problem with parameter l ∈ [0, K] posed on some connected open subset U = (s, s ′ ) × (z, r) satisfying U ⊂⊂ (0, T ) × (0, R):

∂ t v n (t, x, l) -a(t, x, l)∂ 2 x v n (t, x, l) + b(t, x, l)∂ x v n (t, x, l) + c(t, x, l)v n (t, x, l) = f (t, x, l), (t, x) ∈ U, v n (t, x, l) = u n (t, x, l), (t, x) ∈ L ∂U, (12) 
with

L ∂U = ∂U \ ({s ′ } × [z, r]
) and where we have regularized at the lateral boundary L ∂U the value of u by convolution in the domain (0, T )×(0, R). Note that classical estimates for solutions of standard parabolic problems ensure that for any fixed l ∈ [0, K] there exists a unique classical 

smooth solution v n (•, l) ∈ C α 2 ,α, α
n ∥ C α 2 ,α, α 2 (U ×[0,K]) ≤ C(n)
where the constant C(n) shows a dependency on n only through the value of the parabolic boundary data

∥u n ∥ C α 2 ,α, α 2 (U ×[0,K])
(see for e.g. the classical results on Solvability of Problems 5.4' and 5.4 in [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF]). Now note that the regularized map u n (•, l) belongs to the class C ∞ [0, T ] × [0, R] and that it is always possible to perform the convolution in such a way that u n satisfies

sup n≥0 ∥u n ∥ C α 2 ,α, α 2 ([0,T ]×[0,R]×[0,K]) ≤ ∥u∥ C α 2 ,α, α 2 ([0,T ]×[0,R]×[0,K]) .
Thus, the result of this discussion gives us insurance that there exists a finite constant C :=

sup n≥0 C(n) < +∞ independent of n such that sup n≥0 ∥v n ∥ C α 2 ,α, α 2 (U ×[0,K]) ≤ C. ( 13 
)
Let

O := (t 1 , t 2 ) × (r 1 , r 2 ) × (l 1 , l 2 ) ⊂⊂ U × (0, K).
With the same arguments used to prove the Schauder's estimates [START_REF] Lions | Well posedness for multi-dimensional junction problems with Kirchhofftype conditions[END_REF], it is not hard to check that the map (t, x, l) → v n (t, x, l) has a regularity in the class

C 1+ α 2 ,2+α, α
2 O and satisfies itself a Schauder's type estimate

∥v n ∥ C 1+α,2+α, α 2 (O) ≤ M ∥f ∥ C α 2 ,α, α 2 (U ×[0,K]) + ∥v n ∥ C α 2 ,α, α 2 (U ×[0,K]) , (14) 
where as before, M > 0 stands for some constant depending only on the data.

Hence, just like for the remainder in the introduction of the proof, combining (13) together with Schauder's estimates [START_REF] Martinez | Well-posedness of Martingale problem for Walsh-Spider diffusion with spinning measure selected from its own local time[END_REF] allows to apply Ascoli's theorem: up to a subsequence (v n ) converges locally uniformly in the class

C 1+ α 2 ,2+α, α 2 O to a function v, which solves ∂ t v(t, x, l) -a(t, x, l)∂ 2 x v(t, x, l) + b(t, x, l)∂ x v(t, x, l) + c(t, x, l)v(t, x, l) = f (t, x, l), (t, x) ∈ (t 1 , t 2 ) × (r 1 , r 2 ), (15) 
for any l ∈ (l 1 , l 2 ).

This solution v is also a generalized solution in the sense that:

O ∂ t v(t, x, l) -a(t, x, l)∂ 2 x v(t, x, l) + b(t, x, l)∂ x v(t, x, l) + c(t, x, l)v(t, x, l) -f (t, x, l) ϕ(t, x, l)dtdxdl = 0, (16) 
for any ϕ ∈ C ∞ c O (the class of infinite differential function with compact support strictly included in O). Formally speaking, the previous limit v depends on the set O: in order to emphasize its dependence on O let us denote it v O for a moment. Since O may be arbitrarily taken in U, we may consider (O p ) an increasing sequence of pavements converging to U as p tends to infinity. The preeceding shows that we can attach to this sequence a doubly indexed subsequence

v n (p) k (k,p)∈N * ×N * , which satisfies that for any p, lim k→+∞ v n (p) k = v Op locally uniformly in C 1+ α 2 ,2+α, α 2 O p with v Op verifying (16) (with O p in place of O) and constructed inductively such that the subsequence v n (p+1) k k∈N * is itself a subsequence of v n (p) k k∈N * . Proceeding to a diagonal extraction, we now consider v n (p) p p∈N * . By construction, for any q ∈ N * , v n (p) p p≥q is a subsequence of v n (q)
k k∈N * and as such, the subsequence v n (p) p p∈N * converges to v Oq locally uniformly in C 1+ α 2 ,2+α, α 2 O q . Since the ladder holds true for any q, the family (v Oq ) q has to be consistent and our subsequence v n (p) p p∈N * converges locally uniformly in the class [START_REF] Schieborn | Viscosity solutions of Hamilton-Jacobi equations of Eikonal type on ramified spaces[END_REF]. This convergence holds for any arbitrary

C 1+ α 2 ,2+α, α 2 O to some function v ∈ C 1+ α 2 ,2+α, α 2 O which satisfies
O = (t 1 , t 2 ) × (r 1 , r 2 ) × (l 1 , l 2 ) ⊂⊂ U × (0, K) and we get in fact that v ∈ C 1+ α 2 ,2+α, α 2 U × (0, K) .
Moreover, for any l ∈ (0, K), the convolution regularization (u n (., l)) converges pointwise to u(., l). In turn, [START_REF] Nikol'skii | The properties of certain classes of function of many variables on differentiable manifolds[END_REF] shows that (v n (p) p (., l)) p converges to u(., l) on the lateral surface L ∂U ensuring that for all l ∈ (0, K):

v(t, x, l) = u(t, x, l), ∀(t, x) ∈ L ∂U.
We now proceed to show that

∀(t, x, l) ∈ U × (0, K), u(t, x, l) = v(t, x, l),
which will in turn imply finally that u ∈ C 1+ α 2 ,2+α, α 2 U × (0, K) .

Denote by

K = {l 1 , . . . l n , . . .} a dense countable subset of (0, K). Fix l ∈ K and let {ϕ ε ∈ C ∞ [0, K] , ε > 0} denote a family
of smooth functions converging in the sense of distribution to the Dirac distribution δ l as ε ↘ 0.

Let ϕ ∈ C ∞ c (s, s ′ ) × (ℓ, r) and ε > 0. We have O ∂ t v(t, x, l) -a(t, x, l)∂ 2 x v(t, x, l) + b(t, x, l)∂ x v(t, x, l) + c(t, x, l)v(t, x, l) -f (t, x, l) ϕ ε (l)ϕ(t, x)dtdxdl = 0, for arbitrary O. By letting ε ↘ 0 s ′ s r ℓ ∂ t v(t, x, l) -a(t, x, l)∂ 2 x v(t, x, l) + b(t, x, l)∂ x v(t, x, l) + c(t, x, l)v(t, x, l) -f (t, x, l) ϕ(t, x)dtdx = 0.
With the same arguments, we have also:

s ′ s r ℓ ∂ t u(t, x, l) -a(t, x, l)∂ 2 x u(t, x, l) + b(t, x, l)∂ x u(t, x, l) + c(t, x, l)u(t, x, l) -f (t, x, l) ϕ(t, x)dtdx = 0.
Therefore u(•, l) and v(•, l) are two classical weak solutions of the same parabolic problem, on the domain U = (s, s ′ ) × (ℓ, r) possessing the same boundary conditions on L ∂U . From the weak uniqueness in the class W 1,2 2 (s, s ′ ) × (ℓ, r) that follows from our assumptions (see for instance the weak uniqueness result stated in [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF] Theorem 9.1 Chapiter IV), we deduce that:

u(t, x, l) = v(t, x, l), dt ⊗ dx, almost everywhere in [s, s ′ ] × [ℓ, r].
This implies the existence of some negligible set

N l ⊂⊂ [s, s ′ ] × [ℓ, r], such that: dt ⊗ dx N l = 0,
and:

∀(t, x) ∈ [s, s ′ ] × [ℓ, r] \ N l , u(t, x, l) = v(t, x, l).
Set:

N = ln∈K N ln .
We can conclude that:

∀l ∈ K, ∀(t, x) ∈ [s, s ′ ] × [ℓ, r] \ N , u(t, x, l) = v(t, x, l).
Using now the key assumption that u ∈ C

α 2 ,α, α 2 [0, T ] × [0, R] × [0, K] ,
we can conclude by the continuity of both u and v with respect to the variables (t, x) that:

∀l ∈ K, ∀(t, x) ∈ [s, s ′ ] × [ℓ, r], u(t, x, l) = v(t, x, l).
The density of K in (0, K) and the continuity of both u and v with respect to the variable l yield

∀(t, x, l) ∈ [s, s ′ ] × [ℓ, r] × (0, K), u(t, x, l) = v(t, x, l), ensuring that u ∈ C 1+ α 2 ,2+α, α 2 U × (0, K) .
Now observe that U has been arbitrarily taken in (0, T ) × (0, R), so that in fact

u ∈ C 1+ α 2 ,2+α, α 2 (0, T ) × (0, R) × (0, K) ,
which concludes the proof of the lemma. □ 2.2. Assumptions and main results. In this subsection, we introduce the data involved in the PDE system (1) with the required assumptions and we state our main Theorem 2.4. Next, we proceed to the proof of a comparison theorem for the PDE system [START_REF] Band | Scattering Theory[END_REF]. Because the result is of particular importance for our forthcoming probabilistic inquiry of the construction of Walsh's spider motions whose spinning measure depend on the local time, we shall conclude the subsection by the statement of an extension of Theorem 2.4 in the case of unbounded star-shaped network.

The proof is given in Appendix.

2.2.1.

Existence and uniqueness for a Parabolic PDE with Kirchhoff 's local time condition. For the rest of these notes, we fix α ∈ (0, 1).

We introduce the following data:

D :=                                                            a i ∈ W 1,∞ [0, T ] × [0, R] × [0, K], R + i∈[[1,I]] b i ∈ W 1,∞ [0, T ] × [0, R] × [0, K], R i∈[[1,I]] c i ∈ W 1,∞ [0, T ] × [0, R] × [0, K], R i∈[[1,I]] f i ∈ W 1,∞ [0, T ] × [0, R] × [0, K], R i∈[[1,I]] α i ∈ W 1,∞ [0, T ] × [0, K], R + i∈[[1,I]] r ∈ W 1,∞ [0, T ] × [0, K], R + ϕ ∈ W 1,∞ [0, T ] × [0, K], R ψ ∈ C 0,1 [0, T ] × N R ∩ C 1,2 (0, T ) × • N * R g ∈ Lip 2,0 {0} Ω .
We assume that the data D satisfies the following assumption: b) Compatibility conditions at the boundaries:

Assumption (H) a) Ellipticity condition for the terms a i , α i , i∈[[1,I]] : (i) ∃ a > 0, ∀i ∈ [[1, I]], ∀(t, x, l) ∈ [0, T ] × [0, R] × [0, K], a i (t, x, l) ≥ a, (ii) ∃ α > 0, ∀i ∈ [[1, I]], ∀(t, l) ∈ [0, T ] × [0, K], α i (t, l) ≥ α,
(i) ∂ l g(0, l) + I i=1 α i (0, l)∂ x g i (0, l) -r(0, l)g(0, l) = ϕ(0, l), l ∈ [0, K), (ii) ∂ x g(R, l) = 0, l ∈ [0, K), (iii) g(x, K) = ψ i (0, x), x ∈ [0, R].
We state the main central result of this work, which asserts the unique solvability of the parabolic linear PDE system (1) posed on N R and having a dynamical 'local-time Kirchhoff 's boundary condition' at the junction point {0}.

Theorem 2.4. Assume that the data D satisfies assumption (H). Then, the system (1) is uniquely solvable in the class C

1+ α 2 ,2+α, α 2 {0} Ω T .
Next, we give the definitions of super and sub solutions for the system (1), and we prove a comparison Theorem.

Definition 2.5. We say that u ∈ C 1,2,0 {0} Ω T is a super solution (resp. sub solution) of the PDE system (1) if:

                             ∂ t u i (t, x, l) -a i (t, x, l)∂ 2 x u i (t, x, l) + b i (t, x, l)∂ x u i (t, x, l)+ c i (t, x, l)u i (t, x, l) -f i (t, x, l) ≥ 0, (resp. ≤ 0), (t, x, l) ∈ (0, T ) × (0, R) × (0, K) ∂ l u(t, 0, l) + I i=1 α i (t, l)∂ x u i (t, 0, l) -r(t, l)u(t, 0, l) -ϕ(t, l) ≤ 0, (resp. ≥ 0), (t, l) ∈ (0, T ) × (0, K) ∂ x u i (t, R, l) ≥ 0, (resp. ≤ 0), (t, l) ∈ (0, T ) × (0, K) . Theorem 2.6. Comparison Theorem.
Assume that the data D satisfies assumptions (H).

Let u ∈ C 1,2,0 {0} Ω T (resp. v ∈ C 1,2,0 {0} Ω T ) a super solution (resp. a sub solution) of system (1) satisfying that for all t, (x, i), l ∈ [0, T ] × N R × [0, K]: u i (0, x, l) ≥ v i (0, x, l) and u i (t, x, K) ≥ v i (t, x, K).
Then, for all t, (x, i), l

∈ [0, T ] × N R × [0, K]: u i (t, x, l) ≥ v i (t, x, l). Proof. Let λ(K, R) = λ > C(K, R)
, where C(K, R) is some constant whose expression will be given later (the definition of C(K, R) is given in [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF]). First fix s ∈ (0, T ) and ℓ ∈ (0, K). We argue by contradiction and we assume that

sup exp -λt - (x - R 2 ) 2 2 v i (t, x, l) -u i (t, x, l) > 0
where the supremum is taken over all (i, t, x, l)

∈ [[1, I]] × [0, s] × [0, R] × [ℓ, K] (under the convention sup(∅) = 0). For any (i, t, x, l) ∈ [[1, I]] × [0, s] × [0, R] × [ℓ, K] let us set: θ λ,i (t, x, l) := exp -λt - (x - R 2 ) 2 2 v i (t, x, l) -u i (t, x, l) .
Using the continuity and the terminal boundary conditions satisfied by u and v in the assumptions of the theorem, the supremum above is then reached at a point

(i 0 , t 0 , x 0 , l 0 ) ∈ [[1, I]] × (0, s] × [0, R] × [ℓ, K) that satisfies: v i 0 (t 0 , x 0 , l 0 ) -u i 0 (t 0 , x 0 , l 0 ) > 0. ( 17 
)
Assume first that x 0 = R. From the regularity of x → θ λ,i 0 (t 0 , x, l 0 ) up to x 0 = R induced by our assumptions, we get

∂ x θ λ,i 0 (t 0 , x 0 , l 0 ) ≥ 0.
Hence:

∂ x v i 0 (t 0 , x 0 , l 0 ) ≥ ∂ x u i 0 (t 0 , x 0 , l 0 ) + R 2 v i 0 (t 0 , x 0 , l 0 ) -u i 0 (t 0 , x 0 , l 0 )) .
Using the fact that u is a super solution, whereas v is a sub solution, we obtain from the boundary

inequalities at x 0 = R that 0 ≥ R 2 v i 0 (t 0 , x 0 , l 0 ) -u i 0 (t 0 , x 0 , l 0 )) > 0,
and hence a contradiction.

Suppose now that x 0 ∈ (0, R), then the optimality conditions in the directional derivatives with respect to the variables t and x imply:

∂ t θ λ,i 0 (t 0 , x 0 , l 0 ) ≥ 0 (= 0 if t 0 ̸ = s), ∂ x θ λ,i 0 (t 0 , x 0 , l 0 ) = 0, ∂ 2 x θ λ,i 0 (t 0 , x 0 , l 0 ) ≤ 0. So that since (t 0 , x 0 , l 0 ) ∈ (0, s] × [0, R] × [ℓ, K), -2(x 0 -R 2 ) ∂ x v i 0 (t 0 , x 0 , l 0 ) -∂ x u i 0 (t 0 , x 0 , l 0 ) +[(x 0 -R 2 ) -1] 2 v i 0 (t 0 , x 0 , l 0 ) -u i 0 (t 0 , x 0 , l 0 ) + ∂ 2 x v i 0 (t 0 , x 0 , l 0 ) -∂ 2 x u i 0 (t 0 , x 0 , l 0 ) ≤ 0.
Because ∂ x θ λ,i 0 (t 0 , x 0 , l 0 ) = 0 we get

-[1 + (x 0 - R 2 ) 2 ] v i 0 (t 0 , x 0 , l 0 ) -u i 0 (t 0 , x 0 , l 0 ) + ∂ 2 x v i 0 (t 0 , x 0 , l 0 ) -∂ 2 x u i 0 (t 0 , x 0 , l 0 ) ≤ 0.
Using now the fact that v is a sub solution while u is a super solution of (1) on the ray R i 0 , we obtain using the positivity assumption on the coefficient a i 0 (H) a)-(i):

0 ≥ (∂ t v i 0 -∂ t u i 0 )(t 0 , x 0 , l 0 ) -a i 0 (t 0 , x 0 , l 0 ) (∂ 2 x v i 0 -∂ 2 x u i 0 )(t 0 , x 0 , l 0 ) +b i 0 (t 0 , x 0 , l 0 ) (∂ x v i 0 -∂ x u i 0 )(t 0 , x 0 , l 0 ) + c i 0 (t 0 , x 0 , l 0 ) (v i 0 -u i 0 )(t 0 , x 0 , l 0 ) ≥ λ (v i 0 -u i 0 )(t 0 , x 0 , l 0 ) -a i 0 (t 0 , x 0 , l 0 )[1 + (x 0 -R 2 ) 2 ] (v i 0 -u i 0 )(t 0 , x 0 , l 0 ) +b i 0 (t 0 , x 0 , l 0 )(x 0 -R 2 ) (v i 0 -u i 0 )(t 0 , x 0 , l 0 ) + c i 0 (t 0 , x 0 , l 0 ) (v i 0 -u i 0 )(t 0 , x 0 , l 0 ) ≥ λ -C(K, R) v i 0 (t 0 , x 0 , l 0 ) -u i 0 (t 0 , x 0 , l 0 ) ,
where:

C(K, R) := sup -a i (t, x, l)[1 + (x -R 2 ) 2 ] + b i (t, x, l)(x -R 2 ) + c i (t, x, l), (t, (x, i), l) ∈ [0, T ] × N R × [0, K] . (18) 
Therefore, using [START_REF] Stetefeld | Dynamic light scattering: a practical guide and applications in biomedical sciences[END_REF] and the defining property for λ, we obtain a contradiction. Now assume that x 0 = 0. Since for all (i, j) ∈ [[1, I]], u i (t 0 , 0, l 0 ) = u j (t 0 , 0, l 0 ) = u(t 0 , 0, l 0 ) and v i (t 0 , 0, l 0 ) = v j (t 0 , 0, l 0 ) = u(t 0 , 0, l 0 ), using the regularity with respect to the variable l of both u and v at {0} (coming from condition iv) in the definition of C 1,2,0 {0} Ω T ), we obtain:

exp -λt 0 - R 2 8 (∂ l v -∂ l u)(t 0 , 0, l 0 ) ≤ 0 so that ∂ l v(t 0 , 0, l 0 ) -∂ l u(t 0 , 0, l 0 ) ≤ 0.
By definition of (t 0 , x 0 , l 0 ) = (t 0 , 0, l 0 ), we have also that for all i ∈ [[1, I]] and h ∈ [0, R]:

exp(λt 0 - R 2 8 v(t 0 , 0, l 0 ) -u(t 0 , 0, l 0 ) ≥ exp(λt 0 - (h - R 2 ) 2 2 v i (t 0 , h, l 0 ) -u i (t 0 , h, l 0 ) .
Therefore, applying a first order Taylor expansion with respect to the variable x in the neighborhood of the junction point {0},

for any i ∈ [[1, I]] we get that v(t 0 , 0, l 0 ) -u(t 0 , 0, l 0 ) ≥ v(t 0 , 0, l 0 ) -u(t 0 , 0, l 0 ) + h R 2 v(t 0 , 0, l 0 ) -u(t 0 , 0, l 0 ) + ∂ x v i (t 0 , 0, l 0 ) -∂ x u i (t 0 , 0, l 0 ) + hε i (h), with lim h→0 ε i (h) = 0. Thus, ∀i ∈ [[1, I]], ∂ x v i (t 0 , 0, l 0 ) ≤ ∂ x u i (t 0 , 0, l 0 ) - R 2 v(t 0 , 0, l 0 ) -u(t 0 , 0, l 0 ) . (19) 
Now, using the ellipticity assumption on the coefficients (α i ) 1≤i≤I (H) a)-(ii)), observing that the coefficient r is non negative and also the fact that v is a sub solution while u is a super solution of (1) at {0}, we obtain:

0 ≥ ∂ l u(t 0 , 0, l 0 ) -∂ l v(t 0 , 0, l 0 ) + I i=1 α i (t, l) ∂ x u i (t 0 , 0, l 0 ) -∂ x v i (t 0 , 0, l 0 ) -r(t 0 , l 0 ) u(t 0 , 0, l 0 ) -v(t 0 , 0, l 0 ) ≥ Iα R 2 v(t 0 , 0, l 0 ) -u(t 0 , 0, l 0 ) > 0,
which yields a contradiction.

All cases lead to contradictions, resulting in the fact that for all 0 ≤ s < T , for all (t, (x, i), l)

∈ [0, s] × N R × [ℓ, K]: exp -λt - (x - R 2 ) 2 2 v i (t, x, l) -u i (t, x, l) ≤ 0.
Using the continuity of u and v w.r.t variables (t, l), we deduce finally that for all (t, (x, i), l)

∈ [0, T ] × N R × [0, K]: v i (t, x, l) ≤ u i (t, x, l). □ 2.2.2.
Existence and uniqueness for the solution of a Parabolic PDE with Kirchhoff 's local time condition on an unbounded domain. We conclude this section by stating a theorem regarding the uniqueness and the solvability for the system (1) posed this time in a unbounded star-shaped network:

N ∞ = I i=1 R i,∞ , where: ∀i ∈ [[1, I]] R i,∞ := [0, +∞), and ∀(i, j) ∈ [[1, I]] 2 , i ̸ = j, R i,∞ ∩ R j,∞ = {0}.
The parameter l involved by the dynamic Kirchhoff's local time boundary condition at {0} is also considered to evolve in an unbounded half-line, namely we now have l ∈ [0, +∞).

Our concern comes from an upcoming research work [START_REF] Martinez | Well-posedness of Martingale problem for Walsh-Spider diffusion with spinning measure selected from its own local time[END_REF] : we will need this result in order to prove the uniqueness in law for some kind of generalized Walsh-Spider diffusion living on the star-shaped network N ∞ that selects its direction at the junction point {0} according to its own local time at the junction (see the Itô's rule [START_REF]Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations[END_REF] given in Introduction).

For our purposes, we introduce the following data:

D ∞ :=                                                    a i ∈ C [0, T ] × [0, +∞) × [0, +∞), R + i∈[[1,I]] b i ∈ C [0, T ] × [0, +∞) × [0, +∞), R i∈[[1,I]] c i ∈ C [0, T ] × [0, +∞) × [0, +∞), R i∈[[1,I]] f i ∈ C [0, T ] × [0, +∞) × [0, +∞), R i∈[[1,I]] α i ∈ C [0, T ] × [0, +∞), R + i∈[[1,I]] r ∈ C [0, T ] × [0, +∞), R + ϕ ∈ C [0, T ] × [0, +∞), R g ∈ C N ∞ × [0, +∞), R
.

We assume that the data D ∞ satisfies the following assumption:

Assumption (H ∞ )
a) The following ellipticity condition for the terms a i , α i i∈[ [1,I]] :

(i) ∃ a > 0, ∀i ∈ [[1, I]], ∀(t, x, l) ∈ [0, T ] × [0, +∞) × [0, +∞), a i (t, x, l) ≥ a, (ii) ∃ α > 0, ∀i ∈ [[1, I]], ∀(t, l) ∈ [0, T ] × [0, +∞), α i (t, l) ≥ α, b)
The following bounded Lipschitz regularity for the coefficients at each rays

R i (i ∈ [[1, I]]) (i) ∀χ ∈ {a, b, c, f }, ∃|χ| ∈ (0, ∞), ∀i ∈ [[1, I]] : sup |χ i (t, x, l)| + |χ i (t, x, l) -χ i (t, x, l)| |t -s| + |x -y| + |l -q| , (t, s, x, y, l, q) ∈ [0, T ] 2 × [0, +∞) 4 , t ̸ = s, x ̸ = y, l ̸ = q ≤ |χ|.
And for the coefficients at the junction point {0}:

(ii) ∀ρ ∈ {α, r, ϕ}, ∃ |ρ| ∈ (0, +∞), sup |ρ(t, l)| + |ρ(t, x, l) -ρ(t, x, l)| |t -s| + |l -q| , (t, s, l, q) ∈ [0, T ] 2 × [0, +∞) 2 , t ̸ = s, l ̸ = q ≤ |ρ|. c) For all i ∈ [[1, I]], the initial condition g i : (x, l) → g i (x, l) belongs to C 2,0 b (0, +∞) 2 , whereas
the map l → g(0, l) is Lipschitz bounded continuous (as the coefficients and free terms in the last assumption b)-(i), b)-(ii)). The following compatibility condition holds:

(i) ∂ l g(0, l) + I i=1 α i (0, l)∂ x g i (0, l) -r(0, l)g(0, l) = ϕ(0, l), l ∈ [0, +∞).
Similarly to the definitions involved in Theorem 2.4, we give the definition for the class of regularity for a solution of system (1), now extended to an unbounded domain denoted by

Ω T,∞ = (0, T ) × • N ∞ × (0, +∞) ∋ (t, (x, i), l).
Definition 2.7. Let α > 0. We say that

f :=      Ω T,∞ → R, t, (x, i), l → f i (t, x, l)
.

is in the class f ∈ C 1+ α 2 ,2+α, α 2 {0},∞ Ω T,∞ if
(i) the following continuity condition holds at the junction point {0}:

for all (t, l) ∈ [0, T ] × [0, +∞), for all (i, j) ∈ [[1, I]] 2 , f i (t, 0, l) = f j (t, 0, l) = f (t, 0, l); (ii) for all i ∈ [[1, I]], the map (t, x, l) → f i (t, x, l) has a regularity in the class C α 2 ,1+α, α 2 [0, T ] × [0, +∞) 2 , R ; (iii) for all i ∈ [[1, I]], the map (t, x, l) → f i (t, x, l) has a regularity at the interior of each ray R i in the class C 1+ α 2 ,2+α, α 2 (0, T ) × (0, +∞) 2 , R ; moreover, (f i , ∂ t f i , ∂ x f i , ∂ 2 x f i ) ∈ L ∞ (0, T ) × (0, +∞) 2 ;
(iv) at the junction point {0}, the map (t, l) → f (t, 0, l) has a regularity in the class

C α 2 ,1+ α 2 [0, T ] × [0, +∞), R ; (v) for all i ∈ [[1, I]],
on each ray R i , f admits a generalized locally integrable derivative with respect to the variable l in q∈(1,+∞)

L q loc (0, T ) × (0, +∞) 2 .
We have the following Theorem, whose proof is postponed in Appendix :

Theorem 2.8. Assume that the data D ∞ satisfies assumption (H ∞ ). Then the following system:

                             ∂ t u i (t, x, l) -a i (t, x, l)∂ 2 x u i (t, x, l) + b i (t, x, l)∂ x u i (t, x, l)+ c i (t, x, l)u i (t, x, l) = f i (t, x, l), (t, x, l) ∈ (0, T ) × (0, +∞) 2 , ∂ l u(t, 0, l) + I i=1 α i (t, l)∂ x u i (t, 0, l) -r(t, l)u(t, 0, l) = ϕ(t, l), (t, l) ∈ (0, T ) × (0, +∞) ∀(i, j) ∈ [[1, I]] 2 , u i (t, 0, l) = u j (t, 0, l) = u(t, 0, l), (t, l) ∈ [0, T ] × [0, +∞) 2 , ∀i ∈ [[1, I]], u i (0, x, l) = g i (x, l), (x, l) ∈ [0, +∞) 2 , (20) 
is uniquely solvable in the class C

1+ α 2 ,2+α, α 2 {0},∞ Ω T,∞ .
3. The main result obtained by Von Below in [START_REF] Below | Classical solvability of linear parabolic equations on networks[END_REF] revisited.

Up to our knowledge, the first result obtained for linear parabolic equations posed on networks -involving Kirchhoff's type boundary conditions at the vertices -was obtained by Von Below in [START_REF] Below | Classical solvability of linear parabolic equations on networks[END_REF]. Essentially, it is proved in this paper that a linear parabolic problem on a network with a classical Kirchhoff's boundary conditions at the junctions vertices is well-posed. The proof consists in increasing the dimension of the problem and showing that the linear parabolic problem with Kirchhoff's condition is equivalent to a well-posed initial boundary value problem but for a higher dimensional standard parabolic linear system, where the boundary conditions are transformed in such a way that the classical results on linear parabolic equations systems with Neumann boundary conditions may be applied (namely, the conditions of Chapter VII in [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF]).

The result of [START_REF] Below | Classical solvability of linear parabolic equations on networks[END_REF] on existence is stated under natural smoothness assumptions for the coefficients, but also under second order strong compatibility conditions for the initial data g at the junction point {0}, (see equation 8.3 in [START_REF] Below | Classical solvability of linear parabolic equations on networks[END_REF]). To be more specific, recall that if u is a weak solution in the Sobolev class W 1,2 (for infinitely differentiable test functions vanishing at the lateral surface of the domain [0, T ] × [0, R]) of some classical linear parabolic problem with coefficients (a, b, c, f ) that belong to C 1+ α 2 ,2+α (0, T )×(0, R) , then u ∈ C 1+ α 2 ,2+α (0, T )×(0, R) (see Theorem III.12.2 given in [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF]). Moreover, if the initial data of this classical parabolic problem satisfies the classical compatibility conditions at the lateral surface of [0, T ] × [0, R], then the solution u will have a regularity in the class C 1+ α 2 ,2+α [0, T ]×[0, R] , namely in the whole domain up to the parabolic boundary. Hence, considering conditions at some vertex with a similar look as various classical boundary conditions coming from several directions, leads naturally to the strengthening of the compatibility conditions at the vertex: this is what is imposed in [START_REF] Below | Classical solvability of linear parabolic equations on networks[END_REF] as the key in order to guarantee that not only the solution itself, but also the gradient of the solution is regular through the vertices.

In this section -as was obtained by I.Ohavi in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF] in a slightly different context (Quasi-linear parabolic equation but with homogeneous coefficients) -we show that there is no need to impose a second order compatibility condition of the initial data, but only a first order compatibility with Kirchhoff's condition at the vertex; we show that this is enough to ensure that the solution admits a regular gradient at the junction point.

Turning to uniqueness issues, one should keep in mind that the regularity at the junction point of the time derivative and the Laplacian of the solution is not required. The classical results on well-posedeness of parabolic systems that use the same linear operator involved in our problem ensure that the linear operator is invertible on the Banach space

C 1+ α 2 ,2+α [0, T ] × [0, R] × C 1+α/2 [0, T ] ,
(see see Chapter IV, section 7 in [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF]) as long as the coefficients belong at least to the class C 1+α/2 [0, T ] up to the boundary. Notably, we will see that only Lipschitz coefficients at the junction {0} are necessary to ensure the validity of Kirchhoff's boundary condition. This phenomenon was also observed in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF].

Our main objective is to ensure the well posedness of the system (1), where a new variable l comes into play. If one wishes, as is natural, to exploit and adapt similar ideas as in the classical approach by following the techniques of proof given in [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF] and performing the same kind of transformations as in [START_REF] Below | Classical solvability of linear parabolic equations on networks[END_REF] for example, the following issues would surely have to be considered:

i) obtain an explicit solution on the half line with constant coefficients using the heat kernel.

This relates to the joint density of the reflected Brownian motion and its local time;

ii) obtain the solvability with general coefficients in the half line (for e.g. as in Chapter IV, Section 7 of [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF]) but taking good care of the fact that we do not have an uniform parabolic operator in the variables (x, l);

iii) adapt the theory of linear parabolic systems to the linear operator involved by the system, like in Chapter VII of [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF], which would lead to very long polynomial calculations.

As already mentioned in the Introduction, in this paper we prefer to choose another path and dig into the recent ideas of [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF], where the second author obtained classical solvability in Hölder spaces for quasi-linear parabolic system posed on a star-shaped network, with a homogeneous

Neumann or Kirchhoff's condition denoted by F , by constructing and studying a convergent elliptic scheme.

Let us now give some insights on the methodology used in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF]. First, elementary arguments show that the elliptic quasi-linear problem is well posed (see [START_REF] Lions | Viscosity solutions for junctions: Well posedness and stability[END_REF] or Appendix B in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF]). The data of the system satisfies the classical assumption of uniform ellipticity, with quadratic growth in the gradient variable given in Chapter VI of [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF], whereas the boundary condition F is assumed to be increasing with respect to the gradient at the junction point {0}. The main key is to obtain first a bound for |∂ t u| in the whole domain (see Lemma 4.1 in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF]). Note that in the quasilinear context of [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF], the price to pay was to consider homogeneous coefficients. Let us also mention that all the bounds for the solution are completely independent of Kirchhoff's boundary condition F (see Lemma 4.1 and 4.2 in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF]).

Following these ideas, the construction of the solution of system (1) will be done via a convergence approximation scheme by constructing a parabolic discretization scheme with a discrete grid w.r.t. the variable l:

         ∂ t u p i (t, x) -a i (t, x, l p )∂ 2 x u p i (t, x) + b i (t, x, l p )∂ x u p i (t, x) + c i (t, x, l p )u p i (t, x) = f i (t, x, l p ), n(u p-1 (t, 0) -u p (t, 0)) + I i=1 α i (t, l p )∂ x u p i (t, 0) -r(t, l p )u p (t, 0) = ϕ(t, l p ).
.

Getting accurate expressions of the bounds for the derivatives of the solution of each such l p -step parabolic problem is of crucial importance in order to guarantee the convergence of the sequence towards a non-exploding solution as the mesh-size of the l-grid tends to zero. This section is entirely devoted to the matter of getting expressions of these bounds that are good enough (see Theorem 3.5).

With this purpose in mind, we follow the same line of arguments as in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF]: we construct an elliptic system designed to converge to the parabolic problem. The linear character of our system permits to simplify some of the arguments since Bernstein's estimates are no longer needed to find a bound for the gradient term; also, up to a bit of extra burdensome technicalities, the strong assumption on the homogeneity of the coefficients that was needed in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF] is not required here. A central key is to obtain an uniform bound of the elliptic system approximation time derivative n|u k-1 (t, 0) -u k (t, 0)| at the junction point {0}. This is done in Proposition 3.3, where we provide a refined uniform bound independent of the coefficients appearing on the rays:

this refined bound will be crucial to ensure the convergence of our l-step parabolic scheme in Section 4.

In the whole remaining of this section, we consider the following data:

D ′                                                    a i ∈ W 1,∞ [0, T ] × [0, R], R + i∈[[1,I]] b i ∈ W 1,∞ [0, T ] × [0, R], R i∈[[1,I]] c i ∈ W 1,∞ [0, T ] × [0, R], R i∈[[1,I]] f i ∈ W 1,∞ [0, T ] × [0, R], R i∈[[1,I]] α i ∈ W 1,∞ [0, T ], R + i∈[[1,I]] λ ∈ W 1,∞ [0, T ], R + , γ ∈ W 1,∞ [0, T ], R , g ∈ C 1 N R ∩ C 2 b • N * R .
We assume furthermore that the data D ′ satisfy the following assumption:

Assumption (H ′ )
a)-Ellipticity condition for the terms a i , α i , i∈[[1,I]] and λ:

(i) ∃ a > 0, ∀i ∈ [[1, I]], ∀(t, x) ∈ [0, T ] × [0, R], a i (t, x) ≥ a, (ii) ∃ α > 0, ∀i ∈ [[1, I]], ∀t ∈ [0, T ], α i (t) ≥ α, (iii) ∃ λ > 0, ∀t ∈ [0, T ], λ(t) ≥ λ.
b)-Compatibility conditions for the initial condition g:

(i) -λ(0)g(0) + I i=1 α i (0)∂ x g i (0) = γ(0), (ii) ∂ x g(R) = 0.
We consider the following parabolic system posed on the star-shaped network N R :

                                     ∂ t u i (t, x) -a i (t, x)∂ 2 x u i (t, x) + b i (t, x)∂ x u i (t, x) + c i (t, x)u i (t, x) = f i (t, x), (t, x) ∈ (0, T ) × (0, R), -λ(t)u(t, 0) + I i=1 α i (t)∂ x u i (t, 0) = γ(t), t ∈ (0, T ), ∂ x u i (t, R) = 0, t ∈ (0, T ), ∀(i, j) ∈ [[1, I]] 2 , u i (t, 0) = u j (t, 0) = u(t, 0), t ∈ [0, T ], ∀i ∈ [[1, I]], u i (0, x) = g i (x), x ∈ [0, R]. (21) 
Define

(t k = kT n ) 0≤k≤n by a grid on [0, T ] . We consider (u k i ) i∈[[1,I]],k∈[[0,n]]
the unique classical solution of the following system of elliptic equations (E k ) k∈[ [1,n]] :

E k :                              n(u k i (x) -u k-1 i (x)) -a i (t k , x)∂ 2 x u k i (x) + b i (t k , x)∂ x u k i (x) + c i (t k , x)u k i (x) = f i (t k , x) if x ∈ (0, R), -λ(t k )u k (0) + I i=1 α i (t k )∂ x u k i (0) = γ(t k ), ∂ x u k i (R) = 0, ∀i ∈ [[1, I]], u k i (0) = u k j (0) = u k (0), ∀(i, j) ∈ [[1, I]] 2 . ( 22 
)
where u 0 i (x) = g i (x). By applying inductively classical results on elliptic partial differential equations (see for e.g. Theorem 2.1 of [START_REF] Lions | Viscosity solutions for junctions: Well posedness and stability[END_REF]) gives us insurance that at each step k ∈ [ [1, n]] the above elliptic system (22) admits a unique solution

(u k i ) i∈[[1,I]] in the class C 2 (N R ). A map h in the class C 2 (N R ) is a super (resp. sub) solution corresponding to E k if:                              n(h i (x) -u k-1 i (x)) -a i (t k , x)∂ 2 x h i (x) + b i (t k , x)∂ x h i (x) + c i (t k , x)h i (x) -f i (t k , x) ≥ 0, (resp. ≤ 0), if x ∈ (0, R), -λ(t k )h(0) + I i=1 α i (t k )∂ x h i (0) -γ(t k ) ≤ 0, (resp. ≥ 0) ∂ x h i (R) ≥ 0, (resp. ≤ 0), ∀i ∈ [[1, I]], h(0) = h j (0) = h i (0), ∀(i, j) ∈ [[1, I]] 2 .
The elliptic comparison theorem holds true in the class C 2 (N R ) (see Theorem 3.3 in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF]), that is if f is a super solution and v a sub solution, then f ≥ v in the whole domain N R .

For a fixed n ∈ N * , we will denote in the sequel L k i i∈[[1,I]],k∈[ [1,n]] the family of operators acting each on ϕ ∈ C 2 ([0, R]) and defined by

L k i ϕ(x) = n(ϕ(x) -u k-1 i (x)) -a i (t k , x)∂ 2 x ϕ(x) + b i (t k , x)∂ x ϕ(x) + c i (t k , x)ϕ(x) -f i (t k , x).
Using this notation, h is a super (resp. sub) solution corresponding to E k implies L k i h ≥ 0 (resp. ≤ 0) for all x ∈ (0, R). 

* (n ≥ (⌊|c| ∞ ⌋ + 1) ∨ |c| 2 ∞ ), max i∈[[1,I]] max k∈[[1,n]] |u k i | ∞ ≤ C 0 , (23) 
with

C 0 := |γ| ∞ λ ∨ |g| ∞ + |f | ∞ e |c|∞+1 . ( 24 
)
Proof.

Step 1. Analysis.

We are going to show by induction on the variable

k ∈ [[0, n]] that ∀k ∈ [[0, n]], ∀i ∈ [[1, I]], |u k i | ∞ ≤ M k,n
for a well chosen positive sequence

(M k,n ) k∈[[0,n] independent on the branch index i ∈ [[1, I]].
For the construction of (M k,n ) k∈[[0,n] , the main tool is to use the elliptic comparison theorem for junction partial differential equations (see for e.g. Theorem 3.3 in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF] or Theorem 2.1 in [START_REF] Lions | Viscosity solutions for junctions: Well posedness and stability[END_REF])

iteratively for each problem E k with the family

( φk i ) i∈[[1,I]], k∈[[1,n]]
of constant functions defined by

φk i : x → M k,n and φk i : x → -M k,n . (25) 

Initialisation of our induction imposes that for all

i ∈ [[1, I]], M 0,n ≥ |u 0 i | ∞ = |g i | ∞ ,
which is guaranteed by choosing M 0,n such that

M 0,n ≥ max i∈[[1,I]] |g i | ∞ (26) 
Let us now find sufficient conditions that ensure the heredity of the property. Fix k ∈ [ [1, n]].

As announced before, the idea is to make use of the comparison theorem for the problem E k in combination with the induction hypothesis:

∀i ∈ [[1, I]], |u k-1 i | ∞ ≤ M k-1,n .
Dropping the references to i, the induction hypothesis implies

L k φk (x) ≥ n M k,n -u k-1 (x) + c(t k , x)M k,n -f (t k , x) ≥ (n -|c| ∞ )M k,n -nM k-1,n -|f | ∞ so that L k φk (x) ≥ 0 is guaranteed if the following induction relation holds M k,n = n n -|c| ∞ M k-1,n + |f | ∞ n that is solved for M k,n = n n -|c| ∞ k M 0,n + |f | ∞ |c| ∞ n n -|c| ∞ k -1 1 |c|∞̸ =0 (27) 
(remember that n ≥ ⌊|c| ∞ ⌋ + 1).

Let us now turn to the boundary conditions needed to apply the comparison theorem.

The continuity condition at the junction point {0} of the family

( φk i ) i∈[[1,I]], k∈[[1,n]] is clearly satisfied since ϕ k i (0) = ϕ k j (0) = M k,n ∀(i, j) ∈ [[1, I]] 2 .
Moreover, it is also clear that ∂ x φk (R) = 0 ≥ 0. For Kirchhoff's condition, we need

0 ≥ -λ(t k )ϕ k (0) + I i=1 α i (t k )∂ x ϕ k (0) -γ(t k ) = -λ(t k )M k,n -γ(t k )
that is guaranteed whenever

M k,n ≥ |γ| ∞ λ . (28) 
In conclusion of this analysis, we have shown by induction that 

( φk i ) i∈[[1,I]], k∈[[0,n]] defined in (25)

Step 2. Synthesis

In regard of our previous analysis, we define our purposely designed sequence 

(M k,n ) k∈[[0,n] by setting M 0,n = |γ| ∞ λ ∨ |g| ∞ , M k,n = n n -|c| ∞ k M 0,n + |f | ∞ |c| ∞ n n -|c| ∞ k -1 1 |c|∞̸ =0 .
-M k,n ≤ u k i (x) ≤ M k,n , x ∈ [0, R].
Finally, using the explicit expression of M k,n yields that for all 

i ∈ [[1, I]], k ∈ [[1, n]] : |u k i | ∞ ≤ |γ| ∞ λ ∨ |g| ∞ + |f | ∞ e |c|∞+1 := C 0 , for large enough n ∈ N * (n ≥ (⌊|c| ∞ ⌋ + 1) ∨ |c| 2 ∞ ),
∈ N * (n ≥ (⌊|c| ∞ ⌋ + 1) ∨ |c| 2 ∞ ∨ |α| W 1,∞ α ), max i∈[[1,I]] max k∈[[1,n]] n|u k i -u k-1 i | ∞ ≤ C 1 (29) 
with

C 1 := 1 + C 0 |λ| W 1,∞ + |γ| W 1,∞ λ ∨ C(g) exp (K) (30) 
where we have set

C(g) := |a| ∞ |∂ 2 x g| ∞ + |b| ∞ |∂ x g| ∞ + |c| ∞ |g| ∞ + |f | ∞ , (31) 
and

K := 1 a 3 ∨ 1 1 + |α| α + C 0 + C (|b| W 1,∞ + |c| W 1,∞ + |f | W 1,∞ ) (32) 
where C is a universal constant (namely one can choose C = 1188).

Proof. Step 1. Adaptive approximation of the identity

For technical reasons that will appear clearly later, we need to introduce approximations of the identity function. These approximations will be used to ensure Kirchhoff's condition for the super and sub solutions constructed in the proof.

In order to simplify the notations, let us fix for a moment k ∈ [ [1, n]] and let us drop any

reference to i ∈ [[1, I]]. Denote [α] k := α i (t k-1 ) α i (t k ) .
Observe that

|[α] k -1| ≤ |α| W 1,∞ α n . ( 33 
)
Set θ > 0 a small parameter. We introduce the following interpolation polynomial

P k θ (x) = 1 -[α] k 3 θ 4 x 5 - 8 θ 3 x 4 + 6 θ 2 x 3 + [α] k x (34)
that satisfies the following important facts

     P k θ (0) = 0, (∂ x P k θ )(0) = [α] k , (∂ 2 x P k θ )(0) = 0 P k θ (θ) = θ, (∂ x P k θ )(θ) = 1, (∂ 2 x P k θ )(θ) = 0. (35) 
The polynomial P k θ is constructed s.t. the θ-approximation of the identity ψ k θ defined by

ψ k θ (x) = P k θ (x)1 x≤θ + x1 x>θ for x ∈ [0, R] (36) 
is a twice-differentiable function.

An elementary study of the polynomial Q(x) = 3x 5 -8x 4 + 6x 3 shows that it takes only positive values and satisfies that x -Q(x) ≥ 0 for any x ∈ [0, 1]. In particular, rewritting P k θ , we see that for all x ∈ [0, θ]:

P k θ (x) = θ (1 -[α] k )Q(x/θ) + [α] k (x/θ) = θ   Q(x/θ) ≥0 + [α] k ≥0 ((x/θ) -Q(x/θ)) ≥0    ≥ 0.
Hence, from the bound (33), we see that it is possible to choose θ 0 > 0 small enough so that

ψ k θ ([0, R]) ⊂ [0, R] for all θ ∈ (0, θ 0 ]. Observe that (∂ x ψ k θ )(0) = [α] k , lim x↘0+ |∂ 2 x ψ k θ (x)| = 0. (37) 
Observe also that there is a universal constant C > 0 (a rough computation gives C ≥ 66 × 18 = 1188 as announced in the statement of the proposition) s.t.

               |ψ k θ -id| ∞ ≤ C |α| W 1,∞ α n , |∂ x ψ k θ -1| ∞ ≤ C |α| W 1,∞ α n , | ∂ x ψ k θ 2 -1| ∞ ≤ C |α| W 1,∞ α n , |∂ 2 x ψ k θ (x)| ≤ C |α| W 1,∞ α n θ 1 x≤θ , (38) 
where we made use once again of the bound (33

) with n ≥ |α| W 1,∞ α .
Thus, reintroducing the dependencies on i in our notations, we define likewise a family Step 2. Analysis

(ψ k i,θ ) i∈[[1,I]],k∈[[0,n] of [0, R] valued
We aim at showing by induction on the variable k that

∀θ ∈ (0, θ 0 ], ∀k ∈ [[1, n]], ∀i ∈ [[1, I]], n|u k i -u k-1 i • ψ k i,θ | ∞ ≤ M θ k,n + ε n (θ)
where (ε n (θ)) is a sequence of functions vanishing as θ goes to 0 (non uniformly w.r.t n) and

M θ k,n k∈[[1,n]]
is a well-chosen purposely designed uniformly bounded sequence of positive numbers.

To that end, the main idea is to apply, for each k ∈ [ [1, n]], the comparison theorem to E k with a super solution of type

φk i,θ : x → u k-1 i • ψ k i,θ (x) + M θ k,n n i ∈ [[1, n]] (39) 
and a sub solution of type

φk i,θ : x → -u k-1 1,n satisfies M θ 1,n ≥ n|g(ψ 1 θ (x)) -g(x)| + C(g), x ∈ (0, R). (40) 
The initialization conditions needed at the boundaries will be treated later including all the cases.

Let us now fix k ≥ 2. To avoid an overcrowd of terms in our computations, let us introduce the following set of notations (the symbol v announces a kind of 'error term for v' that is due to the use of our approximation of the identity). Regarding our approximation of the identity :

       id k θ (x) = a(t k , x) ∂ x ψ k θ (x) 2 a(t k-1 , ψ k θ (x)) , o k θ (x) = 1 -id k θ (x) . (41) 
Regarding the solution :

                  
Regarding the coefficients of the elliptic problem :

        
and also the following bound on the 'error terms'

                 | b k θ | ∞ ≤ C n |b| W 1,∞ (1 + |α| α ) + C|b| ∞ sup k∈[[1,n]] | o k θ | ∞ | c k θ | ∞ ≤ C n |c| W 1,∞ (1 + |α| α ) + C|c| ∞ sup k∈[[1,n]] | o k θ | ∞ | f k θ | ∞ ≤ C n |f | W 1,∞ (1 + |α| α ) + C|f | ∞ sup k∈[[1,n]] | o k θ | ∞ (45) with | o k θ | ∞ ≤ C |α| W 1,∞ α n + |a| W 1,∞ a n
Observe also that for all x ∈ (0, R),

∂ x u k-1 (x) = ∂ x u k-1 (x) -∂ x u k-1 (R) = - R x ∂ 2 x u k-1 (z)dz = - R x dz a(t k-1 , z) n u k-1 -u k-2 (z) + b(t k-1 , z)∂ x u k-1 (z) +c(t k-1 , y)u k-1 (z) + f i (t k-1 , z) . Now using R x b(t k-1 , z) a(t k-1 , z) ∂ x u k-1 (z) = b(t k-1 , z) a(t k-1 , z) u k-1 (z) R x - R x ∂ z b(t k-1 , z) a(t k-1 , z) u k-1 (z)dz,
we see that

sup x∈(0,R) |∂ x u k-1 (x)| ≤ 1 a M θ k-1,n + that in order to guarantee L k φk θ (x) ≥ 0 for all x ∈ (0, R), it is sufficient that M θ k,n ≥ M θ k-1,n 1 + K 1 n + ε n (θ) + K 1 n + ε n (θ) (47) 
with

K = 1 a 3 ∨1 1 + |α| α + C 0 + C (|h| W 1,∞ + |c| W 1,∞ + |f | W 1,∞ ).
Let us now turn to the boundary conditions needed to apply the comparison theorem.

The continuity condition at the junction point {0} is satisfied: indeed, it is satisfied for [1,I]] and since for all (i, j) ∈ [[1, I]] 2 ψi,θ (0) = ψj,θ (0) = 0, we have

(u k-1 i ) i∈[
φk i,θ (0) = u k-1 i (ψ i,θ (0)) + M k,n n = u k-1 (0) + M k,n n = φk j,θ (0) ∀(i, j) ∈ [[1, I]] 2 .
It is also clear that for all x in the vicinity of R we have

ψ i,θ (x) = x, so that ∂ x φk i (R) = ∂ x u k-1 i (R) = 0 ≥ 0 (i ∈ [[1, I]]) (satisfied when k = 1 because of the compatibility condition b)(ii)).
We now look at Kirchhoff's condition. Since the initial condition (g i ) i∈[ [1,I]] satisfies itself Kirchhoff's condition (compatibility assumption) we may treat the cases k = 1 and k ≥ 2 all together. Observe that for all

i ∈ [[1, I]], k ∈ [[1, n]], φk i,θ has been constructed such that ∂ x φk i,θ (0) = α i (t k-1 ) α i (t k ) ∂ x u k i (0).
In particular, for fixed i 0 ∈ [ [1, n]] and k ∈ [ [1, n]], using Kirchhoff's condition satisfied by

(u k i ) i∈[[1,I]] we have, 0 ≥ -λ(t k ) φk i 0 ,θ (0) + I i=1 α i (t k )∂ x φk θ (0) -γ(t k ) = -λ(t k ) u k-1 i 0 (0) + M θ k,n n + I i=1 α i (t k )∂ x φk i,θ (0) -γ(t k ) = -λ(t k ) u k-1 (0) + M θ k,n n + I i=1 α i (t k-1 )∂ x u k-1 i (0) -γ(t k ) = -λ(t k ) M θ k,n n -(λ(t k ) -λ(t k-1 )) u k-1 (0) -(γ(t k ) -γ(t k-1 )) ,
which is guaranteed whenever

M θ k,n ≥ C 0 |λ| W 1,∞ + |γ| W 1,∞ λ . ( 48 
)
In conclusion of our analysis, the family of functions ( φk i,θ ) k∈[ [1,n]] defined in ( 39) is assured to be a super solution if the sequence (M k,n ) k∈[[0,n] satisfies the initialization condition (40) together with (47) and (48).

Step 3. Synthesis

In regard of our previous analysis, we construct a purposely designed sequence M θ k,n k∈ [[0,n] by setting

M θ 0,n = C 0 |λ| W 1,∞ + |γ| W 1,∞ λ ∨ (ε n (θ) + C(g)) , M θ k,n = M θ 0,n 1 + K 1 n + ε n (θ) k + 1 + K 1 n + ε n (θ) k . Defined likewise, the sequence M θ k,n k∈[[0,n]
is purposely constructed in order to satisfy (40), ( 47) and ( 48). Hence, we are in position to apply the comparison theorem to the family of functions ( φk i,θ ) i∈[ [1,I]] . We perform similar computations for the family ( φk i,θ ) i∈[ [1,I]] defined in (39). As follows by the application of the comparison theorem, we ensure that for all θ ∈ (0,

θ 0 ], i ∈ [[1, n]] and k ∈ [[1, n]] : n|u k i -u k-1 i • ψ k i,θ | ∞ ≤ M θ k,n .
Now using the explicit expression of M θ k,n and letting θ tend to 0 in the previous inequality yields finally that for all i ∈ [ [1, n]] and k ∈ [ [1, n]] :

n|u k i -u k-1 i | ∞ ≤ 1 + C 0 |λ| W 1,∞ + |γ| W 1,∞ λ ∨ C(g) exp (K)
for large enough n ∈ N * . □

Unfortunately, the previous inequality does not not give a sufficient bound at the junction point {0} for our purposes. In order to ensure the convergence of the parabolic scheme involving the local time variable l we need a more refined bound on the time derivative at the junction point {0}. This is the subject of the next subsection where we refine the previous analysis to get a better bound at the junction point {0}.

3.3.

Refined estimates for the approximated time derivative at the junction point.

In this subsection, we give a proof of a specific estimation bound for the approximated time derivative at the junction point that is enough to ensure the convergence of our forthcoming parabolic scheme in Section 4. In order to derive this key estimate, we replace the construction of the sequence (M k,n ) in the previous subsection by the construction of a sequence of functions

(v k,n
) that are solutions of a well-designed system of iterated ODE (see ( 50)). Remarkably enough, our computations show that it is possible to decouple Kirchhoff's condition when passing to the first order time variable error and to prescribe separately the values of the solution and the values of its derivative at the junction.

Note that the system (50) possesses only constant coefficients and its solution may be viewed as a kind a supreme envelope of all possible first order time errors. Under this light and from a probabilistic perspective, the structure of (50) encompasses the different possible behaviors of the distinct speed measure of reflected stochastic diffusions with characteristics (

√ 2a i , b i ) i∈[[1,I]] .
Moreover, it is notable that the same structure equation (50) will also be used as the key ingredient to show that the accumulated time spent by the spider motion at the junction point has Lebesgue measure zero (non-stickiness condition), which is a crucial step in order to prove an Itô formula for the spider motion in presence of discontinuities of the driving coefficients at the junction point.

Set

Θ n (λ, γ) := sup k∈[[1,n]] |u k (0)| |λ| ⌊W 1,∞ ([]0,T )⌋ + |γ| ⌊W 1,∞ ([0,T ])⌋ λ . ( 49 
)
Proposition 3.3. We have

max k∈[[1,n]] max i∈[[1,I]] n|u k i (0) -u k-1 i (0)| ≤ Θ n (λ, γ) ∨ C(g)
where C(g) is the constant defined in (31).

Proof. As already mentioned, the main idea is to perform the same computations carried over in the proof of Proposition 3.2, but replacing there the construction of the sequence (M k,n ) by the construction of a sequence of functions (v k,n ) whose values at x = 0 depend crudely on the parameters in Kirchhoff's condition. Such a sequence of functions will naturally tragically explode as n tends to infinity on the interior of each branch -except at the junction point {0}

-which is just enough for our purposes.

Let us introduce the sequence

(v k,n ) k∈[[0,n]] by setting v θ 0,n ≡ max i∈[[1,I]] sup x∈(0,R) | -a i (0, x)∂ 2 x g i (x) + b i (0, x)∂ x g i (x))|
and by defining v k,n for k ∈ [ [1, n]] inductively as the unique solution in C 2 ([0, R]) of the following well-posed second order ordinary differential equation:

             ∂ 2 x v θ k,n (x) + |b| ∞ a ∂ x v θ k,n (x) = κ θ k,n (x), if x ∈ (0, R), ∂ x v θ k,n (0) = 0, v θ k,n (0) = Θ n (λ, γ) ∨ C(g) + n max i∈[[1,I]] |g • ψ 1 i,θ -g| ∞ , (50) 
where the source term κ θ k,n is given by induction by setting

κ θ k,n (x) := n a 1 + K( 1 n + ε n (θ)) v θ k-1,n (x) + Kn a ( 1 n + ε n (θ)).
Here the constant K and the error term ε n (θ) are the same that appear in the proof of Proposition 3.2. The ODE (50) is explicitly solvable for any k ∈ [ [1, n]] with its solution given by

v θ k,n (x) = v θ k,n (0) + x 0 exp - |b| ∞ a z z 0 exp |b| ∞ a u κ θ k,n (u)du dz.
Note that from the explicit form of v θ k,n it is easy to show by induction that

∀x ∈ [0, R], 0 ≤ v θ k,n (x), 0 ≤ ∂ x v θ k,n (x), (51) 
In particular, note that v θ k,n is an increasing function. Remember the definition of our family of approximations of the identity ψ k θ introduced in (36). Following the proof of the Proposition 3.2, we show by induction that the following maps

φk i,θ : x → u k-1 i • ψ k i,θ (x) + v θ k,n (x) n and φk i,θ : x → u k-1 i • ψ k i,θ (x) - v θ k,n (x) n , i ∈ [[1, I]] (52) 
are respectively super and sub solution of the corresponding elliptic problems.

Initialization holds true due to the conditions imposed on g at x = 0 and x = R, the expression of the constant v θ 0,n and the fact that ψ 0 θ ≡ id. Following the same computations as in Step 2. Analysis in the proof of Proposition 3.2, we are going to show that the conditions needed to ensure the comparison on the whole domain, namely

                             φk θ ∈ C 2 (N R ) ∂ x φk i,θ (R) ≥ 0, -λ(t k ) φk i,θ (0) + I i=1 ∂ x φk i,θ (0) -γ(t k ) ≤ 0, L k i φk i,θ (x) = n( φk i,θ (x) -u k-1 i (x) -a i (t k , x)∂ 2 x φk i,θ (x) +b i (t k , x)∂ x φk i,θ (x) + c i (t k , x) φk i,θ (x) -f i (t k , x) ≥ 0, are satisfied.
Clearly, since g, u k-1 , (ψ i,θ ) i∈[ [1,I]] and the constant family

(v θ k,n ) i∈[[1,I]] all belong to C 2 (N R ), we verify that φk θ ∈ C 2 (N R ).
Moreover, using the definition ∂ x v θ k,n (0) = 0, similar arguments as those used in the proof of Proposition 3.2 ensure that the boundary inequality at junction point holds true. More precisely, using Kirchhoff's condition satisfied by u k-1 and the initial values

v θ k,n (0) ≥ Θ(λ, γ) and ∂ x v θ k,n (0) = 0 imply -λ(t k ) φk i,θ (0) + I i=1 ∂ x φk i,θ (0) -γ(t k ) ≤ 0 for any k ∈ [[1, n]]. At x = R, we have ∂ x φk i,θ (R) = ∂ x u k-1 i • ψ k i,θ (x) + v θ k,n (x) n x=R = ∂ x u k-1 i (R) + ∂ x v θ k,n (R) ≥ 0,
because the positive derivative of v θ k,n .

We now focus on the remaining inequality involving the operator L k i on each edge. For k = 1, the initialization condition

L 1 i φ1 i,θ ≥ 0 is ensured if v θ 1,n ≥ n|g(ψ 1 i,θ (x)) -g(x)| + C(g), (53) 
which is clearly satisfied because of our definition of v θ 1,n (0) and because v θ 1,n is an increasing function.

Let us now turn to the case k > 1 and fix k ∈ [ [2, n]]. Our induction hypothesis asserts that φk-2 i,θ is a super solution of E k-1 . By comparison we have then that u k-1 i ≤ φk-1 i,θ . In order to simplify the exposition, let us denote H k,n i the operator acting on ϕ ∈ C 2 ([0, R]) defined by

H k,n i ϕ(x) = - a i (t k , x) n ∂ 2 x ϕ(x) + h i (t k , x) n ∂ x ϕ(x) + c i (t k , x) n ϕ(x) + f i (t k , x) n .
Dropping any reference to the branch index i, using this notation together with the notations used in the proof of Proposition 3.2, we have

L k φk θ (x) = Id + H k,n v θ k,n (x) -v θ k-1,n (x) -n u k-1 (x) -u k-2 • ψ k-1 θ (x) - v θ k-1,n (x) n =u k-1 1 n + ε n (θ) v θ k-1,n (x) -K 1 n + ε n (θ) .
where the constants K and the term of error ε n (θ) have the same expressions given in the last proposition. Now using that v θ k,n is positive, as well as its first derivative, we see (since n ≥ ⌈|c| ∞ ⌉ + 1) that:

Id + H k,n i v θ k,n (x) = v θ k,n (x) - a i (t k , x) n ∂ 2 x v θ k,n (x) + b i (t k , x) n ∂ x v θ k,n (x) + c i (t k , x) v θ k,n (x) n ≥ v θ k,n (x) 1 + c i (t k , x) n - a i (t k , x) n ∂ 2 x v θ k,n (x) - b i (t k , x) a i (t k , x) ∂ x v θ k,n (x) ≥ - a i (t k , x) n ∂ 2 x v θ k,n (x) + |b| ∞ a ∂ x v θ k,n (x) .
From the previous computations and remembering the inductive definition of κ θ k,n (x) gives finally

L k φk θ (x) ≥ -1 + K( 1 n + ε n (θ)) v θ k-1,n (x) -K 1 n + ε n (θ) - a i (t k , x) n ∂ 2 x v θ k,n (x) + |b| ∞ a ∂ x v θ k,n (x) ≥ a i (t k , x) n -∂ 2 x v θ k,n (x) - |b| ∞ a ∂ x v θ k,n (x) + κ θ k,n (x) = 0,
where the equality to 0 is ensured by the fact that v θ k,n satisfies the first line in (50). Hence, we have proved that

L k i φk i,θ (x) ≥ 0,
which holds for all i ∈ [[1, I]] and x ∈ (0, R).

In conclusion, we ensure that, for any k

∈ [[1, n]], the family φk i,θ i∈[[1,I]]
is a super solution for E k . Applying the comparison principle ensures that for all k ∈ [[1, n]]:

∀x ∈ [0, R], n u k i (x) -u k-1 i • ψ k θ (x) ≤ v θ k,n (x).
The same type of computation may be performed to prove that the family φk

i,θ i∈[[1,I]] is indeed a sub solution for E k (for any k ∈ [[1, n]]).
Applying the comparison principle ensure then that

for all k ∈ [[1, n]]: ∀x ∈ [0, R], n|u k i (x) -u k-1 i • ψ k θ (x)| ≤ v θ k,n (x).
In particular since ψ k θ (0) = 0 and remembering our prescribed initial condition on v θ k,n (0), we conclude that

max k∈[[1,n]] max i∈[[1,I]] n|u k i (0) -u k-1 i (0)| ≤ Θ n (λ, γ) ∨ C(g) + n max i∈[[1,I]] |g • ψ 1 i,θ -g| ∞ .
The result of the proposition follows then by letting θ tend to zero in the right hand side. □ 3.4. Global gradient estimate.

Proposition 3.4. There exists a constant C depending only on the data of the system, such that

sup n max k∈[[1,n]] max i∈[[1,I]] |∂ x u k i | ∞ ≤ C 2 , (55) 
with

C 2 := C ′ exp R|b| ∞ a + C 1 + |c| ∞ C 0 + |f | ∞ |b| ∞ exp R|b| ∞ a -1 , (56) 
where we have set

C ′ := 1 a RC 1 + C 0 (2|b| ∞ + R(|c| ∞ + |f | ∞ )) + 2|a| W 1,∞ |b| W 1,∞ a . ( 57 
) Proof. Let n ∈ N * , k ∈ [[1, n]] and i ∈ [[1, I]]. Since ∂ 2 x u k i (x) = n(u k i -u k-1 i )(x) a i (x) + b i (x)∂ x u k i (x) a i (x) + c i (x)u k i (x) a i (x) - f (x) a i (x) ,
by proceeding to integration between 0 and R and integrating by parts the gradient term using

∂ x u k i (R) = 0, we have -∂ x u k i (0) = R 0 n(u k i -u k-1 i )(x) a i (x) dx - R 0 ∂ x b i (x) a i (x) u k i (x)dx + b i (x)u k i (x) a i (x) R 0 + R 0 c i (x)u k i (x) a i (x) - f i (x) a i (x) dx.
Using the results of Propositions 3.1 and 3.2, the ellipticity of a and the assumptions (H ′ ) on the coefficients (a, b, c, f ) yield an uniform bound

sup n max k∈[[1,n]] max i∈[[1,I]] |∂ x u k i (0)| ≤ C ′ with C ′ := 1 a RC 1 + C 0 (2|b| ∞ + R(|c| ∞ + |f | ∞ )) + 2|a| W 1,∞ |b| W 1,∞ a .
On another hand, from the results of Propositions 3.1 and 3.2, we have see that:

∀x ∈ [0, R], |∂ 2 x u k i (x)| ≤ 1 a C 1 + |b| ∞ |∂ x u k i (x)| + |f | ∞ + |c| ∞ C 0 := A + B|∂ x u k i (x)|,
where C 0 and C 1 are given respectively in ( 24) and (30). Hence, we are in position to use Grönwall's lemma, which gives

|∂ x u k i (x)| ≤ |∂ x u k i (0)| exp(BR) + A B (exp(BR) -1)
(where we use the convention e c0 -1 0 = c). Hence,

sup n max k∈[[1,n]] max i∈[[1,I]] |∂ x u k i | ∞ ≤ C 2 with C 2 = C ′ exp R|b| ∞ a + C 1 + |c| ∞ C 0 + |f | ∞ |b| ∞ exp R|b| ∞ a -1 . □ 3.5.
The main result of Von Below [START_REF] Below | Classical solvability of linear parabolic equations on networks[END_REF] revisited. The results of the preceding subsection lead us to gather uniform estimates of the sequence (u k ) k∈[[0,n]] and its partial derivatives. As shown below, similar arguments as those used for the proof of Theorem 2.2 in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF] give us insurance of the convergence of the elliptic scheme

(E k ) k∈[[0,n]] .
In turn, this allows us to state the following theorem -which is somewhat a refined version in the case of a star shaped networkof the main result obtained by Von Below in [START_REF] Below | Classical solvability of linear parabolic equations on networks[END_REF].

Theorem 3.5. Assume that the data D ′ satisfy assumptions (H ′ ). Then the parabolic system

(21) is uniquely solvable in the class C α 2 ,1+α [0, T ] × N R ∩ C 1+α,2+α (0, T ) × • N * R .
Moreover, there exist constants (C 0 , C 1 , C 2 , C 3 ), depending only on R, T , and the data D ′ , such that

||u|| ∞ ≤ C 0 , ||∂ t u|| ∞ ≤ C 1 , ||∂ x u|| ∞ ≤ C 2 , ||∂ 2 x u|| ∞ ≤ C 3 ,
with the expressions of C 0 , C 1 , C 2 , C 3 given respectively by

C 0 := |γ| ∞ λ ∨ |g| ∞ + |f | ∞ e |c|∞+1 ; C 1 := 1 + C 0 |λ| W 1,∞ + |γ| W 1,∞ λ ∨ C(g) exp (K) ; C 2 := C ′ exp R|b| ∞ a + C 1 + |c| ∞ C 0 + |f | ∞ |b| ∞ exp R|b| ∞ a -1 ; C 3 := 1 a (C 1 + |b| ∞ C 2 + |c| ∞ C 0 + |f | ∞ ) ; with C(g) := |a| ∞ |∂ 2 x g| ∞ + |b| ∞ |∂ x g| ∞ + |c| ∞ |g| ∞ + |f | ∞ ; K := 1 a 3 ∨ 1 1 + |α| α + C 0 + C (|b| W 1,∞ + |c| W 1,∞ + |f | W 1,∞ ) ,
where C stands for the universal constant of Proposition 3.2;

C ′ := exp R|b| ∞ a + C 1 + |c| ∞ C 0 + |f | ∞ |b| ∞ exp R|b| ∞ a - 1 
(with the convention e 0c -1

0 = c). Moreover, set Θ(λ, γ) := ||u|| ∞ |λ| ⌊W 1,∞ ([0,T ])⌋ + |γ| ⌊W 1,∞ ([0,T ])⌋ λ . Then, max i∈[[1,I]] |∂ t u i (., 0)| ∞ ≤ Θ(λ, γ) ∨ C(g). (58) 
Proof. The proof uses exactly the same arguments of the proof of Theorem 2.2 in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF] that is given in the quasi-linear parabolic context with a fully non-linear Kirchhoff's boundary condition at the junction point {0}. For the convenience of the reader we shall give the main issues of the proof, avoiding to linger too much on the details.

Uniqueness (point-wise) is a straight forward consequence of the comparison Theorem 2.4 of [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF] that remains applicable in our linear framework.

Let n ≥ (⌊|c| ∞ ⌋ + 1) ∧ |c| 2 ∞ . Consider the subdivision (t n k = kT n ) 0≤k≤n of [0, T ],
and (u k ) 0≤k≤n the solution of the elliptic scheme E k defined in [START_REF] Walsh | A diffusion with a discontinuous local time[END_REF]. From estimates obtained in Propositions 3.1-3.2 and 3.4, we obtain that there exists a constant M > 0 independent of n, such that:

sup n≥0 max k∈[[1,n]] |u k | ∞ + |n(u k -u k-1 )| ∞ + |∂ x u k | (0,R) + |∂ 2 x u k | (0,R) ≤ M. (59) 
Define the following sequence

(v n ) n≥0 in C 0,2 [0, T ] × N R , which is piecewise differentiable with respect to the time variable: ∀i ∈ [[1, I]], v i (0, x) = g i (x) if x ∈ [0, R], v n i (t, x) = u i,k (x) + n(t -t n k )(u i,k+1 (x) -u i,k-1 (x)) if (t, x) ∈ [t n k , t n k+1 ) × [0, R].
Hence, the uniform upper bounds in (59) yield that there exists a constant M 1 independent of n, depending only on the data of the system, such that for all i ∈ [[1, I]]:

|v n i | α [0,T ]×[0,R] + |∂ x v n i | α x,[0,T ]×[0,R] ≤ M 1 .
Using Lemma 2.2, we deduce that there exists a constant M 2 (α) > 0, independent of n, such that for all i ∈ [[1, I]], we have the following global Hölder condition:

|∂ x v n i | α 2 t,[0,T ]×[0,R] + |∂ x v n i | α x,[0,T ]×[0,R] ≤ M 2 (α).
We deduce then from Ascoli's Theorem that up to a sub sequence denoted in the same way by

n, (v n i ) n≥0 converges in C 0,1 ([0, T ] × [0, R]) to v i , and then v i ∈ C α 2 ,1+α ([0, T ] × [0, R]). Since v n
satisfies the following continuity condition at the junction point:

∀(i, j) ∈ [[1, I]] 2 , ∀n ≥ 0, ∀t ∈ [0, T ], v n i (t, 0) = v n j (t, 0), we deduce then v ∈ C α 2 ,1+α [0, T ] × N R .
We now focus on the regularity of v at the interior of

each ray R i . We prove that v ∈ C 1+ α 2 ,2+α (0, T ) × • N * R )
and satisfies on each edge:

∀ (t, x) ∈ (0, T ) × (0, R), ∂ t v i (t, x) -a i (t, x)∂ 2 x v i (t, x) + b i (t, x)∂ x v i (t, x) + v i (t, x)c i (t, x) = f i (t, x).
Using once again (59), there exists a constant M 3 (independent of n) such that for each i ∈ [[1, I]]:

∥∂ t v n i ∥ L 2 (0,T )×(0,R) ≤ M 3 , ∥∂ 2 x v n i ∥ L 2 (0,T )×(0,R) ≤ M 3 .
Hence, we get up to a sub sequence denoted abusively using the same subscript n:

∂ t v n i ⇀ ∂ t v i , ∂ 2 x v n i ⇀ ∂ 2 x v i , weakly in L 2 (0, T ) × (0, R) . Denote by C ∞ c (0, T ) × (0, R)
, the set of infinite continuous differentiable functions on (0, T ) × (0, R) with compact support. We obtain therefore that,

∀ψ ∈ C ∞ c (0, T ) × (0, R) : T 0 R 0 ∂ t v n i -a i ∂ 2 x v n i + b i ∂ x v n i + v n i c i -f i ψ (t, x)dxdt n→+∞ -----→ T 0 R 0 ∂ t v i -a i ∂ 2 x v i + b i ∂ x v i + v i c i -f i ψ (t, x)dxdt.
We now prove that for any ψ ∈ C ∞ c (0, T ) × (0, R) :

T 0 R 0 ∂ t v n i -a i ∂ 2 x v n i + b i ∂ x v n i + c i v n i -f i ψ (t, x)dxdt n→+∞ -----→ 0.
Using that (u k ) k∈[ [1,n]] is the solution of ( 22) and satisfies on each ray

R i n(u k i (x) -u k-1 i (x)) -a i (t k , x)∂ 2 x u k i (x) + b i (t k , x)∂ x u k i (x) + c i (t k , x)u k i (x) -f i (t k , x) = 0,
we obtain:

T 0 R 0 ∂ t v n i -a i ∂ 2 x v n i + b i ∂ x v n i + c i v n i -f i ψ (t, x)dxdt = n-1 k=0 t n k+1 t n k R 0 ψ(t, x) -a i ∂ 2 x v n i + b i ∂ x v n i + c i v n i -f i (t, x) --a i (t k+1 , x)∂ 2 x u k+1 i (x) + b i (t k+1 , x)∂ x u k+1 i (x) + c i (t k+1 , x)u k i (x) -f i (t k+1 , x) dxdt .
Using assumption (H ′ ), the Hölder equicontinuity in time of (v n i , ∂ x v n i ), we obtain that there exists a constant M 4 (α) independent of n such that:

∀ i ∈ [[1, I]], ∀ (t, x) ∈ [t n k , t n k+1 ] × [0, R], [b i ∂ x v n i + c i v n i -f i ] (t, x) -b i (t k+1 , x)∂ x u k+1 i (x) + c i (t k+1 , x)u k i (x) -f i (t k+1 , x) ≤ M 4 (α)(t -t n k ) α 2 ≤ M 4 (α)/n α 2 .
For the Laplacian term, we write, for all i ∈ [[1, I]], for each (t, x) ∈ (t n k , t n k+1 ) × (0, R):

a i (t k+1 , x)∂ x u i,k+1 (x) -a i (t, x)∂ 2 x v n i (t, x) = a i (t k+1 , x) -a i (t, x) ∂ 2 x u k+1 i (x) + a i (t, x) ∂ 2 x v n i (t k+1 , x) -∂ 2 x v n i (t, x) .
Using again the Hölder equicontinuity in time of (v n i , ∂ x v n i ), the uniform bound on |∂ 2 x u i,k | [0,R] and that the coefficients a i are almost everywhere differentiable with respect to the variable x, we obtain with an integration by parts:

for any ψ ∈ C ∞ c (0, T ) × (0, R) , n-1 k=0 t n k+1 t n k R 0 a i (t k+1 , x)∂ x u i,k+1 (x) -a i (t, x)∂ 2 x v n i (t, x) ψ(t, x)dxdt ≤ n-1 k=0 t n k+1 t n k R 0 a i (t k+1 , x) -a i (t, x) ∂ 2 x u k+1 i (x)ψ(t, x)dxdt + n-1 k=0 t n k+1 t n k R 0 ∂ x a i (t, x) ∂ x v n i (t k+1 , x) -∂ x v n i (t, x) ∂ x ψ(t, x)dxdt n→+∞ -----→ 0.
We conclude that for any ψ ∈ C ∞ c (0, T ) × (0, R) ,

T 0 R 0 ∂ t v i -a i ∂ 2 x v i + b i ∂ x v i + c i v i -f i ψ (t, x)dxdt = 0.
Using Theorem III.12.2 of [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF], we get finally that for all

i ∈ [[1, I]], v i ∈ C 1+ α 2 ,2+α (0, T )×(0, R) , which means that v ∈ C 1+ α 2 ,2+α (0, T ) × • N *
R , and we deduce that v i satisfies on each edge:

∀(t, x) ∈ (0, T ) × (0, R), ∂ t v i (t, x) -a i (t, x)∂ 2 x v i (t, x) + b i (t, x)∂ x v i (t, x) + c i (t, x)v i (t, x) = f i (t, x).
Remark now, from the estimates (59), that ∂ t v n i and ∂ 2 x v n i are uniformly bounded by n. Since t → ∂ t v i (t, x) ∈ C (0, T ) and t → v i (t, x) is Lipschitz continuous on [0, T ] uniformly w.r.t.

x ∈ [0, R] (this can be seen because t → v n i is equi-Lipschitz continuous and there is uniform C 0,1 convergence of v n i to v i ), we obtain that t → ∂ t v i (t, x) is bounded on (0, T ) uniformly w.r.t x ∈ [0, R]. Therefore, ∂ t v i ∈ L ∞ (0, T ) × (0, R) . The same argument may be used to obtain

∂ 2 x v i ∈ L ∞ (0, T ) × (0, R) . We conclude finally that v ∈ C 1+ α 2 ,2+α (0, T ) × • N * R with bounded derivatives ∂ t v i and ∂ 2 x v i in (0, T ) × (0, R) (i ∈ [[1, I]]
). Close arguments would lead us to show that v satisfies the linear Kirchhoff's boundary condition at the junction point {0}:

-λ(t)v(t, 0) + I i=1 α i (t)∂ x v i (t, 0) = γ(t), t ∈ (0, T ).
Finally, the expression of the upper bounds of the partial derivatives of v are direct consequences of Propositions 3.1, 3.2, 3.3, and 3.4. □

Proof of the main result

In this entire section, we work under the assumption (H) for the data D.

Let n ∈ N * .

We introduce the following grid of [0, K] : G n K := {l p := Kp n | p ∈ [[0, n]]}. We consider the following sequence (u p ) p∈[[0,n]] built by induction, constructed so that at each step p ∈ [[0, n -1]], u p solves the following backward parabolic scheme (in the variable l) on the star-shaped network N R :

P p :                                      ∀i ∈ [[1, I]], ∂ t u p i (t, x) -a i (t, x, l p )∂ 2 x u p i (t, x) + b i (t, x, l p )∂ x u p i (x)+ c i (t, x, l p )u p i (t, x) = f i (t, x, l p ) if (t, x) ∈ (0, T ) × (0, R), n(u p+1 (t, 0) -u p (t, 0)) + I i=1 α i (t, l p )∂ x u p i (t, 0) -r(t, l p )u p (t, 0) = ϕ(t, l p ) + β n p , ∀i ∈ [[1, I]], ∂ x u p i (t, R) = 0, t ∈ (0, T ), ∀(i, j) ∈ [[1, I]] 2 , u p i (t, 0) = u p j (t, 0) := u p (t, 0), t ∈ (0, T ), ∀i ∈ [[1, I]], u p i (0, x) = g i (x, l p ), x ∈ [0, R]. (60) 
The sequence (u p ) p∈[[0,n]] is initialized with the initial backward condition α i (0, l)∂ x g i (0, l) -r(0, l)g(0, l) = ϕ(0, l), l ∈ [0, K).

u n = ψ.
For any p ∈ [[0, n -1]] let us define for a while

γ p : t → ϕ(t, l p ) + β n p -nu p+1 (t, 0), (62) 
λ p : t → n + r(t, l p ), (63) 
that are both in the class W 1,∞ [0, T ] .

Under assumption (H), we are in position to apply the result from Theorem 3.5 iteratively at each step p varying from n -1 to 0 and show that the parabolic system P p admits a unique solution u p in the class

C α 2 ,1+α [0, T ] × N R ∩ C 1+α,2+α (0, T ) × • N * R .
which remains positive as long as

B p ≥ |f | ∞ .
In regard of all the previous conditions, we may then set the following constant

B p = M 0 := (|g| ∞ + |f | ∞ + |ϕ| ∞ + 2|∂ l g(0, •)| ∞ ) e |r|∞+1 e T (|c|∞+1) ,
independent of p and n in the expression of the function of κ n p . Gathering all the previous facts ensures that κ n p is a super solution. Similar arguments hold true for a construction of a sub solution of the form (t, (x, i)) → -M 0 e t(|c|∞+1) with the same constant M 0 , which proves the result by application of the parabolic comparison theorem adapted to junction networks (see Theorem 2.4 in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF]). 

|u p (•, 0)| ⌊W 1,∞ ([0,T ])⌋ ≤ M 1 (66) 
with

M 1 := M 0 |r| ⌊W 1,∞ ([0,T ])⌋ + |ϕ| ⌊W 1,∞ ([0,T ])⌋ ∨ M (g) + |ψ(•, 0)| ⌊W 1,∞ ([0,T ])⌋ ∨ M (g),
where

M (g) := |a| ∞ |∂ 2 x g| ∞ + |b| ∞ |∂ x g| ∞ + |c| ∞ |g| ∞ + |f | ∞ .
Proof. Recall that from Theorem 3.5, we have that t → u p (t, 0) ∈ W 1,∞ [0, T ] . Note also that the constant M (g) of the statement corresponds to the constant (31) of Proposition 3.3, but taking now into account the parameter l.

For p ∈ [[0, n -1]] we make use of the estimate (58) in Theorem 3.5 using the definitions (62)-( 63) and λ = n coming from the problem P p . We have the corresponding

Θ 0 (λ p , γ p ) ≤ M 0 |r| ⌊W 1,∞ ([0,T ])⌋ + |ϕ| ⌊W 1,∞ ([0,T ])⌋ n + |u p+1 (•, 0)| ⌊W 1,∞ ([0,T ])⌋ so that |u p (•, 0)| ⌊W 1,∞ ([0,T ])⌋ ≤ M 0 |r| ⌊W 1,∞ ([0,T ])⌋ + |ϕ| ⌊W 1,∞ ([0,T ])⌋ n + |u p+1 (•, 0)| ⌊W 1,∞ ([0,T ])⌋ ∨ M (g) ≤ M 0 |r| ⌊W 1,∞ ([0,T ])⌋ + |ϕ| ⌊W 1,∞ ([0,T ])⌋ n ∨ M (g) + |u p+1 (•, 0)| ⌊W 1,∞ ([0,T ])⌋ ∨ M (g),
where we made use of the inequality

∀(x, y, z) ∈ R 3 + , (x + y) ∨ z ≤ x ∨ z + y ∨ z.
Clearly, by induction we get: for all p ∈ [[0, n -1]],

|u p (•, 0)| ⌊W 1,∞ ([0,T ])⌋ ≤ M 0 |r| ⌊W 1,∞ ([0,T ])⌋ +|ϕ| ⌊W 1,∞ ([0,T ])⌋ ∨M (g)+|u n (•, 0)| ⌊W 1,∞ ([0,T ])⌋ ∨M (g),
which proves the result. □ 

|∂ x u p | ∞ ≤ M 2 ∨ |∂ x ψ| ∞ . ( 67 
)
Proof. From the result of Theorem 3.5, there are constants

L p such that ∀p ∈ [[0, n -1]], |∂ x u p | ∞ ≤ L p .
Since the coefficients and their weak derivatives are uniformly bounded by l, and |u p | is uniformly bounded by M 0 , we see from the expression of C 2 given in Theorem 3.5 that we can choose L p not depending on p: the announced result follows with help of the previous Proposition 4. derivative may be done by adapting standard arguments, but it would be long and tedious to write a proof in full detail. For the sake of conciseness, we will only outline the proof.

The idea is to follow the arguments exposed in Theorem 2.2 VI in the monograph [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF]. More precisely, Theorem 2.2 VI in [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF] states

that if v ∈ C 1,2 ([0, T ] × [0, R] is some (strong) solution of ∂ t v(t, x) -a(t, x)∂ 2 x v(t, x) + b(t, x)∂ x v(t, x) + c(t, x)v(t, x) = f (t, x), (t, x) ∈ (0, T ) × (0, R),
in the context where the coefficients (a, b, c, f ) are continuously differentiable and a ≥ a > 0 is elliptic, then

sup |∂ t v(t, x)|, (t, x) ∈ [0, T ] × [0, R] can be estimated in terms of the quantities sup |v(t, x)|, (t, x) ∈ [0, T ] × [0, R] , sup |∂ x v(t, x)|, (t, x) ∈ [0, T ] × [0, R] ,
the ellipticity constant a, the upper bounds of the coefficients (a, b, c, f ) and their derivatives, and the supreme of |∂ t v| at the boundary, namely

sup |∂ t v(t, 0)|, t ∈ [0, T ] and sup |∂ t v(t, R)|, t ∈ [0, T ] . For the solution u p ∈ C α 2 ,1+α [0, T ]×N R ∩C 1+ α 2 ,2+α (0, T )×
• N * R of our parabolic scheme (P p ) (in (60)), we cannot apply directly the result of Theorem 2.2 VI in [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF] on each branch because the coefficients involved in (P p ) and the values of u p at the boundary x = 0, x = R possess only a Lipschitz continuous regularity w.r.t. the time variable t. However, we may smooth by convolution the terms t → u p (t, 0), t → u p (t, R) together with the coefficients (a, b, c, f ). Thenusing standard notations for the convolutions with ε as upper index -we may consider a solution

w p ε on each ray R i of ∂ t w p ε,i (t, x) -a ε i (t, x, l p )∂ 2 x w p ε,i (t, x) + b ε i (t, x, l p ), ∂ x w p ε,i (t, x) + c ε i (t, x, l p )w p ε,i (t, x) = f ε i (t, x, l p ), (t, x) ∈ (0, T ) × (0, R),
with smooth Dirichlet boundary conditions u p,ε (•, 0), u p,ε (•, R) on the time-edge of the parabolic cylinder. Well-known results (see for example Theorem 3.4' in [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF]) ensure that the solution w p ε satisfies the conditions of Theorem 2.2 VI in [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF].

Now note that the smoothed data is uniformly bounded w.r.t. ε in C 1 norm ; namely using transparent notations,

∀ε > 0, |a ε , b ε , c ε , f ε , u p,ε (•, 0), u p,ε (•, R)| C 1 ≤ |a, b, c, f, u p (•, 0), u p (•, R)| W 1,∞ .
Also, it is easy to check after some lines of calculation -for e.g. using arguments similar to those in the proof of Theorem 2.2 VI of [START_REF] Ladyzenskaja | Linear and Quasi-Linear equations of Parabolic type[END_REF] but in our much simplest case -that w p ε,i converges to As a first conclusion, we claim that there exists a constant M 3 depending on M 0 , M 1 , M 2 , and

u p i in C 0,1 [0, T ] × [0, R] ∩ C 1,2 (0, T ) × (0, R) . Therefore, -by using first the convergence in C 1,2 (0, T ) × (0, R) -we have that for any compact [η, τ ] × K ⊂ (0, T ) × (0, R) |∂ t u p i | L ∞ ([η,τ ]×K) is also estimated in terms of the quantities |a, b, c, f, u p (•, 0), u p (•, R)| W 1,∞ , |∂ x u p | ∞ ,
|a, b, c, f | W 1,∞ such that for every compact [η, τ ] × K ⊂ (0, T ) × (0, R): max i∈[[1,I]] max p∈[[0,n]] |∂ t u p i | L ∞ ([η,τ ]×K) + |u p i (., R)| ⌊W 1,∞ ([η,τ ])⌋ ≤ M 3 ∨ |∂ t ψ| ∞ , (68) 
which by the uniformity of M 3 , implies

max i∈[[1,I]] max p∈[[0,n]] sup |∂ t u p i (t, x)|, (t, x) ∈ (0, T ) × (0, R) ≤ M 3 ∨ |∂ t ψ| ∞ .
Similarly, we can check that there exists a constant M independent of ε, depending only on the data of the system, such that for all

i ∈ [[1, n]], |w p ε,i | α [0,T ]×[0,R] + |∂ x w p ε,i | α x,[0,T ]×[0,R] ≤ M. Now making use of the convergence in C 0,1 [0, T ]×[0, R] of w p ε,i towards u p i in C 0,1 [0, T ]×[0, R] ,
we have the bound in Hölder norms

|u p i | α [0,T ]×[0,R] + |∂ x u p i | α x,[0,T ]×[0,R] ≤ M.
From the result of Propositions 3.3 and 3.2 or using a standard interpolation lemma, we get the following:

Proposition 4.4. There exists a constant

M 3 = M M 0 , M 1 , M 2 , |a, b, c, f | W 1,∞ such that sup n≥L max i∈[[1,I]] max p∈[[0,n]] sup x∈[0,R] |u p i (., x)| ⌊W 1,∞ ([0,T ])⌋ ≤ M 3 ∨ |∂ t ψ| ∞ . 4.5. Uniform bound for the term |∂ 2 x u p | ∞ . For any i ∈ [[1, I]] and (t, x) ∈ (0, T ) × (0, R), we have that ∂ 2 x u p i (t, x) = 1 a i (t, x, l p ) (∂ t u p i (t, x) + b i (t, x, l p )∂ x u p i (x) + c i (t, x, l p )u p i (t, x) -f i (t, x, l p )) .
So that by direct application of the results of Propositions 4.1 to 4.4, we may state the following result:

Proposition 4.5.

sup n≥L max p∈[[0,n]] |∂ 2 x u p | ∞ ≤ 1 a (M 3 ∨ |∂ t ψ| ∞ + M 2 |b| ∞ + |c| ∞ M 0 + |f | ∞ ) .
4.6. Uniform bound for the term n|u p+1 -u p | ∞ . Our concern is to obtain an uniform bound for the term:

n|u p+1 -u p | ∞ .
Importantly, note that we obtain an uniform bound for n|u p+1 -u p | ∞ only for all p ∈ [[0, n -2]]

and not for p = n -1 (contrary to the bounds gathered for |u p |, |∂ t u p |, |∂ x u p | and |∂ 2 x u p | that hold for all p ∈ [[0, n]]). Because of the lack of first order compatibility conditions w.r.t l at the boundary, it does not seem reasonable to expect that the bound below should be satisfied for p = n -1.

Proposition 4.6. We have

sup n≥L max p∈[[0,n-2]] n|u p+1 -u p | ∞ ≤ M 4 , with M 4 := 2 a M 2 |a| W 1,∞ + M 1 |a| W 1,∞ |b| W 1,∞ + M 0 |a| W 1,∞ |c| W 1,∞ + |a| W 1,∞ |f | W 1,∞ ∨ I|α| ∞ M 1 + |ψ| ∞ .
Proof. We will show by induction that, for a well chosen constant B p to be produced later and that can be chosen independently of p ∈ [[0, n -2]] and n, the following map

κ n p := (t, (x, i)) → u p+1 i (t, x) + (t + 1)B p n
is a super solution. At x = R, the condition is trivial, whereas at the junction point we remark that it is sufficient to satisfy:

∀t ∈ [0, T ], p ∈ [[0, n -2]]; B p (t + 1)[1 + |r| ∞ n ] ≥ I i=1 α i (t, l p )∂ x u p+1 i (t, 0) -ϕ(t, l p ). Let p ∈ [[0, n - 2 
]] fixed and first choose B p satisfying:

B p ≥ I|α| ∞ max j∈[[0,n-1]] |∂ x u j+1 i (•, 0)| ∞ + |ϕ| ∞ ,
that is finite in view of our previous estimates.

Making use of the uniform upper bounds obtained for u p and its derivatives, we are going to see that it is also possible to produce the constant B p so that the condition on each ray R i to be a super solution holds true (condition away from the junction point {0}). For this purpose, the main ingredient is the ellipticity condition on the coefficients a i combined with the Lipschitz regularity of the coefficients w.r.t the variable l. On each ray R i and for all (t, x) ∈ (0, T )×(0, R), by crucially making use of the fact that p ∈ [[0, n -2]] for the substitution of ∂ 2 x u p+1 i (t, x), we have:

∂ t κ n p (t, x) -a i (t, x, l p )∂ 2 x κ n p (t, x) + b i (t, x, l p )∂ x κ n p (x) + c i (t, x, l p )κ n p (t, x) -f i (t, x, l p ) = B p n + c i (t, x, l p ) B p (t + 1) n + ∂ t u p+1 i (t, x) -a i (t, x, l p )∂ 2 x u p+1 i (t, x)+ b i (t, x, l p )∂ x u p+1 i (t, x) + c i (t, x, l p )u p+1 i (t, x) -f i (t, x, l p ) = B p n + c i (t, x, l p ) B p (t + 1) n + ∂ t u p+1 i (t, x) - a i (t, x, l p ) a i (t, x, l p+1 ) ∂ t u p+1 i (t, x) + b i (t, x, l p+1 )∂ x u p+1 i (t, x) + c i (t, x, l p+1 )u p+1 i (t, x) -f i (t, x, l p+1 ) + b i (t, x, l p )∂ x u p+1 i (t, x) + c i (t, x, l p )u p+1 i (t, x) -f i (t, x, l p ).
Because of the Lipschitz regularity of the coefficients with respect to the variable l and the upper bounds obtained for the derivatives of u p , we have that for all (t, x) ∈ (0, T ) × (0, R),

∂ t u p+1 i (t, x) - a i (t, x, l p ) a i (t, x, l p+1 ) ∂ t u p+1 i (t, x) + b i (t, x, l p+1 )∂ x u p+1 i (t, x) + c i (t, x, l p+1 )u p+1 i (t, x) -f i (t, x, l p+1 ) + b i (t, x, l p )∂ x u p+1 i (t, x) + c i (t, x, l p )u p+1 i (t, x) -f i (t, x, l p ) ≤ 1 na |∂ t u p+1 | ∞ |a| W 1,∞ + 2|∂ x u p+1 | ∞ |a| W 1,∞ |b| W 1,∞ + 2|u p+1 | ∞ |a| W 1,∞ |c| W 1,∞ + 2|a| W 1,∞ |f | W 1,∞ .
Therefore, by choosing

B p ≥ 1 a |∂ t u p | ∞ |a| W 1,∞ + 2|∂ x u p | ∞ |a| W 1,∞ |b| W 1,∞ + 2|u p | ∞ |a| W 1,∞ |c| W 1,∞ + 2|a| W 1,∞ |f | W 1,∞ ,
we obtain that κ n p is a super solution. The same arguments may be applied for a construction of a sub solution of the form -u p+1 i -(t + 1)B p n with the same constant B p and we see that this constant can be chosen independent of p ∈ [[0, n -2]] and n -1.

Gathering both facts together yields the announced result. □ Proof of Theorem 2.4.

Proof. Uniqueness is a direct consequence of the comparison Theorem 2.6.

Fix K ∈ (0, K) and n ≥ N 0 := ⌊|r| ∞ ⌋ + 1 ∨ |r| 2 ∞ ∨ ⌊ K K -K ⌋ + 1 .
The 

sup n≥N 0 sup p∈[[0,n]] |u p | ∞ , sup x∈N R |u p (., x)| ⌊W 1,∞ ⌋ , |∂ x u p | ∞ , |∂ 2 x u p | ∞ ∨ sup p∈[[1,n-1]] |n(u p -u p-1 )| ∞ ≤ M. ( 69 
)
Define the following sequence in C 0,1,0 [0, T ] × N R × [0, K] of linear interpolating functions with respect to the variable l :

∀i ∈ [[1, I]], v n i (t, x, K) = ψ i (t, x) if (t, x) ∈ [0, T ] × [0, R],
and for all p ∈ [[0, n -1]] :

v n i (t, x, l) = u p i (t, x) + n(l -l n p )(u p+1 i (t, x) -u p i (t, x)) if (t, x, l) ∈ [0, T ] × [0, R] × [l n p , l n p+1 ).
Now, the uniform upper bounds obtained in (69) together with the upper bound obtained for

|n(u p+1 -u p )| ∞ (for all p ∈ [[0, n -2]]
) and our choice of K are enough to ensure that there exists a constant B 1 depending only on the data of the system but independent of n, such that for all i ∈ [[1, I]]:

|v n i | α [0,T ]×[0,R]×[0,K] + |∂ x v n i | α x,[0,T ]×[0,R]×[0,K] ≤ B 1 .
Using Lemma 2.2, we deduce that there exists a constant M 2 (α) > 0 that does not depend on n, such that for all i ∈ [[1, I]], we have the following global Hölder bound : We now focus on the regularity of v at the interior of each ray R i . We aim at proving that v ∈ C 1+ α 2 ,2+α, α 2 (0, T ) ×

|∂ x v n i | α 2 t,[0,T ]×[0,R]×[0,K] + |∂ x v n i | α x,[0,T ]×[0,R]×[0,K] + |∂ x v n i | α 2 l,[0,T ]×[0,R]×[0,K] ≤ B 2 (α). ( 
• N * R × (0, K) and satisfies: for all (t, x, l) ∈ (0, T ) × (0, R) × (0, K):

∂ t v i (t, x, l) -a i (t, x, l)∂ 2 x v i (t, x, l) + b i (t, x, l)∂ x v i (t, x, l) + v i (t, x, l)c i (t, x, l) -f i (t, x, l) = 0 on the interior of each ray R i .

Using once again (69), there exists a constant B 3 independent of n, such that for each i ∈ [[1, I]]:

∥∂ t v n i ∥ L 2 ((0,T )×(0,R)×(0,K)) ≤ B 3 , ∥∂ 2 x v n i ∥ L 2 ((0,T )×(0,R)×(0,K)) ≤ B 3 .

Hence, we get -up to a sub sequence denoted abusively in the same way by n:

∂ t v n i ⇀ ∂ t v i , ∂ 2 x v n i ⇀ ∂ 2 x v i
weakly in L 2 (0, T ) × (0, R) × (0, K) . Denote by C ∞ c (0, T ) × (0, R) × (0, K) the set of infinite differentiable functions on (0, T ) × (0, R) × (0, K) with compact support. We obtain therefore that, ∀ψ ∈ C ∞ c (0, T ) × (0, R) × (0, K) :

T 0 R 0 K 0 ∂ t v n i (t, x) -a i (t, x, l)∂ 2 x v n i (t, x) + b i (t, x, l)∂ x v n i (t, x, l) +c i (t, x, l)v n i (t, x, l) -f i (t, x, l) ψ(t, x, l)dldxdt n→+∞ -----→ T 0 R 0 K 0 ∂ t v i (t,
x, l) -a i (t, x, l)∂ 2 x v i (t, x, l) + b i (t, x, l)∂ x v i (t, x, l) +c i (t, x, l)v i (t, x, l) -f i (t, x, l) ψ(t, x, l)dldxdt.

We now prove that for any ψ ∈ C ∞ c (0, T ) × (0, R) × (0, K) :

T 0 R 0 K 0 ∂ t v n i (t,
x, l) -a i (t, x, l)∂ 2 x v n i (t, x, l) + b i (t, x, l)∂ x v n i (t, x, l) +c i (t, x, l)v n i (t, x, l) -f i (t, x, l) ψ(t, x, l)dldxdt n→+∞ -----→ 0.

Using that (u p ) p∈[[0,n]] is the solution of (60) and satisfies on each ray R i :

∀p ∈ [[0, n -1]] and ∀(t, x) ∈ (0, T ) × (0, R), ∂ t u p i (t, x) -a i (t, x, l p )∂ 2 x u p i (t, x) + b i (t, x, l p )∂ x u p i (t, x) + c i (t, x, l p )u p i (t, x) -f i (t, x, l p ) = 0, combined with the Lipschitz regularity of the coefficients and free terms (a, b, c, f ) w.r.t the variable l (Assumptiom H) and the uniform upper bound obtained in (69), we obtain that there is a constant B 4 , independent of n, such that:

∂ t v n i -a i ∂ 2 x v n i + b i ∂ x v n i + v n i c i -f i ∞ ≤ B 4 /n.
In turn, this leads to the expected result, namely:

∀ψ ∈ C ∞ c (0, T ) × (0, R) × (0, K)

T 0 R 0 K 0 ∂ t v i (t,
x, l) -a i (t, x, l)∂ 2 x v i (t, x, l) +b i (t, x, l)∂ x v i (t, x, l) + v i (t, x, l)c i (t, x, l) -f i (t, x, l) ψ(t, x, l)dldxdt = 0. Now using the key Lemma 2.3, which gives a result on the interior regularity for weak parabolic solutions that depend on the parameter l, we conclude that on each ray R i , v i belongs to

C 1+ α 2 ,2+α, α 2 (0, T ) × (0, R) × (0, K) , (i ∈ [[1, I]]).
Moreover, from the estimates (69), recall that ∂ t v n i and ∂ 2 x v n i are uniformly bounded by n. Since t → ∂ t v i (t, x, l) ∈ C (0, T ) and t → v i (t, x, l) is Lipschitz continuous on [0, T ] uniformly w.r.t. (x, l) ∈ [0, R] × [0, K] (this can be seen because t → v n i is equi-Lipschitz continuous and there is uniform C 0,1,0 convergence of v n i to v i ), we obtain that t → ∂ t v i (t, x, l) is bounded on (0, T ) uniformly w.r.t variables x and l and independently of K. Therefore, ∂ t v i ∈ L ∞ (0, T ) × (0, R) × (0, K) (using the arbitrary choice of K ∈ (0, K)). The same argument may be used to obtain ∂ 2

x v i ∈ L ∞ (0, T ) × (0, R) × (0, K) . We conclude finally that v ∈ C 1+ α 2 ,2+α, α 2 (0, T ) ×

• N * R × (0, K) , with bounded derivatives ∂ t v i and ∂ 2 x v i in (0, T ) × (0, R) × (0, K) (i ∈ [[1, I]]). Concerning the derivative of the limit solution v w.r.t the variable l, observe once again using (69) that there exists a constant B 5 independent of n such that on each ray R i :

|∂ l v n i | (0,T )×(0,R)×(0,K) ≤ B 5 .

Therefore, for any fixed q ∈ (1, +∞) and by reflexivity of L q (0, T ) × (0, R) × (0, K) , we get there exists an extraction sequence (n q ) such that:

∂ l v n q i ⇀ ξ i
in L q (0, T )×(0, R)×(0, K) where ξ i denotes an element of L q (0, T )×(0, R)×(0, K) . Because of the strong convergence of (v n q i ) to v i and the almost-everywhere uniqueness of weak derivatives, we identify ξ i = ∂ l v i a.e in (0, T ) × (0, R) × (0, K) and ∂ l v i ∈ L q (0, T ) × (0, R) × (0, K) . This shows that the weak limit ∂ l v i belongs to q∈(1,∞) L q (0, T ) × (0, R) × (0, K) . Hence, the solution v admits on each ray R i (i ∈ [[1, I]]) a generalized derivative with respect to the variable l that belongs to the class q∈(1,∞) L q (0, T ) × (0, R) × (0, K) .

Consequently, v ∈ C α 2 ,α, α 2 [0, T ] × [0, R] × [0, K] .
Let us turn now to the local time Kirchhoff 'scondition at the junction point {0} for the limit v.

Recall first that for all p ∈ [[0, n -1]]: n(u p+1 (t, 0) -u p (t, 0)) + I i=1 α i (t, l n p )∂ x u p i (t, 0) -r(t, l n p )u p (t, 0) = ϕ(t, l n p ) + β n p , ∀t ∈ (0, T ).

Remark successively: a) n(u p+1 (t, 0) -u p (t, 0)) = ∂ l v n (t, 0, l), ∀(t, l) ∈ [0, T ] × [l n p , l n ), ∀p ∈ [[0, n -1]]; b) from the expression of the constant β p n given in (61), the Lipschitz continuity of l → ∂ l g(l, 0), we obtain that:

∀(p, q) ∈ [[0, n -1]] 2 , |β n p -β n q | ≤ C K 2 n ,
for a constant C > 0 independent of (p, q, n); c) from u p i (t, 0) = v n i (t, 0, l n p ), we have: where the constant C(ν 1 , ν 3 , γ), depends only on the data (ν 1 , ν 3 , γ), and is given by:

C(ν 1 , ν 2 , γ) = 2ν 3 ν 1 γν 3 γ 1+γ + 2ν 1 γν 3 ν 1 -1 1+γ .
For the cases y < x, and x ∈ [ R 2 , R], we argue similarly. We conclude by exchanging the roles of l and t, to obtain the required Hölder condition in time satisfied by ∂ x u, with respect to the variable l, and that completes the proof. □ Proof of Theorem 2.8.

Proof. For the sake of conciseness, we omit the details and outline the main arguments needed for the proof.

Uniqueness: Let u and v be two solutions of [START_REF] Below | A maximum principle for semi linear parabolic network equations[END_REF] in the class C This implies that for all (t, (x, i), l) ∈ [0, T ] × N γ × [0, γ]: Sending γ → ∞ and using the boundedness of u and v, we deduce the inequality v ≤ u. Changing the roles of u and v, leads finally to the uniqueness for solutions of the system (20) in the class

exp(-λt - (x -κ) 2 2 -l) v i (t
C 1+ α 2 ,2+α, α 2 {0},∞
Ω T,∞ .

Existence: For the sake of simplicity, we will introduce a system in the form (1), on the domain:

(0, T ) ×

• N γ × (0, γ), (with γ → +∞),

  same length R > 0, that a Neumann boundary condition holds at x = R, and that a Dirichlet boundary condition ψ i holds at l = K. Of course, a more general network setting could be treated with similar tools: one could for instance consider more general rays, and/or a mix of Neumann and Dirichlet boundary conditions or local-time Kirchhoff's boundary conditions at the vertices, etc.
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  (U) to the ladder Dirichlet boundary parabolic problem. Moreover, we have the uniform estimate ∥v

3. 1 .Proposition 3 . 1 .

 131 Uniform bound for the solution. For any large enough n ∈ N

  is a family of super solutions of the elliptic problems (E k ) k∈[[0,n]] whenever the sequence (M k,n ) k∈[[0,n]] satisfies (26) together with (27), and (28) for all k[[0, n]].

  Defined likewise, the sequence (M k,n ) k∈[[0,n] has been purposely constructed in order to satisfy (26), (27) and (28) for all k ∈ [[0, n]]. Consequently, by applying the comparison theorem to the elliptic problems (E k ) k∈[[0,n]] with the family of super solutions ( φk i ) i∈[[1,n]] defined in (25) (and similarly to the family of sub solutions ( φk i ) i∈[[1,n]] ), we ensure that for all i ∈ [[1, I]] and k ∈ [[1, n]] :

  approximations of the identity by initializing ψ 0 i,θ to the identity (for all i ∈ [[1, I]]), and by defining ψ k i,θ through (36) when k ∈ [[1, n]].

  The family of constants (β n p ) is fixed by:∀p ∈ [[0, n -1]], β n p = n(g(0, l p+1 ) -g(0, l p )) -∂ l g(0, l p )(61) in order to obtain the compatibility condition of Theorem 3.5 at the junction point x = {0}, assumption (H ′ ) b)-(i); recall also that from assumption (H) b)-i) the following compatibility condition holds: ∂ l g(0, l) + I i=1

□ 4 . 2 .

 42 Uniform bound for the Lipschitz constant |u p (•, 0)| ⌊W 1,∞ ([0,T ])⌋ at the junction point.

4. 3 .Proposition 4 . 3 .

 343 Uniform bound for the gradient |∂ x u p | ∞ . There exist a constant M 2 depending only on R, T and the data D such that sup n≥L max p∈[[0,n]]

4 . 4 .

 44 Uniform bound for the time derivative |∂ t u p | ∞ . Finding an uniform bound of the time

  and |u p | ∞ ; the same holds true for |u p i (., R)| ⌊W 1,∞ ([η,τ ])⌋ . We refer to equation 2.6 in the proof of Theorem 2.2 VI in [13] for the exact expression of the upper bound that is uniform w.r.t [η, τ ] × K: recall that |∂ x u p | ∞ and |u p | ∞ are uniformly bounded by p and that we have obtained an uniform bound for |u p (•, 0)| ⌊W 1,∞ ([0,T ])⌋ in Proposition 4.2. By the same arguments as those given in Proposition 3.3 our line of reasoning takes care of the Neumann boundary condition.

  70)Applying Ascoli's Theorem, we have that -up to a sub sequence denoted still abusively bythe subscript index n -(v n i ) n≥0 converges in C 0,1,0 ([0, T ] × [0, R] × [0, K]) to v i and v i ∈ C α 2 ,1+α, α 2 ([0, T ] × [0, R] × [0, K]).Since v n satisfies the following continuity condition at the junction point:∀(i, j) ∈ [[1, I]] 2 , ∀n ≥ 0, ∀(t, l) ∈ [0, T ] × [0, K], v n i (t, 0, l) = v n j (t, 0, l), we deduce then v ∈ C α 2 ,1+α, α 2 [0, T ] × N R × [0, K] . Using the arbitrary choice of K ∈ (0, K), we conclude that v ∈ C α 2 ,1+α, α 2 [0, T ] × N R × [0, K) .

α 2 , 2 ) 1+γ γν 3 ν 1 1 α ∧ 1 ,

 2211 i (t, l n p )∂ x u p i (t, 0) -r(t, l n p )u p (t, 0) = I i=1 α i (t, l n p )∂ x v n i (t, 0, l n p ) -r(t, l p )v n (t, 0, l n p ).Therefore, we can conclude together with the equicontinuity of the sequence (∂ x v n i ) obtained in (70), the Lipschitz regularity of the coefficients (r, ϕ), and the last points a) and b), that∂ l v n (•, 0, •) satisfies: ∀K ∈ (0, K), ∀n ≥ N 0 , ∀(t, s, l, z) ∈ [0, T ] 2 × ([0, K] \ G n K ) |∂ l v n (t, 0, l) -∂ l v n (s, 0, l)| + |∂ l v n (t, 0, l) -∂ l v n (t, 0, z)| ≤ B 6 |t -s| α/2 + (|l -z| + 2/n) α/2 ,where once again the involved constant B 6 is independent of n.Hence, applying a generalization of Ascoli's theorem for piecewise continuous functions (we refer for e.g. to Theorem 6.2 in[START_REF]Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations[END_REF]), we get that -up to a subsequence still denoted abusively with the superscript n -(∂ l v n (•, 0, •)) n converges uniformly to ∂ l v(•, 0, •) in C α 2 , α 2 [0, T ] × [0, K] .This convergence holds for all K ∈ (0, K), yielding that v(•, 0,•) ∈ C α 2 ,1+ α 2 [0, T ] × [0, K) .It follows: |∂ x u(t, x, l) -∂ x u(s, x, l)| ≤ 2ν 3 |y -x| γ + 2ν 1 |t -s| α |y -x| . Assuming that |t -s| ≤ ( 3R minimizing in y ∈ [0, R], for y > x, the right side of the last equation, we get that the infimum is reached for y * = x + ν 1 |t -s| α γν 3 |∂ x u(t, x, l) -∂ x u(s, x, l)| ≤ C(ν 1 , ν 3 , γ)|t -s| αγ 1+γ ,

Ω 2 -

 2 T,∞ . As it has been done in the proof of the comparison Theorem 2.6, we may fix large enough constantsγ > κ > 0 satisfying κ > 2 αIand some constant λ = λ(γ, κ) > 0, such that if the following map:T ] × N γ × [0, γ] → R, (t, (x, i), l) → exp -λt -(x-κ) 2 l v i (t, x, l) -u i (t, x, l), is strictly positive, then its maximum can be reached only at the boundary:S γ := ((x, i), l) ∈ {(γ, i)} × [0, γ] ∪ N γ × {γ} , i ∈ [[1, I]] .

  then, for all (t, (x, i), l)∈ [0, T ] × [0, T ] × N γ × [0, γ], exp(-λt -(x -κ) 2 2 -l) v i (t, x, l) -u i (t, x, l) ≤ 0. So exp(-(x -κ) 2 2 -l) v i (t, x, l) -u i (t, x, l) ≤ 0.Finally we have, for all (t, (x, i), l)∈ [0, T ] × [0, T ] × N γ × [0, γ]: max 0, exp(-(x -κ) 2 2 -l) v i (t, x, l) -u i (t, x, l) ≤ max exp(-(γ -κ) 22), exp(-γ) ∥u∥ L ∞ + ∥v∥ L ∞ .

  x), (t, x) ∈ L ∂U.

	Moreover, by standard convergence arguments, v itself satisfies a Schauder's type estimate of the
	form (6).
	Now, if we know that there exists only one single generalized solution of this last problem,
	we have necessarily that v is equal to w on U (first almost everywhere and then everywhere).
	Due to the Schauder's estimate for v, for any open set O that is strictly included in the domain
	(0, T ) × (0, R), v has a regularity in the class C 1+ α 2 ,2+α (O) -which yields in turn, by extending

  estimates obtained in Propositions 4.1 4.2 4.3 4.4, 4.5, 4.6 for the unique solution (u p ) p∈[[0,n]] of the parabolic scheme (P p ) p∈[[0,n]] ensure that there exists a constant M > 0 independent of n, such that:

  , x, l) -u i (t, x, l) ≤ sup exp(-λt -(z -κ) 2 2 -l) v i (t, z, l) -u i (t, z, l) , ((z, i), l) ∈ S γ ≤ exp(-λt) max exp(-(γ -κ) 2 2 ), exp(-γ) ∥u∥ L ∞ + ∥v∥ L ∞ .Therefore, for all (t, (x, i), l)∈ [0, T ] × N γ × [0, γ], exp(-(x -κ) 2 2 -l) v i (t, x, l) -u i (t, x, l) ≤ exp(-(γ -κ) 2 2 ) ∨ exp(-γ) ∥u∥ L ∞ + ∥v∥ L ∞ .

	On the other hand, if			
	sup (t,(x,i),l)∈[0,T ]×Nγ ×[0,γ]	exp(-λt -	(x -κ) 2 2	-l) v

i (t, x, l) -u i (t, x, l) ≤ 0,
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We start first by getting uniform bounds for the derivatives of u p and also for the term n|u p -u p-1 |.

In whole remaining of this section, we fix L := (⌊|r| ∞ ⌋ + 1) ∨ |r| 2 ∞ ). 

with

Proof. We will show by induction that, for a well chosen constant B p defined by induction, the following continuous map:

is a super solution (in the sense given in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF]) of the parabolic system P p posed on the junction network.

Let us first choose The condition at the junction point is satisfied whenever

(Note the crucial importance of the sign in front of n(u p-1 -u p ) in (60) at this step of the reasoning). Hence, using the expression of the constant β n p , we choose B p satisfying also

(note that the right-hand side of the inequality is finite in regard to our assumptions.)

On each ray R i and for all (t, x) ∈ (0, T ) × (0, R) :

Finally, using once again the Kirchhoff's conditions satisfied by the solution (u p ) p∈[[0,n]] , the Lipschitz regularity of the coefficients and free terms (ϕ, r) w.r.t the variable l (Assumptiom H), and the uniform upper bound obtained in (69), with the same arguments as those used above, we can show that the limit solution satisfies the required local-time Kirchhoff 's condition at {0}:

We conclude then that the limit v is in the class C

Ω T and solves system (1) of Theorem 2.6. □ Appendix A. Interpolation Hölder lemma -Proof of Theorem 2.8

Proof of Lemma 2.2

Proof. Since the Hölder constants (ν 1 , ν 2 , ν 3 ) are uniforms in the variables (t, x, l), we can use the same techniques of the proof of Lemma 2.1 given in [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF]. More precisely, let us show that the gradient ∂ x u satisfies in the whole domain

an Hölder condition with exponent αγ 1+γ with respect to the time variable t. The Hölder condition with exponent βγ 1+γ with respect to the variable l can be treated with the same computations, exchanging t and l roles.

Following the computations given in Lemma 2.1 of [START_REF] Ohavi | Quasi-linear parabolic PDE posed on a network with nonlinear Neumann boundary condition at vertices[END_REF], let (t, s) ∈ [0, T ] 2 , with |t -s| ≤ 1, and

with y ̸ = x, we write

Using the uniform Hölder condition in time satisfied by u, with respect to the time variable t, we have:

On the other hand, using the uniform Hölder regularity of ∂ x u in space satisfied, we obtain:

having a Dirichlet boundary conditions at x = γ rather than the Neumann boundary conditions.

More precisely consider the following system:

Leaving aside some technical details, we affirm that it is possible to apply the classical barrier method in order to obtain a global bound for the gradient that involves only the gradient at the boundary x = γ. Hence, whenever the compatibility condition u

Denote u γ the unique solution of (71). Following the same argument as those in the proof of Theorem 2.4, we get that, up to a sub sequence, (u γ ) converges locally uniformly, as γ goes to +∞, to some map u which solves [START_REF] Below | A maximum principle for semi linear parabolic network equations[END_REF]. In order to prove this statement, there is need of the following :

-the upper bound given in Section 4 4-1, 4-2 and 4-3 implies that u ∈ C

{0},∞ Ω T,∞ , which, in regard of the previous , is a key fact to ensure uniqueness of the solution of (20);

-the constant M 4 of 4.3 in Section 4 ensures the existence of a weak derivative ∂ l v that is locally integrable in L q loc (0, T ) × (0, +∞) 2 for any q ∈ (1, +∞). □
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